xref: /openbmc/linux/drivers/mmc/host/sh_mmcif.c (revision f9388257)
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18 
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44 
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/pagemap.h>
58 #include <linux/platform_device.h>
59 #include <linux/pm_qos.h>
60 #include <linux/pm_runtime.h>
61 #include <linux/spinlock.h>
62 #include <linux/module.h>
63 
64 #define DRIVER_NAME	"sh_mmcif"
65 #define DRIVER_VERSION	"2010-04-28"
66 
67 /* CE_CMD_SET */
68 #define CMD_MASK		0x3f000000
69 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
70 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
71 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
72 #define CMD_SET_RBSY		(1 << 21) /* R1b */
73 #define CMD_SET_CCSEN		(1 << 20)
74 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
75 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
76 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
77 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
78 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
79 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
80 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
81 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
82 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
83 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
84 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
85 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
86 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
87 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
88 #define CMD_SET_CCSH		(1 << 5)
89 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
90 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
91 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
92 
93 /* CE_CMD_CTRL */
94 #define CMD_CTRL_BREAK		(1 << 0)
95 
96 /* CE_BLOCK_SET */
97 #define BLOCK_SIZE_MASK		0x0000ffff
98 
99 /* CE_INT */
100 #define INT_CCSDE		(1 << 29)
101 #define INT_CMD12DRE		(1 << 26)
102 #define INT_CMD12RBE		(1 << 25)
103 #define INT_CMD12CRE		(1 << 24)
104 #define INT_DTRANE		(1 << 23)
105 #define INT_BUFRE		(1 << 22)
106 #define INT_BUFWEN		(1 << 21)
107 #define INT_BUFREN		(1 << 20)
108 #define INT_CCSRCV		(1 << 19)
109 #define INT_RBSYE		(1 << 17)
110 #define INT_CRSPE		(1 << 16)
111 #define INT_CMDVIO		(1 << 15)
112 #define INT_BUFVIO		(1 << 14)
113 #define INT_WDATERR		(1 << 11)
114 #define INT_RDATERR		(1 << 10)
115 #define INT_RIDXERR		(1 << 9)
116 #define INT_RSPERR		(1 << 8)
117 #define INT_CCSTO		(1 << 5)
118 #define INT_CRCSTO		(1 << 4)
119 #define INT_WDATTO		(1 << 3)
120 #define INT_RDATTO		(1 << 2)
121 #define INT_RBSYTO		(1 << 1)
122 #define INT_RSPTO		(1 << 0)
123 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
124 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
125 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
126 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
127 
128 /* CE_INT_MASK */
129 #define MASK_ALL		0x00000000
130 #define MASK_MCCSDE		(1 << 29)
131 #define MASK_MCMD12DRE		(1 << 26)
132 #define MASK_MCMD12RBE		(1 << 25)
133 #define MASK_MCMD12CRE		(1 << 24)
134 #define MASK_MDTRANE		(1 << 23)
135 #define MASK_MBUFRE		(1 << 22)
136 #define MASK_MBUFWEN		(1 << 21)
137 #define MASK_MBUFREN		(1 << 20)
138 #define MASK_MCCSRCV		(1 << 19)
139 #define MASK_MRBSYE		(1 << 17)
140 #define MASK_MCRSPE		(1 << 16)
141 #define MASK_MCMDVIO		(1 << 15)
142 #define MASK_MBUFVIO		(1 << 14)
143 #define MASK_MWDATERR		(1 << 11)
144 #define MASK_MRDATERR		(1 << 10)
145 #define MASK_MRIDXERR		(1 << 9)
146 #define MASK_MRSPERR		(1 << 8)
147 #define MASK_MCCSTO		(1 << 5)
148 #define MASK_MCRCSTO		(1 << 4)
149 #define MASK_MWDATTO		(1 << 3)
150 #define MASK_MRDATTO		(1 << 2)
151 #define MASK_MRBSYTO		(1 << 1)
152 #define MASK_MRSPTO		(1 << 0)
153 
154 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156 				 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
157 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
158 
159 /* CE_HOST_STS1 */
160 #define STS1_CMDSEQ		(1 << 31)
161 
162 /* CE_HOST_STS2 */
163 #define STS2_CRCSTE		(1 << 31)
164 #define STS2_CRC16E		(1 << 30)
165 #define STS2_AC12CRCE		(1 << 29)
166 #define STS2_RSPCRC7E		(1 << 28)
167 #define STS2_CRCSTEBE		(1 << 27)
168 #define STS2_RDATEBE		(1 << 26)
169 #define STS2_AC12REBE		(1 << 25)
170 #define STS2_RSPEBE		(1 << 24)
171 #define STS2_AC12IDXE		(1 << 23)
172 #define STS2_RSPIDXE		(1 << 22)
173 #define STS2_CCSTO		(1 << 15)
174 #define STS2_RDATTO		(1 << 14)
175 #define STS2_DATBSYTO		(1 << 13)
176 #define STS2_CRCSTTO		(1 << 12)
177 #define STS2_AC12BSYTO		(1 << 11)
178 #define STS2_RSPBSYTO		(1 << 10)
179 #define STS2_AC12RSPTO		(1 << 9)
180 #define STS2_RSPTO		(1 << 8)
181 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
182 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
183 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
184 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
185 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
186 				 STS2_AC12RSPTO | STS2_RSPTO)
187 
188 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
189 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
190 #define CLKDEV_INIT		400000   /* 400 KHz */
191 
192 enum mmcif_state {
193 	STATE_IDLE,
194 	STATE_REQUEST,
195 	STATE_IOS,
196 };
197 
198 enum mmcif_wait_for {
199 	MMCIF_WAIT_FOR_REQUEST,
200 	MMCIF_WAIT_FOR_CMD,
201 	MMCIF_WAIT_FOR_MREAD,
202 	MMCIF_WAIT_FOR_MWRITE,
203 	MMCIF_WAIT_FOR_READ,
204 	MMCIF_WAIT_FOR_WRITE,
205 	MMCIF_WAIT_FOR_READ_END,
206 	MMCIF_WAIT_FOR_WRITE_END,
207 	MMCIF_WAIT_FOR_STOP,
208 };
209 
210 struct sh_mmcif_host {
211 	struct mmc_host *mmc;
212 	struct mmc_request *mrq;
213 	struct platform_device *pd;
214 	struct sh_dmae_slave dma_slave_tx;
215 	struct sh_dmae_slave dma_slave_rx;
216 	struct clk *hclk;
217 	unsigned int clk;
218 	int bus_width;
219 	bool sd_error;
220 	bool dying;
221 	long timeout;
222 	void __iomem *addr;
223 	u32 *pio_ptr;
224 	spinlock_t lock;		/* protect sh_mmcif_host::state */
225 	enum mmcif_state state;
226 	enum mmcif_wait_for wait_for;
227 	struct delayed_work timeout_work;
228 	size_t blocksize;
229 	int sg_idx;
230 	int sg_blkidx;
231 	bool power;
232 	bool card_present;
233 
234 	/* DMA support */
235 	struct dma_chan		*chan_rx;
236 	struct dma_chan		*chan_tx;
237 	struct completion	dma_complete;
238 	bool			dma_active;
239 };
240 
241 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
242 					unsigned int reg, u32 val)
243 {
244 	writel(val | readl(host->addr + reg), host->addr + reg);
245 }
246 
247 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
248 					unsigned int reg, u32 val)
249 {
250 	writel(~val & readl(host->addr + reg), host->addr + reg);
251 }
252 
253 static void mmcif_dma_complete(void *arg)
254 {
255 	struct sh_mmcif_host *host = arg;
256 	struct mmc_data *data = host->mrq->data;
257 
258 	dev_dbg(&host->pd->dev, "Command completed\n");
259 
260 	if (WARN(!data, "%s: NULL data in DMA completion!\n",
261 		 dev_name(&host->pd->dev)))
262 		return;
263 
264 	if (data->flags & MMC_DATA_READ)
265 		dma_unmap_sg(host->chan_rx->device->dev,
266 			     data->sg, data->sg_len,
267 			     DMA_FROM_DEVICE);
268 	else
269 		dma_unmap_sg(host->chan_tx->device->dev,
270 			     data->sg, data->sg_len,
271 			     DMA_TO_DEVICE);
272 
273 	complete(&host->dma_complete);
274 }
275 
276 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
277 {
278 	struct mmc_data *data = host->mrq->data;
279 	struct scatterlist *sg = data->sg;
280 	struct dma_async_tx_descriptor *desc = NULL;
281 	struct dma_chan *chan = host->chan_rx;
282 	dma_cookie_t cookie = -EINVAL;
283 	int ret;
284 
285 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
286 			 DMA_FROM_DEVICE);
287 	if (ret > 0) {
288 		host->dma_active = true;
289 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
290 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
291 	}
292 
293 	if (desc) {
294 		desc->callback = mmcif_dma_complete;
295 		desc->callback_param = host;
296 		cookie = dmaengine_submit(desc);
297 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
298 		dma_async_issue_pending(chan);
299 	}
300 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
301 		__func__, data->sg_len, ret, cookie);
302 
303 	if (!desc) {
304 		/* DMA failed, fall back to PIO */
305 		if (ret >= 0)
306 			ret = -EIO;
307 		host->chan_rx = NULL;
308 		host->dma_active = false;
309 		dma_release_channel(chan);
310 		/* Free the Tx channel too */
311 		chan = host->chan_tx;
312 		if (chan) {
313 			host->chan_tx = NULL;
314 			dma_release_channel(chan);
315 		}
316 		dev_warn(&host->pd->dev,
317 			 "DMA failed: %d, falling back to PIO\n", ret);
318 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
319 	}
320 
321 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
322 		desc, cookie, data->sg_len);
323 }
324 
325 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
326 {
327 	struct mmc_data *data = host->mrq->data;
328 	struct scatterlist *sg = data->sg;
329 	struct dma_async_tx_descriptor *desc = NULL;
330 	struct dma_chan *chan = host->chan_tx;
331 	dma_cookie_t cookie = -EINVAL;
332 	int ret;
333 
334 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
335 			 DMA_TO_DEVICE);
336 	if (ret > 0) {
337 		host->dma_active = true;
338 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
339 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
340 	}
341 
342 	if (desc) {
343 		desc->callback = mmcif_dma_complete;
344 		desc->callback_param = host;
345 		cookie = dmaengine_submit(desc);
346 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
347 		dma_async_issue_pending(chan);
348 	}
349 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
350 		__func__, data->sg_len, ret, cookie);
351 
352 	if (!desc) {
353 		/* DMA failed, fall back to PIO */
354 		if (ret >= 0)
355 			ret = -EIO;
356 		host->chan_tx = NULL;
357 		host->dma_active = false;
358 		dma_release_channel(chan);
359 		/* Free the Rx channel too */
360 		chan = host->chan_rx;
361 		if (chan) {
362 			host->chan_rx = NULL;
363 			dma_release_channel(chan);
364 		}
365 		dev_warn(&host->pd->dev,
366 			 "DMA failed: %d, falling back to PIO\n", ret);
367 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
368 	}
369 
370 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
371 		desc, cookie);
372 }
373 
374 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
375 {
376 	dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
377 	chan->private = arg;
378 	return true;
379 }
380 
381 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
382 				 struct sh_mmcif_plat_data *pdata)
383 {
384 	struct sh_dmae_slave *tx, *rx;
385 	host->dma_active = false;
386 
387 	/* We can only either use DMA for both Tx and Rx or not use it at all */
388 	if (pdata->dma) {
389 		dev_warn(&host->pd->dev,
390 			 "Update your platform to use embedded DMA slave IDs\n");
391 		tx = &pdata->dma->chan_priv_tx;
392 		rx = &pdata->dma->chan_priv_rx;
393 	} else {
394 		tx = &host->dma_slave_tx;
395 		tx->slave_id = pdata->slave_id_tx;
396 		rx = &host->dma_slave_rx;
397 		rx->slave_id = pdata->slave_id_rx;
398 	}
399 	if (tx->slave_id > 0 && rx->slave_id > 0) {
400 		dma_cap_mask_t mask;
401 
402 		dma_cap_zero(mask);
403 		dma_cap_set(DMA_SLAVE, mask);
404 
405 		host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
406 		dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
407 			host->chan_tx);
408 
409 		if (!host->chan_tx)
410 			return;
411 
412 		host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
413 		dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
414 			host->chan_rx);
415 
416 		if (!host->chan_rx) {
417 			dma_release_channel(host->chan_tx);
418 			host->chan_tx = NULL;
419 			return;
420 		}
421 
422 		init_completion(&host->dma_complete);
423 	}
424 }
425 
426 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
427 {
428 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
429 	/* Descriptors are freed automatically */
430 	if (host->chan_tx) {
431 		struct dma_chan *chan = host->chan_tx;
432 		host->chan_tx = NULL;
433 		dma_release_channel(chan);
434 	}
435 	if (host->chan_rx) {
436 		struct dma_chan *chan = host->chan_rx;
437 		host->chan_rx = NULL;
438 		dma_release_channel(chan);
439 	}
440 
441 	host->dma_active = false;
442 }
443 
444 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
445 {
446 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
447 
448 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
449 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
450 
451 	if (!clk)
452 		return;
453 	if (p->sup_pclk && clk == host->clk)
454 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
455 	else
456 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
457 				((fls(DIV_ROUND_UP(host->clk,
458 						   clk) - 1) - 1) << 16));
459 
460 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
461 }
462 
463 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
464 {
465 	u32 tmp;
466 
467 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
468 
469 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
470 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
471 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
472 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
473 	/* byte swap on */
474 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
475 }
476 
477 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
478 {
479 	u32 state1, state2;
480 	int ret, timeout;
481 
482 	host->sd_error = false;
483 
484 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
485 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
486 	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
487 	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
488 
489 	if (state1 & STS1_CMDSEQ) {
490 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
491 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
492 		for (timeout = 10000000; timeout; timeout--) {
493 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
494 			      & STS1_CMDSEQ))
495 				break;
496 			mdelay(1);
497 		}
498 		if (!timeout) {
499 			dev_err(&host->pd->dev,
500 				"Forced end of command sequence timeout err\n");
501 			return -EIO;
502 		}
503 		sh_mmcif_sync_reset(host);
504 		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
505 		return -EIO;
506 	}
507 
508 	if (state2 & STS2_CRC_ERR) {
509 		dev_dbg(&host->pd->dev, ": CRC error\n");
510 		ret = -EIO;
511 	} else if (state2 & STS2_TIMEOUT_ERR) {
512 		dev_dbg(&host->pd->dev, ": Timeout\n");
513 		ret = -ETIMEDOUT;
514 	} else {
515 		dev_dbg(&host->pd->dev, ": End/Index error\n");
516 		ret = -EIO;
517 	}
518 	return ret;
519 }
520 
521 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
522 {
523 	struct mmc_data *data = host->mrq->data;
524 
525 	host->sg_blkidx += host->blocksize;
526 
527 	/* data->sg->length must be a multiple of host->blocksize? */
528 	BUG_ON(host->sg_blkidx > data->sg->length);
529 
530 	if (host->sg_blkidx == data->sg->length) {
531 		host->sg_blkidx = 0;
532 		if (++host->sg_idx < data->sg_len)
533 			host->pio_ptr = sg_virt(++data->sg);
534 	} else {
535 		host->pio_ptr = p;
536 	}
537 
538 	if (host->sg_idx == data->sg_len)
539 		return false;
540 
541 	return true;
542 }
543 
544 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
545 				 struct mmc_request *mrq)
546 {
547 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
548 			   BLOCK_SIZE_MASK) + 3;
549 
550 	host->wait_for = MMCIF_WAIT_FOR_READ;
551 	schedule_delayed_work(&host->timeout_work, host->timeout);
552 
553 	/* buf read enable */
554 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
555 }
556 
557 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
558 {
559 	struct mmc_data *data = host->mrq->data;
560 	u32 *p = sg_virt(data->sg);
561 	int i;
562 
563 	if (host->sd_error) {
564 		data->error = sh_mmcif_error_manage(host);
565 		return false;
566 	}
567 
568 	for (i = 0; i < host->blocksize / 4; i++)
569 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
570 
571 	/* buffer read end */
572 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
573 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
574 
575 	return true;
576 }
577 
578 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
579 				struct mmc_request *mrq)
580 {
581 	struct mmc_data *data = mrq->data;
582 
583 	if (!data->sg_len || !data->sg->length)
584 		return;
585 
586 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
587 		BLOCK_SIZE_MASK;
588 
589 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
590 	host->sg_idx = 0;
591 	host->sg_blkidx = 0;
592 	host->pio_ptr = sg_virt(data->sg);
593 	schedule_delayed_work(&host->timeout_work, host->timeout);
594 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
595 }
596 
597 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
598 {
599 	struct mmc_data *data = host->mrq->data;
600 	u32 *p = host->pio_ptr;
601 	int i;
602 
603 	if (host->sd_error) {
604 		data->error = sh_mmcif_error_manage(host);
605 		return false;
606 	}
607 
608 	BUG_ON(!data->sg->length);
609 
610 	for (i = 0; i < host->blocksize / 4; i++)
611 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
612 
613 	if (!sh_mmcif_next_block(host, p))
614 		return false;
615 
616 	schedule_delayed_work(&host->timeout_work, host->timeout);
617 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
618 
619 	return true;
620 }
621 
622 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
623 					struct mmc_request *mrq)
624 {
625 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
626 			   BLOCK_SIZE_MASK) + 3;
627 
628 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
629 	schedule_delayed_work(&host->timeout_work, host->timeout);
630 
631 	/* buf write enable */
632 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
633 }
634 
635 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
636 {
637 	struct mmc_data *data = host->mrq->data;
638 	u32 *p = sg_virt(data->sg);
639 	int i;
640 
641 	if (host->sd_error) {
642 		data->error = sh_mmcif_error_manage(host);
643 		return false;
644 	}
645 
646 	for (i = 0; i < host->blocksize / 4; i++)
647 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
648 
649 	/* buffer write end */
650 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
651 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
652 
653 	return true;
654 }
655 
656 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
657 				struct mmc_request *mrq)
658 {
659 	struct mmc_data *data = mrq->data;
660 
661 	if (!data->sg_len || !data->sg->length)
662 		return;
663 
664 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
665 		BLOCK_SIZE_MASK;
666 
667 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
668 	host->sg_idx = 0;
669 	host->sg_blkidx = 0;
670 	host->pio_ptr = sg_virt(data->sg);
671 	schedule_delayed_work(&host->timeout_work, host->timeout);
672 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
673 }
674 
675 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
676 {
677 	struct mmc_data *data = host->mrq->data;
678 	u32 *p = host->pio_ptr;
679 	int i;
680 
681 	if (host->sd_error) {
682 		data->error = sh_mmcif_error_manage(host);
683 		return false;
684 	}
685 
686 	BUG_ON(!data->sg->length);
687 
688 	for (i = 0; i < host->blocksize / 4; i++)
689 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
690 
691 	if (!sh_mmcif_next_block(host, p))
692 		return false;
693 
694 	schedule_delayed_work(&host->timeout_work, host->timeout);
695 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
696 
697 	return true;
698 }
699 
700 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
701 						struct mmc_command *cmd)
702 {
703 	if (cmd->flags & MMC_RSP_136) {
704 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
705 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
706 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
707 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
708 	} else
709 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
710 }
711 
712 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
713 						struct mmc_command *cmd)
714 {
715 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
716 }
717 
718 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
719 			    struct mmc_request *mrq)
720 {
721 	struct mmc_data *data = mrq->data;
722 	struct mmc_command *cmd = mrq->cmd;
723 	u32 opc = cmd->opcode;
724 	u32 tmp = 0;
725 
726 	/* Response Type check */
727 	switch (mmc_resp_type(cmd)) {
728 	case MMC_RSP_NONE:
729 		tmp |= CMD_SET_RTYP_NO;
730 		break;
731 	case MMC_RSP_R1:
732 	case MMC_RSP_R1B:
733 	case MMC_RSP_R3:
734 		tmp |= CMD_SET_RTYP_6B;
735 		break;
736 	case MMC_RSP_R2:
737 		tmp |= CMD_SET_RTYP_17B;
738 		break;
739 	default:
740 		dev_err(&host->pd->dev, "Unsupported response type.\n");
741 		break;
742 	}
743 	switch (opc) {
744 	/* RBSY */
745 	case MMC_SWITCH:
746 	case MMC_STOP_TRANSMISSION:
747 	case MMC_SET_WRITE_PROT:
748 	case MMC_CLR_WRITE_PROT:
749 	case MMC_ERASE:
750 		tmp |= CMD_SET_RBSY;
751 		break;
752 	}
753 	/* WDAT / DATW */
754 	if (data) {
755 		tmp |= CMD_SET_WDAT;
756 		switch (host->bus_width) {
757 		case MMC_BUS_WIDTH_1:
758 			tmp |= CMD_SET_DATW_1;
759 			break;
760 		case MMC_BUS_WIDTH_4:
761 			tmp |= CMD_SET_DATW_4;
762 			break;
763 		case MMC_BUS_WIDTH_8:
764 			tmp |= CMD_SET_DATW_8;
765 			break;
766 		default:
767 			dev_err(&host->pd->dev, "Unsupported bus width.\n");
768 			break;
769 		}
770 	}
771 	/* DWEN */
772 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
773 		tmp |= CMD_SET_DWEN;
774 	/* CMLTE/CMD12EN */
775 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
776 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
777 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
778 				data->blocks << 16);
779 	}
780 	/* RIDXC[1:0] check bits */
781 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
782 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
783 		tmp |= CMD_SET_RIDXC_BITS;
784 	/* RCRC7C[1:0] check bits */
785 	if (opc == MMC_SEND_OP_COND)
786 		tmp |= CMD_SET_CRC7C_BITS;
787 	/* RCRC7C[1:0] internal CRC7 */
788 	if (opc == MMC_ALL_SEND_CID ||
789 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
790 		tmp |= CMD_SET_CRC7C_INTERNAL;
791 
792 	return (opc << 24) | tmp;
793 }
794 
795 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
796 			       struct mmc_request *mrq, u32 opc)
797 {
798 	switch (opc) {
799 	case MMC_READ_MULTIPLE_BLOCK:
800 		sh_mmcif_multi_read(host, mrq);
801 		return 0;
802 	case MMC_WRITE_MULTIPLE_BLOCK:
803 		sh_mmcif_multi_write(host, mrq);
804 		return 0;
805 	case MMC_WRITE_BLOCK:
806 		sh_mmcif_single_write(host, mrq);
807 		return 0;
808 	case MMC_READ_SINGLE_BLOCK:
809 	case MMC_SEND_EXT_CSD:
810 		sh_mmcif_single_read(host, mrq);
811 		return 0;
812 	default:
813 		dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
814 		return -EINVAL;
815 	}
816 }
817 
818 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
819 			       struct mmc_request *mrq)
820 {
821 	struct mmc_command *cmd = mrq->cmd;
822 	u32 opc = cmd->opcode;
823 	u32 mask;
824 
825 	switch (opc) {
826 	/* response busy check */
827 	case MMC_SWITCH:
828 	case MMC_STOP_TRANSMISSION:
829 	case MMC_SET_WRITE_PROT:
830 	case MMC_CLR_WRITE_PROT:
831 	case MMC_ERASE:
832 		mask = MASK_START_CMD | MASK_MRBSYE;
833 		break;
834 	default:
835 		mask = MASK_START_CMD | MASK_MCRSPE;
836 		break;
837 	}
838 
839 	if (mrq->data) {
840 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
841 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
842 				mrq->data->blksz);
843 	}
844 	opc = sh_mmcif_set_cmd(host, mrq);
845 
846 	sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
847 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
848 	/* set arg */
849 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
850 	/* set cmd */
851 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
852 
853 	host->wait_for = MMCIF_WAIT_FOR_CMD;
854 	schedule_delayed_work(&host->timeout_work, host->timeout);
855 }
856 
857 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
858 			      struct mmc_request *mrq)
859 {
860 	switch (mrq->cmd->opcode) {
861 	case MMC_READ_MULTIPLE_BLOCK:
862 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
863 		break;
864 	case MMC_WRITE_MULTIPLE_BLOCK:
865 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
866 		break;
867 	default:
868 		dev_err(&host->pd->dev, "unsupported stop cmd\n");
869 		mrq->stop->error = sh_mmcif_error_manage(host);
870 		return;
871 	}
872 
873 	host->wait_for = MMCIF_WAIT_FOR_STOP;
874 	schedule_delayed_work(&host->timeout_work, host->timeout);
875 }
876 
877 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
878 {
879 	struct sh_mmcif_host *host = mmc_priv(mmc);
880 	unsigned long flags;
881 
882 	spin_lock_irqsave(&host->lock, flags);
883 	if (host->state != STATE_IDLE) {
884 		spin_unlock_irqrestore(&host->lock, flags);
885 		mrq->cmd->error = -EAGAIN;
886 		mmc_request_done(mmc, mrq);
887 		return;
888 	}
889 
890 	host->state = STATE_REQUEST;
891 	spin_unlock_irqrestore(&host->lock, flags);
892 
893 	switch (mrq->cmd->opcode) {
894 	/* MMCIF does not support SD/SDIO command */
895 	case SD_IO_SEND_OP_COND:
896 	case MMC_APP_CMD:
897 		host->state = STATE_IDLE;
898 		mrq->cmd->error = -ETIMEDOUT;
899 		mmc_request_done(mmc, mrq);
900 		return;
901 	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
902 		if (!mrq->data) {
903 			/* send_if_cond cmd (not support) */
904 			host->state = STATE_IDLE;
905 			mrq->cmd->error = -ETIMEDOUT;
906 			mmc_request_done(mmc, mrq);
907 			return;
908 		}
909 		break;
910 	default:
911 		break;
912 	}
913 
914 	host->mrq = mrq;
915 
916 	sh_mmcif_start_cmd(host, mrq);
917 }
918 
919 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
920 {
921 	struct sh_mmcif_host *host = mmc_priv(mmc);
922 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
923 	unsigned long flags;
924 
925 	spin_lock_irqsave(&host->lock, flags);
926 	if (host->state != STATE_IDLE) {
927 		spin_unlock_irqrestore(&host->lock, flags);
928 		return;
929 	}
930 
931 	host->state = STATE_IOS;
932 	spin_unlock_irqrestore(&host->lock, flags);
933 
934 	if (ios->power_mode == MMC_POWER_UP) {
935 		if (!host->card_present) {
936 			/* See if we also get DMA */
937 			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
938 			host->card_present = true;
939 		}
940 	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
941 		/* clock stop */
942 		sh_mmcif_clock_control(host, 0);
943 		if (ios->power_mode == MMC_POWER_OFF) {
944 			if (host->card_present) {
945 				sh_mmcif_release_dma(host);
946 				host->card_present = false;
947 			}
948 		}
949 		if (host->power) {
950 			pm_runtime_put(&host->pd->dev);
951 			host->power = false;
952 			if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
953 				p->down_pwr(host->pd);
954 		}
955 		host->state = STATE_IDLE;
956 		return;
957 	}
958 
959 	if (ios->clock) {
960 		if (!host->power) {
961 			if (p->set_pwr)
962 				p->set_pwr(host->pd, ios->power_mode);
963 			pm_runtime_get_sync(&host->pd->dev);
964 			host->power = true;
965 			sh_mmcif_sync_reset(host);
966 		}
967 		sh_mmcif_clock_control(host, ios->clock);
968 	}
969 
970 	host->bus_width = ios->bus_width;
971 	host->state = STATE_IDLE;
972 }
973 
974 static int sh_mmcif_get_cd(struct mmc_host *mmc)
975 {
976 	struct sh_mmcif_host *host = mmc_priv(mmc);
977 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
978 
979 	if (!p->get_cd)
980 		return -ENOSYS;
981 	else
982 		return p->get_cd(host->pd);
983 }
984 
985 static struct mmc_host_ops sh_mmcif_ops = {
986 	.request	= sh_mmcif_request,
987 	.set_ios	= sh_mmcif_set_ios,
988 	.get_cd		= sh_mmcif_get_cd,
989 };
990 
991 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
992 {
993 	struct mmc_command *cmd = host->mrq->cmd;
994 	struct mmc_data *data = host->mrq->data;
995 	long time;
996 
997 	if (host->sd_error) {
998 		switch (cmd->opcode) {
999 		case MMC_ALL_SEND_CID:
1000 		case MMC_SELECT_CARD:
1001 		case MMC_APP_CMD:
1002 			cmd->error = -ETIMEDOUT;
1003 			host->sd_error = false;
1004 			break;
1005 		default:
1006 			cmd->error = sh_mmcif_error_manage(host);
1007 			dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1008 				cmd->opcode, cmd->error);
1009 			break;
1010 		}
1011 		return false;
1012 	}
1013 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1014 		cmd->error = 0;
1015 		return false;
1016 	}
1017 
1018 	sh_mmcif_get_response(host, cmd);
1019 
1020 	if (!data)
1021 		return false;
1022 
1023 	if (data->flags & MMC_DATA_READ) {
1024 		if (host->chan_rx)
1025 			sh_mmcif_start_dma_rx(host);
1026 	} else {
1027 		if (host->chan_tx)
1028 			sh_mmcif_start_dma_tx(host);
1029 	}
1030 
1031 	if (!host->dma_active) {
1032 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1033 		if (!data->error)
1034 			return true;
1035 		return false;
1036 	}
1037 
1038 	/* Running in the IRQ thread, can sleep */
1039 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1040 							 host->timeout);
1041 	if (host->sd_error) {
1042 		dev_err(host->mmc->parent,
1043 			"Error IRQ while waiting for DMA completion!\n");
1044 		/* Woken up by an error IRQ: abort DMA */
1045 		if (data->flags & MMC_DATA_READ)
1046 			dmaengine_terminate_all(host->chan_rx);
1047 		else
1048 			dmaengine_terminate_all(host->chan_tx);
1049 		data->error = sh_mmcif_error_manage(host);
1050 	} else if (!time) {
1051 		data->error = -ETIMEDOUT;
1052 	} else if (time < 0) {
1053 		data->error = time;
1054 	}
1055 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1056 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1057 	host->dma_active = false;
1058 
1059 	if (data->error)
1060 		data->bytes_xfered = 0;
1061 
1062 	return false;
1063 }
1064 
1065 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1066 {
1067 	struct sh_mmcif_host *host = dev_id;
1068 	struct mmc_request *mrq = host->mrq;
1069 	struct mmc_data *data = mrq->data;
1070 
1071 	cancel_delayed_work_sync(&host->timeout_work);
1072 
1073 	/*
1074 	 * All handlers return true, if processing continues, and false, if the
1075 	 * request has to be completed - successfully or not
1076 	 */
1077 	switch (host->wait_for) {
1078 	case MMCIF_WAIT_FOR_REQUEST:
1079 		/* We're too late, the timeout has already kicked in */
1080 		return IRQ_HANDLED;
1081 	case MMCIF_WAIT_FOR_CMD:
1082 		if (sh_mmcif_end_cmd(host))
1083 			/* Wait for data */
1084 			return IRQ_HANDLED;
1085 		break;
1086 	case MMCIF_WAIT_FOR_MREAD:
1087 		if (sh_mmcif_mread_block(host))
1088 			/* Wait for more data */
1089 			return IRQ_HANDLED;
1090 		break;
1091 	case MMCIF_WAIT_FOR_READ:
1092 		if (sh_mmcif_read_block(host))
1093 			/* Wait for data end */
1094 			return IRQ_HANDLED;
1095 		break;
1096 	case MMCIF_WAIT_FOR_MWRITE:
1097 		if (sh_mmcif_mwrite_block(host))
1098 			/* Wait data to write */
1099 			return IRQ_HANDLED;
1100 		break;
1101 	case MMCIF_WAIT_FOR_WRITE:
1102 		if (sh_mmcif_write_block(host))
1103 			/* Wait for data end */
1104 			return IRQ_HANDLED;
1105 		break;
1106 	case MMCIF_WAIT_FOR_STOP:
1107 		if (host->sd_error) {
1108 			mrq->stop->error = sh_mmcif_error_manage(host);
1109 			break;
1110 		}
1111 		sh_mmcif_get_cmd12response(host, mrq->stop);
1112 		mrq->stop->error = 0;
1113 		break;
1114 	case MMCIF_WAIT_FOR_READ_END:
1115 	case MMCIF_WAIT_FOR_WRITE_END:
1116 		if (host->sd_error)
1117 			data->error = sh_mmcif_error_manage(host);
1118 		break;
1119 	default:
1120 		BUG();
1121 	}
1122 
1123 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1124 		if (!mrq->cmd->error && data && !data->error)
1125 			data->bytes_xfered =
1126 				data->blocks * data->blksz;
1127 
1128 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1129 			sh_mmcif_stop_cmd(host, mrq);
1130 			if (!mrq->stop->error)
1131 				return IRQ_HANDLED;
1132 		}
1133 	}
1134 
1135 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1136 	host->state = STATE_IDLE;
1137 	host->mrq = NULL;
1138 	mmc_request_done(host->mmc, mrq);
1139 
1140 	return IRQ_HANDLED;
1141 }
1142 
1143 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1144 {
1145 	struct sh_mmcif_host *host = dev_id;
1146 	u32 state;
1147 	int err = 0;
1148 
1149 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1150 
1151 	if (state & INT_ERR_STS) {
1152 		/* error interrupts - process first */
1153 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1154 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1155 		err = 1;
1156 	} else if (state & INT_RBSYE) {
1157 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1158 				~(INT_RBSYE | INT_CRSPE));
1159 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1160 	} else if (state & INT_CRSPE) {
1161 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1162 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1163 	} else if (state & INT_BUFREN) {
1164 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1165 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1166 	} else if (state & INT_BUFWEN) {
1167 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1168 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1169 	} else if (state & INT_CMD12DRE) {
1170 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1171 			~(INT_CMD12DRE | INT_CMD12RBE |
1172 			  INT_CMD12CRE | INT_BUFRE));
1173 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1174 	} else if (state & INT_BUFRE) {
1175 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1176 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1177 	} else if (state & INT_DTRANE) {
1178 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
1179 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1180 	} else if (state & INT_CMD12RBE) {
1181 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1182 				~(INT_CMD12RBE | INT_CMD12CRE));
1183 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
1184 	} else {
1185 		dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1186 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1187 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1188 		err = 1;
1189 	}
1190 	if (err) {
1191 		host->sd_error = true;
1192 		dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1193 	}
1194 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1195 		if (!host->dma_active)
1196 			return IRQ_WAKE_THREAD;
1197 		else if (host->sd_error)
1198 			mmcif_dma_complete(host);
1199 	} else {
1200 		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1201 	}
1202 
1203 	return IRQ_HANDLED;
1204 }
1205 
1206 static void mmcif_timeout_work(struct work_struct *work)
1207 {
1208 	struct delayed_work *d = container_of(work, struct delayed_work, work);
1209 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1210 	struct mmc_request *mrq = host->mrq;
1211 
1212 	if (host->dying)
1213 		/* Don't run after mmc_remove_host() */
1214 		return;
1215 
1216 	/*
1217 	 * Handle races with cancel_delayed_work(), unless
1218 	 * cancel_delayed_work_sync() is used
1219 	 */
1220 	switch (host->wait_for) {
1221 	case MMCIF_WAIT_FOR_CMD:
1222 		mrq->cmd->error = sh_mmcif_error_manage(host);
1223 		break;
1224 	case MMCIF_WAIT_FOR_STOP:
1225 		mrq->stop->error = sh_mmcif_error_manage(host);
1226 		break;
1227 	case MMCIF_WAIT_FOR_MREAD:
1228 	case MMCIF_WAIT_FOR_MWRITE:
1229 	case MMCIF_WAIT_FOR_READ:
1230 	case MMCIF_WAIT_FOR_WRITE:
1231 	case MMCIF_WAIT_FOR_READ_END:
1232 	case MMCIF_WAIT_FOR_WRITE_END:
1233 		mrq->data->error = sh_mmcif_error_manage(host);
1234 		break;
1235 	default:
1236 		BUG();
1237 	}
1238 
1239 	host->state = STATE_IDLE;
1240 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1241 	host->mrq = NULL;
1242 	mmc_request_done(host->mmc, mrq);
1243 }
1244 
1245 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1246 {
1247 	int ret = 0, irq[2];
1248 	struct mmc_host *mmc;
1249 	struct sh_mmcif_host *host;
1250 	struct sh_mmcif_plat_data *pd;
1251 	struct resource *res;
1252 	void __iomem *reg;
1253 	char clk_name[8];
1254 
1255 	irq[0] = platform_get_irq(pdev, 0);
1256 	irq[1] = platform_get_irq(pdev, 1);
1257 	if (irq[0] < 0 || irq[1] < 0) {
1258 		dev_err(&pdev->dev, "Get irq error\n");
1259 		return -ENXIO;
1260 	}
1261 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1262 	if (!res) {
1263 		dev_err(&pdev->dev, "platform_get_resource error.\n");
1264 		return -ENXIO;
1265 	}
1266 	reg = ioremap(res->start, resource_size(res));
1267 	if (!reg) {
1268 		dev_err(&pdev->dev, "ioremap error.\n");
1269 		return -ENOMEM;
1270 	}
1271 	pd = pdev->dev.platform_data;
1272 	if (!pd) {
1273 		dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1274 		ret = -ENXIO;
1275 		goto clean_up;
1276 	}
1277 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1278 	if (!mmc) {
1279 		ret = -ENOMEM;
1280 		goto clean_up;
1281 	}
1282 	host		= mmc_priv(mmc);
1283 	host->mmc	= mmc;
1284 	host->addr	= reg;
1285 	host->timeout	= 1000;
1286 
1287 	snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1288 	host->hclk = clk_get(&pdev->dev, clk_name);
1289 	if (IS_ERR(host->hclk)) {
1290 		dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1291 		ret = PTR_ERR(host->hclk);
1292 		goto clean_up1;
1293 	}
1294 	clk_enable(host->hclk);
1295 	host->clk = clk_get_rate(host->hclk);
1296 	host->pd = pdev;
1297 
1298 	spin_lock_init(&host->lock);
1299 
1300 	mmc->ops = &sh_mmcif_ops;
1301 	mmc->f_max = host->clk;
1302 	/* close to 400KHz */
1303 	if (mmc->f_max < 51200000)
1304 		mmc->f_min = mmc->f_max / 128;
1305 	else if (mmc->f_max < 102400000)
1306 		mmc->f_min = mmc->f_max / 256;
1307 	else
1308 		mmc->f_min = mmc->f_max / 512;
1309 	if (pd->ocr)
1310 		mmc->ocr_avail = pd->ocr;
1311 	mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1312 	if (pd->caps)
1313 		mmc->caps |= pd->caps;
1314 	mmc->max_segs = 32;
1315 	mmc->max_blk_size = 512;
1316 	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1317 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1318 	mmc->max_seg_size = mmc->max_req_size;
1319 
1320 	sh_mmcif_sync_reset(host);
1321 	platform_set_drvdata(pdev, host);
1322 
1323 	pm_runtime_enable(&pdev->dev);
1324 	host->power = false;
1325 
1326 	ret = pm_runtime_resume(&pdev->dev);
1327 	if (ret < 0)
1328 		goto clean_up2;
1329 
1330 	INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1331 
1332 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1333 
1334 	ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
1335 	if (ret) {
1336 		dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1337 		goto clean_up3;
1338 	}
1339 	ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1340 	if (ret) {
1341 		dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1342 		goto clean_up4;
1343 	}
1344 
1345 	ret = mmc_add_host(mmc);
1346 	if (ret < 0)
1347 		goto clean_up5;
1348 
1349 	dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1350 
1351 	dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1352 	dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1353 		sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1354 	return ret;
1355 
1356 clean_up5:
1357 	free_irq(irq[1], host);
1358 clean_up4:
1359 	free_irq(irq[0], host);
1360 clean_up3:
1361 	pm_runtime_suspend(&pdev->dev);
1362 clean_up2:
1363 	pm_runtime_disable(&pdev->dev);
1364 	clk_disable(host->hclk);
1365 clean_up1:
1366 	mmc_free_host(mmc);
1367 clean_up:
1368 	if (reg)
1369 		iounmap(reg);
1370 	return ret;
1371 }
1372 
1373 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1374 {
1375 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1376 	int irq[2];
1377 
1378 	host->dying = true;
1379 	pm_runtime_get_sync(&pdev->dev);
1380 
1381 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1382 
1383 	mmc_remove_host(host->mmc);
1384 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1385 
1386 	/*
1387 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1388 	 * mmc_remove_host() call above. But swapping order doesn't help either
1389 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1390 	 */
1391 	cancel_delayed_work_sync(&host->timeout_work);
1392 
1393 	if (host->addr)
1394 		iounmap(host->addr);
1395 
1396 	irq[0] = platform_get_irq(pdev, 0);
1397 	irq[1] = platform_get_irq(pdev, 1);
1398 
1399 	free_irq(irq[0], host);
1400 	free_irq(irq[1], host);
1401 
1402 	platform_set_drvdata(pdev, NULL);
1403 
1404 	clk_disable(host->hclk);
1405 	mmc_free_host(host->mmc);
1406 	pm_runtime_put_sync(&pdev->dev);
1407 	pm_runtime_disable(&pdev->dev);
1408 
1409 	return 0;
1410 }
1411 
1412 #ifdef CONFIG_PM
1413 static int sh_mmcif_suspend(struct device *dev)
1414 {
1415 	struct platform_device *pdev = to_platform_device(dev);
1416 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1417 	int ret = mmc_suspend_host(host->mmc);
1418 
1419 	if (!ret) {
1420 		sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1421 		clk_disable(host->hclk);
1422 	}
1423 
1424 	return ret;
1425 }
1426 
1427 static int sh_mmcif_resume(struct device *dev)
1428 {
1429 	struct platform_device *pdev = to_platform_device(dev);
1430 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1431 
1432 	clk_enable(host->hclk);
1433 
1434 	return mmc_resume_host(host->mmc);
1435 }
1436 #else
1437 #define sh_mmcif_suspend	NULL
1438 #define sh_mmcif_resume		NULL
1439 #endif	/* CONFIG_PM */
1440 
1441 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1442 	.suspend = sh_mmcif_suspend,
1443 	.resume = sh_mmcif_resume,
1444 };
1445 
1446 static struct platform_driver sh_mmcif_driver = {
1447 	.probe		= sh_mmcif_probe,
1448 	.remove		= sh_mmcif_remove,
1449 	.driver		= {
1450 		.name	= DRIVER_NAME,
1451 		.pm	= &sh_mmcif_dev_pm_ops,
1452 	},
1453 };
1454 
1455 module_platform_driver(sh_mmcif_driver);
1456 
1457 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1458 MODULE_LICENSE("GPL");
1459 MODULE_ALIAS("platform:" DRIVER_NAME);
1460 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1461