xref: /openbmc/linux/drivers/mmc/host/sh_mmcif.c (revision dbb42d96)
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18 
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44 
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/pagemap.h>
61 #include <linux/platform_device.h>
62 #include <linux/pm_qos.h>
63 #include <linux/pm_runtime.h>
64 #include <linux/sh_dma.h>
65 #include <linux/spinlock.h>
66 #include <linux/module.h>
67 
68 #define DRIVER_NAME	"sh_mmcif"
69 #define DRIVER_VERSION	"2010-04-28"
70 
71 /* CE_CMD_SET */
72 #define CMD_MASK		0x3f000000
73 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
74 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
75 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
76 #define CMD_SET_RBSY		(1 << 21) /* R1b */
77 #define CMD_SET_CCSEN		(1 << 20)
78 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
79 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
80 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
81 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
82 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
83 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
84 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
85 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
86 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
87 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
88 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
89 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
90 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
91 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
92 #define CMD_SET_CCSH		(1 << 5)
93 #define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
94 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
95 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
96 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
97 
98 /* CE_CMD_CTRL */
99 #define CMD_CTRL_BREAK		(1 << 0)
100 
101 /* CE_BLOCK_SET */
102 #define BLOCK_SIZE_MASK		0x0000ffff
103 
104 /* CE_INT */
105 #define INT_CCSDE		(1 << 29)
106 #define INT_CMD12DRE		(1 << 26)
107 #define INT_CMD12RBE		(1 << 25)
108 #define INT_CMD12CRE		(1 << 24)
109 #define INT_DTRANE		(1 << 23)
110 #define INT_BUFRE		(1 << 22)
111 #define INT_BUFWEN		(1 << 21)
112 #define INT_BUFREN		(1 << 20)
113 #define INT_CCSRCV		(1 << 19)
114 #define INT_RBSYE		(1 << 17)
115 #define INT_CRSPE		(1 << 16)
116 #define INT_CMDVIO		(1 << 15)
117 #define INT_BUFVIO		(1 << 14)
118 #define INT_WDATERR		(1 << 11)
119 #define INT_RDATERR		(1 << 10)
120 #define INT_RIDXERR		(1 << 9)
121 #define INT_RSPERR		(1 << 8)
122 #define INT_CCSTO		(1 << 5)
123 #define INT_CRCSTO		(1 << 4)
124 #define INT_WDATTO		(1 << 3)
125 #define INT_RDATTO		(1 << 2)
126 #define INT_RBSYTO		(1 << 1)
127 #define INT_RSPTO		(1 << 0)
128 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
129 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
130 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
131 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
132 
133 #define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
134 				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
135 				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
136 
137 #define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
138 
139 /* CE_INT_MASK */
140 #define MASK_ALL		0x00000000
141 #define MASK_MCCSDE		(1 << 29)
142 #define MASK_MCMD12DRE		(1 << 26)
143 #define MASK_MCMD12RBE		(1 << 25)
144 #define MASK_MCMD12CRE		(1 << 24)
145 #define MASK_MDTRANE		(1 << 23)
146 #define MASK_MBUFRE		(1 << 22)
147 #define MASK_MBUFWEN		(1 << 21)
148 #define MASK_MBUFREN		(1 << 20)
149 #define MASK_MCCSRCV		(1 << 19)
150 #define MASK_MRBSYE		(1 << 17)
151 #define MASK_MCRSPE		(1 << 16)
152 #define MASK_MCMDVIO		(1 << 15)
153 #define MASK_MBUFVIO		(1 << 14)
154 #define MASK_MWDATERR		(1 << 11)
155 #define MASK_MRDATERR		(1 << 10)
156 #define MASK_MRIDXERR		(1 << 9)
157 #define MASK_MRSPERR		(1 << 8)
158 #define MASK_MCCSTO		(1 << 5)
159 #define MASK_MCRCSTO		(1 << 4)
160 #define MASK_MWDATTO		(1 << 3)
161 #define MASK_MRDATTO		(1 << 2)
162 #define MASK_MRBSYTO		(1 << 1)
163 #define MASK_MRSPTO		(1 << 0)
164 
165 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
166 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
167 				 MASK_MCRCSTO | MASK_MWDATTO | \
168 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
169 
170 #define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
171 				 MASK_MBUFREN | MASK_MBUFWEN |			\
172 				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
173 				 MASK_MCMD12RBE | MASK_MCMD12CRE)
174 
175 /* CE_HOST_STS1 */
176 #define STS1_CMDSEQ		(1 << 31)
177 
178 /* CE_HOST_STS2 */
179 #define STS2_CRCSTE		(1 << 31)
180 #define STS2_CRC16E		(1 << 30)
181 #define STS2_AC12CRCE		(1 << 29)
182 #define STS2_RSPCRC7E		(1 << 28)
183 #define STS2_CRCSTEBE		(1 << 27)
184 #define STS2_RDATEBE		(1 << 26)
185 #define STS2_AC12REBE		(1 << 25)
186 #define STS2_RSPEBE		(1 << 24)
187 #define STS2_AC12IDXE		(1 << 23)
188 #define STS2_RSPIDXE		(1 << 22)
189 #define STS2_CCSTO		(1 << 15)
190 #define STS2_RDATTO		(1 << 14)
191 #define STS2_DATBSYTO		(1 << 13)
192 #define STS2_CRCSTTO		(1 << 12)
193 #define STS2_AC12BSYTO		(1 << 11)
194 #define STS2_RSPBSYTO		(1 << 10)
195 #define STS2_AC12RSPTO		(1 << 9)
196 #define STS2_RSPTO		(1 << 8)
197 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
198 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
199 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
200 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
201 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
202 				 STS2_AC12RSPTO | STS2_RSPTO)
203 
204 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
205 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
206 #define CLKDEV_INIT		400000   /* 400 KHz */
207 
208 enum mmcif_state {
209 	STATE_IDLE,
210 	STATE_REQUEST,
211 	STATE_IOS,
212 	STATE_TIMEOUT,
213 };
214 
215 enum mmcif_wait_for {
216 	MMCIF_WAIT_FOR_REQUEST,
217 	MMCIF_WAIT_FOR_CMD,
218 	MMCIF_WAIT_FOR_MREAD,
219 	MMCIF_WAIT_FOR_MWRITE,
220 	MMCIF_WAIT_FOR_READ,
221 	MMCIF_WAIT_FOR_WRITE,
222 	MMCIF_WAIT_FOR_READ_END,
223 	MMCIF_WAIT_FOR_WRITE_END,
224 	MMCIF_WAIT_FOR_STOP,
225 };
226 
227 struct sh_mmcif_host {
228 	struct mmc_host *mmc;
229 	struct mmc_request *mrq;
230 	struct platform_device *pd;
231 	struct clk *hclk;
232 	unsigned int clk;
233 	int bus_width;
234 	unsigned char timing;
235 	bool sd_error;
236 	bool dying;
237 	long timeout;
238 	void __iomem *addr;
239 	u32 *pio_ptr;
240 	spinlock_t lock;		/* protect sh_mmcif_host::state */
241 	enum mmcif_state state;
242 	enum mmcif_wait_for wait_for;
243 	struct delayed_work timeout_work;
244 	size_t blocksize;
245 	int sg_idx;
246 	int sg_blkidx;
247 	bool power;
248 	bool card_present;
249 	bool ccs_enable;		/* Command Completion Signal support */
250 	bool clk_ctrl2_enable;
251 	struct mutex thread_lock;
252 
253 	/* DMA support */
254 	struct dma_chan		*chan_rx;
255 	struct dma_chan		*chan_tx;
256 	struct completion	dma_complete;
257 	bool			dma_active;
258 };
259 
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261 					unsigned int reg, u32 val)
262 {
263 	writel(val | readl(host->addr + reg), host->addr + reg);
264 }
265 
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267 					unsigned int reg, u32 val)
268 {
269 	writel(~val & readl(host->addr + reg), host->addr + reg);
270 }
271 
272 static void mmcif_dma_complete(void *arg)
273 {
274 	struct sh_mmcif_host *host = arg;
275 	struct mmc_request *mrq = host->mrq;
276 
277 	dev_dbg(&host->pd->dev, "Command completed\n");
278 
279 	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280 		 dev_name(&host->pd->dev)))
281 		return;
282 
283 	complete(&host->dma_complete);
284 }
285 
286 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
287 {
288 	struct mmc_data *data = host->mrq->data;
289 	struct scatterlist *sg = data->sg;
290 	struct dma_async_tx_descriptor *desc = NULL;
291 	struct dma_chan *chan = host->chan_rx;
292 	dma_cookie_t cookie = -EINVAL;
293 	int ret;
294 
295 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
296 			 DMA_FROM_DEVICE);
297 	if (ret > 0) {
298 		host->dma_active = true;
299 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
300 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
301 	}
302 
303 	if (desc) {
304 		desc->callback = mmcif_dma_complete;
305 		desc->callback_param = host;
306 		cookie = dmaengine_submit(desc);
307 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
308 		dma_async_issue_pending(chan);
309 	}
310 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
311 		__func__, data->sg_len, ret, cookie);
312 
313 	if (!desc) {
314 		/* DMA failed, fall back to PIO */
315 		if (ret >= 0)
316 			ret = -EIO;
317 		host->chan_rx = NULL;
318 		host->dma_active = false;
319 		dma_release_channel(chan);
320 		/* Free the Tx channel too */
321 		chan = host->chan_tx;
322 		if (chan) {
323 			host->chan_tx = NULL;
324 			dma_release_channel(chan);
325 		}
326 		dev_warn(&host->pd->dev,
327 			 "DMA failed: %d, falling back to PIO\n", ret);
328 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
329 	}
330 
331 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
332 		desc, cookie, data->sg_len);
333 }
334 
335 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
336 {
337 	struct mmc_data *data = host->mrq->data;
338 	struct scatterlist *sg = data->sg;
339 	struct dma_async_tx_descriptor *desc = NULL;
340 	struct dma_chan *chan = host->chan_tx;
341 	dma_cookie_t cookie = -EINVAL;
342 	int ret;
343 
344 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345 			 DMA_TO_DEVICE);
346 	if (ret > 0) {
347 		host->dma_active = true;
348 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
349 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
350 	}
351 
352 	if (desc) {
353 		desc->callback = mmcif_dma_complete;
354 		desc->callback_param = host;
355 		cookie = dmaengine_submit(desc);
356 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357 		dma_async_issue_pending(chan);
358 	}
359 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
360 		__func__, data->sg_len, ret, cookie);
361 
362 	if (!desc) {
363 		/* DMA failed, fall back to PIO */
364 		if (ret >= 0)
365 			ret = -EIO;
366 		host->chan_tx = NULL;
367 		host->dma_active = false;
368 		dma_release_channel(chan);
369 		/* Free the Rx channel too */
370 		chan = host->chan_rx;
371 		if (chan) {
372 			host->chan_rx = NULL;
373 			dma_release_channel(chan);
374 		}
375 		dev_warn(&host->pd->dev,
376 			 "DMA failed: %d, falling back to PIO\n", ret);
377 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
378 	}
379 
380 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
381 		desc, cookie);
382 }
383 
384 static struct dma_chan *
385 sh_mmcif_request_dma_one(struct sh_mmcif_host *host,
386 			 struct sh_mmcif_plat_data *pdata,
387 			 enum dma_transfer_direction direction)
388 {
389 	struct dma_slave_config cfg = { 0, };
390 	struct dma_chan *chan;
391 	unsigned int slave_id;
392 	struct resource *res;
393 	dma_cap_mask_t mask;
394 	int ret;
395 
396 	dma_cap_zero(mask);
397 	dma_cap_set(DMA_SLAVE, mask);
398 
399 	if (pdata)
400 		slave_id = direction == DMA_MEM_TO_DEV
401 			 ? pdata->slave_id_tx : pdata->slave_id_rx;
402 	else
403 		slave_id = 0;
404 
405 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
406 				(void *)(unsigned long)slave_id, &host->pd->dev,
407 				direction == DMA_MEM_TO_DEV ? "tx" : "rx");
408 
409 	dev_dbg(&host->pd->dev, "%s: %s: got channel %p\n", __func__,
410 		direction == DMA_MEM_TO_DEV ? "TX" : "RX", chan);
411 
412 	if (!chan)
413 		return NULL;
414 
415 	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
416 
417 	/* In the OF case the driver will get the slave ID from the DT */
418 	cfg.slave_id = slave_id;
419 	cfg.direction = direction;
420 
421 	if (direction == DMA_DEV_TO_MEM) {
422 		cfg.src_addr = res->start + MMCIF_CE_DATA;
423 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
424 	} else {
425 		cfg.dst_addr = res->start + MMCIF_CE_DATA;
426 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
427 	}
428 
429 	ret = dmaengine_slave_config(chan, &cfg);
430 	if (ret < 0) {
431 		dma_release_channel(chan);
432 		return NULL;
433 	}
434 
435 	return chan;
436 }
437 
438 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
439 				 struct sh_mmcif_plat_data *pdata)
440 {
441 	host->dma_active = false;
442 
443 	if (pdata) {
444 		if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
445 			return;
446 	} else if (!host->pd->dev.of_node) {
447 		return;
448 	}
449 
450 	/* We can only either use DMA for both Tx and Rx or not use it at all */
451 	host->chan_tx = sh_mmcif_request_dma_one(host, pdata, DMA_MEM_TO_DEV);
452 	if (!host->chan_tx)
453 		return;
454 
455 	host->chan_rx = sh_mmcif_request_dma_one(host, pdata, DMA_DEV_TO_MEM);
456 	if (!host->chan_rx) {
457 		dma_release_channel(host->chan_tx);
458 		host->chan_tx = NULL;
459 	}
460 }
461 
462 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
463 {
464 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
465 	/* Descriptors are freed automatically */
466 	if (host->chan_tx) {
467 		struct dma_chan *chan = host->chan_tx;
468 		host->chan_tx = NULL;
469 		dma_release_channel(chan);
470 	}
471 	if (host->chan_rx) {
472 		struct dma_chan *chan = host->chan_rx;
473 		host->chan_rx = NULL;
474 		dma_release_channel(chan);
475 	}
476 
477 	host->dma_active = false;
478 }
479 
480 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
481 {
482 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
483 	bool sup_pclk = p ? p->sup_pclk : false;
484 
485 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
486 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
487 
488 	if (!clk)
489 		return;
490 	if (sup_pclk && clk == host->clk)
491 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
492 	else
493 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
494 				((fls(DIV_ROUND_UP(host->clk,
495 						   clk) - 1) - 1) << 16));
496 
497 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
498 }
499 
500 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
501 {
502 	u32 tmp;
503 
504 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
505 
506 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
507 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
508 	if (host->ccs_enable)
509 		tmp |= SCCSTO_29;
510 	if (host->clk_ctrl2_enable)
511 		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
512 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
513 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
514 	/* byte swap on */
515 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
516 }
517 
518 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
519 {
520 	u32 state1, state2;
521 	int ret, timeout;
522 
523 	host->sd_error = false;
524 
525 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
526 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
527 	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
528 	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
529 
530 	if (state1 & STS1_CMDSEQ) {
531 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
532 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
533 		for (timeout = 10000000; timeout; timeout--) {
534 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
535 			      & STS1_CMDSEQ))
536 				break;
537 			mdelay(1);
538 		}
539 		if (!timeout) {
540 			dev_err(&host->pd->dev,
541 				"Forced end of command sequence timeout err\n");
542 			return -EIO;
543 		}
544 		sh_mmcif_sync_reset(host);
545 		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
546 		return -EIO;
547 	}
548 
549 	if (state2 & STS2_CRC_ERR) {
550 		dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
551 			host->state, host->wait_for);
552 		ret = -EIO;
553 	} else if (state2 & STS2_TIMEOUT_ERR) {
554 		dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
555 			host->state, host->wait_for);
556 		ret = -ETIMEDOUT;
557 	} else {
558 		dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
559 			host->state, host->wait_for);
560 		ret = -EIO;
561 	}
562 	return ret;
563 }
564 
565 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
566 {
567 	struct mmc_data *data = host->mrq->data;
568 
569 	host->sg_blkidx += host->blocksize;
570 
571 	/* data->sg->length must be a multiple of host->blocksize? */
572 	BUG_ON(host->sg_blkidx > data->sg->length);
573 
574 	if (host->sg_blkidx == data->sg->length) {
575 		host->sg_blkidx = 0;
576 		if (++host->sg_idx < data->sg_len)
577 			host->pio_ptr = sg_virt(++data->sg);
578 	} else {
579 		host->pio_ptr = p;
580 	}
581 
582 	return host->sg_idx != data->sg_len;
583 }
584 
585 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
586 				 struct mmc_request *mrq)
587 {
588 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
589 			   BLOCK_SIZE_MASK) + 3;
590 
591 	host->wait_for = MMCIF_WAIT_FOR_READ;
592 
593 	/* buf read enable */
594 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
595 }
596 
597 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
598 {
599 	struct mmc_data *data = host->mrq->data;
600 	u32 *p = sg_virt(data->sg);
601 	int i;
602 
603 	if (host->sd_error) {
604 		data->error = sh_mmcif_error_manage(host);
605 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
606 		return false;
607 	}
608 
609 	for (i = 0; i < host->blocksize / 4; i++)
610 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
611 
612 	/* buffer read end */
613 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
614 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
615 
616 	return true;
617 }
618 
619 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
620 				struct mmc_request *mrq)
621 {
622 	struct mmc_data *data = mrq->data;
623 
624 	if (!data->sg_len || !data->sg->length)
625 		return;
626 
627 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
628 		BLOCK_SIZE_MASK;
629 
630 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
631 	host->sg_idx = 0;
632 	host->sg_blkidx = 0;
633 	host->pio_ptr = sg_virt(data->sg);
634 
635 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
636 }
637 
638 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
639 {
640 	struct mmc_data *data = host->mrq->data;
641 	u32 *p = host->pio_ptr;
642 	int i;
643 
644 	if (host->sd_error) {
645 		data->error = sh_mmcif_error_manage(host);
646 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
647 		return false;
648 	}
649 
650 	BUG_ON(!data->sg->length);
651 
652 	for (i = 0; i < host->blocksize / 4; i++)
653 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
654 
655 	if (!sh_mmcif_next_block(host, p))
656 		return false;
657 
658 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
659 
660 	return true;
661 }
662 
663 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
664 					struct mmc_request *mrq)
665 {
666 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
667 			   BLOCK_SIZE_MASK) + 3;
668 
669 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
670 
671 	/* buf write enable */
672 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
673 }
674 
675 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
676 {
677 	struct mmc_data *data = host->mrq->data;
678 	u32 *p = sg_virt(data->sg);
679 	int i;
680 
681 	if (host->sd_error) {
682 		data->error = sh_mmcif_error_manage(host);
683 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
684 		return false;
685 	}
686 
687 	for (i = 0; i < host->blocksize / 4; i++)
688 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
689 
690 	/* buffer write end */
691 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
692 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
693 
694 	return true;
695 }
696 
697 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
698 				struct mmc_request *mrq)
699 {
700 	struct mmc_data *data = mrq->data;
701 
702 	if (!data->sg_len || !data->sg->length)
703 		return;
704 
705 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
706 		BLOCK_SIZE_MASK;
707 
708 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
709 	host->sg_idx = 0;
710 	host->sg_blkidx = 0;
711 	host->pio_ptr = sg_virt(data->sg);
712 
713 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
714 }
715 
716 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
717 {
718 	struct mmc_data *data = host->mrq->data;
719 	u32 *p = host->pio_ptr;
720 	int i;
721 
722 	if (host->sd_error) {
723 		data->error = sh_mmcif_error_manage(host);
724 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
725 		return false;
726 	}
727 
728 	BUG_ON(!data->sg->length);
729 
730 	for (i = 0; i < host->blocksize / 4; i++)
731 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
732 
733 	if (!sh_mmcif_next_block(host, p))
734 		return false;
735 
736 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
737 
738 	return true;
739 }
740 
741 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
742 						struct mmc_command *cmd)
743 {
744 	if (cmd->flags & MMC_RSP_136) {
745 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
746 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
747 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
748 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
749 	} else
750 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
751 }
752 
753 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
754 						struct mmc_command *cmd)
755 {
756 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
757 }
758 
759 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
760 			    struct mmc_request *mrq)
761 {
762 	struct mmc_data *data = mrq->data;
763 	struct mmc_command *cmd = mrq->cmd;
764 	u32 opc = cmd->opcode;
765 	u32 tmp = 0;
766 
767 	/* Response Type check */
768 	switch (mmc_resp_type(cmd)) {
769 	case MMC_RSP_NONE:
770 		tmp |= CMD_SET_RTYP_NO;
771 		break;
772 	case MMC_RSP_R1:
773 	case MMC_RSP_R1B:
774 	case MMC_RSP_R3:
775 		tmp |= CMD_SET_RTYP_6B;
776 		break;
777 	case MMC_RSP_R2:
778 		tmp |= CMD_SET_RTYP_17B;
779 		break;
780 	default:
781 		dev_err(&host->pd->dev, "Unsupported response type.\n");
782 		break;
783 	}
784 	switch (opc) {
785 	/* RBSY */
786 	case MMC_SLEEP_AWAKE:
787 	case MMC_SWITCH:
788 	case MMC_STOP_TRANSMISSION:
789 	case MMC_SET_WRITE_PROT:
790 	case MMC_CLR_WRITE_PROT:
791 	case MMC_ERASE:
792 		tmp |= CMD_SET_RBSY;
793 		break;
794 	}
795 	/* WDAT / DATW */
796 	if (data) {
797 		tmp |= CMD_SET_WDAT;
798 		switch (host->bus_width) {
799 		case MMC_BUS_WIDTH_1:
800 			tmp |= CMD_SET_DATW_1;
801 			break;
802 		case MMC_BUS_WIDTH_4:
803 			tmp |= CMD_SET_DATW_4;
804 			break;
805 		case MMC_BUS_WIDTH_8:
806 			tmp |= CMD_SET_DATW_8;
807 			break;
808 		default:
809 			dev_err(&host->pd->dev, "Unsupported bus width.\n");
810 			break;
811 		}
812 		switch (host->timing) {
813 		case MMC_TIMING_MMC_DDR52:
814 			/*
815 			 * MMC core will only set this timing, if the host
816 			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
817 			 * capability. MMCIF implementations with this
818 			 * capability, e.g. sh73a0, will have to set it
819 			 * in their platform data.
820 			 */
821 			tmp |= CMD_SET_DARS;
822 			break;
823 		}
824 	}
825 	/* DWEN */
826 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
827 		tmp |= CMD_SET_DWEN;
828 	/* CMLTE/CMD12EN */
829 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
830 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
831 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
832 				data->blocks << 16);
833 	}
834 	/* RIDXC[1:0] check bits */
835 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
836 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
837 		tmp |= CMD_SET_RIDXC_BITS;
838 	/* RCRC7C[1:0] check bits */
839 	if (opc == MMC_SEND_OP_COND)
840 		tmp |= CMD_SET_CRC7C_BITS;
841 	/* RCRC7C[1:0] internal CRC7 */
842 	if (opc == MMC_ALL_SEND_CID ||
843 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
844 		tmp |= CMD_SET_CRC7C_INTERNAL;
845 
846 	return (opc << 24) | tmp;
847 }
848 
849 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
850 			       struct mmc_request *mrq, u32 opc)
851 {
852 	switch (opc) {
853 	case MMC_READ_MULTIPLE_BLOCK:
854 		sh_mmcif_multi_read(host, mrq);
855 		return 0;
856 	case MMC_WRITE_MULTIPLE_BLOCK:
857 		sh_mmcif_multi_write(host, mrq);
858 		return 0;
859 	case MMC_WRITE_BLOCK:
860 		sh_mmcif_single_write(host, mrq);
861 		return 0;
862 	case MMC_READ_SINGLE_BLOCK:
863 	case MMC_SEND_EXT_CSD:
864 		sh_mmcif_single_read(host, mrq);
865 		return 0;
866 	default:
867 		dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
868 		return -EINVAL;
869 	}
870 }
871 
872 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
873 			       struct mmc_request *mrq)
874 {
875 	struct mmc_command *cmd = mrq->cmd;
876 	u32 opc = cmd->opcode;
877 	u32 mask;
878 	unsigned long flags;
879 
880 	switch (opc) {
881 	/* response busy check */
882 	case MMC_SLEEP_AWAKE:
883 	case MMC_SWITCH:
884 	case MMC_STOP_TRANSMISSION:
885 	case MMC_SET_WRITE_PROT:
886 	case MMC_CLR_WRITE_PROT:
887 	case MMC_ERASE:
888 		mask = MASK_START_CMD | MASK_MRBSYE;
889 		break;
890 	default:
891 		mask = MASK_START_CMD | MASK_MCRSPE;
892 		break;
893 	}
894 
895 	if (host->ccs_enable)
896 		mask |= MASK_MCCSTO;
897 
898 	if (mrq->data) {
899 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
900 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
901 				mrq->data->blksz);
902 	}
903 	opc = sh_mmcif_set_cmd(host, mrq);
904 
905 	if (host->ccs_enable)
906 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
907 	else
908 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
909 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
910 	/* set arg */
911 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
912 	/* set cmd */
913 	spin_lock_irqsave(&host->lock, flags);
914 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
915 
916 	host->wait_for = MMCIF_WAIT_FOR_CMD;
917 	schedule_delayed_work(&host->timeout_work, host->timeout);
918 	spin_unlock_irqrestore(&host->lock, flags);
919 }
920 
921 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
922 			      struct mmc_request *mrq)
923 {
924 	switch (mrq->cmd->opcode) {
925 	case MMC_READ_MULTIPLE_BLOCK:
926 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
927 		break;
928 	case MMC_WRITE_MULTIPLE_BLOCK:
929 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
930 		break;
931 	default:
932 		dev_err(&host->pd->dev, "unsupported stop cmd\n");
933 		mrq->stop->error = sh_mmcif_error_manage(host);
934 		return;
935 	}
936 
937 	host->wait_for = MMCIF_WAIT_FOR_STOP;
938 }
939 
940 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
941 {
942 	struct sh_mmcif_host *host = mmc_priv(mmc);
943 	unsigned long flags;
944 
945 	spin_lock_irqsave(&host->lock, flags);
946 	if (host->state != STATE_IDLE) {
947 		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
948 		spin_unlock_irqrestore(&host->lock, flags);
949 		mrq->cmd->error = -EAGAIN;
950 		mmc_request_done(mmc, mrq);
951 		return;
952 	}
953 
954 	host->state = STATE_REQUEST;
955 	spin_unlock_irqrestore(&host->lock, flags);
956 
957 	switch (mrq->cmd->opcode) {
958 	/* MMCIF does not support SD/SDIO command */
959 	case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
960 	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
961 		if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
962 			break;
963 	case MMC_APP_CMD:
964 	case SD_IO_RW_DIRECT:
965 		host->state = STATE_IDLE;
966 		mrq->cmd->error = -ETIMEDOUT;
967 		mmc_request_done(mmc, mrq);
968 		return;
969 	default:
970 		break;
971 	}
972 
973 	host->mrq = mrq;
974 
975 	sh_mmcif_start_cmd(host, mrq);
976 }
977 
978 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
979 {
980 	int ret = clk_prepare_enable(host->hclk);
981 
982 	if (!ret) {
983 		host->clk = clk_get_rate(host->hclk);
984 		host->mmc->f_max = host->clk / 2;
985 		host->mmc->f_min = host->clk / 512;
986 	}
987 
988 	return ret;
989 }
990 
991 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
992 {
993 	struct mmc_host *mmc = host->mmc;
994 
995 	if (!IS_ERR(mmc->supply.vmmc))
996 		/* Errors ignored... */
997 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
998 				      ios->power_mode ? ios->vdd : 0);
999 }
1000 
1001 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1002 {
1003 	struct sh_mmcif_host *host = mmc_priv(mmc);
1004 	unsigned long flags;
1005 
1006 	spin_lock_irqsave(&host->lock, flags);
1007 	if (host->state != STATE_IDLE) {
1008 		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
1009 		spin_unlock_irqrestore(&host->lock, flags);
1010 		return;
1011 	}
1012 
1013 	host->state = STATE_IOS;
1014 	spin_unlock_irqrestore(&host->lock, flags);
1015 
1016 	if (ios->power_mode == MMC_POWER_UP) {
1017 		if (!host->card_present) {
1018 			/* See if we also get DMA */
1019 			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
1020 			host->card_present = true;
1021 		}
1022 		sh_mmcif_set_power(host, ios);
1023 	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1024 		/* clock stop */
1025 		sh_mmcif_clock_control(host, 0);
1026 		if (ios->power_mode == MMC_POWER_OFF) {
1027 			if (host->card_present) {
1028 				sh_mmcif_release_dma(host);
1029 				host->card_present = false;
1030 			}
1031 		}
1032 		if (host->power) {
1033 			pm_runtime_put_sync(&host->pd->dev);
1034 			clk_disable_unprepare(host->hclk);
1035 			host->power = false;
1036 			if (ios->power_mode == MMC_POWER_OFF)
1037 				sh_mmcif_set_power(host, ios);
1038 		}
1039 		host->state = STATE_IDLE;
1040 		return;
1041 	}
1042 
1043 	if (ios->clock) {
1044 		if (!host->power) {
1045 			sh_mmcif_clk_update(host);
1046 			pm_runtime_get_sync(&host->pd->dev);
1047 			host->power = true;
1048 			sh_mmcif_sync_reset(host);
1049 		}
1050 		sh_mmcif_clock_control(host, ios->clock);
1051 	}
1052 
1053 	host->timing = ios->timing;
1054 	host->bus_width = ios->bus_width;
1055 	host->state = STATE_IDLE;
1056 }
1057 
1058 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1059 {
1060 	struct sh_mmcif_host *host = mmc_priv(mmc);
1061 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1062 	int ret = mmc_gpio_get_cd(mmc);
1063 
1064 	if (ret >= 0)
1065 		return ret;
1066 
1067 	if (!p || !p->get_cd)
1068 		return -ENOSYS;
1069 	else
1070 		return p->get_cd(host->pd);
1071 }
1072 
1073 static struct mmc_host_ops sh_mmcif_ops = {
1074 	.request	= sh_mmcif_request,
1075 	.set_ios	= sh_mmcif_set_ios,
1076 	.get_cd		= sh_mmcif_get_cd,
1077 };
1078 
1079 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1080 {
1081 	struct mmc_command *cmd = host->mrq->cmd;
1082 	struct mmc_data *data = host->mrq->data;
1083 	long time;
1084 
1085 	if (host->sd_error) {
1086 		switch (cmd->opcode) {
1087 		case MMC_ALL_SEND_CID:
1088 		case MMC_SELECT_CARD:
1089 		case MMC_APP_CMD:
1090 			cmd->error = -ETIMEDOUT;
1091 			break;
1092 		default:
1093 			cmd->error = sh_mmcif_error_manage(host);
1094 			break;
1095 		}
1096 		dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1097 			cmd->opcode, cmd->error);
1098 		host->sd_error = false;
1099 		return false;
1100 	}
1101 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1102 		cmd->error = 0;
1103 		return false;
1104 	}
1105 
1106 	sh_mmcif_get_response(host, cmd);
1107 
1108 	if (!data)
1109 		return false;
1110 
1111 	/*
1112 	 * Completion can be signalled from DMA callback and error, so, have to
1113 	 * reset here, before setting .dma_active
1114 	 */
1115 	init_completion(&host->dma_complete);
1116 
1117 	if (data->flags & MMC_DATA_READ) {
1118 		if (host->chan_rx)
1119 			sh_mmcif_start_dma_rx(host);
1120 	} else {
1121 		if (host->chan_tx)
1122 			sh_mmcif_start_dma_tx(host);
1123 	}
1124 
1125 	if (!host->dma_active) {
1126 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1127 		return !data->error;
1128 	}
1129 
1130 	/* Running in the IRQ thread, can sleep */
1131 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1132 							 host->timeout);
1133 
1134 	if (data->flags & MMC_DATA_READ)
1135 		dma_unmap_sg(host->chan_rx->device->dev,
1136 			     data->sg, data->sg_len,
1137 			     DMA_FROM_DEVICE);
1138 	else
1139 		dma_unmap_sg(host->chan_tx->device->dev,
1140 			     data->sg, data->sg_len,
1141 			     DMA_TO_DEVICE);
1142 
1143 	if (host->sd_error) {
1144 		dev_err(host->mmc->parent,
1145 			"Error IRQ while waiting for DMA completion!\n");
1146 		/* Woken up by an error IRQ: abort DMA */
1147 		data->error = sh_mmcif_error_manage(host);
1148 	} else if (!time) {
1149 		dev_err(host->mmc->parent, "DMA timeout!\n");
1150 		data->error = -ETIMEDOUT;
1151 	} else if (time < 0) {
1152 		dev_err(host->mmc->parent,
1153 			"wait_for_completion_...() error %ld!\n", time);
1154 		data->error = time;
1155 	}
1156 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1157 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1158 	host->dma_active = false;
1159 
1160 	if (data->error) {
1161 		data->bytes_xfered = 0;
1162 		/* Abort DMA */
1163 		if (data->flags & MMC_DATA_READ)
1164 			dmaengine_terminate_all(host->chan_rx);
1165 		else
1166 			dmaengine_terminate_all(host->chan_tx);
1167 	}
1168 
1169 	return false;
1170 }
1171 
1172 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1173 {
1174 	struct sh_mmcif_host *host = dev_id;
1175 	struct mmc_request *mrq;
1176 	bool wait = false;
1177 	unsigned long flags;
1178 	int wait_work;
1179 
1180 	spin_lock_irqsave(&host->lock, flags);
1181 	wait_work = host->wait_for;
1182 	spin_unlock_irqrestore(&host->lock, flags);
1183 
1184 	cancel_delayed_work_sync(&host->timeout_work);
1185 
1186 	mutex_lock(&host->thread_lock);
1187 
1188 	mrq = host->mrq;
1189 	if (!mrq) {
1190 		dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1191 			host->state, host->wait_for);
1192 		mutex_unlock(&host->thread_lock);
1193 		return IRQ_HANDLED;
1194 	}
1195 
1196 	/*
1197 	 * All handlers return true, if processing continues, and false, if the
1198 	 * request has to be completed - successfully or not
1199 	 */
1200 	switch (wait_work) {
1201 	case MMCIF_WAIT_FOR_REQUEST:
1202 		/* We're too late, the timeout has already kicked in */
1203 		mutex_unlock(&host->thread_lock);
1204 		return IRQ_HANDLED;
1205 	case MMCIF_WAIT_FOR_CMD:
1206 		/* Wait for data? */
1207 		wait = sh_mmcif_end_cmd(host);
1208 		break;
1209 	case MMCIF_WAIT_FOR_MREAD:
1210 		/* Wait for more data? */
1211 		wait = sh_mmcif_mread_block(host);
1212 		break;
1213 	case MMCIF_WAIT_FOR_READ:
1214 		/* Wait for data end? */
1215 		wait = sh_mmcif_read_block(host);
1216 		break;
1217 	case MMCIF_WAIT_FOR_MWRITE:
1218 		/* Wait data to write? */
1219 		wait = sh_mmcif_mwrite_block(host);
1220 		break;
1221 	case MMCIF_WAIT_FOR_WRITE:
1222 		/* Wait for data end? */
1223 		wait = sh_mmcif_write_block(host);
1224 		break;
1225 	case MMCIF_WAIT_FOR_STOP:
1226 		if (host->sd_error) {
1227 			mrq->stop->error = sh_mmcif_error_manage(host);
1228 			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1229 			break;
1230 		}
1231 		sh_mmcif_get_cmd12response(host, mrq->stop);
1232 		mrq->stop->error = 0;
1233 		break;
1234 	case MMCIF_WAIT_FOR_READ_END:
1235 	case MMCIF_WAIT_FOR_WRITE_END:
1236 		if (host->sd_error) {
1237 			mrq->data->error = sh_mmcif_error_manage(host);
1238 			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1239 		}
1240 		break;
1241 	default:
1242 		BUG();
1243 	}
1244 
1245 	if (wait) {
1246 		schedule_delayed_work(&host->timeout_work, host->timeout);
1247 		/* Wait for more data */
1248 		mutex_unlock(&host->thread_lock);
1249 		return IRQ_HANDLED;
1250 	}
1251 
1252 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1253 		struct mmc_data *data = mrq->data;
1254 		if (!mrq->cmd->error && data && !data->error)
1255 			data->bytes_xfered =
1256 				data->blocks * data->blksz;
1257 
1258 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1259 			sh_mmcif_stop_cmd(host, mrq);
1260 			if (!mrq->stop->error) {
1261 				schedule_delayed_work(&host->timeout_work, host->timeout);
1262 				mutex_unlock(&host->thread_lock);
1263 				return IRQ_HANDLED;
1264 			}
1265 		}
1266 	}
1267 
1268 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1269 	host->state = STATE_IDLE;
1270 	host->mrq = NULL;
1271 	mmc_request_done(host->mmc, mrq);
1272 
1273 	mutex_unlock(&host->thread_lock);
1274 
1275 	return IRQ_HANDLED;
1276 }
1277 
1278 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1279 {
1280 	struct sh_mmcif_host *host = dev_id;
1281 	u32 state, mask;
1282 
1283 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1284 	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1285 	if (host->ccs_enable)
1286 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1287 	else
1288 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1289 	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1290 
1291 	if (state & ~MASK_CLEAN)
1292 		dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1293 			state);
1294 
1295 	if (state & INT_ERR_STS || state & ~INT_ALL) {
1296 		host->sd_error = true;
1297 		dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1298 	}
1299 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1300 		if (!host->mrq)
1301 			dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1302 		if (!host->dma_active)
1303 			return IRQ_WAKE_THREAD;
1304 		else if (host->sd_error)
1305 			mmcif_dma_complete(host);
1306 	} else {
1307 		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1308 	}
1309 
1310 	return IRQ_HANDLED;
1311 }
1312 
1313 static void mmcif_timeout_work(struct work_struct *work)
1314 {
1315 	struct delayed_work *d = container_of(work, struct delayed_work, work);
1316 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1317 	struct mmc_request *mrq = host->mrq;
1318 	unsigned long flags;
1319 
1320 	if (host->dying)
1321 		/* Don't run after mmc_remove_host() */
1322 		return;
1323 
1324 	spin_lock_irqsave(&host->lock, flags);
1325 	if (host->state == STATE_IDLE) {
1326 		spin_unlock_irqrestore(&host->lock, flags);
1327 		return;
1328 	}
1329 
1330 	dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1331 		host->wait_for, mrq->cmd->opcode);
1332 
1333 	host->state = STATE_TIMEOUT;
1334 	spin_unlock_irqrestore(&host->lock, flags);
1335 
1336 	/*
1337 	 * Handle races with cancel_delayed_work(), unless
1338 	 * cancel_delayed_work_sync() is used
1339 	 */
1340 	switch (host->wait_for) {
1341 	case MMCIF_WAIT_FOR_CMD:
1342 		mrq->cmd->error = sh_mmcif_error_manage(host);
1343 		break;
1344 	case MMCIF_WAIT_FOR_STOP:
1345 		mrq->stop->error = sh_mmcif_error_manage(host);
1346 		break;
1347 	case MMCIF_WAIT_FOR_MREAD:
1348 	case MMCIF_WAIT_FOR_MWRITE:
1349 	case MMCIF_WAIT_FOR_READ:
1350 	case MMCIF_WAIT_FOR_WRITE:
1351 	case MMCIF_WAIT_FOR_READ_END:
1352 	case MMCIF_WAIT_FOR_WRITE_END:
1353 		mrq->data->error = sh_mmcif_error_manage(host);
1354 		break;
1355 	default:
1356 		BUG();
1357 	}
1358 
1359 	host->state = STATE_IDLE;
1360 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1361 	host->mrq = NULL;
1362 	mmc_request_done(host->mmc, mrq);
1363 }
1364 
1365 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1366 {
1367 	struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1368 	struct mmc_host *mmc = host->mmc;
1369 
1370 	mmc_regulator_get_supply(mmc);
1371 
1372 	if (!pd)
1373 		return;
1374 
1375 	if (!mmc->ocr_avail)
1376 		mmc->ocr_avail = pd->ocr;
1377 	else if (pd->ocr)
1378 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1379 }
1380 
1381 static int sh_mmcif_probe(struct platform_device *pdev)
1382 {
1383 	int ret = 0, irq[2];
1384 	struct mmc_host *mmc;
1385 	struct sh_mmcif_host *host;
1386 	struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1387 	struct resource *res;
1388 	void __iomem *reg;
1389 	const char *name;
1390 
1391 	irq[0] = platform_get_irq(pdev, 0);
1392 	irq[1] = platform_get_irq(pdev, 1);
1393 	if (irq[0] < 0) {
1394 		dev_err(&pdev->dev, "Get irq error\n");
1395 		return -ENXIO;
1396 	}
1397 
1398 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1399 	reg = devm_ioremap_resource(&pdev->dev, res);
1400 	if (IS_ERR(reg))
1401 		return PTR_ERR(reg);
1402 
1403 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1404 	if (!mmc)
1405 		return -ENOMEM;
1406 
1407 	ret = mmc_of_parse(mmc);
1408 	if (ret < 0)
1409 		goto err_host;
1410 
1411 	host		= mmc_priv(mmc);
1412 	host->mmc	= mmc;
1413 	host->addr	= reg;
1414 	host->timeout	= msecs_to_jiffies(1000);
1415 	host->ccs_enable = !pd || !pd->ccs_unsupported;
1416 	host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1417 
1418 	host->pd = pdev;
1419 
1420 	spin_lock_init(&host->lock);
1421 
1422 	mmc->ops = &sh_mmcif_ops;
1423 	sh_mmcif_init_ocr(host);
1424 
1425 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1426 	if (pd && pd->caps)
1427 		mmc->caps |= pd->caps;
1428 	mmc->max_segs = 32;
1429 	mmc->max_blk_size = 512;
1430 	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1431 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1432 	mmc->max_seg_size = mmc->max_req_size;
1433 
1434 	platform_set_drvdata(pdev, host);
1435 
1436 	pm_runtime_enable(&pdev->dev);
1437 	host->power = false;
1438 
1439 	host->hclk = devm_clk_get(&pdev->dev, NULL);
1440 	if (IS_ERR(host->hclk)) {
1441 		ret = PTR_ERR(host->hclk);
1442 		dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1443 		goto err_pm;
1444 	}
1445 	ret = sh_mmcif_clk_update(host);
1446 	if (ret < 0)
1447 		goto err_pm;
1448 
1449 	ret = pm_runtime_resume(&pdev->dev);
1450 	if (ret < 0)
1451 		goto err_clk;
1452 
1453 	INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1454 
1455 	sh_mmcif_sync_reset(host);
1456 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1457 
1458 	name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1459 	ret = devm_request_threaded_irq(&pdev->dev, irq[0], sh_mmcif_intr,
1460 					sh_mmcif_irqt, 0, name, host);
1461 	if (ret) {
1462 		dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1463 		goto err_clk;
1464 	}
1465 	if (irq[1] >= 0) {
1466 		ret = devm_request_threaded_irq(&pdev->dev, irq[1],
1467 						sh_mmcif_intr, sh_mmcif_irqt,
1468 						0, "sh_mmc:int", host);
1469 		if (ret) {
1470 			dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1471 			goto err_clk;
1472 		}
1473 	}
1474 
1475 	if (pd && pd->use_cd_gpio) {
1476 		ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1477 		if (ret < 0)
1478 			goto err_clk;
1479 	}
1480 
1481 	mutex_init(&host->thread_lock);
1482 
1483 	ret = mmc_add_host(mmc);
1484 	if (ret < 0)
1485 		goto err_clk;
1486 
1487 	dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1488 
1489 	dev_info(&pdev->dev, "Chip version 0x%04x, clock rate %luMHz\n",
1490 		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1491 		 clk_get_rate(host->hclk) / 1000000UL);
1492 
1493 	clk_disable_unprepare(host->hclk);
1494 	return ret;
1495 
1496 err_clk:
1497 	clk_disable_unprepare(host->hclk);
1498 err_pm:
1499 	pm_runtime_disable(&pdev->dev);
1500 err_host:
1501 	mmc_free_host(mmc);
1502 	return ret;
1503 }
1504 
1505 static int sh_mmcif_remove(struct platform_device *pdev)
1506 {
1507 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1508 
1509 	host->dying = true;
1510 	clk_prepare_enable(host->hclk);
1511 	pm_runtime_get_sync(&pdev->dev);
1512 
1513 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1514 
1515 	mmc_remove_host(host->mmc);
1516 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1517 
1518 	/*
1519 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1520 	 * mmc_remove_host() call above. But swapping order doesn't help either
1521 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1522 	 */
1523 	cancel_delayed_work_sync(&host->timeout_work);
1524 
1525 	clk_disable_unprepare(host->hclk);
1526 	mmc_free_host(host->mmc);
1527 	pm_runtime_put_sync(&pdev->dev);
1528 	pm_runtime_disable(&pdev->dev);
1529 
1530 	return 0;
1531 }
1532 
1533 #ifdef CONFIG_PM_SLEEP
1534 static int sh_mmcif_suspend(struct device *dev)
1535 {
1536 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1537 
1538 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1539 
1540 	return 0;
1541 }
1542 
1543 static int sh_mmcif_resume(struct device *dev)
1544 {
1545 	return 0;
1546 }
1547 #endif
1548 
1549 static const struct of_device_id mmcif_of_match[] = {
1550 	{ .compatible = "renesas,sh-mmcif" },
1551 	{ }
1552 };
1553 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1554 
1555 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1556 	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1557 };
1558 
1559 static struct platform_driver sh_mmcif_driver = {
1560 	.probe		= sh_mmcif_probe,
1561 	.remove		= sh_mmcif_remove,
1562 	.driver		= {
1563 		.name	= DRIVER_NAME,
1564 		.pm	= &sh_mmcif_dev_pm_ops,
1565 		.of_match_table = mmcif_of_match,
1566 	},
1567 };
1568 
1569 module_platform_driver(sh_mmcif_driver);
1570 
1571 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1572 MODULE_LICENSE("GPL");
1573 MODULE_ALIAS("platform:" DRIVER_NAME);
1574 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1575