xref: /openbmc/linux/drivers/mmc/host/sh_mmcif.c (revision efe6a8ad)
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18 
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44 
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/pagemap.h>
58 #include <linux/platform_device.h>
59 #include <linux/pm_qos.h>
60 #include <linux/pm_runtime.h>
61 #include <linux/spinlock.h>
62 #include <linux/module.h>
63 
64 #define DRIVER_NAME	"sh_mmcif"
65 #define DRIVER_VERSION	"2010-04-28"
66 
67 /* CE_CMD_SET */
68 #define CMD_MASK		0x3f000000
69 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
70 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
71 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
72 #define CMD_SET_RBSY		(1 << 21) /* R1b */
73 #define CMD_SET_CCSEN		(1 << 20)
74 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
75 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
76 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
77 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
78 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
79 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
80 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
81 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
82 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
83 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
84 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
85 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
86 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
87 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
88 #define CMD_SET_CCSH		(1 << 5)
89 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
90 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
91 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
92 
93 /* CE_CMD_CTRL */
94 #define CMD_CTRL_BREAK		(1 << 0)
95 
96 /* CE_BLOCK_SET */
97 #define BLOCK_SIZE_MASK		0x0000ffff
98 
99 /* CE_INT */
100 #define INT_CCSDE		(1 << 29)
101 #define INT_CMD12DRE		(1 << 26)
102 #define INT_CMD12RBE		(1 << 25)
103 #define INT_CMD12CRE		(1 << 24)
104 #define INT_DTRANE		(1 << 23)
105 #define INT_BUFRE		(1 << 22)
106 #define INT_BUFWEN		(1 << 21)
107 #define INT_BUFREN		(1 << 20)
108 #define INT_CCSRCV		(1 << 19)
109 #define INT_RBSYE		(1 << 17)
110 #define INT_CRSPE		(1 << 16)
111 #define INT_CMDVIO		(1 << 15)
112 #define INT_BUFVIO		(1 << 14)
113 #define INT_WDATERR		(1 << 11)
114 #define INT_RDATERR		(1 << 10)
115 #define INT_RIDXERR		(1 << 9)
116 #define INT_RSPERR		(1 << 8)
117 #define INT_CCSTO		(1 << 5)
118 #define INT_CRCSTO		(1 << 4)
119 #define INT_WDATTO		(1 << 3)
120 #define INT_RDATTO		(1 << 2)
121 #define INT_RBSYTO		(1 << 1)
122 #define INT_RSPTO		(1 << 0)
123 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
124 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
125 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
126 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
127 
128 /* CE_INT_MASK */
129 #define MASK_ALL		0x00000000
130 #define MASK_MCCSDE		(1 << 29)
131 #define MASK_MCMD12DRE		(1 << 26)
132 #define MASK_MCMD12RBE		(1 << 25)
133 #define MASK_MCMD12CRE		(1 << 24)
134 #define MASK_MDTRANE		(1 << 23)
135 #define MASK_MBUFRE		(1 << 22)
136 #define MASK_MBUFWEN		(1 << 21)
137 #define MASK_MBUFREN		(1 << 20)
138 #define MASK_MCCSRCV		(1 << 19)
139 #define MASK_MRBSYE		(1 << 17)
140 #define MASK_MCRSPE		(1 << 16)
141 #define MASK_MCMDVIO		(1 << 15)
142 #define MASK_MBUFVIO		(1 << 14)
143 #define MASK_MWDATERR		(1 << 11)
144 #define MASK_MRDATERR		(1 << 10)
145 #define MASK_MRIDXERR		(1 << 9)
146 #define MASK_MRSPERR		(1 << 8)
147 #define MASK_MCCSTO		(1 << 5)
148 #define MASK_MCRCSTO		(1 << 4)
149 #define MASK_MWDATTO		(1 << 3)
150 #define MASK_MRDATTO		(1 << 2)
151 #define MASK_MRBSYTO		(1 << 1)
152 #define MASK_MRSPTO		(1 << 0)
153 
154 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156 				 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
157 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
158 
159 /* CE_HOST_STS1 */
160 #define STS1_CMDSEQ		(1 << 31)
161 
162 /* CE_HOST_STS2 */
163 #define STS2_CRCSTE		(1 << 31)
164 #define STS2_CRC16E		(1 << 30)
165 #define STS2_AC12CRCE		(1 << 29)
166 #define STS2_RSPCRC7E		(1 << 28)
167 #define STS2_CRCSTEBE		(1 << 27)
168 #define STS2_RDATEBE		(1 << 26)
169 #define STS2_AC12REBE		(1 << 25)
170 #define STS2_RSPEBE		(1 << 24)
171 #define STS2_AC12IDXE		(1 << 23)
172 #define STS2_RSPIDXE		(1 << 22)
173 #define STS2_CCSTO		(1 << 15)
174 #define STS2_RDATTO		(1 << 14)
175 #define STS2_DATBSYTO		(1 << 13)
176 #define STS2_CRCSTTO		(1 << 12)
177 #define STS2_AC12BSYTO		(1 << 11)
178 #define STS2_RSPBSYTO		(1 << 10)
179 #define STS2_AC12RSPTO		(1 << 9)
180 #define STS2_RSPTO		(1 << 8)
181 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
182 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
183 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
184 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
185 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
186 				 STS2_AC12RSPTO | STS2_RSPTO)
187 
188 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
189 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
190 #define CLKDEV_INIT		400000   /* 400 KHz */
191 
192 enum mmcif_state {
193 	STATE_IDLE,
194 	STATE_REQUEST,
195 	STATE_IOS,
196 };
197 
198 enum mmcif_wait_for {
199 	MMCIF_WAIT_FOR_REQUEST,
200 	MMCIF_WAIT_FOR_CMD,
201 	MMCIF_WAIT_FOR_MREAD,
202 	MMCIF_WAIT_FOR_MWRITE,
203 	MMCIF_WAIT_FOR_READ,
204 	MMCIF_WAIT_FOR_WRITE,
205 	MMCIF_WAIT_FOR_READ_END,
206 	MMCIF_WAIT_FOR_WRITE_END,
207 	MMCIF_WAIT_FOR_STOP,
208 };
209 
210 struct sh_mmcif_host {
211 	struct mmc_host *mmc;
212 	struct mmc_request *mrq;
213 	struct platform_device *pd;
214 	struct sh_dmae_slave dma_slave_tx;
215 	struct sh_dmae_slave dma_slave_rx;
216 	struct clk *hclk;
217 	unsigned int clk;
218 	int bus_width;
219 	bool sd_error;
220 	bool dying;
221 	long timeout;
222 	void __iomem *addr;
223 	u32 *pio_ptr;
224 	spinlock_t lock;		/* protect sh_mmcif_host::state */
225 	enum mmcif_state state;
226 	enum mmcif_wait_for wait_for;
227 	struct delayed_work timeout_work;
228 	size_t blocksize;
229 	int sg_idx;
230 	int sg_blkidx;
231 	bool power;
232 	bool card_present;
233 
234 	/* DMA support */
235 	struct dma_chan		*chan_rx;
236 	struct dma_chan		*chan_tx;
237 	struct completion	dma_complete;
238 	bool			dma_active;
239 };
240 
241 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
242 					unsigned int reg, u32 val)
243 {
244 	writel(val | readl(host->addr + reg), host->addr + reg);
245 }
246 
247 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
248 					unsigned int reg, u32 val)
249 {
250 	writel(~val & readl(host->addr + reg), host->addr + reg);
251 }
252 
253 static void mmcif_dma_complete(void *arg)
254 {
255 	struct sh_mmcif_host *host = arg;
256 	struct mmc_data *data = host->mrq->data;
257 
258 	dev_dbg(&host->pd->dev, "Command completed\n");
259 
260 	if (WARN(!data, "%s: NULL data in DMA completion!\n",
261 		 dev_name(&host->pd->dev)))
262 		return;
263 
264 	if (data->flags & MMC_DATA_READ)
265 		dma_unmap_sg(host->chan_rx->device->dev,
266 			     data->sg, data->sg_len,
267 			     DMA_FROM_DEVICE);
268 	else
269 		dma_unmap_sg(host->chan_tx->device->dev,
270 			     data->sg, data->sg_len,
271 			     DMA_TO_DEVICE);
272 
273 	complete(&host->dma_complete);
274 }
275 
276 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
277 {
278 	struct mmc_data *data = host->mrq->data;
279 	struct scatterlist *sg = data->sg;
280 	struct dma_async_tx_descriptor *desc = NULL;
281 	struct dma_chan *chan = host->chan_rx;
282 	dma_cookie_t cookie = -EINVAL;
283 	int ret;
284 
285 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
286 			 DMA_FROM_DEVICE);
287 	if (ret > 0) {
288 		host->dma_active = true;
289 		desc = chan->device->device_prep_slave_sg(chan, sg, ret,
290 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
291 	}
292 
293 	if (desc) {
294 		desc->callback = mmcif_dma_complete;
295 		desc->callback_param = host;
296 		cookie = dmaengine_submit(desc);
297 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
298 		dma_async_issue_pending(chan);
299 	}
300 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
301 		__func__, data->sg_len, ret, cookie);
302 
303 	if (!desc) {
304 		/* DMA failed, fall back to PIO */
305 		if (ret >= 0)
306 			ret = -EIO;
307 		host->chan_rx = NULL;
308 		host->dma_active = false;
309 		dma_release_channel(chan);
310 		/* Free the Tx channel too */
311 		chan = host->chan_tx;
312 		if (chan) {
313 			host->chan_tx = NULL;
314 			dma_release_channel(chan);
315 		}
316 		dev_warn(&host->pd->dev,
317 			 "DMA failed: %d, falling back to PIO\n", ret);
318 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
319 	}
320 
321 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
322 		desc, cookie, data->sg_len);
323 }
324 
325 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
326 {
327 	struct mmc_data *data = host->mrq->data;
328 	struct scatterlist *sg = data->sg;
329 	struct dma_async_tx_descriptor *desc = NULL;
330 	struct dma_chan *chan = host->chan_tx;
331 	dma_cookie_t cookie = -EINVAL;
332 	int ret;
333 
334 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
335 			 DMA_TO_DEVICE);
336 	if (ret > 0) {
337 		host->dma_active = true;
338 		desc = chan->device->device_prep_slave_sg(chan, sg, ret,
339 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
340 	}
341 
342 	if (desc) {
343 		desc->callback = mmcif_dma_complete;
344 		desc->callback_param = host;
345 		cookie = dmaengine_submit(desc);
346 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
347 		dma_async_issue_pending(chan);
348 	}
349 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
350 		__func__, data->sg_len, ret, cookie);
351 
352 	if (!desc) {
353 		/* DMA failed, fall back to PIO */
354 		if (ret >= 0)
355 			ret = -EIO;
356 		host->chan_tx = NULL;
357 		host->dma_active = false;
358 		dma_release_channel(chan);
359 		/* Free the Rx channel too */
360 		chan = host->chan_rx;
361 		if (chan) {
362 			host->chan_rx = NULL;
363 			dma_release_channel(chan);
364 		}
365 		dev_warn(&host->pd->dev,
366 			 "DMA failed: %d, falling back to PIO\n", ret);
367 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
368 	}
369 
370 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
371 		desc, cookie);
372 }
373 
374 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
375 {
376 	dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
377 	chan->private = arg;
378 	return true;
379 }
380 
381 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
382 				 struct sh_mmcif_plat_data *pdata)
383 {
384 	struct sh_dmae_slave *tx, *rx;
385 	host->dma_active = false;
386 
387 	/* We can only either use DMA for both Tx and Rx or not use it at all */
388 	if (pdata->dma) {
389 		dev_warn(&host->pd->dev,
390 			 "Update your platform to use embedded DMA slave IDs\n");
391 		tx = &pdata->dma->chan_priv_tx;
392 		rx = &pdata->dma->chan_priv_rx;
393 	} else {
394 		tx = &host->dma_slave_tx;
395 		tx->slave_id = pdata->slave_id_tx;
396 		rx = &host->dma_slave_rx;
397 		rx->slave_id = pdata->slave_id_rx;
398 	}
399 	if (tx->slave_id > 0 && rx->slave_id > 0) {
400 		dma_cap_mask_t mask;
401 
402 		dma_cap_zero(mask);
403 		dma_cap_set(DMA_SLAVE, mask);
404 
405 		host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
406 		dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
407 			host->chan_tx);
408 
409 		if (!host->chan_tx)
410 			return;
411 
412 		host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
413 		dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
414 			host->chan_rx);
415 
416 		if (!host->chan_rx) {
417 			dma_release_channel(host->chan_tx);
418 			host->chan_tx = NULL;
419 			return;
420 		}
421 
422 		init_completion(&host->dma_complete);
423 	}
424 }
425 
426 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
427 {
428 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
429 	/* Descriptors are freed automatically */
430 	if (host->chan_tx) {
431 		struct dma_chan *chan = host->chan_tx;
432 		host->chan_tx = NULL;
433 		dma_release_channel(chan);
434 	}
435 	if (host->chan_rx) {
436 		struct dma_chan *chan = host->chan_rx;
437 		host->chan_rx = NULL;
438 		dma_release_channel(chan);
439 	}
440 
441 	host->dma_active = false;
442 }
443 
444 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
445 {
446 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
447 
448 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
449 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
450 
451 	if (!clk)
452 		return;
453 	if (p->sup_pclk && clk == host->clk)
454 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
455 	else
456 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
457 				((fls(host->clk / clk) - 1) << 16));
458 
459 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
460 }
461 
462 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
463 {
464 	u32 tmp;
465 
466 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
467 
468 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
469 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
470 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
471 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
472 	/* byte swap on */
473 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
474 }
475 
476 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
477 {
478 	u32 state1, state2;
479 	int ret, timeout;
480 
481 	host->sd_error = false;
482 
483 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
484 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
485 	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
486 	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
487 
488 	if (state1 & STS1_CMDSEQ) {
489 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
490 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
491 		for (timeout = 10000000; timeout; timeout--) {
492 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
493 			      & STS1_CMDSEQ))
494 				break;
495 			mdelay(1);
496 		}
497 		if (!timeout) {
498 			dev_err(&host->pd->dev,
499 				"Forced end of command sequence timeout err\n");
500 			return -EIO;
501 		}
502 		sh_mmcif_sync_reset(host);
503 		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
504 		return -EIO;
505 	}
506 
507 	if (state2 & STS2_CRC_ERR) {
508 		dev_dbg(&host->pd->dev, ": CRC error\n");
509 		ret = -EIO;
510 	} else if (state2 & STS2_TIMEOUT_ERR) {
511 		dev_dbg(&host->pd->dev, ": Timeout\n");
512 		ret = -ETIMEDOUT;
513 	} else {
514 		dev_dbg(&host->pd->dev, ": End/Index error\n");
515 		ret = -EIO;
516 	}
517 	return ret;
518 }
519 
520 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
521 {
522 	struct mmc_data *data = host->mrq->data;
523 
524 	host->sg_blkidx += host->blocksize;
525 
526 	/* data->sg->length must be a multiple of host->blocksize? */
527 	BUG_ON(host->sg_blkidx > data->sg->length);
528 
529 	if (host->sg_blkidx == data->sg->length) {
530 		host->sg_blkidx = 0;
531 		if (++host->sg_idx < data->sg_len)
532 			host->pio_ptr = sg_virt(++data->sg);
533 	} else {
534 		host->pio_ptr = p;
535 	}
536 
537 	if (host->sg_idx == data->sg_len)
538 		return false;
539 
540 	return true;
541 }
542 
543 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
544 				 struct mmc_request *mrq)
545 {
546 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
547 			   BLOCK_SIZE_MASK) + 3;
548 
549 	host->wait_for = MMCIF_WAIT_FOR_READ;
550 	schedule_delayed_work(&host->timeout_work, host->timeout);
551 
552 	/* buf read enable */
553 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
554 }
555 
556 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
557 {
558 	struct mmc_data *data = host->mrq->data;
559 	u32 *p = sg_virt(data->sg);
560 	int i;
561 
562 	if (host->sd_error) {
563 		data->error = sh_mmcif_error_manage(host);
564 		return false;
565 	}
566 
567 	for (i = 0; i < host->blocksize / 4; i++)
568 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
569 
570 	/* buffer read end */
571 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
572 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
573 
574 	return true;
575 }
576 
577 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
578 				struct mmc_request *mrq)
579 {
580 	struct mmc_data *data = mrq->data;
581 
582 	if (!data->sg_len || !data->sg->length)
583 		return;
584 
585 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
586 		BLOCK_SIZE_MASK;
587 
588 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
589 	host->sg_idx = 0;
590 	host->sg_blkidx = 0;
591 	host->pio_ptr = sg_virt(data->sg);
592 	schedule_delayed_work(&host->timeout_work, host->timeout);
593 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
594 }
595 
596 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
597 {
598 	struct mmc_data *data = host->mrq->data;
599 	u32 *p = host->pio_ptr;
600 	int i;
601 
602 	if (host->sd_error) {
603 		data->error = sh_mmcif_error_manage(host);
604 		return false;
605 	}
606 
607 	BUG_ON(!data->sg->length);
608 
609 	for (i = 0; i < host->blocksize / 4; i++)
610 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
611 
612 	if (!sh_mmcif_next_block(host, p))
613 		return false;
614 
615 	schedule_delayed_work(&host->timeout_work, host->timeout);
616 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
617 
618 	return true;
619 }
620 
621 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
622 					struct mmc_request *mrq)
623 {
624 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
625 			   BLOCK_SIZE_MASK) + 3;
626 
627 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
628 	schedule_delayed_work(&host->timeout_work, host->timeout);
629 
630 	/* buf write enable */
631 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
632 }
633 
634 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
635 {
636 	struct mmc_data *data = host->mrq->data;
637 	u32 *p = sg_virt(data->sg);
638 	int i;
639 
640 	if (host->sd_error) {
641 		data->error = sh_mmcif_error_manage(host);
642 		return false;
643 	}
644 
645 	for (i = 0; i < host->blocksize / 4; i++)
646 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
647 
648 	/* buffer write end */
649 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
650 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
651 
652 	return true;
653 }
654 
655 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
656 				struct mmc_request *mrq)
657 {
658 	struct mmc_data *data = mrq->data;
659 
660 	if (!data->sg_len || !data->sg->length)
661 		return;
662 
663 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
664 		BLOCK_SIZE_MASK;
665 
666 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
667 	host->sg_idx = 0;
668 	host->sg_blkidx = 0;
669 	host->pio_ptr = sg_virt(data->sg);
670 	schedule_delayed_work(&host->timeout_work, host->timeout);
671 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
672 }
673 
674 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
675 {
676 	struct mmc_data *data = host->mrq->data;
677 	u32 *p = host->pio_ptr;
678 	int i;
679 
680 	if (host->sd_error) {
681 		data->error = sh_mmcif_error_manage(host);
682 		return false;
683 	}
684 
685 	BUG_ON(!data->sg->length);
686 
687 	for (i = 0; i < host->blocksize / 4; i++)
688 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
689 
690 	if (!sh_mmcif_next_block(host, p))
691 		return false;
692 
693 	schedule_delayed_work(&host->timeout_work, host->timeout);
694 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
695 
696 	return true;
697 }
698 
699 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
700 						struct mmc_command *cmd)
701 {
702 	if (cmd->flags & MMC_RSP_136) {
703 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
704 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
705 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
706 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
707 	} else
708 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
709 }
710 
711 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
712 						struct mmc_command *cmd)
713 {
714 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
715 }
716 
717 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
718 			    struct mmc_request *mrq)
719 {
720 	struct mmc_data *data = mrq->data;
721 	struct mmc_command *cmd = mrq->cmd;
722 	u32 opc = cmd->opcode;
723 	u32 tmp = 0;
724 
725 	/* Response Type check */
726 	switch (mmc_resp_type(cmd)) {
727 	case MMC_RSP_NONE:
728 		tmp |= CMD_SET_RTYP_NO;
729 		break;
730 	case MMC_RSP_R1:
731 	case MMC_RSP_R1B:
732 	case MMC_RSP_R3:
733 		tmp |= CMD_SET_RTYP_6B;
734 		break;
735 	case MMC_RSP_R2:
736 		tmp |= CMD_SET_RTYP_17B;
737 		break;
738 	default:
739 		dev_err(&host->pd->dev, "Unsupported response type.\n");
740 		break;
741 	}
742 	switch (opc) {
743 	/* RBSY */
744 	case MMC_SWITCH:
745 	case MMC_STOP_TRANSMISSION:
746 	case MMC_SET_WRITE_PROT:
747 	case MMC_CLR_WRITE_PROT:
748 	case MMC_ERASE:
749 	case MMC_GEN_CMD:
750 		tmp |= CMD_SET_RBSY;
751 		break;
752 	}
753 	/* WDAT / DATW */
754 	if (data) {
755 		tmp |= CMD_SET_WDAT;
756 		switch (host->bus_width) {
757 		case MMC_BUS_WIDTH_1:
758 			tmp |= CMD_SET_DATW_1;
759 			break;
760 		case MMC_BUS_WIDTH_4:
761 			tmp |= CMD_SET_DATW_4;
762 			break;
763 		case MMC_BUS_WIDTH_8:
764 			tmp |= CMD_SET_DATW_8;
765 			break;
766 		default:
767 			dev_err(&host->pd->dev, "Unsupported bus width.\n");
768 			break;
769 		}
770 	}
771 	/* DWEN */
772 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
773 		tmp |= CMD_SET_DWEN;
774 	/* CMLTE/CMD12EN */
775 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
776 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
777 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
778 				data->blocks << 16);
779 	}
780 	/* RIDXC[1:0] check bits */
781 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
782 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
783 		tmp |= CMD_SET_RIDXC_BITS;
784 	/* RCRC7C[1:0] check bits */
785 	if (opc == MMC_SEND_OP_COND)
786 		tmp |= CMD_SET_CRC7C_BITS;
787 	/* RCRC7C[1:0] internal CRC7 */
788 	if (opc == MMC_ALL_SEND_CID ||
789 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
790 		tmp |= CMD_SET_CRC7C_INTERNAL;
791 
792 	return (opc << 24) | tmp;
793 }
794 
795 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
796 			       struct mmc_request *mrq, u32 opc)
797 {
798 	switch (opc) {
799 	case MMC_READ_MULTIPLE_BLOCK:
800 		sh_mmcif_multi_read(host, mrq);
801 		return 0;
802 	case MMC_WRITE_MULTIPLE_BLOCK:
803 		sh_mmcif_multi_write(host, mrq);
804 		return 0;
805 	case MMC_WRITE_BLOCK:
806 		sh_mmcif_single_write(host, mrq);
807 		return 0;
808 	case MMC_READ_SINGLE_BLOCK:
809 	case MMC_SEND_EXT_CSD:
810 		sh_mmcif_single_read(host, mrq);
811 		return 0;
812 	default:
813 		dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
814 		return -EINVAL;
815 	}
816 }
817 
818 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
819 			       struct mmc_request *mrq)
820 {
821 	struct mmc_command *cmd = mrq->cmd;
822 	u32 opc = cmd->opcode;
823 	u32 mask;
824 
825 	switch (opc) {
826 	/* response busy check */
827 	case MMC_SWITCH:
828 	case MMC_STOP_TRANSMISSION:
829 	case MMC_SET_WRITE_PROT:
830 	case MMC_CLR_WRITE_PROT:
831 	case MMC_ERASE:
832 	case MMC_GEN_CMD:
833 		mask = MASK_START_CMD | MASK_MRBSYE;
834 		break;
835 	default:
836 		mask = MASK_START_CMD | MASK_MCRSPE;
837 		break;
838 	}
839 
840 	if (mrq->data) {
841 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
842 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
843 				mrq->data->blksz);
844 	}
845 	opc = sh_mmcif_set_cmd(host, mrq);
846 
847 	sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
848 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
849 	/* set arg */
850 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
851 	/* set cmd */
852 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
853 
854 	host->wait_for = MMCIF_WAIT_FOR_CMD;
855 	schedule_delayed_work(&host->timeout_work, host->timeout);
856 }
857 
858 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
859 			      struct mmc_request *mrq)
860 {
861 	switch (mrq->cmd->opcode) {
862 	case MMC_READ_MULTIPLE_BLOCK:
863 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
864 		break;
865 	case MMC_WRITE_MULTIPLE_BLOCK:
866 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
867 		break;
868 	default:
869 		dev_err(&host->pd->dev, "unsupported stop cmd\n");
870 		mrq->stop->error = sh_mmcif_error_manage(host);
871 		return;
872 	}
873 
874 	host->wait_for = MMCIF_WAIT_FOR_STOP;
875 	schedule_delayed_work(&host->timeout_work, host->timeout);
876 }
877 
878 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
879 {
880 	struct sh_mmcif_host *host = mmc_priv(mmc);
881 	unsigned long flags;
882 
883 	spin_lock_irqsave(&host->lock, flags);
884 	if (host->state != STATE_IDLE) {
885 		spin_unlock_irqrestore(&host->lock, flags);
886 		mrq->cmd->error = -EAGAIN;
887 		mmc_request_done(mmc, mrq);
888 		return;
889 	}
890 
891 	host->state = STATE_REQUEST;
892 	spin_unlock_irqrestore(&host->lock, flags);
893 
894 	switch (mrq->cmd->opcode) {
895 	/* MMCIF does not support SD/SDIO command */
896 	case SD_IO_SEND_OP_COND:
897 	case MMC_APP_CMD:
898 		host->state = STATE_IDLE;
899 		mrq->cmd->error = -ETIMEDOUT;
900 		mmc_request_done(mmc, mrq);
901 		return;
902 	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
903 		if (!mrq->data) {
904 			/* send_if_cond cmd (not support) */
905 			host->state = STATE_IDLE;
906 			mrq->cmd->error = -ETIMEDOUT;
907 			mmc_request_done(mmc, mrq);
908 			return;
909 		}
910 		break;
911 	default:
912 		break;
913 	}
914 
915 	host->mrq = mrq;
916 
917 	sh_mmcif_start_cmd(host, mrq);
918 }
919 
920 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
921 {
922 	struct sh_mmcif_host *host = mmc_priv(mmc);
923 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
924 	unsigned long flags;
925 
926 	spin_lock_irqsave(&host->lock, flags);
927 	if (host->state != STATE_IDLE) {
928 		spin_unlock_irqrestore(&host->lock, flags);
929 		return;
930 	}
931 
932 	host->state = STATE_IOS;
933 	spin_unlock_irqrestore(&host->lock, flags);
934 
935 	if (ios->power_mode == MMC_POWER_UP) {
936 		if (!host->card_present) {
937 			/* See if we also get DMA */
938 			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
939 			host->card_present = true;
940 		}
941 	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
942 		/* clock stop */
943 		sh_mmcif_clock_control(host, 0);
944 		if (ios->power_mode == MMC_POWER_OFF) {
945 			if (host->card_present) {
946 				sh_mmcif_release_dma(host);
947 				host->card_present = false;
948 			}
949 		}
950 		if (host->power) {
951 			pm_runtime_put(&host->pd->dev);
952 			host->power = false;
953 			if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
954 				p->down_pwr(host->pd);
955 		}
956 		host->state = STATE_IDLE;
957 		return;
958 	}
959 
960 	if (ios->clock) {
961 		if (!host->power) {
962 			if (p->set_pwr)
963 				p->set_pwr(host->pd, ios->power_mode);
964 			pm_runtime_get_sync(&host->pd->dev);
965 			host->power = true;
966 			sh_mmcif_sync_reset(host);
967 		}
968 		sh_mmcif_clock_control(host, ios->clock);
969 	}
970 
971 	host->bus_width = ios->bus_width;
972 	host->state = STATE_IDLE;
973 }
974 
975 static int sh_mmcif_get_cd(struct mmc_host *mmc)
976 {
977 	struct sh_mmcif_host *host = mmc_priv(mmc);
978 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
979 
980 	if (!p->get_cd)
981 		return -ENOSYS;
982 	else
983 		return p->get_cd(host->pd);
984 }
985 
986 static struct mmc_host_ops sh_mmcif_ops = {
987 	.request	= sh_mmcif_request,
988 	.set_ios	= sh_mmcif_set_ios,
989 	.get_cd		= sh_mmcif_get_cd,
990 };
991 
992 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
993 {
994 	struct mmc_command *cmd = host->mrq->cmd;
995 	struct mmc_data *data = host->mrq->data;
996 	long time;
997 
998 	if (host->sd_error) {
999 		switch (cmd->opcode) {
1000 		case MMC_ALL_SEND_CID:
1001 		case MMC_SELECT_CARD:
1002 		case MMC_APP_CMD:
1003 			cmd->error = -ETIMEDOUT;
1004 			host->sd_error = false;
1005 			break;
1006 		default:
1007 			cmd->error = sh_mmcif_error_manage(host);
1008 			dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1009 				cmd->opcode, cmd->error);
1010 			break;
1011 		}
1012 		return false;
1013 	}
1014 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1015 		cmd->error = 0;
1016 		return false;
1017 	}
1018 
1019 	sh_mmcif_get_response(host, cmd);
1020 
1021 	if (!data)
1022 		return false;
1023 
1024 	if (data->flags & MMC_DATA_READ) {
1025 		if (host->chan_rx)
1026 			sh_mmcif_start_dma_rx(host);
1027 	} else {
1028 		if (host->chan_tx)
1029 			sh_mmcif_start_dma_tx(host);
1030 	}
1031 
1032 	if (!host->dma_active) {
1033 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1034 		if (!data->error)
1035 			return true;
1036 		return false;
1037 	}
1038 
1039 	/* Running in the IRQ thread, can sleep */
1040 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1041 							 host->timeout);
1042 	if (host->sd_error) {
1043 		dev_err(host->mmc->parent,
1044 			"Error IRQ while waiting for DMA completion!\n");
1045 		/* Woken up by an error IRQ: abort DMA */
1046 		if (data->flags & MMC_DATA_READ)
1047 			dmaengine_terminate_all(host->chan_rx);
1048 		else
1049 			dmaengine_terminate_all(host->chan_tx);
1050 		data->error = sh_mmcif_error_manage(host);
1051 	} else if (!time) {
1052 		data->error = -ETIMEDOUT;
1053 	} else if (time < 0) {
1054 		data->error = time;
1055 	}
1056 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1057 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1058 	host->dma_active = false;
1059 
1060 	if (data->error)
1061 		data->bytes_xfered = 0;
1062 
1063 	return false;
1064 }
1065 
1066 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1067 {
1068 	struct sh_mmcif_host *host = dev_id;
1069 	struct mmc_request *mrq = host->mrq;
1070 	struct mmc_data *data = mrq->data;
1071 
1072 	cancel_delayed_work_sync(&host->timeout_work);
1073 
1074 	/*
1075 	 * All handlers return true, if processing continues, and false, if the
1076 	 * request has to be completed - successfully or not
1077 	 */
1078 	switch (host->wait_for) {
1079 	case MMCIF_WAIT_FOR_REQUEST:
1080 		/* We're too late, the timeout has already kicked in */
1081 		return IRQ_HANDLED;
1082 	case MMCIF_WAIT_FOR_CMD:
1083 		if (sh_mmcif_end_cmd(host))
1084 			/* Wait for data */
1085 			return IRQ_HANDLED;
1086 		break;
1087 	case MMCIF_WAIT_FOR_MREAD:
1088 		if (sh_mmcif_mread_block(host))
1089 			/* Wait for more data */
1090 			return IRQ_HANDLED;
1091 		break;
1092 	case MMCIF_WAIT_FOR_READ:
1093 		if (sh_mmcif_read_block(host))
1094 			/* Wait for data end */
1095 			return IRQ_HANDLED;
1096 		break;
1097 	case MMCIF_WAIT_FOR_MWRITE:
1098 		if (sh_mmcif_mwrite_block(host))
1099 			/* Wait data to write */
1100 			return IRQ_HANDLED;
1101 		break;
1102 	case MMCIF_WAIT_FOR_WRITE:
1103 		if (sh_mmcif_write_block(host))
1104 			/* Wait for data end */
1105 			return IRQ_HANDLED;
1106 		break;
1107 	case MMCIF_WAIT_FOR_STOP:
1108 		if (host->sd_error) {
1109 			mrq->stop->error = sh_mmcif_error_manage(host);
1110 			break;
1111 		}
1112 		sh_mmcif_get_cmd12response(host, mrq->stop);
1113 		mrq->stop->error = 0;
1114 		break;
1115 	case MMCIF_WAIT_FOR_READ_END:
1116 	case MMCIF_WAIT_FOR_WRITE_END:
1117 		if (host->sd_error)
1118 			data->error = sh_mmcif_error_manage(host);
1119 		break;
1120 	default:
1121 		BUG();
1122 	}
1123 
1124 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1125 		if (!mrq->cmd->error && data && !data->error)
1126 			data->bytes_xfered =
1127 				data->blocks * data->blksz;
1128 
1129 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1130 			sh_mmcif_stop_cmd(host, mrq);
1131 			if (!mrq->stop->error)
1132 				return IRQ_HANDLED;
1133 		}
1134 	}
1135 
1136 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1137 	host->state = STATE_IDLE;
1138 	host->mrq = NULL;
1139 	mmc_request_done(host->mmc, mrq);
1140 
1141 	return IRQ_HANDLED;
1142 }
1143 
1144 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1145 {
1146 	struct sh_mmcif_host *host = dev_id;
1147 	u32 state;
1148 	int err = 0;
1149 
1150 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1151 
1152 	if (state & INT_ERR_STS) {
1153 		/* error interrupts - process first */
1154 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1155 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1156 		err = 1;
1157 	} else if (state & INT_RBSYE) {
1158 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1159 				~(INT_RBSYE | INT_CRSPE));
1160 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1161 	} else if (state & INT_CRSPE) {
1162 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1163 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1164 	} else if (state & INT_BUFREN) {
1165 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1166 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1167 	} else if (state & INT_BUFWEN) {
1168 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1169 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1170 	} else if (state & INT_CMD12DRE) {
1171 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1172 			~(INT_CMD12DRE | INT_CMD12RBE |
1173 			  INT_CMD12CRE | INT_BUFRE));
1174 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1175 	} else if (state & INT_BUFRE) {
1176 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1177 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1178 	} else if (state & INT_DTRANE) {
1179 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
1180 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1181 	} else if (state & INT_CMD12RBE) {
1182 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1183 				~(INT_CMD12RBE | INT_CMD12CRE));
1184 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
1185 	} else {
1186 		dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1187 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1188 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1189 		err = 1;
1190 	}
1191 	if (err) {
1192 		host->sd_error = true;
1193 		dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1194 	}
1195 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1196 		if (!host->dma_active)
1197 			return IRQ_WAKE_THREAD;
1198 		else if (host->sd_error)
1199 			mmcif_dma_complete(host);
1200 	} else {
1201 		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1202 	}
1203 
1204 	return IRQ_HANDLED;
1205 }
1206 
1207 static void mmcif_timeout_work(struct work_struct *work)
1208 {
1209 	struct delayed_work *d = container_of(work, struct delayed_work, work);
1210 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1211 	struct mmc_request *mrq = host->mrq;
1212 
1213 	if (host->dying)
1214 		/* Don't run after mmc_remove_host() */
1215 		return;
1216 
1217 	/*
1218 	 * Handle races with cancel_delayed_work(), unless
1219 	 * cancel_delayed_work_sync() is used
1220 	 */
1221 	switch (host->wait_for) {
1222 	case MMCIF_WAIT_FOR_CMD:
1223 		mrq->cmd->error = sh_mmcif_error_manage(host);
1224 		break;
1225 	case MMCIF_WAIT_FOR_STOP:
1226 		mrq->stop->error = sh_mmcif_error_manage(host);
1227 		break;
1228 	case MMCIF_WAIT_FOR_MREAD:
1229 	case MMCIF_WAIT_FOR_MWRITE:
1230 	case MMCIF_WAIT_FOR_READ:
1231 	case MMCIF_WAIT_FOR_WRITE:
1232 	case MMCIF_WAIT_FOR_READ_END:
1233 	case MMCIF_WAIT_FOR_WRITE_END:
1234 		mrq->data->error = sh_mmcif_error_manage(host);
1235 		break;
1236 	default:
1237 		BUG();
1238 	}
1239 
1240 	host->state = STATE_IDLE;
1241 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1242 	host->mrq = NULL;
1243 	mmc_request_done(host->mmc, mrq);
1244 }
1245 
1246 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1247 {
1248 	int ret = 0, irq[2];
1249 	struct mmc_host *mmc;
1250 	struct sh_mmcif_host *host;
1251 	struct sh_mmcif_plat_data *pd;
1252 	struct resource *res;
1253 	void __iomem *reg;
1254 	char clk_name[8];
1255 
1256 	irq[0] = platform_get_irq(pdev, 0);
1257 	irq[1] = platform_get_irq(pdev, 1);
1258 	if (irq[0] < 0 || irq[1] < 0) {
1259 		dev_err(&pdev->dev, "Get irq error\n");
1260 		return -ENXIO;
1261 	}
1262 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1263 	if (!res) {
1264 		dev_err(&pdev->dev, "platform_get_resource error.\n");
1265 		return -ENXIO;
1266 	}
1267 	reg = ioremap(res->start, resource_size(res));
1268 	if (!reg) {
1269 		dev_err(&pdev->dev, "ioremap error.\n");
1270 		return -ENOMEM;
1271 	}
1272 	pd = pdev->dev.platform_data;
1273 	if (!pd) {
1274 		dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1275 		ret = -ENXIO;
1276 		goto clean_up;
1277 	}
1278 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1279 	if (!mmc) {
1280 		ret = -ENOMEM;
1281 		goto clean_up;
1282 	}
1283 	host		= mmc_priv(mmc);
1284 	host->mmc	= mmc;
1285 	host->addr	= reg;
1286 	host->timeout	= 1000;
1287 
1288 	snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1289 	host->hclk = clk_get(&pdev->dev, clk_name);
1290 	if (IS_ERR(host->hclk)) {
1291 		dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1292 		ret = PTR_ERR(host->hclk);
1293 		goto clean_up1;
1294 	}
1295 	clk_enable(host->hclk);
1296 	host->clk = clk_get_rate(host->hclk);
1297 	host->pd = pdev;
1298 
1299 	spin_lock_init(&host->lock);
1300 
1301 	mmc->ops = &sh_mmcif_ops;
1302 	mmc->f_max = host->clk;
1303 	/* close to 400KHz */
1304 	if (mmc->f_max < 51200000)
1305 		mmc->f_min = mmc->f_max / 128;
1306 	else if (mmc->f_max < 102400000)
1307 		mmc->f_min = mmc->f_max / 256;
1308 	else
1309 		mmc->f_min = mmc->f_max / 512;
1310 	if (pd->ocr)
1311 		mmc->ocr_avail = pd->ocr;
1312 	mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1313 	if (pd->caps)
1314 		mmc->caps |= pd->caps;
1315 	mmc->max_segs = 32;
1316 	mmc->max_blk_size = 512;
1317 	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1318 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1319 	mmc->max_seg_size = mmc->max_req_size;
1320 
1321 	sh_mmcif_sync_reset(host);
1322 	platform_set_drvdata(pdev, host);
1323 
1324 	pm_runtime_enable(&pdev->dev);
1325 	host->power = false;
1326 
1327 	ret = pm_runtime_resume(&pdev->dev);
1328 	if (ret < 0)
1329 		goto clean_up2;
1330 
1331 	mmc_add_host(mmc);
1332 
1333 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1334 
1335 	ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
1336 	if (ret) {
1337 		dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1338 		goto clean_up3;
1339 	}
1340 	ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1341 	if (ret) {
1342 		free_irq(irq[0], host);
1343 		dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1344 		goto clean_up3;
1345 	}
1346 
1347 	INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1348 
1349 	mmc_detect_change(host->mmc, 0);
1350 
1351 	dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1352 
1353 	dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1354 	dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1355 		sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1356 	return ret;
1357 
1358 clean_up3:
1359 	mmc_remove_host(mmc);
1360 	pm_runtime_suspend(&pdev->dev);
1361 clean_up2:
1362 	pm_runtime_disable(&pdev->dev);
1363 	clk_disable(host->hclk);
1364 clean_up1:
1365 	mmc_free_host(mmc);
1366 clean_up:
1367 	if (reg)
1368 		iounmap(reg);
1369 	return ret;
1370 }
1371 
1372 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1373 {
1374 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1375 	int irq[2];
1376 
1377 	host->dying = true;
1378 	pm_runtime_get_sync(&pdev->dev);
1379 
1380 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1381 
1382 	mmc_remove_host(host->mmc);
1383 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1384 
1385 	/*
1386 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1387 	 * mmc_remove_host() call above. But swapping order doesn't help either
1388 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1389 	 */
1390 	cancel_delayed_work_sync(&host->timeout_work);
1391 
1392 	if (host->addr)
1393 		iounmap(host->addr);
1394 
1395 	irq[0] = platform_get_irq(pdev, 0);
1396 	irq[1] = platform_get_irq(pdev, 1);
1397 
1398 	free_irq(irq[0], host);
1399 	free_irq(irq[1], host);
1400 
1401 	platform_set_drvdata(pdev, NULL);
1402 
1403 	clk_disable(host->hclk);
1404 	mmc_free_host(host->mmc);
1405 	pm_runtime_put_sync(&pdev->dev);
1406 	pm_runtime_disable(&pdev->dev);
1407 
1408 	return 0;
1409 }
1410 
1411 #ifdef CONFIG_PM
1412 static int sh_mmcif_suspend(struct device *dev)
1413 {
1414 	struct platform_device *pdev = to_platform_device(dev);
1415 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1416 	int ret = mmc_suspend_host(host->mmc);
1417 
1418 	if (!ret) {
1419 		sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1420 		clk_disable(host->hclk);
1421 	}
1422 
1423 	return ret;
1424 }
1425 
1426 static int sh_mmcif_resume(struct device *dev)
1427 {
1428 	struct platform_device *pdev = to_platform_device(dev);
1429 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1430 
1431 	clk_enable(host->hclk);
1432 
1433 	return mmc_resume_host(host->mmc);
1434 }
1435 #else
1436 #define sh_mmcif_suspend	NULL
1437 #define sh_mmcif_resume		NULL
1438 #endif	/* CONFIG_PM */
1439 
1440 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1441 	.suspend = sh_mmcif_suspend,
1442 	.resume = sh_mmcif_resume,
1443 };
1444 
1445 static struct platform_driver sh_mmcif_driver = {
1446 	.probe		= sh_mmcif_probe,
1447 	.remove		= sh_mmcif_remove,
1448 	.driver		= {
1449 		.name	= DRIVER_NAME,
1450 		.pm	= &sh_mmcif_dev_pm_ops,
1451 	},
1452 };
1453 
1454 module_platform_driver(sh_mmcif_driver);
1455 
1456 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1457 MODULE_LICENSE("GPL");
1458 MODULE_ALIAS("platform:" DRIVER_NAME);
1459 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1460