xref: /openbmc/linux/drivers/mmc/host/sh_mmcif.c (revision e23feb16)
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18 
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44 
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/pagemap.h>
61 #include <linux/platform_device.h>
62 #include <linux/pm_qos.h>
63 #include <linux/pm_runtime.h>
64 #include <linux/sh_dma.h>
65 #include <linux/spinlock.h>
66 #include <linux/module.h>
67 
68 #define DRIVER_NAME	"sh_mmcif"
69 #define DRIVER_VERSION	"2010-04-28"
70 
71 /* CE_CMD_SET */
72 #define CMD_MASK		0x3f000000
73 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
74 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
75 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
76 #define CMD_SET_RBSY		(1 << 21) /* R1b */
77 #define CMD_SET_CCSEN		(1 << 20)
78 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
79 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
80 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
81 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
82 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
83 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
84 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
85 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
86 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
87 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
88 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
89 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
90 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
91 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
92 #define CMD_SET_CCSH		(1 << 5)
93 #define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
94 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
95 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
96 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
97 
98 /* CE_CMD_CTRL */
99 #define CMD_CTRL_BREAK		(1 << 0)
100 
101 /* CE_BLOCK_SET */
102 #define BLOCK_SIZE_MASK		0x0000ffff
103 
104 /* CE_INT */
105 #define INT_CCSDE		(1 << 29)
106 #define INT_CMD12DRE		(1 << 26)
107 #define INT_CMD12RBE		(1 << 25)
108 #define INT_CMD12CRE		(1 << 24)
109 #define INT_DTRANE		(1 << 23)
110 #define INT_BUFRE		(1 << 22)
111 #define INT_BUFWEN		(1 << 21)
112 #define INT_BUFREN		(1 << 20)
113 #define INT_CCSRCV		(1 << 19)
114 #define INT_RBSYE		(1 << 17)
115 #define INT_CRSPE		(1 << 16)
116 #define INT_CMDVIO		(1 << 15)
117 #define INT_BUFVIO		(1 << 14)
118 #define INT_WDATERR		(1 << 11)
119 #define INT_RDATERR		(1 << 10)
120 #define INT_RIDXERR		(1 << 9)
121 #define INT_RSPERR		(1 << 8)
122 #define INT_CCSTO		(1 << 5)
123 #define INT_CRCSTO		(1 << 4)
124 #define INT_WDATTO		(1 << 3)
125 #define INT_RDATTO		(1 << 2)
126 #define INT_RBSYTO		(1 << 1)
127 #define INT_RSPTO		(1 << 0)
128 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
129 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
130 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
131 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
132 
133 #define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
134 				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
135 				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
136 
137 #define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
138 
139 /* CE_INT_MASK */
140 #define MASK_ALL		0x00000000
141 #define MASK_MCCSDE		(1 << 29)
142 #define MASK_MCMD12DRE		(1 << 26)
143 #define MASK_MCMD12RBE		(1 << 25)
144 #define MASK_MCMD12CRE		(1 << 24)
145 #define MASK_MDTRANE		(1 << 23)
146 #define MASK_MBUFRE		(1 << 22)
147 #define MASK_MBUFWEN		(1 << 21)
148 #define MASK_MBUFREN		(1 << 20)
149 #define MASK_MCCSRCV		(1 << 19)
150 #define MASK_MRBSYE		(1 << 17)
151 #define MASK_MCRSPE		(1 << 16)
152 #define MASK_MCMDVIO		(1 << 15)
153 #define MASK_MBUFVIO		(1 << 14)
154 #define MASK_MWDATERR		(1 << 11)
155 #define MASK_MRDATERR		(1 << 10)
156 #define MASK_MRIDXERR		(1 << 9)
157 #define MASK_MRSPERR		(1 << 8)
158 #define MASK_MCCSTO		(1 << 5)
159 #define MASK_MCRCSTO		(1 << 4)
160 #define MASK_MWDATTO		(1 << 3)
161 #define MASK_MRDATTO		(1 << 2)
162 #define MASK_MRBSYTO		(1 << 1)
163 #define MASK_MRSPTO		(1 << 0)
164 
165 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
166 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
167 				 MASK_MCRCSTO | MASK_MWDATTO | \
168 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
169 
170 #define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
171 				 MASK_MBUFREN | MASK_MBUFWEN |			\
172 				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
173 				 MASK_MCMD12RBE | MASK_MCMD12CRE)
174 
175 /* CE_HOST_STS1 */
176 #define STS1_CMDSEQ		(1 << 31)
177 
178 /* CE_HOST_STS2 */
179 #define STS2_CRCSTE		(1 << 31)
180 #define STS2_CRC16E		(1 << 30)
181 #define STS2_AC12CRCE		(1 << 29)
182 #define STS2_RSPCRC7E		(1 << 28)
183 #define STS2_CRCSTEBE		(1 << 27)
184 #define STS2_RDATEBE		(1 << 26)
185 #define STS2_AC12REBE		(1 << 25)
186 #define STS2_RSPEBE		(1 << 24)
187 #define STS2_AC12IDXE		(1 << 23)
188 #define STS2_RSPIDXE		(1 << 22)
189 #define STS2_CCSTO		(1 << 15)
190 #define STS2_RDATTO		(1 << 14)
191 #define STS2_DATBSYTO		(1 << 13)
192 #define STS2_CRCSTTO		(1 << 12)
193 #define STS2_AC12BSYTO		(1 << 11)
194 #define STS2_RSPBSYTO		(1 << 10)
195 #define STS2_AC12RSPTO		(1 << 9)
196 #define STS2_RSPTO		(1 << 8)
197 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
198 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
199 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
200 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
201 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
202 				 STS2_AC12RSPTO | STS2_RSPTO)
203 
204 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
205 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
206 #define CLKDEV_INIT		400000   /* 400 KHz */
207 
208 enum mmcif_state {
209 	STATE_IDLE,
210 	STATE_REQUEST,
211 	STATE_IOS,
212 	STATE_TIMEOUT,
213 };
214 
215 enum mmcif_wait_for {
216 	MMCIF_WAIT_FOR_REQUEST,
217 	MMCIF_WAIT_FOR_CMD,
218 	MMCIF_WAIT_FOR_MREAD,
219 	MMCIF_WAIT_FOR_MWRITE,
220 	MMCIF_WAIT_FOR_READ,
221 	MMCIF_WAIT_FOR_WRITE,
222 	MMCIF_WAIT_FOR_READ_END,
223 	MMCIF_WAIT_FOR_WRITE_END,
224 	MMCIF_WAIT_FOR_STOP,
225 };
226 
227 struct sh_mmcif_host {
228 	struct mmc_host *mmc;
229 	struct mmc_request *mrq;
230 	struct platform_device *pd;
231 	struct clk *hclk;
232 	unsigned int clk;
233 	int bus_width;
234 	unsigned char timing;
235 	bool sd_error;
236 	bool dying;
237 	long timeout;
238 	void __iomem *addr;
239 	u32 *pio_ptr;
240 	spinlock_t lock;		/* protect sh_mmcif_host::state */
241 	enum mmcif_state state;
242 	enum mmcif_wait_for wait_for;
243 	struct delayed_work timeout_work;
244 	size_t blocksize;
245 	int sg_idx;
246 	int sg_blkidx;
247 	bool power;
248 	bool card_present;
249 	bool ccs_enable;		/* Command Completion Signal support */
250 	bool clk_ctrl2_enable;
251 	struct mutex thread_lock;
252 
253 	/* DMA support */
254 	struct dma_chan		*chan_rx;
255 	struct dma_chan		*chan_tx;
256 	struct completion	dma_complete;
257 	bool			dma_active;
258 };
259 
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261 					unsigned int reg, u32 val)
262 {
263 	writel(val | readl(host->addr + reg), host->addr + reg);
264 }
265 
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267 					unsigned int reg, u32 val)
268 {
269 	writel(~val & readl(host->addr + reg), host->addr + reg);
270 }
271 
272 static void mmcif_dma_complete(void *arg)
273 {
274 	struct sh_mmcif_host *host = arg;
275 	struct mmc_request *mrq = host->mrq;
276 
277 	dev_dbg(&host->pd->dev, "Command completed\n");
278 
279 	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280 		 dev_name(&host->pd->dev)))
281 		return;
282 
283 	complete(&host->dma_complete);
284 }
285 
286 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
287 {
288 	struct mmc_data *data = host->mrq->data;
289 	struct scatterlist *sg = data->sg;
290 	struct dma_async_tx_descriptor *desc = NULL;
291 	struct dma_chan *chan = host->chan_rx;
292 	dma_cookie_t cookie = -EINVAL;
293 	int ret;
294 
295 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
296 			 DMA_FROM_DEVICE);
297 	if (ret > 0) {
298 		host->dma_active = true;
299 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
300 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
301 	}
302 
303 	if (desc) {
304 		desc->callback = mmcif_dma_complete;
305 		desc->callback_param = host;
306 		cookie = dmaengine_submit(desc);
307 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
308 		dma_async_issue_pending(chan);
309 	}
310 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
311 		__func__, data->sg_len, ret, cookie);
312 
313 	if (!desc) {
314 		/* DMA failed, fall back to PIO */
315 		if (ret >= 0)
316 			ret = -EIO;
317 		host->chan_rx = NULL;
318 		host->dma_active = false;
319 		dma_release_channel(chan);
320 		/* Free the Tx channel too */
321 		chan = host->chan_tx;
322 		if (chan) {
323 			host->chan_tx = NULL;
324 			dma_release_channel(chan);
325 		}
326 		dev_warn(&host->pd->dev,
327 			 "DMA failed: %d, falling back to PIO\n", ret);
328 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
329 	}
330 
331 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
332 		desc, cookie, data->sg_len);
333 }
334 
335 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
336 {
337 	struct mmc_data *data = host->mrq->data;
338 	struct scatterlist *sg = data->sg;
339 	struct dma_async_tx_descriptor *desc = NULL;
340 	struct dma_chan *chan = host->chan_tx;
341 	dma_cookie_t cookie = -EINVAL;
342 	int ret;
343 
344 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345 			 DMA_TO_DEVICE);
346 	if (ret > 0) {
347 		host->dma_active = true;
348 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
349 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
350 	}
351 
352 	if (desc) {
353 		desc->callback = mmcif_dma_complete;
354 		desc->callback_param = host;
355 		cookie = dmaengine_submit(desc);
356 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357 		dma_async_issue_pending(chan);
358 	}
359 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
360 		__func__, data->sg_len, ret, cookie);
361 
362 	if (!desc) {
363 		/* DMA failed, fall back to PIO */
364 		if (ret >= 0)
365 			ret = -EIO;
366 		host->chan_tx = NULL;
367 		host->dma_active = false;
368 		dma_release_channel(chan);
369 		/* Free the Rx channel too */
370 		chan = host->chan_rx;
371 		if (chan) {
372 			host->chan_rx = NULL;
373 			dma_release_channel(chan);
374 		}
375 		dev_warn(&host->pd->dev,
376 			 "DMA failed: %d, falling back to PIO\n", ret);
377 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
378 	}
379 
380 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
381 		desc, cookie);
382 }
383 
384 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
385 				 struct sh_mmcif_plat_data *pdata)
386 {
387 	struct resource *res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
388 	struct dma_slave_config cfg;
389 	dma_cap_mask_t mask;
390 	int ret;
391 
392 	host->dma_active = false;
393 
394 	if (pdata) {
395 		if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
396 			return;
397 	} else if (!host->pd->dev.of_node) {
398 		return;
399 	}
400 
401 	/* We can only either use DMA for both Tx and Rx or not use it at all */
402 	dma_cap_zero(mask);
403 	dma_cap_set(DMA_SLAVE, mask);
404 
405 	host->chan_tx = dma_request_slave_channel_compat(mask, shdma_chan_filter,
406 				pdata ? (void *)pdata->slave_id_tx : NULL,
407 				&host->pd->dev, "tx");
408 	dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
409 		host->chan_tx);
410 
411 	if (!host->chan_tx)
412 		return;
413 
414 	/* In the OF case the driver will get the slave ID from the DT */
415 	if (pdata)
416 		cfg.slave_id = pdata->slave_id_tx;
417 	cfg.direction = DMA_MEM_TO_DEV;
418 	cfg.dst_addr = res->start + MMCIF_CE_DATA;
419 	cfg.src_addr = 0;
420 	ret = dmaengine_slave_config(host->chan_tx, &cfg);
421 	if (ret < 0)
422 		goto ecfgtx;
423 
424 	host->chan_rx = dma_request_slave_channel_compat(mask, shdma_chan_filter,
425 				pdata ? (void *)pdata->slave_id_rx : NULL,
426 				&host->pd->dev, "rx");
427 	dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
428 		host->chan_rx);
429 
430 	if (!host->chan_rx)
431 		goto erqrx;
432 
433 	if (pdata)
434 		cfg.slave_id = pdata->slave_id_rx;
435 	cfg.direction = DMA_DEV_TO_MEM;
436 	cfg.dst_addr = 0;
437 	cfg.src_addr = res->start + MMCIF_CE_DATA;
438 	ret = dmaengine_slave_config(host->chan_rx, &cfg);
439 	if (ret < 0)
440 		goto ecfgrx;
441 
442 	return;
443 
444 ecfgrx:
445 	dma_release_channel(host->chan_rx);
446 	host->chan_rx = NULL;
447 erqrx:
448 ecfgtx:
449 	dma_release_channel(host->chan_tx);
450 	host->chan_tx = NULL;
451 }
452 
453 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
454 {
455 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
456 	/* Descriptors are freed automatically */
457 	if (host->chan_tx) {
458 		struct dma_chan *chan = host->chan_tx;
459 		host->chan_tx = NULL;
460 		dma_release_channel(chan);
461 	}
462 	if (host->chan_rx) {
463 		struct dma_chan *chan = host->chan_rx;
464 		host->chan_rx = NULL;
465 		dma_release_channel(chan);
466 	}
467 
468 	host->dma_active = false;
469 }
470 
471 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
472 {
473 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
474 	bool sup_pclk = p ? p->sup_pclk : false;
475 
476 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
477 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
478 
479 	if (!clk)
480 		return;
481 	if (sup_pclk && clk == host->clk)
482 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
483 	else
484 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
485 				((fls(DIV_ROUND_UP(host->clk,
486 						   clk) - 1) - 1) << 16));
487 
488 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
489 }
490 
491 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
492 {
493 	u32 tmp;
494 
495 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
496 
497 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
498 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
499 	if (host->ccs_enable)
500 		tmp |= SCCSTO_29;
501 	if (host->clk_ctrl2_enable)
502 		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
503 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
504 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
505 	/* byte swap on */
506 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
507 }
508 
509 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
510 {
511 	u32 state1, state2;
512 	int ret, timeout;
513 
514 	host->sd_error = false;
515 
516 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
517 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
518 	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
519 	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
520 
521 	if (state1 & STS1_CMDSEQ) {
522 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
523 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
524 		for (timeout = 10000000; timeout; timeout--) {
525 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
526 			      & STS1_CMDSEQ))
527 				break;
528 			mdelay(1);
529 		}
530 		if (!timeout) {
531 			dev_err(&host->pd->dev,
532 				"Forced end of command sequence timeout err\n");
533 			return -EIO;
534 		}
535 		sh_mmcif_sync_reset(host);
536 		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
537 		return -EIO;
538 	}
539 
540 	if (state2 & STS2_CRC_ERR) {
541 		dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
542 			host->state, host->wait_for);
543 		ret = -EIO;
544 	} else if (state2 & STS2_TIMEOUT_ERR) {
545 		dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
546 			host->state, host->wait_for);
547 		ret = -ETIMEDOUT;
548 	} else {
549 		dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
550 			host->state, host->wait_for);
551 		ret = -EIO;
552 	}
553 	return ret;
554 }
555 
556 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
557 {
558 	struct mmc_data *data = host->mrq->data;
559 
560 	host->sg_blkidx += host->blocksize;
561 
562 	/* data->sg->length must be a multiple of host->blocksize? */
563 	BUG_ON(host->sg_blkidx > data->sg->length);
564 
565 	if (host->sg_blkidx == data->sg->length) {
566 		host->sg_blkidx = 0;
567 		if (++host->sg_idx < data->sg_len)
568 			host->pio_ptr = sg_virt(++data->sg);
569 	} else {
570 		host->pio_ptr = p;
571 	}
572 
573 	return host->sg_idx != data->sg_len;
574 }
575 
576 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
577 				 struct mmc_request *mrq)
578 {
579 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
580 			   BLOCK_SIZE_MASK) + 3;
581 
582 	host->wait_for = MMCIF_WAIT_FOR_READ;
583 
584 	/* buf read enable */
585 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
586 }
587 
588 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
589 {
590 	struct mmc_data *data = host->mrq->data;
591 	u32 *p = sg_virt(data->sg);
592 	int i;
593 
594 	if (host->sd_error) {
595 		data->error = sh_mmcif_error_manage(host);
596 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
597 		return false;
598 	}
599 
600 	for (i = 0; i < host->blocksize / 4; i++)
601 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
602 
603 	/* buffer read end */
604 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
605 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
606 
607 	return true;
608 }
609 
610 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
611 				struct mmc_request *mrq)
612 {
613 	struct mmc_data *data = mrq->data;
614 
615 	if (!data->sg_len || !data->sg->length)
616 		return;
617 
618 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
619 		BLOCK_SIZE_MASK;
620 
621 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
622 	host->sg_idx = 0;
623 	host->sg_blkidx = 0;
624 	host->pio_ptr = sg_virt(data->sg);
625 
626 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
627 }
628 
629 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
630 {
631 	struct mmc_data *data = host->mrq->data;
632 	u32 *p = host->pio_ptr;
633 	int i;
634 
635 	if (host->sd_error) {
636 		data->error = sh_mmcif_error_manage(host);
637 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
638 		return false;
639 	}
640 
641 	BUG_ON(!data->sg->length);
642 
643 	for (i = 0; i < host->blocksize / 4; i++)
644 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
645 
646 	if (!sh_mmcif_next_block(host, p))
647 		return false;
648 
649 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
650 
651 	return true;
652 }
653 
654 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
655 					struct mmc_request *mrq)
656 {
657 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
658 			   BLOCK_SIZE_MASK) + 3;
659 
660 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
661 
662 	/* buf write enable */
663 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
664 }
665 
666 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
667 {
668 	struct mmc_data *data = host->mrq->data;
669 	u32 *p = sg_virt(data->sg);
670 	int i;
671 
672 	if (host->sd_error) {
673 		data->error = sh_mmcif_error_manage(host);
674 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
675 		return false;
676 	}
677 
678 	for (i = 0; i < host->blocksize / 4; i++)
679 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
680 
681 	/* buffer write end */
682 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
683 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
684 
685 	return true;
686 }
687 
688 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
689 				struct mmc_request *mrq)
690 {
691 	struct mmc_data *data = mrq->data;
692 
693 	if (!data->sg_len || !data->sg->length)
694 		return;
695 
696 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
697 		BLOCK_SIZE_MASK;
698 
699 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
700 	host->sg_idx = 0;
701 	host->sg_blkidx = 0;
702 	host->pio_ptr = sg_virt(data->sg);
703 
704 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
705 }
706 
707 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
708 {
709 	struct mmc_data *data = host->mrq->data;
710 	u32 *p = host->pio_ptr;
711 	int i;
712 
713 	if (host->sd_error) {
714 		data->error = sh_mmcif_error_manage(host);
715 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
716 		return false;
717 	}
718 
719 	BUG_ON(!data->sg->length);
720 
721 	for (i = 0; i < host->blocksize / 4; i++)
722 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
723 
724 	if (!sh_mmcif_next_block(host, p))
725 		return false;
726 
727 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
728 
729 	return true;
730 }
731 
732 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
733 						struct mmc_command *cmd)
734 {
735 	if (cmd->flags & MMC_RSP_136) {
736 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
737 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
738 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
739 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
740 	} else
741 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
742 }
743 
744 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
745 						struct mmc_command *cmd)
746 {
747 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
748 }
749 
750 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
751 			    struct mmc_request *mrq)
752 {
753 	struct mmc_data *data = mrq->data;
754 	struct mmc_command *cmd = mrq->cmd;
755 	u32 opc = cmd->opcode;
756 	u32 tmp = 0;
757 
758 	/* Response Type check */
759 	switch (mmc_resp_type(cmd)) {
760 	case MMC_RSP_NONE:
761 		tmp |= CMD_SET_RTYP_NO;
762 		break;
763 	case MMC_RSP_R1:
764 	case MMC_RSP_R1B:
765 	case MMC_RSP_R3:
766 		tmp |= CMD_SET_RTYP_6B;
767 		break;
768 	case MMC_RSP_R2:
769 		tmp |= CMD_SET_RTYP_17B;
770 		break;
771 	default:
772 		dev_err(&host->pd->dev, "Unsupported response type.\n");
773 		break;
774 	}
775 	switch (opc) {
776 	/* RBSY */
777 	case MMC_SLEEP_AWAKE:
778 	case MMC_SWITCH:
779 	case MMC_STOP_TRANSMISSION:
780 	case MMC_SET_WRITE_PROT:
781 	case MMC_CLR_WRITE_PROT:
782 	case MMC_ERASE:
783 		tmp |= CMD_SET_RBSY;
784 		break;
785 	}
786 	/* WDAT / DATW */
787 	if (data) {
788 		tmp |= CMD_SET_WDAT;
789 		switch (host->bus_width) {
790 		case MMC_BUS_WIDTH_1:
791 			tmp |= CMD_SET_DATW_1;
792 			break;
793 		case MMC_BUS_WIDTH_4:
794 			tmp |= CMD_SET_DATW_4;
795 			break;
796 		case MMC_BUS_WIDTH_8:
797 			tmp |= CMD_SET_DATW_8;
798 			break;
799 		default:
800 			dev_err(&host->pd->dev, "Unsupported bus width.\n");
801 			break;
802 		}
803 		switch (host->timing) {
804 		case MMC_TIMING_UHS_DDR50:
805 			/*
806 			 * MMC core will only set this timing, if the host
807 			 * advertises the MMC_CAP_UHS_DDR50 capability. MMCIF
808 			 * implementations with this capability, e.g. sh73a0,
809 			 * will have to set it in their platform data.
810 			 */
811 			tmp |= CMD_SET_DARS;
812 			break;
813 		}
814 	}
815 	/* DWEN */
816 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
817 		tmp |= CMD_SET_DWEN;
818 	/* CMLTE/CMD12EN */
819 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
820 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
821 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
822 				data->blocks << 16);
823 	}
824 	/* RIDXC[1:0] check bits */
825 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
826 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
827 		tmp |= CMD_SET_RIDXC_BITS;
828 	/* RCRC7C[1:0] check bits */
829 	if (opc == MMC_SEND_OP_COND)
830 		tmp |= CMD_SET_CRC7C_BITS;
831 	/* RCRC7C[1:0] internal CRC7 */
832 	if (opc == MMC_ALL_SEND_CID ||
833 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
834 		tmp |= CMD_SET_CRC7C_INTERNAL;
835 
836 	return (opc << 24) | tmp;
837 }
838 
839 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
840 			       struct mmc_request *mrq, u32 opc)
841 {
842 	switch (opc) {
843 	case MMC_READ_MULTIPLE_BLOCK:
844 		sh_mmcif_multi_read(host, mrq);
845 		return 0;
846 	case MMC_WRITE_MULTIPLE_BLOCK:
847 		sh_mmcif_multi_write(host, mrq);
848 		return 0;
849 	case MMC_WRITE_BLOCK:
850 		sh_mmcif_single_write(host, mrq);
851 		return 0;
852 	case MMC_READ_SINGLE_BLOCK:
853 	case MMC_SEND_EXT_CSD:
854 		sh_mmcif_single_read(host, mrq);
855 		return 0;
856 	default:
857 		dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
858 		return -EINVAL;
859 	}
860 }
861 
862 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
863 			       struct mmc_request *mrq)
864 {
865 	struct mmc_command *cmd = mrq->cmd;
866 	u32 opc = cmd->opcode;
867 	u32 mask;
868 
869 	switch (opc) {
870 	/* response busy check */
871 	case MMC_SLEEP_AWAKE:
872 	case MMC_SWITCH:
873 	case MMC_STOP_TRANSMISSION:
874 	case MMC_SET_WRITE_PROT:
875 	case MMC_CLR_WRITE_PROT:
876 	case MMC_ERASE:
877 		mask = MASK_START_CMD | MASK_MRBSYE;
878 		break;
879 	default:
880 		mask = MASK_START_CMD | MASK_MCRSPE;
881 		break;
882 	}
883 
884 	if (host->ccs_enable)
885 		mask |= MASK_MCCSTO;
886 
887 	if (mrq->data) {
888 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
889 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
890 				mrq->data->blksz);
891 	}
892 	opc = sh_mmcif_set_cmd(host, mrq);
893 
894 	if (host->ccs_enable)
895 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
896 	else
897 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
898 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
899 	/* set arg */
900 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
901 	/* set cmd */
902 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
903 
904 	host->wait_for = MMCIF_WAIT_FOR_CMD;
905 	schedule_delayed_work(&host->timeout_work, host->timeout);
906 }
907 
908 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
909 			      struct mmc_request *mrq)
910 {
911 	switch (mrq->cmd->opcode) {
912 	case MMC_READ_MULTIPLE_BLOCK:
913 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
914 		break;
915 	case MMC_WRITE_MULTIPLE_BLOCK:
916 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
917 		break;
918 	default:
919 		dev_err(&host->pd->dev, "unsupported stop cmd\n");
920 		mrq->stop->error = sh_mmcif_error_manage(host);
921 		return;
922 	}
923 
924 	host->wait_for = MMCIF_WAIT_FOR_STOP;
925 }
926 
927 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
928 {
929 	struct sh_mmcif_host *host = mmc_priv(mmc);
930 	unsigned long flags;
931 
932 	spin_lock_irqsave(&host->lock, flags);
933 	if (host->state != STATE_IDLE) {
934 		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
935 		spin_unlock_irqrestore(&host->lock, flags);
936 		mrq->cmd->error = -EAGAIN;
937 		mmc_request_done(mmc, mrq);
938 		return;
939 	}
940 
941 	host->state = STATE_REQUEST;
942 	spin_unlock_irqrestore(&host->lock, flags);
943 
944 	switch (mrq->cmd->opcode) {
945 	/* MMCIF does not support SD/SDIO command */
946 	case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
947 	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
948 		if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
949 			break;
950 	case MMC_APP_CMD:
951 	case SD_IO_RW_DIRECT:
952 		host->state = STATE_IDLE;
953 		mrq->cmd->error = -ETIMEDOUT;
954 		mmc_request_done(mmc, mrq);
955 		return;
956 	default:
957 		break;
958 	}
959 
960 	host->mrq = mrq;
961 
962 	sh_mmcif_start_cmd(host, mrq);
963 }
964 
965 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
966 {
967 	int ret = clk_enable(host->hclk);
968 
969 	if (!ret) {
970 		host->clk = clk_get_rate(host->hclk);
971 		host->mmc->f_max = host->clk / 2;
972 		host->mmc->f_min = host->clk / 512;
973 	}
974 
975 	return ret;
976 }
977 
978 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
979 {
980 	struct mmc_host *mmc = host->mmc;
981 
982 	if (!IS_ERR(mmc->supply.vmmc))
983 		/* Errors ignored... */
984 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
985 				      ios->power_mode ? ios->vdd : 0);
986 }
987 
988 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
989 {
990 	struct sh_mmcif_host *host = mmc_priv(mmc);
991 	unsigned long flags;
992 
993 	spin_lock_irqsave(&host->lock, flags);
994 	if (host->state != STATE_IDLE) {
995 		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
996 		spin_unlock_irqrestore(&host->lock, flags);
997 		return;
998 	}
999 
1000 	host->state = STATE_IOS;
1001 	spin_unlock_irqrestore(&host->lock, flags);
1002 
1003 	if (ios->power_mode == MMC_POWER_UP) {
1004 		if (!host->card_present) {
1005 			/* See if we also get DMA */
1006 			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
1007 			host->card_present = true;
1008 		}
1009 		sh_mmcif_set_power(host, ios);
1010 	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1011 		/* clock stop */
1012 		sh_mmcif_clock_control(host, 0);
1013 		if (ios->power_mode == MMC_POWER_OFF) {
1014 			if (host->card_present) {
1015 				sh_mmcif_release_dma(host);
1016 				host->card_present = false;
1017 			}
1018 		}
1019 		if (host->power) {
1020 			pm_runtime_put_sync(&host->pd->dev);
1021 			clk_disable(host->hclk);
1022 			host->power = false;
1023 			if (ios->power_mode == MMC_POWER_OFF)
1024 				sh_mmcif_set_power(host, ios);
1025 		}
1026 		host->state = STATE_IDLE;
1027 		return;
1028 	}
1029 
1030 	if (ios->clock) {
1031 		if (!host->power) {
1032 			sh_mmcif_clk_update(host);
1033 			pm_runtime_get_sync(&host->pd->dev);
1034 			host->power = true;
1035 			sh_mmcif_sync_reset(host);
1036 		}
1037 		sh_mmcif_clock_control(host, ios->clock);
1038 	}
1039 
1040 	host->timing = ios->timing;
1041 	host->bus_width = ios->bus_width;
1042 	host->state = STATE_IDLE;
1043 }
1044 
1045 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1046 {
1047 	struct sh_mmcif_host *host = mmc_priv(mmc);
1048 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1049 	int ret = mmc_gpio_get_cd(mmc);
1050 
1051 	if (ret >= 0)
1052 		return ret;
1053 
1054 	if (!p || !p->get_cd)
1055 		return -ENOSYS;
1056 	else
1057 		return p->get_cd(host->pd);
1058 }
1059 
1060 static struct mmc_host_ops sh_mmcif_ops = {
1061 	.request	= sh_mmcif_request,
1062 	.set_ios	= sh_mmcif_set_ios,
1063 	.get_cd		= sh_mmcif_get_cd,
1064 };
1065 
1066 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1067 {
1068 	struct mmc_command *cmd = host->mrq->cmd;
1069 	struct mmc_data *data = host->mrq->data;
1070 	long time;
1071 
1072 	if (host->sd_error) {
1073 		switch (cmd->opcode) {
1074 		case MMC_ALL_SEND_CID:
1075 		case MMC_SELECT_CARD:
1076 		case MMC_APP_CMD:
1077 			cmd->error = -ETIMEDOUT;
1078 			break;
1079 		default:
1080 			cmd->error = sh_mmcif_error_manage(host);
1081 			break;
1082 		}
1083 		dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1084 			cmd->opcode, cmd->error);
1085 		host->sd_error = false;
1086 		return false;
1087 	}
1088 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1089 		cmd->error = 0;
1090 		return false;
1091 	}
1092 
1093 	sh_mmcif_get_response(host, cmd);
1094 
1095 	if (!data)
1096 		return false;
1097 
1098 	/*
1099 	 * Completion can be signalled from DMA callback and error, so, have to
1100 	 * reset here, before setting .dma_active
1101 	 */
1102 	init_completion(&host->dma_complete);
1103 
1104 	if (data->flags & MMC_DATA_READ) {
1105 		if (host->chan_rx)
1106 			sh_mmcif_start_dma_rx(host);
1107 	} else {
1108 		if (host->chan_tx)
1109 			sh_mmcif_start_dma_tx(host);
1110 	}
1111 
1112 	if (!host->dma_active) {
1113 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1114 		return !data->error;
1115 	}
1116 
1117 	/* Running in the IRQ thread, can sleep */
1118 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1119 							 host->timeout);
1120 
1121 	if (data->flags & MMC_DATA_READ)
1122 		dma_unmap_sg(host->chan_rx->device->dev,
1123 			     data->sg, data->sg_len,
1124 			     DMA_FROM_DEVICE);
1125 	else
1126 		dma_unmap_sg(host->chan_tx->device->dev,
1127 			     data->sg, data->sg_len,
1128 			     DMA_TO_DEVICE);
1129 
1130 	if (host->sd_error) {
1131 		dev_err(host->mmc->parent,
1132 			"Error IRQ while waiting for DMA completion!\n");
1133 		/* Woken up by an error IRQ: abort DMA */
1134 		data->error = sh_mmcif_error_manage(host);
1135 	} else if (!time) {
1136 		dev_err(host->mmc->parent, "DMA timeout!\n");
1137 		data->error = -ETIMEDOUT;
1138 	} else if (time < 0) {
1139 		dev_err(host->mmc->parent,
1140 			"wait_for_completion_...() error %ld!\n", time);
1141 		data->error = time;
1142 	}
1143 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1144 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1145 	host->dma_active = false;
1146 
1147 	if (data->error) {
1148 		data->bytes_xfered = 0;
1149 		/* Abort DMA */
1150 		if (data->flags & MMC_DATA_READ)
1151 			dmaengine_terminate_all(host->chan_rx);
1152 		else
1153 			dmaengine_terminate_all(host->chan_tx);
1154 	}
1155 
1156 	return false;
1157 }
1158 
1159 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1160 {
1161 	struct sh_mmcif_host *host = dev_id;
1162 	struct mmc_request *mrq;
1163 	bool wait = false;
1164 
1165 	cancel_delayed_work_sync(&host->timeout_work);
1166 
1167 	mutex_lock(&host->thread_lock);
1168 
1169 	mrq = host->mrq;
1170 	if (!mrq) {
1171 		dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1172 			host->state, host->wait_for);
1173 		mutex_unlock(&host->thread_lock);
1174 		return IRQ_HANDLED;
1175 	}
1176 
1177 	/*
1178 	 * All handlers return true, if processing continues, and false, if the
1179 	 * request has to be completed - successfully or not
1180 	 */
1181 	switch (host->wait_for) {
1182 	case MMCIF_WAIT_FOR_REQUEST:
1183 		/* We're too late, the timeout has already kicked in */
1184 		mutex_unlock(&host->thread_lock);
1185 		return IRQ_HANDLED;
1186 	case MMCIF_WAIT_FOR_CMD:
1187 		/* Wait for data? */
1188 		wait = sh_mmcif_end_cmd(host);
1189 		break;
1190 	case MMCIF_WAIT_FOR_MREAD:
1191 		/* Wait for more data? */
1192 		wait = sh_mmcif_mread_block(host);
1193 		break;
1194 	case MMCIF_WAIT_FOR_READ:
1195 		/* Wait for data end? */
1196 		wait = sh_mmcif_read_block(host);
1197 		break;
1198 	case MMCIF_WAIT_FOR_MWRITE:
1199 		/* Wait data to write? */
1200 		wait = sh_mmcif_mwrite_block(host);
1201 		break;
1202 	case MMCIF_WAIT_FOR_WRITE:
1203 		/* Wait for data end? */
1204 		wait = sh_mmcif_write_block(host);
1205 		break;
1206 	case MMCIF_WAIT_FOR_STOP:
1207 		if (host->sd_error) {
1208 			mrq->stop->error = sh_mmcif_error_manage(host);
1209 			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1210 			break;
1211 		}
1212 		sh_mmcif_get_cmd12response(host, mrq->stop);
1213 		mrq->stop->error = 0;
1214 		break;
1215 	case MMCIF_WAIT_FOR_READ_END:
1216 	case MMCIF_WAIT_FOR_WRITE_END:
1217 		if (host->sd_error) {
1218 			mrq->data->error = sh_mmcif_error_manage(host);
1219 			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1220 		}
1221 		break;
1222 	default:
1223 		BUG();
1224 	}
1225 
1226 	if (wait) {
1227 		schedule_delayed_work(&host->timeout_work, host->timeout);
1228 		/* Wait for more data */
1229 		mutex_unlock(&host->thread_lock);
1230 		return IRQ_HANDLED;
1231 	}
1232 
1233 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1234 		struct mmc_data *data = mrq->data;
1235 		if (!mrq->cmd->error && data && !data->error)
1236 			data->bytes_xfered =
1237 				data->blocks * data->blksz;
1238 
1239 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1240 			sh_mmcif_stop_cmd(host, mrq);
1241 			if (!mrq->stop->error) {
1242 				schedule_delayed_work(&host->timeout_work, host->timeout);
1243 				mutex_unlock(&host->thread_lock);
1244 				return IRQ_HANDLED;
1245 			}
1246 		}
1247 	}
1248 
1249 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1250 	host->state = STATE_IDLE;
1251 	host->mrq = NULL;
1252 	mmc_request_done(host->mmc, mrq);
1253 
1254 	mutex_unlock(&host->thread_lock);
1255 
1256 	return IRQ_HANDLED;
1257 }
1258 
1259 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1260 {
1261 	struct sh_mmcif_host *host = dev_id;
1262 	u32 state, mask;
1263 
1264 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1265 	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1266 	if (host->ccs_enable)
1267 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1268 	else
1269 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1270 	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1271 
1272 	if (state & ~MASK_CLEAN)
1273 		dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1274 			state);
1275 
1276 	if (state & INT_ERR_STS || state & ~INT_ALL) {
1277 		host->sd_error = true;
1278 		dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1279 	}
1280 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1281 		if (!host->mrq)
1282 			dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1283 		if (!host->dma_active)
1284 			return IRQ_WAKE_THREAD;
1285 		else if (host->sd_error)
1286 			mmcif_dma_complete(host);
1287 	} else {
1288 		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1289 	}
1290 
1291 	return IRQ_HANDLED;
1292 }
1293 
1294 static void mmcif_timeout_work(struct work_struct *work)
1295 {
1296 	struct delayed_work *d = container_of(work, struct delayed_work, work);
1297 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1298 	struct mmc_request *mrq = host->mrq;
1299 	unsigned long flags;
1300 
1301 	if (host->dying)
1302 		/* Don't run after mmc_remove_host() */
1303 		return;
1304 
1305 	dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1306 		host->wait_for, mrq->cmd->opcode);
1307 
1308 	spin_lock_irqsave(&host->lock, flags);
1309 	if (host->state == STATE_IDLE) {
1310 		spin_unlock_irqrestore(&host->lock, flags);
1311 		return;
1312 	}
1313 
1314 	host->state = STATE_TIMEOUT;
1315 	spin_unlock_irqrestore(&host->lock, flags);
1316 
1317 	/*
1318 	 * Handle races with cancel_delayed_work(), unless
1319 	 * cancel_delayed_work_sync() is used
1320 	 */
1321 	switch (host->wait_for) {
1322 	case MMCIF_WAIT_FOR_CMD:
1323 		mrq->cmd->error = sh_mmcif_error_manage(host);
1324 		break;
1325 	case MMCIF_WAIT_FOR_STOP:
1326 		mrq->stop->error = sh_mmcif_error_manage(host);
1327 		break;
1328 	case MMCIF_WAIT_FOR_MREAD:
1329 	case MMCIF_WAIT_FOR_MWRITE:
1330 	case MMCIF_WAIT_FOR_READ:
1331 	case MMCIF_WAIT_FOR_WRITE:
1332 	case MMCIF_WAIT_FOR_READ_END:
1333 	case MMCIF_WAIT_FOR_WRITE_END:
1334 		mrq->data->error = sh_mmcif_error_manage(host);
1335 		break;
1336 	default:
1337 		BUG();
1338 	}
1339 
1340 	host->state = STATE_IDLE;
1341 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1342 	host->mrq = NULL;
1343 	mmc_request_done(host->mmc, mrq);
1344 }
1345 
1346 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1347 {
1348 	struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1349 	struct mmc_host *mmc = host->mmc;
1350 
1351 	mmc_regulator_get_supply(mmc);
1352 
1353 	if (!pd)
1354 		return;
1355 
1356 	if (!mmc->ocr_avail)
1357 		mmc->ocr_avail = pd->ocr;
1358 	else if (pd->ocr)
1359 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1360 }
1361 
1362 static int sh_mmcif_probe(struct platform_device *pdev)
1363 {
1364 	int ret = 0, irq[2];
1365 	struct mmc_host *mmc;
1366 	struct sh_mmcif_host *host;
1367 	struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1368 	struct resource *res;
1369 	void __iomem *reg;
1370 	const char *name;
1371 
1372 	irq[0] = platform_get_irq(pdev, 0);
1373 	irq[1] = platform_get_irq(pdev, 1);
1374 	if (irq[0] < 0) {
1375 		dev_err(&pdev->dev, "Get irq error\n");
1376 		return -ENXIO;
1377 	}
1378 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1379 	if (!res) {
1380 		dev_err(&pdev->dev, "platform_get_resource error.\n");
1381 		return -ENXIO;
1382 	}
1383 	reg = ioremap(res->start, resource_size(res));
1384 	if (!reg) {
1385 		dev_err(&pdev->dev, "ioremap error.\n");
1386 		return -ENOMEM;
1387 	}
1388 
1389 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1390 	if (!mmc) {
1391 		ret = -ENOMEM;
1392 		goto ealloch;
1393 	}
1394 
1395 	ret = mmc_of_parse(mmc);
1396 	if (ret < 0)
1397 		goto eofparse;
1398 
1399 	host		= mmc_priv(mmc);
1400 	host->mmc	= mmc;
1401 	host->addr	= reg;
1402 	host->timeout	= msecs_to_jiffies(1000);
1403 	host->ccs_enable = !pd || !pd->ccs_unsupported;
1404 	host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1405 
1406 	host->pd = pdev;
1407 
1408 	spin_lock_init(&host->lock);
1409 
1410 	mmc->ops = &sh_mmcif_ops;
1411 	sh_mmcif_init_ocr(host);
1412 
1413 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1414 	if (pd && pd->caps)
1415 		mmc->caps |= pd->caps;
1416 	mmc->max_segs = 32;
1417 	mmc->max_blk_size = 512;
1418 	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1419 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1420 	mmc->max_seg_size = mmc->max_req_size;
1421 
1422 	platform_set_drvdata(pdev, host);
1423 
1424 	pm_runtime_enable(&pdev->dev);
1425 	host->power = false;
1426 
1427 	host->hclk = clk_get(&pdev->dev, NULL);
1428 	if (IS_ERR(host->hclk)) {
1429 		ret = PTR_ERR(host->hclk);
1430 		dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1431 		goto eclkget;
1432 	}
1433 	ret = sh_mmcif_clk_update(host);
1434 	if (ret < 0)
1435 		goto eclkupdate;
1436 
1437 	ret = pm_runtime_resume(&pdev->dev);
1438 	if (ret < 0)
1439 		goto eresume;
1440 
1441 	INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1442 
1443 	sh_mmcif_sync_reset(host);
1444 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1445 
1446 	name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1447 	ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, name, host);
1448 	if (ret) {
1449 		dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1450 		goto ereqirq0;
1451 	}
1452 	if (irq[1] >= 0) {
1453 		ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt,
1454 					   0, "sh_mmc:int", host);
1455 		if (ret) {
1456 			dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1457 			goto ereqirq1;
1458 		}
1459 	}
1460 
1461 	if (pd && pd->use_cd_gpio) {
1462 		ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1463 		if (ret < 0)
1464 			goto erqcd;
1465 	}
1466 
1467 	mutex_init(&host->thread_lock);
1468 
1469 	clk_disable(host->hclk);
1470 	ret = mmc_add_host(mmc);
1471 	if (ret < 0)
1472 		goto emmcaddh;
1473 
1474 	dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1475 
1476 	dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1477 	dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1478 		sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1479 	return ret;
1480 
1481 emmcaddh:
1482 erqcd:
1483 	if (irq[1] >= 0)
1484 		free_irq(irq[1], host);
1485 ereqirq1:
1486 	free_irq(irq[0], host);
1487 ereqirq0:
1488 	pm_runtime_suspend(&pdev->dev);
1489 eresume:
1490 	clk_disable(host->hclk);
1491 eclkupdate:
1492 	clk_put(host->hclk);
1493 eclkget:
1494 	pm_runtime_disable(&pdev->dev);
1495 eofparse:
1496 	mmc_free_host(mmc);
1497 ealloch:
1498 	iounmap(reg);
1499 	return ret;
1500 }
1501 
1502 static int sh_mmcif_remove(struct platform_device *pdev)
1503 {
1504 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1505 	int irq[2];
1506 
1507 	host->dying = true;
1508 	clk_enable(host->hclk);
1509 	pm_runtime_get_sync(&pdev->dev);
1510 
1511 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1512 
1513 	mmc_remove_host(host->mmc);
1514 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1515 
1516 	/*
1517 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1518 	 * mmc_remove_host() call above. But swapping order doesn't help either
1519 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1520 	 */
1521 	cancel_delayed_work_sync(&host->timeout_work);
1522 
1523 	if (host->addr)
1524 		iounmap(host->addr);
1525 
1526 	irq[0] = platform_get_irq(pdev, 0);
1527 	irq[1] = platform_get_irq(pdev, 1);
1528 
1529 	free_irq(irq[0], host);
1530 	if (irq[1] >= 0)
1531 		free_irq(irq[1], host);
1532 
1533 	clk_disable(host->hclk);
1534 	mmc_free_host(host->mmc);
1535 	pm_runtime_put_sync(&pdev->dev);
1536 	pm_runtime_disable(&pdev->dev);
1537 
1538 	return 0;
1539 }
1540 
1541 #ifdef CONFIG_PM
1542 static int sh_mmcif_suspend(struct device *dev)
1543 {
1544 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1545 	int ret = mmc_suspend_host(host->mmc);
1546 
1547 	if (!ret)
1548 		sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1549 
1550 	return ret;
1551 }
1552 
1553 static int sh_mmcif_resume(struct device *dev)
1554 {
1555 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1556 
1557 	return mmc_resume_host(host->mmc);
1558 }
1559 #else
1560 #define sh_mmcif_suspend	NULL
1561 #define sh_mmcif_resume		NULL
1562 #endif	/* CONFIG_PM */
1563 
1564 static const struct of_device_id mmcif_of_match[] = {
1565 	{ .compatible = "renesas,sh-mmcif" },
1566 	{ }
1567 };
1568 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1569 
1570 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1571 	.suspend = sh_mmcif_suspend,
1572 	.resume = sh_mmcif_resume,
1573 };
1574 
1575 static struct platform_driver sh_mmcif_driver = {
1576 	.probe		= sh_mmcif_probe,
1577 	.remove		= sh_mmcif_remove,
1578 	.driver		= {
1579 		.name	= DRIVER_NAME,
1580 		.pm	= &sh_mmcif_dev_pm_ops,
1581 		.owner	= THIS_MODULE,
1582 		.of_match_table = mmcif_of_match,
1583 	},
1584 };
1585 
1586 module_platform_driver(sh_mmcif_driver);
1587 
1588 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1589 MODULE_LICENSE("GPL");
1590 MODULE_ALIAS("platform:" DRIVER_NAME);
1591 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1592