xref: /openbmc/linux/drivers/mmc/host/sh_mmcif.c (revision e0d23ef2)
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/core.h>
26 #include <linux/mmc/host.h>
27 #include <linux/mmc/mmc.h>
28 #include <linux/mmc/sdio.h>
29 #include <linux/mmc/sh_mmcif.h>
30 #include <linux/pagemap.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/spinlock.h>
34 #include <linux/module.h>
35 
36 #define DRIVER_NAME	"sh_mmcif"
37 #define DRIVER_VERSION	"2010-04-28"
38 
39 /* CE_CMD_SET */
40 #define CMD_MASK		0x3f000000
41 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
42 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
43 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
44 #define CMD_SET_RBSY		(1 << 21) /* R1b */
45 #define CMD_SET_CCSEN		(1 << 20)
46 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
47 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
48 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
49 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
50 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
51 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
52 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
53 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
54 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
55 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
56 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
57 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
58 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
59 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
60 #define CMD_SET_CCSH		(1 << 5)
61 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
62 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
63 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
64 
65 /* CE_CMD_CTRL */
66 #define CMD_CTRL_BREAK		(1 << 0)
67 
68 /* CE_BLOCK_SET */
69 #define BLOCK_SIZE_MASK		0x0000ffff
70 
71 /* CE_INT */
72 #define INT_CCSDE		(1 << 29)
73 #define INT_CMD12DRE		(1 << 26)
74 #define INT_CMD12RBE		(1 << 25)
75 #define INT_CMD12CRE		(1 << 24)
76 #define INT_DTRANE		(1 << 23)
77 #define INT_BUFRE		(1 << 22)
78 #define INT_BUFWEN		(1 << 21)
79 #define INT_BUFREN		(1 << 20)
80 #define INT_CCSRCV		(1 << 19)
81 #define INT_RBSYE		(1 << 17)
82 #define INT_CRSPE		(1 << 16)
83 #define INT_CMDVIO		(1 << 15)
84 #define INT_BUFVIO		(1 << 14)
85 #define INT_WDATERR		(1 << 11)
86 #define INT_RDATERR		(1 << 10)
87 #define INT_RIDXERR		(1 << 9)
88 #define INT_RSPERR		(1 << 8)
89 #define INT_CCSTO		(1 << 5)
90 #define INT_CRCSTO		(1 << 4)
91 #define INT_WDATTO		(1 << 3)
92 #define INT_RDATTO		(1 << 2)
93 #define INT_RBSYTO		(1 << 1)
94 #define INT_RSPTO		(1 << 0)
95 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
96 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
97 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
98 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
99 
100 /* CE_INT_MASK */
101 #define MASK_ALL		0x00000000
102 #define MASK_MCCSDE		(1 << 29)
103 #define MASK_MCMD12DRE		(1 << 26)
104 #define MASK_MCMD12RBE		(1 << 25)
105 #define MASK_MCMD12CRE		(1 << 24)
106 #define MASK_MDTRANE		(1 << 23)
107 #define MASK_MBUFRE		(1 << 22)
108 #define MASK_MBUFWEN		(1 << 21)
109 #define MASK_MBUFREN		(1 << 20)
110 #define MASK_MCCSRCV		(1 << 19)
111 #define MASK_MRBSYE		(1 << 17)
112 #define MASK_MCRSPE		(1 << 16)
113 #define MASK_MCMDVIO		(1 << 15)
114 #define MASK_MBUFVIO		(1 << 14)
115 #define MASK_MWDATERR		(1 << 11)
116 #define MASK_MRDATERR		(1 << 10)
117 #define MASK_MRIDXERR		(1 << 9)
118 #define MASK_MRSPERR		(1 << 8)
119 #define MASK_MCCSTO		(1 << 5)
120 #define MASK_MCRCSTO		(1 << 4)
121 #define MASK_MWDATTO		(1 << 3)
122 #define MASK_MRDATTO		(1 << 2)
123 #define MASK_MRBSYTO		(1 << 1)
124 #define MASK_MRSPTO		(1 << 0)
125 
126 /* CE_HOST_STS1 */
127 #define STS1_CMDSEQ		(1 << 31)
128 
129 /* CE_HOST_STS2 */
130 #define STS2_CRCSTE		(1 << 31)
131 #define STS2_CRC16E		(1 << 30)
132 #define STS2_AC12CRCE		(1 << 29)
133 #define STS2_RSPCRC7E		(1 << 28)
134 #define STS2_CRCSTEBE		(1 << 27)
135 #define STS2_RDATEBE		(1 << 26)
136 #define STS2_AC12REBE		(1 << 25)
137 #define STS2_RSPEBE		(1 << 24)
138 #define STS2_AC12IDXE		(1 << 23)
139 #define STS2_RSPIDXE		(1 << 22)
140 #define STS2_CCSTO		(1 << 15)
141 #define STS2_RDATTO		(1 << 14)
142 #define STS2_DATBSYTO		(1 << 13)
143 #define STS2_CRCSTTO		(1 << 12)
144 #define STS2_AC12BSYTO		(1 << 11)
145 #define STS2_RSPBSYTO		(1 << 10)
146 #define STS2_AC12RSPTO		(1 << 9)
147 #define STS2_RSPTO		(1 << 8)
148 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
149 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
150 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
151 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
152 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
153 				 STS2_AC12RSPTO | STS2_RSPTO)
154 
155 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
156 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
157 #define CLKDEV_INIT		400000   /* 400 KHz */
158 
159 enum mmcif_state {
160 	STATE_IDLE,
161 	STATE_REQUEST,
162 	STATE_IOS,
163 };
164 
165 struct sh_mmcif_host {
166 	struct mmc_host *mmc;
167 	struct mmc_data *data;
168 	struct platform_device *pd;
169 	struct sh_dmae_slave dma_slave_tx;
170 	struct sh_dmae_slave dma_slave_rx;
171 	struct clk *hclk;
172 	unsigned int clk;
173 	int bus_width;
174 	bool sd_error;
175 	long timeout;
176 	void __iomem *addr;
177 	struct completion intr_wait;
178 	enum mmcif_state state;
179 	spinlock_t lock;
180 	bool power;
181 	bool card_present;
182 
183 	/* DMA support */
184 	struct dma_chan		*chan_rx;
185 	struct dma_chan		*chan_tx;
186 	struct completion	dma_complete;
187 	bool			dma_active;
188 };
189 
190 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
191 					unsigned int reg, u32 val)
192 {
193 	writel(val | readl(host->addr + reg), host->addr + reg);
194 }
195 
196 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
197 					unsigned int reg, u32 val)
198 {
199 	writel(~val & readl(host->addr + reg), host->addr + reg);
200 }
201 
202 static void mmcif_dma_complete(void *arg)
203 {
204 	struct sh_mmcif_host *host = arg;
205 	dev_dbg(&host->pd->dev, "Command completed\n");
206 
207 	if (WARN(!host->data, "%s: NULL data in DMA completion!\n",
208 		 dev_name(&host->pd->dev)))
209 		return;
210 
211 	if (host->data->flags & MMC_DATA_READ)
212 		dma_unmap_sg(host->chan_rx->device->dev,
213 			     host->data->sg, host->data->sg_len,
214 			     DMA_FROM_DEVICE);
215 	else
216 		dma_unmap_sg(host->chan_tx->device->dev,
217 			     host->data->sg, host->data->sg_len,
218 			     DMA_TO_DEVICE);
219 
220 	complete(&host->dma_complete);
221 }
222 
223 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
224 {
225 	struct scatterlist *sg = host->data->sg;
226 	struct dma_async_tx_descriptor *desc = NULL;
227 	struct dma_chan *chan = host->chan_rx;
228 	dma_cookie_t cookie = -EINVAL;
229 	int ret;
230 
231 	ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
232 			 DMA_FROM_DEVICE);
233 	if (ret > 0) {
234 		host->dma_active = true;
235 		desc = chan->device->device_prep_slave_sg(chan, sg, ret,
236 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
237 	}
238 
239 	if (desc) {
240 		desc->callback = mmcif_dma_complete;
241 		desc->callback_param = host;
242 		cookie = dmaengine_submit(desc);
243 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
244 		dma_async_issue_pending(chan);
245 	}
246 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
247 		__func__, host->data->sg_len, ret, cookie);
248 
249 	if (!desc) {
250 		/* DMA failed, fall back to PIO */
251 		if (ret >= 0)
252 			ret = -EIO;
253 		host->chan_rx = NULL;
254 		host->dma_active = false;
255 		dma_release_channel(chan);
256 		/* Free the Tx channel too */
257 		chan = host->chan_tx;
258 		if (chan) {
259 			host->chan_tx = NULL;
260 			dma_release_channel(chan);
261 		}
262 		dev_warn(&host->pd->dev,
263 			 "DMA failed: %d, falling back to PIO\n", ret);
264 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
265 	}
266 
267 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
268 		desc, cookie, host->data->sg_len);
269 }
270 
271 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
272 {
273 	struct scatterlist *sg = host->data->sg;
274 	struct dma_async_tx_descriptor *desc = NULL;
275 	struct dma_chan *chan = host->chan_tx;
276 	dma_cookie_t cookie = -EINVAL;
277 	int ret;
278 
279 	ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
280 			 DMA_TO_DEVICE);
281 	if (ret > 0) {
282 		host->dma_active = true;
283 		desc = chan->device->device_prep_slave_sg(chan, sg, ret,
284 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
285 	}
286 
287 	if (desc) {
288 		desc->callback = mmcif_dma_complete;
289 		desc->callback_param = host;
290 		cookie = dmaengine_submit(desc);
291 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
292 		dma_async_issue_pending(chan);
293 	}
294 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
295 		__func__, host->data->sg_len, ret, cookie);
296 
297 	if (!desc) {
298 		/* DMA failed, fall back to PIO */
299 		if (ret >= 0)
300 			ret = -EIO;
301 		host->chan_tx = NULL;
302 		host->dma_active = false;
303 		dma_release_channel(chan);
304 		/* Free the Rx channel too */
305 		chan = host->chan_rx;
306 		if (chan) {
307 			host->chan_rx = NULL;
308 			dma_release_channel(chan);
309 		}
310 		dev_warn(&host->pd->dev,
311 			 "DMA failed: %d, falling back to PIO\n", ret);
312 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
313 	}
314 
315 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
316 		desc, cookie);
317 }
318 
319 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
320 {
321 	dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
322 	chan->private = arg;
323 	return true;
324 }
325 
326 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
327 				 struct sh_mmcif_plat_data *pdata)
328 {
329 	struct sh_dmae_slave *tx, *rx;
330 	host->dma_active = false;
331 
332 	/* We can only either use DMA for both Tx and Rx or not use it at all */
333 	if (pdata->dma) {
334 		dev_warn(&host->pd->dev,
335 			 "Update your platform to use embedded DMA slave IDs\n");
336 		tx = &pdata->dma->chan_priv_tx;
337 		rx = &pdata->dma->chan_priv_rx;
338 	} else {
339 		tx = &host->dma_slave_tx;
340 		tx->slave_id = pdata->slave_id_tx;
341 		rx = &host->dma_slave_rx;
342 		rx->slave_id = pdata->slave_id_rx;
343 	}
344 	if (tx->slave_id > 0 && rx->slave_id > 0) {
345 		dma_cap_mask_t mask;
346 
347 		dma_cap_zero(mask);
348 		dma_cap_set(DMA_SLAVE, mask);
349 
350 		host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
351 		dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
352 			host->chan_tx);
353 
354 		if (!host->chan_tx)
355 			return;
356 
357 		host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
358 		dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
359 			host->chan_rx);
360 
361 		if (!host->chan_rx) {
362 			dma_release_channel(host->chan_tx);
363 			host->chan_tx = NULL;
364 			return;
365 		}
366 
367 		init_completion(&host->dma_complete);
368 	}
369 }
370 
371 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
372 {
373 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
374 	/* Descriptors are freed automatically */
375 	if (host->chan_tx) {
376 		struct dma_chan *chan = host->chan_tx;
377 		host->chan_tx = NULL;
378 		dma_release_channel(chan);
379 	}
380 	if (host->chan_rx) {
381 		struct dma_chan *chan = host->chan_rx;
382 		host->chan_rx = NULL;
383 		dma_release_channel(chan);
384 	}
385 
386 	host->dma_active = false;
387 }
388 
389 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
390 {
391 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
392 
393 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
394 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
395 
396 	if (!clk)
397 		return;
398 	if (p->sup_pclk && clk == host->clk)
399 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
400 	else
401 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
402 			(ilog2(__rounddown_pow_of_two(host->clk / clk)) << 16));
403 
404 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
405 }
406 
407 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
408 {
409 	u32 tmp;
410 
411 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
412 
413 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
414 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
415 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
416 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
417 	/* byte swap on */
418 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
419 }
420 
421 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
422 {
423 	u32 state1, state2;
424 	int ret, timeout = 10000000;
425 
426 	host->sd_error = false;
427 
428 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
429 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
430 	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
431 	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
432 
433 	if (state1 & STS1_CMDSEQ) {
434 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
435 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
436 		while (1) {
437 			timeout--;
438 			if (timeout < 0) {
439 				dev_err(&host->pd->dev,
440 					"Forceed end of command sequence timeout err\n");
441 				return -EIO;
442 			}
443 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
444 								& STS1_CMDSEQ))
445 				break;
446 			mdelay(1);
447 		}
448 		sh_mmcif_sync_reset(host);
449 		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
450 		return -EIO;
451 	}
452 
453 	if (state2 & STS2_CRC_ERR) {
454 		dev_dbg(&host->pd->dev, ": Happened CRC error\n");
455 		ret = -EIO;
456 	} else if (state2 & STS2_TIMEOUT_ERR) {
457 		dev_dbg(&host->pd->dev, ": Happened Timeout error\n");
458 		ret = -ETIMEDOUT;
459 	} else {
460 		dev_dbg(&host->pd->dev, ": Happened End/Index error\n");
461 		ret = -EIO;
462 	}
463 	return ret;
464 }
465 
466 static int sh_mmcif_single_read(struct sh_mmcif_host *host,
467 					struct mmc_request *mrq)
468 {
469 	struct mmc_data *data = mrq->data;
470 	long time;
471 	u32 blocksize, i, *p = sg_virt(data->sg);
472 
473 	/* buf read enable */
474 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
475 	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
476 			host->timeout);
477 	if (time <= 0 || host->sd_error)
478 		return sh_mmcif_error_manage(host);
479 
480 	blocksize = (BLOCK_SIZE_MASK &
481 			sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
482 	for (i = 0; i < blocksize / 4; i++)
483 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
484 
485 	/* buffer read end */
486 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
487 	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
488 			host->timeout);
489 	if (time <= 0 || host->sd_error)
490 		return sh_mmcif_error_manage(host);
491 
492 	return 0;
493 }
494 
495 static int sh_mmcif_multi_read(struct sh_mmcif_host *host,
496 					struct mmc_request *mrq)
497 {
498 	struct mmc_data *data = mrq->data;
499 	long time;
500 	u32 blocksize, i, j, sec, *p;
501 
502 	blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
503 						     MMCIF_CE_BLOCK_SET);
504 	for (j = 0; j < data->sg_len; j++) {
505 		p = sg_virt(data->sg);
506 		for (sec = 0; sec < data->sg->length / blocksize; sec++) {
507 			sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
508 			/* buf read enable */
509 			time = wait_for_completion_interruptible_timeout(&host->intr_wait,
510 				host->timeout);
511 
512 			if (time <= 0 || host->sd_error)
513 				return sh_mmcif_error_manage(host);
514 
515 			for (i = 0; i < blocksize / 4; i++)
516 				*p++ = sh_mmcif_readl(host->addr,
517 						      MMCIF_CE_DATA);
518 		}
519 		if (j < data->sg_len - 1)
520 			data->sg++;
521 	}
522 	return 0;
523 }
524 
525 static int sh_mmcif_single_write(struct sh_mmcif_host *host,
526 					struct mmc_request *mrq)
527 {
528 	struct mmc_data *data = mrq->data;
529 	long time;
530 	u32 blocksize, i, *p = sg_virt(data->sg);
531 
532 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
533 
534 	/* buf write enable */
535 	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
536 			host->timeout);
537 	if (time <= 0 || host->sd_error)
538 		return sh_mmcif_error_manage(host);
539 
540 	blocksize = (BLOCK_SIZE_MASK &
541 			sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
542 	for (i = 0; i < blocksize / 4; i++)
543 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
544 
545 	/* buffer write end */
546 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
547 
548 	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
549 			host->timeout);
550 	if (time <= 0 || host->sd_error)
551 		return sh_mmcif_error_manage(host);
552 
553 	return 0;
554 }
555 
556 static int sh_mmcif_multi_write(struct sh_mmcif_host *host,
557 						struct mmc_request *mrq)
558 {
559 	struct mmc_data *data = mrq->data;
560 	long time;
561 	u32 i, sec, j, blocksize, *p;
562 
563 	blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
564 						     MMCIF_CE_BLOCK_SET);
565 
566 	for (j = 0; j < data->sg_len; j++) {
567 		p = sg_virt(data->sg);
568 		for (sec = 0; sec < data->sg->length / blocksize; sec++) {
569 			sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
570 			/* buf write enable*/
571 			time = wait_for_completion_interruptible_timeout(&host->intr_wait,
572 				host->timeout);
573 
574 			if (time <= 0 || host->sd_error)
575 				return sh_mmcif_error_manage(host);
576 
577 			for (i = 0; i < blocksize / 4; i++)
578 				sh_mmcif_writel(host->addr,
579 						MMCIF_CE_DATA, *p++);
580 		}
581 		if (j < data->sg_len - 1)
582 			data->sg++;
583 	}
584 	return 0;
585 }
586 
587 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
588 						struct mmc_command *cmd)
589 {
590 	if (cmd->flags & MMC_RSP_136) {
591 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
592 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
593 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
594 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
595 	} else
596 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
597 }
598 
599 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
600 						struct mmc_command *cmd)
601 {
602 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
603 }
604 
605 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
606 		struct mmc_request *mrq, struct mmc_command *cmd, u32 opc)
607 {
608 	u32 tmp = 0;
609 
610 	/* Response Type check */
611 	switch (mmc_resp_type(cmd)) {
612 	case MMC_RSP_NONE:
613 		tmp |= CMD_SET_RTYP_NO;
614 		break;
615 	case MMC_RSP_R1:
616 	case MMC_RSP_R1B:
617 	case MMC_RSP_R3:
618 		tmp |= CMD_SET_RTYP_6B;
619 		break;
620 	case MMC_RSP_R2:
621 		tmp |= CMD_SET_RTYP_17B;
622 		break;
623 	default:
624 		dev_err(&host->pd->dev, "Unsupported response type.\n");
625 		break;
626 	}
627 	switch (opc) {
628 	/* RBSY */
629 	case MMC_SWITCH:
630 	case MMC_STOP_TRANSMISSION:
631 	case MMC_SET_WRITE_PROT:
632 	case MMC_CLR_WRITE_PROT:
633 	case MMC_ERASE:
634 	case MMC_GEN_CMD:
635 		tmp |= CMD_SET_RBSY;
636 		break;
637 	}
638 	/* WDAT / DATW */
639 	if (host->data) {
640 		tmp |= CMD_SET_WDAT;
641 		switch (host->bus_width) {
642 		case MMC_BUS_WIDTH_1:
643 			tmp |= CMD_SET_DATW_1;
644 			break;
645 		case MMC_BUS_WIDTH_4:
646 			tmp |= CMD_SET_DATW_4;
647 			break;
648 		case MMC_BUS_WIDTH_8:
649 			tmp |= CMD_SET_DATW_8;
650 			break;
651 		default:
652 			dev_err(&host->pd->dev, "Unsupported bus width.\n");
653 			break;
654 		}
655 	}
656 	/* DWEN */
657 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
658 		tmp |= CMD_SET_DWEN;
659 	/* CMLTE/CMD12EN */
660 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
661 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
662 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
663 					mrq->data->blocks << 16);
664 	}
665 	/* RIDXC[1:0] check bits */
666 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
667 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
668 		tmp |= CMD_SET_RIDXC_BITS;
669 	/* RCRC7C[1:0] check bits */
670 	if (opc == MMC_SEND_OP_COND)
671 		tmp |= CMD_SET_CRC7C_BITS;
672 	/* RCRC7C[1:0] internal CRC7 */
673 	if (opc == MMC_ALL_SEND_CID ||
674 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
675 		tmp |= CMD_SET_CRC7C_INTERNAL;
676 
677 	return opc = ((opc << 24) | tmp);
678 }
679 
680 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
681 				struct mmc_request *mrq, u32 opc)
682 {
683 	int ret;
684 
685 	switch (opc) {
686 	case MMC_READ_MULTIPLE_BLOCK:
687 		ret = sh_mmcif_multi_read(host, mrq);
688 		break;
689 	case MMC_WRITE_MULTIPLE_BLOCK:
690 		ret = sh_mmcif_multi_write(host, mrq);
691 		break;
692 	case MMC_WRITE_BLOCK:
693 		ret = sh_mmcif_single_write(host, mrq);
694 		break;
695 	case MMC_READ_SINGLE_BLOCK:
696 	case MMC_SEND_EXT_CSD:
697 		ret = sh_mmcif_single_read(host, mrq);
698 		break;
699 	default:
700 		dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
701 		ret = -EINVAL;
702 		break;
703 	}
704 	return ret;
705 }
706 
707 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
708 			struct mmc_request *mrq, struct mmc_command *cmd)
709 {
710 	long time;
711 	int ret = 0, mask = 0;
712 	u32 opc = cmd->opcode;
713 
714 	switch (opc) {
715 	/* respons busy check */
716 	case MMC_SWITCH:
717 	case MMC_STOP_TRANSMISSION:
718 	case MMC_SET_WRITE_PROT:
719 	case MMC_CLR_WRITE_PROT:
720 	case MMC_ERASE:
721 	case MMC_GEN_CMD:
722 		mask = MASK_MRBSYE;
723 		break;
724 	default:
725 		mask = MASK_MCRSPE;
726 		break;
727 	}
728 	mask |=	MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR |
729 		MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR |
730 		MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO |
731 		MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO;
732 
733 	if (host->data) {
734 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
735 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
736 				mrq->data->blksz);
737 	}
738 	opc = sh_mmcif_set_cmd(host, mrq, cmd, opc);
739 
740 	sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
741 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
742 	/* set arg */
743 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
744 	/* set cmd */
745 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
746 
747 	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
748 		host->timeout);
749 	if (time <= 0) {
750 		cmd->error = sh_mmcif_error_manage(host);
751 		return;
752 	}
753 	if (host->sd_error) {
754 		switch (cmd->opcode) {
755 		case MMC_ALL_SEND_CID:
756 		case MMC_SELECT_CARD:
757 		case MMC_APP_CMD:
758 			cmd->error = -ETIMEDOUT;
759 			break;
760 		default:
761 			dev_dbg(&host->pd->dev, "Cmd(d'%d) err\n",
762 					cmd->opcode);
763 			cmd->error = sh_mmcif_error_manage(host);
764 			break;
765 		}
766 		host->sd_error = false;
767 		return;
768 	}
769 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
770 		cmd->error = 0;
771 		return;
772 	}
773 	sh_mmcif_get_response(host, cmd);
774 	if (host->data) {
775 		if (!host->dma_active) {
776 			ret = sh_mmcif_data_trans(host, mrq, cmd->opcode);
777 		} else {
778 			long time =
779 				wait_for_completion_interruptible_timeout(&host->dma_complete,
780 									  host->timeout);
781 			if (!time)
782 				ret = -ETIMEDOUT;
783 			else if (time < 0)
784 				ret = time;
785 			sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
786 					BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
787 			host->dma_active = false;
788 		}
789 		if (ret < 0)
790 			mrq->data->bytes_xfered = 0;
791 		else
792 			mrq->data->bytes_xfered =
793 				mrq->data->blocks * mrq->data->blksz;
794 	}
795 	cmd->error = ret;
796 }
797 
798 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
799 		struct mmc_request *mrq, struct mmc_command *cmd)
800 {
801 	long time;
802 
803 	if (mrq->cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
804 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
805 	else if (mrq->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
806 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
807 	else {
808 		dev_err(&host->pd->dev, "unsupported stop cmd\n");
809 		cmd->error = sh_mmcif_error_manage(host);
810 		return;
811 	}
812 
813 	time = wait_for_completion_interruptible_timeout(&host->intr_wait,
814 			host->timeout);
815 	if (time <= 0 || host->sd_error) {
816 		cmd->error = sh_mmcif_error_manage(host);
817 		return;
818 	}
819 	sh_mmcif_get_cmd12response(host, cmd);
820 	cmd->error = 0;
821 }
822 
823 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
824 {
825 	struct sh_mmcif_host *host = mmc_priv(mmc);
826 	unsigned long flags;
827 
828 	spin_lock_irqsave(&host->lock, flags);
829 	if (host->state != STATE_IDLE) {
830 		spin_unlock_irqrestore(&host->lock, flags);
831 		mrq->cmd->error = -EAGAIN;
832 		mmc_request_done(mmc, mrq);
833 		return;
834 	}
835 
836 	host->state = STATE_REQUEST;
837 	spin_unlock_irqrestore(&host->lock, flags);
838 
839 	switch (mrq->cmd->opcode) {
840 	/* MMCIF does not support SD/SDIO command */
841 	case SD_IO_SEND_OP_COND:
842 	case MMC_APP_CMD:
843 		host->state = STATE_IDLE;
844 		mrq->cmd->error = -ETIMEDOUT;
845 		mmc_request_done(mmc, mrq);
846 		return;
847 	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
848 		if (!mrq->data) {
849 			/* send_if_cond cmd (not support) */
850 			host->state = STATE_IDLE;
851 			mrq->cmd->error = -ETIMEDOUT;
852 			mmc_request_done(mmc, mrq);
853 			return;
854 		}
855 		break;
856 	default:
857 		break;
858 	}
859 	host->data = mrq->data;
860 	if (mrq->data) {
861 		if (mrq->data->flags & MMC_DATA_READ) {
862 			if (host->chan_rx)
863 				sh_mmcif_start_dma_rx(host);
864 		} else {
865 			if (host->chan_tx)
866 				sh_mmcif_start_dma_tx(host);
867 		}
868 	}
869 	sh_mmcif_start_cmd(host, mrq, mrq->cmd);
870 	host->data = NULL;
871 
872 	if (!mrq->cmd->error && mrq->stop)
873 		sh_mmcif_stop_cmd(host, mrq, mrq->stop);
874 	host->state = STATE_IDLE;
875 	mmc_request_done(mmc, mrq);
876 }
877 
878 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
879 {
880 	struct sh_mmcif_host *host = mmc_priv(mmc);
881 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
882 	unsigned long flags;
883 
884 	spin_lock_irqsave(&host->lock, flags);
885 	if (host->state != STATE_IDLE) {
886 		spin_unlock_irqrestore(&host->lock, flags);
887 		return;
888 	}
889 
890 	host->state = STATE_IOS;
891 	spin_unlock_irqrestore(&host->lock, flags);
892 
893 	if (ios->power_mode == MMC_POWER_UP) {
894 		if (!host->card_present) {
895 			/* See if we also get DMA */
896 			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
897 			host->card_present = true;
898 		}
899 	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
900 		/* clock stop */
901 		sh_mmcif_clock_control(host, 0);
902 		if (ios->power_mode == MMC_POWER_OFF) {
903 			if (host->card_present) {
904 				sh_mmcif_release_dma(host);
905 				host->card_present = false;
906 			}
907 		}
908 		if (host->power) {
909 			pm_runtime_put(&host->pd->dev);
910 			host->power = false;
911 			if (p->down_pwr)
912 				p->down_pwr(host->pd);
913 		}
914 		host->state = STATE_IDLE;
915 		return;
916 	}
917 
918 	if (ios->clock) {
919 		if (!host->power) {
920 			if (p->set_pwr)
921 				p->set_pwr(host->pd, ios->power_mode);
922 			pm_runtime_get_sync(&host->pd->dev);
923 			host->power = true;
924 			sh_mmcif_sync_reset(host);
925 		}
926 		sh_mmcif_clock_control(host, ios->clock);
927 	}
928 
929 	host->bus_width = ios->bus_width;
930 	host->state = STATE_IDLE;
931 }
932 
933 static int sh_mmcif_get_cd(struct mmc_host *mmc)
934 {
935 	struct sh_mmcif_host *host = mmc_priv(mmc);
936 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
937 
938 	if (!p->get_cd)
939 		return -ENOSYS;
940 	else
941 		return p->get_cd(host->pd);
942 }
943 
944 static struct mmc_host_ops sh_mmcif_ops = {
945 	.request	= sh_mmcif_request,
946 	.set_ios	= sh_mmcif_set_ios,
947 	.get_cd		= sh_mmcif_get_cd,
948 };
949 
950 static void sh_mmcif_detect(struct mmc_host *mmc)
951 {
952 	mmc_detect_change(mmc, 0);
953 }
954 
955 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
956 {
957 	struct sh_mmcif_host *host = dev_id;
958 	u32 state;
959 	int err = 0;
960 
961 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
962 
963 	if (state & INT_RBSYE) {
964 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
965 				~(INT_RBSYE | INT_CRSPE));
966 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
967 	} else if (state & INT_CRSPE) {
968 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
969 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
970 	} else if (state & INT_BUFREN) {
971 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
972 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
973 	} else if (state & INT_BUFWEN) {
974 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
975 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
976 	} else if (state & INT_CMD12DRE) {
977 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
978 			~(INT_CMD12DRE | INT_CMD12RBE |
979 			  INT_CMD12CRE | INT_BUFRE));
980 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
981 	} else if (state & INT_BUFRE) {
982 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
983 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
984 	} else if (state & INT_DTRANE) {
985 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
986 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
987 	} else if (state & INT_CMD12RBE) {
988 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
989 				~(INT_CMD12RBE | INT_CMD12CRE));
990 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
991 	} else if (state & INT_ERR_STS) {
992 		/* err interrupts */
993 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
994 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
995 		err = 1;
996 	} else {
997 		dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
998 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
999 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1000 		err = 1;
1001 	}
1002 	if (err) {
1003 		host->sd_error = true;
1004 		dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1005 	}
1006 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE))
1007 		complete(&host->intr_wait);
1008 	else
1009 		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1010 
1011 	return IRQ_HANDLED;
1012 }
1013 
1014 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1015 {
1016 	int ret = 0, irq[2];
1017 	struct mmc_host *mmc;
1018 	struct sh_mmcif_host *host;
1019 	struct sh_mmcif_plat_data *pd;
1020 	struct resource *res;
1021 	void __iomem *reg;
1022 	char clk_name[8];
1023 
1024 	irq[0] = platform_get_irq(pdev, 0);
1025 	irq[1] = platform_get_irq(pdev, 1);
1026 	if (irq[0] < 0 || irq[1] < 0) {
1027 		dev_err(&pdev->dev, "Get irq error\n");
1028 		return -ENXIO;
1029 	}
1030 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1031 	if (!res) {
1032 		dev_err(&pdev->dev, "platform_get_resource error.\n");
1033 		return -ENXIO;
1034 	}
1035 	reg = ioremap(res->start, resource_size(res));
1036 	if (!reg) {
1037 		dev_err(&pdev->dev, "ioremap error.\n");
1038 		return -ENOMEM;
1039 	}
1040 	pd = pdev->dev.platform_data;
1041 	if (!pd) {
1042 		dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1043 		ret = -ENXIO;
1044 		goto clean_up;
1045 	}
1046 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1047 	if (!mmc) {
1048 		ret = -ENOMEM;
1049 		goto clean_up;
1050 	}
1051 	host		= mmc_priv(mmc);
1052 	host->mmc	= mmc;
1053 	host->addr	= reg;
1054 	host->timeout	= 1000;
1055 
1056 	snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1057 	host->hclk = clk_get(&pdev->dev, clk_name);
1058 	if (IS_ERR(host->hclk)) {
1059 		dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1060 		ret = PTR_ERR(host->hclk);
1061 		goto clean_up1;
1062 	}
1063 	clk_enable(host->hclk);
1064 	host->clk = clk_get_rate(host->hclk);
1065 	host->pd = pdev;
1066 
1067 	init_completion(&host->intr_wait);
1068 	spin_lock_init(&host->lock);
1069 
1070 	mmc->ops = &sh_mmcif_ops;
1071 	mmc->f_max = host->clk;
1072 	/* close to 400KHz */
1073 	if (mmc->f_max < 51200000)
1074 		mmc->f_min = mmc->f_max / 128;
1075 	else if (mmc->f_max < 102400000)
1076 		mmc->f_min = mmc->f_max / 256;
1077 	else
1078 		mmc->f_min = mmc->f_max / 512;
1079 	if (pd->ocr)
1080 		mmc->ocr_avail = pd->ocr;
1081 	mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1082 	if (pd->caps)
1083 		mmc->caps |= pd->caps;
1084 	mmc->max_segs = 32;
1085 	mmc->max_blk_size = 512;
1086 	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1087 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1088 	mmc->max_seg_size = mmc->max_req_size;
1089 
1090 	sh_mmcif_sync_reset(host);
1091 	platform_set_drvdata(pdev, host);
1092 
1093 	pm_runtime_enable(&pdev->dev);
1094 	host->power = false;
1095 
1096 	ret = pm_runtime_resume(&pdev->dev);
1097 	if (ret < 0)
1098 		goto clean_up2;
1099 
1100 	mmc_add_host(mmc);
1101 
1102 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1103 
1104 	ret = request_irq(irq[0], sh_mmcif_intr, 0, "sh_mmc:error", host);
1105 	if (ret) {
1106 		dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1107 		goto clean_up3;
1108 	}
1109 	ret = request_irq(irq[1], sh_mmcif_intr, 0, "sh_mmc:int", host);
1110 	if (ret) {
1111 		free_irq(irq[0], host);
1112 		dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1113 		goto clean_up3;
1114 	}
1115 
1116 	sh_mmcif_detect(host->mmc);
1117 
1118 	dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1119 	dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1120 		sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1121 	return ret;
1122 
1123 clean_up3:
1124 	mmc_remove_host(mmc);
1125 	pm_runtime_suspend(&pdev->dev);
1126 clean_up2:
1127 	pm_runtime_disable(&pdev->dev);
1128 	clk_disable(host->hclk);
1129 clean_up1:
1130 	mmc_free_host(mmc);
1131 clean_up:
1132 	if (reg)
1133 		iounmap(reg);
1134 	return ret;
1135 }
1136 
1137 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1138 {
1139 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1140 	int irq[2];
1141 
1142 	pm_runtime_get_sync(&pdev->dev);
1143 
1144 	mmc_remove_host(host->mmc);
1145 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1146 
1147 	if (host->addr)
1148 		iounmap(host->addr);
1149 
1150 	irq[0] = platform_get_irq(pdev, 0);
1151 	irq[1] = platform_get_irq(pdev, 1);
1152 
1153 	free_irq(irq[0], host);
1154 	free_irq(irq[1], host);
1155 
1156 	platform_set_drvdata(pdev, NULL);
1157 
1158 	clk_disable(host->hclk);
1159 	mmc_free_host(host->mmc);
1160 	pm_runtime_put_sync(&pdev->dev);
1161 	pm_runtime_disable(&pdev->dev);
1162 
1163 	return 0;
1164 }
1165 
1166 #ifdef CONFIG_PM
1167 static int sh_mmcif_suspend(struct device *dev)
1168 {
1169 	struct platform_device *pdev = to_platform_device(dev);
1170 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1171 	int ret = mmc_suspend_host(host->mmc);
1172 
1173 	if (!ret) {
1174 		sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1175 		clk_disable(host->hclk);
1176 	}
1177 
1178 	return ret;
1179 }
1180 
1181 static int sh_mmcif_resume(struct device *dev)
1182 {
1183 	struct platform_device *pdev = to_platform_device(dev);
1184 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1185 
1186 	clk_enable(host->hclk);
1187 
1188 	return mmc_resume_host(host->mmc);
1189 }
1190 #else
1191 #define sh_mmcif_suspend	NULL
1192 #define sh_mmcif_resume		NULL
1193 #endif	/* CONFIG_PM */
1194 
1195 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1196 	.suspend = sh_mmcif_suspend,
1197 	.resume = sh_mmcif_resume,
1198 };
1199 
1200 static struct platform_driver sh_mmcif_driver = {
1201 	.probe		= sh_mmcif_probe,
1202 	.remove		= sh_mmcif_remove,
1203 	.driver		= {
1204 		.name	= DRIVER_NAME,
1205 		.pm	= &sh_mmcif_dev_pm_ops,
1206 	},
1207 };
1208 
1209 static int __init sh_mmcif_init(void)
1210 {
1211 	return platform_driver_register(&sh_mmcif_driver);
1212 }
1213 
1214 static void __exit sh_mmcif_exit(void)
1215 {
1216 	platform_driver_unregister(&sh_mmcif_driver);
1217 }
1218 
1219 module_init(sh_mmcif_init);
1220 module_exit(sh_mmcif_exit);
1221 
1222 
1223 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1224 MODULE_LICENSE("GPL");
1225 MODULE_ALIAS("platform:" DRIVER_NAME);
1226 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1227