xref: /openbmc/linux/drivers/mmc/host/sh_mmcif.c (revision d2999e1b)
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18 
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44 
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/pagemap.h>
61 #include <linux/platform_device.h>
62 #include <linux/pm_qos.h>
63 #include <linux/pm_runtime.h>
64 #include <linux/sh_dma.h>
65 #include <linux/spinlock.h>
66 #include <linux/module.h>
67 
68 #define DRIVER_NAME	"sh_mmcif"
69 #define DRIVER_VERSION	"2010-04-28"
70 
71 /* CE_CMD_SET */
72 #define CMD_MASK		0x3f000000
73 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
74 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
75 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
76 #define CMD_SET_RBSY		(1 << 21) /* R1b */
77 #define CMD_SET_CCSEN		(1 << 20)
78 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
79 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
80 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
81 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
82 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
83 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
84 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
85 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
86 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
87 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
88 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
89 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
90 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
91 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
92 #define CMD_SET_CCSH		(1 << 5)
93 #define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
94 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
95 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
96 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
97 
98 /* CE_CMD_CTRL */
99 #define CMD_CTRL_BREAK		(1 << 0)
100 
101 /* CE_BLOCK_SET */
102 #define BLOCK_SIZE_MASK		0x0000ffff
103 
104 /* CE_INT */
105 #define INT_CCSDE		(1 << 29)
106 #define INT_CMD12DRE		(1 << 26)
107 #define INT_CMD12RBE		(1 << 25)
108 #define INT_CMD12CRE		(1 << 24)
109 #define INT_DTRANE		(1 << 23)
110 #define INT_BUFRE		(1 << 22)
111 #define INT_BUFWEN		(1 << 21)
112 #define INT_BUFREN		(1 << 20)
113 #define INT_CCSRCV		(1 << 19)
114 #define INT_RBSYE		(1 << 17)
115 #define INT_CRSPE		(1 << 16)
116 #define INT_CMDVIO		(1 << 15)
117 #define INT_BUFVIO		(1 << 14)
118 #define INT_WDATERR		(1 << 11)
119 #define INT_RDATERR		(1 << 10)
120 #define INT_RIDXERR		(1 << 9)
121 #define INT_RSPERR		(1 << 8)
122 #define INT_CCSTO		(1 << 5)
123 #define INT_CRCSTO		(1 << 4)
124 #define INT_WDATTO		(1 << 3)
125 #define INT_RDATTO		(1 << 2)
126 #define INT_RBSYTO		(1 << 1)
127 #define INT_RSPTO		(1 << 0)
128 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
129 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
130 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
131 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
132 
133 #define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
134 				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
135 				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
136 
137 #define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
138 
139 /* CE_INT_MASK */
140 #define MASK_ALL		0x00000000
141 #define MASK_MCCSDE		(1 << 29)
142 #define MASK_MCMD12DRE		(1 << 26)
143 #define MASK_MCMD12RBE		(1 << 25)
144 #define MASK_MCMD12CRE		(1 << 24)
145 #define MASK_MDTRANE		(1 << 23)
146 #define MASK_MBUFRE		(1 << 22)
147 #define MASK_MBUFWEN		(1 << 21)
148 #define MASK_MBUFREN		(1 << 20)
149 #define MASK_MCCSRCV		(1 << 19)
150 #define MASK_MRBSYE		(1 << 17)
151 #define MASK_MCRSPE		(1 << 16)
152 #define MASK_MCMDVIO		(1 << 15)
153 #define MASK_MBUFVIO		(1 << 14)
154 #define MASK_MWDATERR		(1 << 11)
155 #define MASK_MRDATERR		(1 << 10)
156 #define MASK_MRIDXERR		(1 << 9)
157 #define MASK_MRSPERR		(1 << 8)
158 #define MASK_MCCSTO		(1 << 5)
159 #define MASK_MCRCSTO		(1 << 4)
160 #define MASK_MWDATTO		(1 << 3)
161 #define MASK_MRDATTO		(1 << 2)
162 #define MASK_MRBSYTO		(1 << 1)
163 #define MASK_MRSPTO		(1 << 0)
164 
165 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
166 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
167 				 MASK_MCRCSTO | MASK_MWDATTO | \
168 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
169 
170 #define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
171 				 MASK_MBUFREN | MASK_MBUFWEN |			\
172 				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
173 				 MASK_MCMD12RBE | MASK_MCMD12CRE)
174 
175 /* CE_HOST_STS1 */
176 #define STS1_CMDSEQ		(1 << 31)
177 
178 /* CE_HOST_STS2 */
179 #define STS2_CRCSTE		(1 << 31)
180 #define STS2_CRC16E		(1 << 30)
181 #define STS2_AC12CRCE		(1 << 29)
182 #define STS2_RSPCRC7E		(1 << 28)
183 #define STS2_CRCSTEBE		(1 << 27)
184 #define STS2_RDATEBE		(1 << 26)
185 #define STS2_AC12REBE		(1 << 25)
186 #define STS2_RSPEBE		(1 << 24)
187 #define STS2_AC12IDXE		(1 << 23)
188 #define STS2_RSPIDXE		(1 << 22)
189 #define STS2_CCSTO		(1 << 15)
190 #define STS2_RDATTO		(1 << 14)
191 #define STS2_DATBSYTO		(1 << 13)
192 #define STS2_CRCSTTO		(1 << 12)
193 #define STS2_AC12BSYTO		(1 << 11)
194 #define STS2_RSPBSYTO		(1 << 10)
195 #define STS2_AC12RSPTO		(1 << 9)
196 #define STS2_RSPTO		(1 << 8)
197 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
198 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
199 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
200 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
201 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
202 				 STS2_AC12RSPTO | STS2_RSPTO)
203 
204 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
205 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
206 #define CLKDEV_INIT		400000   /* 400 KHz */
207 
208 enum mmcif_state {
209 	STATE_IDLE,
210 	STATE_REQUEST,
211 	STATE_IOS,
212 	STATE_TIMEOUT,
213 };
214 
215 enum mmcif_wait_for {
216 	MMCIF_WAIT_FOR_REQUEST,
217 	MMCIF_WAIT_FOR_CMD,
218 	MMCIF_WAIT_FOR_MREAD,
219 	MMCIF_WAIT_FOR_MWRITE,
220 	MMCIF_WAIT_FOR_READ,
221 	MMCIF_WAIT_FOR_WRITE,
222 	MMCIF_WAIT_FOR_READ_END,
223 	MMCIF_WAIT_FOR_WRITE_END,
224 	MMCIF_WAIT_FOR_STOP,
225 };
226 
227 struct sh_mmcif_host {
228 	struct mmc_host *mmc;
229 	struct mmc_request *mrq;
230 	struct platform_device *pd;
231 	struct clk *hclk;
232 	unsigned int clk;
233 	int bus_width;
234 	unsigned char timing;
235 	bool sd_error;
236 	bool dying;
237 	long timeout;
238 	void __iomem *addr;
239 	u32 *pio_ptr;
240 	spinlock_t lock;		/* protect sh_mmcif_host::state */
241 	enum mmcif_state state;
242 	enum mmcif_wait_for wait_for;
243 	struct delayed_work timeout_work;
244 	size_t blocksize;
245 	int sg_idx;
246 	int sg_blkidx;
247 	bool power;
248 	bool card_present;
249 	bool ccs_enable;		/* Command Completion Signal support */
250 	bool clk_ctrl2_enable;
251 	struct mutex thread_lock;
252 
253 	/* DMA support */
254 	struct dma_chan		*chan_rx;
255 	struct dma_chan		*chan_tx;
256 	struct completion	dma_complete;
257 	bool			dma_active;
258 };
259 
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261 					unsigned int reg, u32 val)
262 {
263 	writel(val | readl(host->addr + reg), host->addr + reg);
264 }
265 
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267 					unsigned int reg, u32 val)
268 {
269 	writel(~val & readl(host->addr + reg), host->addr + reg);
270 }
271 
272 static void mmcif_dma_complete(void *arg)
273 {
274 	struct sh_mmcif_host *host = arg;
275 	struct mmc_request *mrq = host->mrq;
276 
277 	dev_dbg(&host->pd->dev, "Command completed\n");
278 
279 	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280 		 dev_name(&host->pd->dev)))
281 		return;
282 
283 	complete(&host->dma_complete);
284 }
285 
286 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
287 {
288 	struct mmc_data *data = host->mrq->data;
289 	struct scatterlist *sg = data->sg;
290 	struct dma_async_tx_descriptor *desc = NULL;
291 	struct dma_chan *chan = host->chan_rx;
292 	dma_cookie_t cookie = -EINVAL;
293 	int ret;
294 
295 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
296 			 DMA_FROM_DEVICE);
297 	if (ret > 0) {
298 		host->dma_active = true;
299 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
300 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
301 	}
302 
303 	if (desc) {
304 		desc->callback = mmcif_dma_complete;
305 		desc->callback_param = host;
306 		cookie = dmaengine_submit(desc);
307 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
308 		dma_async_issue_pending(chan);
309 	}
310 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
311 		__func__, data->sg_len, ret, cookie);
312 
313 	if (!desc) {
314 		/* DMA failed, fall back to PIO */
315 		if (ret >= 0)
316 			ret = -EIO;
317 		host->chan_rx = NULL;
318 		host->dma_active = false;
319 		dma_release_channel(chan);
320 		/* Free the Tx channel too */
321 		chan = host->chan_tx;
322 		if (chan) {
323 			host->chan_tx = NULL;
324 			dma_release_channel(chan);
325 		}
326 		dev_warn(&host->pd->dev,
327 			 "DMA failed: %d, falling back to PIO\n", ret);
328 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
329 	}
330 
331 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
332 		desc, cookie, data->sg_len);
333 }
334 
335 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
336 {
337 	struct mmc_data *data = host->mrq->data;
338 	struct scatterlist *sg = data->sg;
339 	struct dma_async_tx_descriptor *desc = NULL;
340 	struct dma_chan *chan = host->chan_tx;
341 	dma_cookie_t cookie = -EINVAL;
342 	int ret;
343 
344 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345 			 DMA_TO_DEVICE);
346 	if (ret > 0) {
347 		host->dma_active = true;
348 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
349 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
350 	}
351 
352 	if (desc) {
353 		desc->callback = mmcif_dma_complete;
354 		desc->callback_param = host;
355 		cookie = dmaengine_submit(desc);
356 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357 		dma_async_issue_pending(chan);
358 	}
359 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
360 		__func__, data->sg_len, ret, cookie);
361 
362 	if (!desc) {
363 		/* DMA failed, fall back to PIO */
364 		if (ret >= 0)
365 			ret = -EIO;
366 		host->chan_tx = NULL;
367 		host->dma_active = false;
368 		dma_release_channel(chan);
369 		/* Free the Rx channel too */
370 		chan = host->chan_rx;
371 		if (chan) {
372 			host->chan_rx = NULL;
373 			dma_release_channel(chan);
374 		}
375 		dev_warn(&host->pd->dev,
376 			 "DMA failed: %d, falling back to PIO\n", ret);
377 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
378 	}
379 
380 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
381 		desc, cookie);
382 }
383 
384 static struct dma_chan *
385 sh_mmcif_request_dma_one(struct sh_mmcif_host *host,
386 			 struct sh_mmcif_plat_data *pdata,
387 			 enum dma_transfer_direction direction)
388 {
389 	struct dma_slave_config cfg;
390 	struct dma_chan *chan;
391 	unsigned int slave_id;
392 	struct resource *res;
393 	dma_cap_mask_t mask;
394 	int ret;
395 
396 	dma_cap_zero(mask);
397 	dma_cap_set(DMA_SLAVE, mask);
398 
399 	if (pdata)
400 		slave_id = direction == DMA_MEM_TO_DEV
401 			 ? pdata->slave_id_tx : pdata->slave_id_rx;
402 	else
403 		slave_id = 0;
404 
405 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
406 				(void *)(unsigned long)slave_id, &host->pd->dev,
407 				direction == DMA_MEM_TO_DEV ? "tx" : "rx");
408 
409 	dev_dbg(&host->pd->dev, "%s: %s: got channel %p\n", __func__,
410 		direction == DMA_MEM_TO_DEV ? "TX" : "RX", chan);
411 
412 	if (!chan)
413 		return NULL;
414 
415 	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
416 
417 	/* In the OF case the driver will get the slave ID from the DT */
418 	cfg.slave_id = slave_id;
419 	cfg.direction = direction;
420 	cfg.dst_addr = res->start + MMCIF_CE_DATA;
421 	cfg.src_addr = 0;
422 	ret = dmaengine_slave_config(chan, &cfg);
423 	if (ret < 0) {
424 		dma_release_channel(chan);
425 		return NULL;
426 	}
427 
428 	return chan;
429 }
430 
431 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
432 				 struct sh_mmcif_plat_data *pdata)
433 {
434 	host->dma_active = false;
435 
436 	if (pdata) {
437 		if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
438 			return;
439 	} else if (!host->pd->dev.of_node) {
440 		return;
441 	}
442 
443 	/* We can only either use DMA for both Tx and Rx or not use it at all */
444 	host->chan_tx = sh_mmcif_request_dma_one(host, pdata, DMA_MEM_TO_DEV);
445 	if (!host->chan_tx)
446 		return;
447 
448 	host->chan_rx = sh_mmcif_request_dma_one(host, pdata, DMA_DEV_TO_MEM);
449 	if (!host->chan_rx) {
450 		dma_release_channel(host->chan_tx);
451 		host->chan_tx = NULL;
452 	}
453 }
454 
455 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
456 {
457 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
458 	/* Descriptors are freed automatically */
459 	if (host->chan_tx) {
460 		struct dma_chan *chan = host->chan_tx;
461 		host->chan_tx = NULL;
462 		dma_release_channel(chan);
463 	}
464 	if (host->chan_rx) {
465 		struct dma_chan *chan = host->chan_rx;
466 		host->chan_rx = NULL;
467 		dma_release_channel(chan);
468 	}
469 
470 	host->dma_active = false;
471 }
472 
473 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
474 {
475 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
476 	bool sup_pclk = p ? p->sup_pclk : false;
477 
478 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
479 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
480 
481 	if (!clk)
482 		return;
483 	if (sup_pclk && clk == host->clk)
484 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
485 	else
486 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
487 				((fls(DIV_ROUND_UP(host->clk,
488 						   clk) - 1) - 1) << 16));
489 
490 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
491 }
492 
493 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
494 {
495 	u32 tmp;
496 
497 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
498 
499 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
500 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
501 	if (host->ccs_enable)
502 		tmp |= SCCSTO_29;
503 	if (host->clk_ctrl2_enable)
504 		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
505 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
506 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
507 	/* byte swap on */
508 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
509 }
510 
511 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
512 {
513 	u32 state1, state2;
514 	int ret, timeout;
515 
516 	host->sd_error = false;
517 
518 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
519 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
520 	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
521 	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
522 
523 	if (state1 & STS1_CMDSEQ) {
524 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
525 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
526 		for (timeout = 10000000; timeout; timeout--) {
527 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
528 			      & STS1_CMDSEQ))
529 				break;
530 			mdelay(1);
531 		}
532 		if (!timeout) {
533 			dev_err(&host->pd->dev,
534 				"Forced end of command sequence timeout err\n");
535 			return -EIO;
536 		}
537 		sh_mmcif_sync_reset(host);
538 		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
539 		return -EIO;
540 	}
541 
542 	if (state2 & STS2_CRC_ERR) {
543 		dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
544 			host->state, host->wait_for);
545 		ret = -EIO;
546 	} else if (state2 & STS2_TIMEOUT_ERR) {
547 		dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
548 			host->state, host->wait_for);
549 		ret = -ETIMEDOUT;
550 	} else {
551 		dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
552 			host->state, host->wait_for);
553 		ret = -EIO;
554 	}
555 	return ret;
556 }
557 
558 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
559 {
560 	struct mmc_data *data = host->mrq->data;
561 
562 	host->sg_blkidx += host->blocksize;
563 
564 	/* data->sg->length must be a multiple of host->blocksize? */
565 	BUG_ON(host->sg_blkidx > data->sg->length);
566 
567 	if (host->sg_blkidx == data->sg->length) {
568 		host->sg_blkidx = 0;
569 		if (++host->sg_idx < data->sg_len)
570 			host->pio_ptr = sg_virt(++data->sg);
571 	} else {
572 		host->pio_ptr = p;
573 	}
574 
575 	return host->sg_idx != data->sg_len;
576 }
577 
578 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
579 				 struct mmc_request *mrq)
580 {
581 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
582 			   BLOCK_SIZE_MASK) + 3;
583 
584 	host->wait_for = MMCIF_WAIT_FOR_READ;
585 
586 	/* buf read enable */
587 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
588 }
589 
590 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
591 {
592 	struct mmc_data *data = host->mrq->data;
593 	u32 *p = sg_virt(data->sg);
594 	int i;
595 
596 	if (host->sd_error) {
597 		data->error = sh_mmcif_error_manage(host);
598 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
599 		return false;
600 	}
601 
602 	for (i = 0; i < host->blocksize / 4; i++)
603 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
604 
605 	/* buffer read end */
606 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
607 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
608 
609 	return true;
610 }
611 
612 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
613 				struct mmc_request *mrq)
614 {
615 	struct mmc_data *data = mrq->data;
616 
617 	if (!data->sg_len || !data->sg->length)
618 		return;
619 
620 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
621 		BLOCK_SIZE_MASK;
622 
623 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
624 	host->sg_idx = 0;
625 	host->sg_blkidx = 0;
626 	host->pio_ptr = sg_virt(data->sg);
627 
628 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
629 }
630 
631 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
632 {
633 	struct mmc_data *data = host->mrq->data;
634 	u32 *p = host->pio_ptr;
635 	int i;
636 
637 	if (host->sd_error) {
638 		data->error = sh_mmcif_error_manage(host);
639 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
640 		return false;
641 	}
642 
643 	BUG_ON(!data->sg->length);
644 
645 	for (i = 0; i < host->blocksize / 4; i++)
646 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
647 
648 	if (!sh_mmcif_next_block(host, p))
649 		return false;
650 
651 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
652 
653 	return true;
654 }
655 
656 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
657 					struct mmc_request *mrq)
658 {
659 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
660 			   BLOCK_SIZE_MASK) + 3;
661 
662 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
663 
664 	/* buf write enable */
665 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
666 }
667 
668 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
669 {
670 	struct mmc_data *data = host->mrq->data;
671 	u32 *p = sg_virt(data->sg);
672 	int i;
673 
674 	if (host->sd_error) {
675 		data->error = sh_mmcif_error_manage(host);
676 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
677 		return false;
678 	}
679 
680 	for (i = 0; i < host->blocksize / 4; i++)
681 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
682 
683 	/* buffer write end */
684 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
685 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
686 
687 	return true;
688 }
689 
690 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
691 				struct mmc_request *mrq)
692 {
693 	struct mmc_data *data = mrq->data;
694 
695 	if (!data->sg_len || !data->sg->length)
696 		return;
697 
698 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
699 		BLOCK_SIZE_MASK;
700 
701 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
702 	host->sg_idx = 0;
703 	host->sg_blkidx = 0;
704 	host->pio_ptr = sg_virt(data->sg);
705 
706 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
707 }
708 
709 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
710 {
711 	struct mmc_data *data = host->mrq->data;
712 	u32 *p = host->pio_ptr;
713 	int i;
714 
715 	if (host->sd_error) {
716 		data->error = sh_mmcif_error_manage(host);
717 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
718 		return false;
719 	}
720 
721 	BUG_ON(!data->sg->length);
722 
723 	for (i = 0; i < host->blocksize / 4; i++)
724 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
725 
726 	if (!sh_mmcif_next_block(host, p))
727 		return false;
728 
729 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
730 
731 	return true;
732 }
733 
734 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
735 						struct mmc_command *cmd)
736 {
737 	if (cmd->flags & MMC_RSP_136) {
738 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
739 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
740 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
741 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
742 	} else
743 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
744 }
745 
746 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
747 						struct mmc_command *cmd)
748 {
749 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
750 }
751 
752 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
753 			    struct mmc_request *mrq)
754 {
755 	struct mmc_data *data = mrq->data;
756 	struct mmc_command *cmd = mrq->cmd;
757 	u32 opc = cmd->opcode;
758 	u32 tmp = 0;
759 
760 	/* Response Type check */
761 	switch (mmc_resp_type(cmd)) {
762 	case MMC_RSP_NONE:
763 		tmp |= CMD_SET_RTYP_NO;
764 		break;
765 	case MMC_RSP_R1:
766 	case MMC_RSP_R1B:
767 	case MMC_RSP_R3:
768 		tmp |= CMD_SET_RTYP_6B;
769 		break;
770 	case MMC_RSP_R2:
771 		tmp |= CMD_SET_RTYP_17B;
772 		break;
773 	default:
774 		dev_err(&host->pd->dev, "Unsupported response type.\n");
775 		break;
776 	}
777 	switch (opc) {
778 	/* RBSY */
779 	case MMC_SLEEP_AWAKE:
780 	case MMC_SWITCH:
781 	case MMC_STOP_TRANSMISSION:
782 	case MMC_SET_WRITE_PROT:
783 	case MMC_CLR_WRITE_PROT:
784 	case MMC_ERASE:
785 		tmp |= CMD_SET_RBSY;
786 		break;
787 	}
788 	/* WDAT / DATW */
789 	if (data) {
790 		tmp |= CMD_SET_WDAT;
791 		switch (host->bus_width) {
792 		case MMC_BUS_WIDTH_1:
793 			tmp |= CMD_SET_DATW_1;
794 			break;
795 		case MMC_BUS_WIDTH_4:
796 			tmp |= CMD_SET_DATW_4;
797 			break;
798 		case MMC_BUS_WIDTH_8:
799 			tmp |= CMD_SET_DATW_8;
800 			break;
801 		default:
802 			dev_err(&host->pd->dev, "Unsupported bus width.\n");
803 			break;
804 		}
805 		switch (host->timing) {
806 		case MMC_TIMING_MMC_DDR52:
807 			/*
808 			 * MMC core will only set this timing, if the host
809 			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
810 			 * capability. MMCIF implementations with this
811 			 * capability, e.g. sh73a0, will have to set it
812 			 * in their platform data.
813 			 */
814 			tmp |= CMD_SET_DARS;
815 			break;
816 		}
817 	}
818 	/* DWEN */
819 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
820 		tmp |= CMD_SET_DWEN;
821 	/* CMLTE/CMD12EN */
822 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
823 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
824 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
825 				data->blocks << 16);
826 	}
827 	/* RIDXC[1:0] check bits */
828 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
829 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
830 		tmp |= CMD_SET_RIDXC_BITS;
831 	/* RCRC7C[1:0] check bits */
832 	if (opc == MMC_SEND_OP_COND)
833 		tmp |= CMD_SET_CRC7C_BITS;
834 	/* RCRC7C[1:0] internal CRC7 */
835 	if (opc == MMC_ALL_SEND_CID ||
836 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
837 		tmp |= CMD_SET_CRC7C_INTERNAL;
838 
839 	return (opc << 24) | tmp;
840 }
841 
842 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
843 			       struct mmc_request *mrq, u32 opc)
844 {
845 	switch (opc) {
846 	case MMC_READ_MULTIPLE_BLOCK:
847 		sh_mmcif_multi_read(host, mrq);
848 		return 0;
849 	case MMC_WRITE_MULTIPLE_BLOCK:
850 		sh_mmcif_multi_write(host, mrq);
851 		return 0;
852 	case MMC_WRITE_BLOCK:
853 		sh_mmcif_single_write(host, mrq);
854 		return 0;
855 	case MMC_READ_SINGLE_BLOCK:
856 	case MMC_SEND_EXT_CSD:
857 		sh_mmcif_single_read(host, mrq);
858 		return 0;
859 	default:
860 		dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
861 		return -EINVAL;
862 	}
863 }
864 
865 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
866 			       struct mmc_request *mrq)
867 {
868 	struct mmc_command *cmd = mrq->cmd;
869 	u32 opc = cmd->opcode;
870 	u32 mask;
871 
872 	switch (opc) {
873 	/* response busy check */
874 	case MMC_SLEEP_AWAKE:
875 	case MMC_SWITCH:
876 	case MMC_STOP_TRANSMISSION:
877 	case MMC_SET_WRITE_PROT:
878 	case MMC_CLR_WRITE_PROT:
879 	case MMC_ERASE:
880 		mask = MASK_START_CMD | MASK_MRBSYE;
881 		break;
882 	default:
883 		mask = MASK_START_CMD | MASK_MCRSPE;
884 		break;
885 	}
886 
887 	if (host->ccs_enable)
888 		mask |= MASK_MCCSTO;
889 
890 	if (mrq->data) {
891 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
892 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
893 				mrq->data->blksz);
894 	}
895 	opc = sh_mmcif_set_cmd(host, mrq);
896 
897 	if (host->ccs_enable)
898 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
899 	else
900 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
901 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
902 	/* set arg */
903 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
904 	/* set cmd */
905 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
906 
907 	host->wait_for = MMCIF_WAIT_FOR_CMD;
908 	schedule_delayed_work(&host->timeout_work, host->timeout);
909 }
910 
911 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
912 			      struct mmc_request *mrq)
913 {
914 	switch (mrq->cmd->opcode) {
915 	case MMC_READ_MULTIPLE_BLOCK:
916 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
917 		break;
918 	case MMC_WRITE_MULTIPLE_BLOCK:
919 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
920 		break;
921 	default:
922 		dev_err(&host->pd->dev, "unsupported stop cmd\n");
923 		mrq->stop->error = sh_mmcif_error_manage(host);
924 		return;
925 	}
926 
927 	host->wait_for = MMCIF_WAIT_FOR_STOP;
928 }
929 
930 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
931 {
932 	struct sh_mmcif_host *host = mmc_priv(mmc);
933 	unsigned long flags;
934 
935 	spin_lock_irqsave(&host->lock, flags);
936 	if (host->state != STATE_IDLE) {
937 		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
938 		spin_unlock_irqrestore(&host->lock, flags);
939 		mrq->cmd->error = -EAGAIN;
940 		mmc_request_done(mmc, mrq);
941 		return;
942 	}
943 
944 	host->state = STATE_REQUEST;
945 	spin_unlock_irqrestore(&host->lock, flags);
946 
947 	switch (mrq->cmd->opcode) {
948 	/* MMCIF does not support SD/SDIO command */
949 	case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
950 	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
951 		if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
952 			break;
953 	case MMC_APP_CMD:
954 	case SD_IO_RW_DIRECT:
955 		host->state = STATE_IDLE;
956 		mrq->cmd->error = -ETIMEDOUT;
957 		mmc_request_done(mmc, mrq);
958 		return;
959 	default:
960 		break;
961 	}
962 
963 	host->mrq = mrq;
964 
965 	sh_mmcif_start_cmd(host, mrq);
966 }
967 
968 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
969 {
970 	int ret = clk_prepare_enable(host->hclk);
971 
972 	if (!ret) {
973 		host->clk = clk_get_rate(host->hclk);
974 		host->mmc->f_max = host->clk / 2;
975 		host->mmc->f_min = host->clk / 512;
976 	}
977 
978 	return ret;
979 }
980 
981 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
982 {
983 	struct mmc_host *mmc = host->mmc;
984 
985 	if (!IS_ERR(mmc->supply.vmmc))
986 		/* Errors ignored... */
987 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
988 				      ios->power_mode ? ios->vdd : 0);
989 }
990 
991 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
992 {
993 	struct sh_mmcif_host *host = mmc_priv(mmc);
994 	unsigned long flags;
995 
996 	spin_lock_irqsave(&host->lock, flags);
997 	if (host->state != STATE_IDLE) {
998 		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
999 		spin_unlock_irqrestore(&host->lock, flags);
1000 		return;
1001 	}
1002 
1003 	host->state = STATE_IOS;
1004 	spin_unlock_irqrestore(&host->lock, flags);
1005 
1006 	if (ios->power_mode == MMC_POWER_UP) {
1007 		if (!host->card_present) {
1008 			/* See if we also get DMA */
1009 			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
1010 			host->card_present = true;
1011 		}
1012 		sh_mmcif_set_power(host, ios);
1013 	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1014 		/* clock stop */
1015 		sh_mmcif_clock_control(host, 0);
1016 		if (ios->power_mode == MMC_POWER_OFF) {
1017 			if (host->card_present) {
1018 				sh_mmcif_release_dma(host);
1019 				host->card_present = false;
1020 			}
1021 		}
1022 		if (host->power) {
1023 			pm_runtime_put_sync(&host->pd->dev);
1024 			clk_disable_unprepare(host->hclk);
1025 			host->power = false;
1026 			if (ios->power_mode == MMC_POWER_OFF)
1027 				sh_mmcif_set_power(host, ios);
1028 		}
1029 		host->state = STATE_IDLE;
1030 		return;
1031 	}
1032 
1033 	if (ios->clock) {
1034 		if (!host->power) {
1035 			sh_mmcif_clk_update(host);
1036 			pm_runtime_get_sync(&host->pd->dev);
1037 			host->power = true;
1038 			sh_mmcif_sync_reset(host);
1039 		}
1040 		sh_mmcif_clock_control(host, ios->clock);
1041 	}
1042 
1043 	host->timing = ios->timing;
1044 	host->bus_width = ios->bus_width;
1045 	host->state = STATE_IDLE;
1046 }
1047 
1048 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1049 {
1050 	struct sh_mmcif_host *host = mmc_priv(mmc);
1051 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1052 	int ret = mmc_gpio_get_cd(mmc);
1053 
1054 	if (ret >= 0)
1055 		return ret;
1056 
1057 	if (!p || !p->get_cd)
1058 		return -ENOSYS;
1059 	else
1060 		return p->get_cd(host->pd);
1061 }
1062 
1063 static struct mmc_host_ops sh_mmcif_ops = {
1064 	.request	= sh_mmcif_request,
1065 	.set_ios	= sh_mmcif_set_ios,
1066 	.get_cd		= sh_mmcif_get_cd,
1067 };
1068 
1069 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1070 {
1071 	struct mmc_command *cmd = host->mrq->cmd;
1072 	struct mmc_data *data = host->mrq->data;
1073 	long time;
1074 
1075 	if (host->sd_error) {
1076 		switch (cmd->opcode) {
1077 		case MMC_ALL_SEND_CID:
1078 		case MMC_SELECT_CARD:
1079 		case MMC_APP_CMD:
1080 			cmd->error = -ETIMEDOUT;
1081 			break;
1082 		default:
1083 			cmd->error = sh_mmcif_error_manage(host);
1084 			break;
1085 		}
1086 		dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1087 			cmd->opcode, cmd->error);
1088 		host->sd_error = false;
1089 		return false;
1090 	}
1091 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1092 		cmd->error = 0;
1093 		return false;
1094 	}
1095 
1096 	sh_mmcif_get_response(host, cmd);
1097 
1098 	if (!data)
1099 		return false;
1100 
1101 	/*
1102 	 * Completion can be signalled from DMA callback and error, so, have to
1103 	 * reset here, before setting .dma_active
1104 	 */
1105 	init_completion(&host->dma_complete);
1106 
1107 	if (data->flags & MMC_DATA_READ) {
1108 		if (host->chan_rx)
1109 			sh_mmcif_start_dma_rx(host);
1110 	} else {
1111 		if (host->chan_tx)
1112 			sh_mmcif_start_dma_tx(host);
1113 	}
1114 
1115 	if (!host->dma_active) {
1116 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1117 		return !data->error;
1118 	}
1119 
1120 	/* Running in the IRQ thread, can sleep */
1121 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1122 							 host->timeout);
1123 
1124 	if (data->flags & MMC_DATA_READ)
1125 		dma_unmap_sg(host->chan_rx->device->dev,
1126 			     data->sg, data->sg_len,
1127 			     DMA_FROM_DEVICE);
1128 	else
1129 		dma_unmap_sg(host->chan_tx->device->dev,
1130 			     data->sg, data->sg_len,
1131 			     DMA_TO_DEVICE);
1132 
1133 	if (host->sd_error) {
1134 		dev_err(host->mmc->parent,
1135 			"Error IRQ while waiting for DMA completion!\n");
1136 		/* Woken up by an error IRQ: abort DMA */
1137 		data->error = sh_mmcif_error_manage(host);
1138 	} else if (!time) {
1139 		dev_err(host->mmc->parent, "DMA timeout!\n");
1140 		data->error = -ETIMEDOUT;
1141 	} else if (time < 0) {
1142 		dev_err(host->mmc->parent,
1143 			"wait_for_completion_...() error %ld!\n", time);
1144 		data->error = time;
1145 	}
1146 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1147 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1148 	host->dma_active = false;
1149 
1150 	if (data->error) {
1151 		data->bytes_xfered = 0;
1152 		/* Abort DMA */
1153 		if (data->flags & MMC_DATA_READ)
1154 			dmaengine_terminate_all(host->chan_rx);
1155 		else
1156 			dmaengine_terminate_all(host->chan_tx);
1157 	}
1158 
1159 	return false;
1160 }
1161 
1162 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1163 {
1164 	struct sh_mmcif_host *host = dev_id;
1165 	struct mmc_request *mrq;
1166 	bool wait = false;
1167 
1168 	cancel_delayed_work_sync(&host->timeout_work);
1169 
1170 	mutex_lock(&host->thread_lock);
1171 
1172 	mrq = host->mrq;
1173 	if (!mrq) {
1174 		dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1175 			host->state, host->wait_for);
1176 		mutex_unlock(&host->thread_lock);
1177 		return IRQ_HANDLED;
1178 	}
1179 
1180 	/*
1181 	 * All handlers return true, if processing continues, and false, if the
1182 	 * request has to be completed - successfully or not
1183 	 */
1184 	switch (host->wait_for) {
1185 	case MMCIF_WAIT_FOR_REQUEST:
1186 		/* We're too late, the timeout has already kicked in */
1187 		mutex_unlock(&host->thread_lock);
1188 		return IRQ_HANDLED;
1189 	case MMCIF_WAIT_FOR_CMD:
1190 		/* Wait for data? */
1191 		wait = sh_mmcif_end_cmd(host);
1192 		break;
1193 	case MMCIF_WAIT_FOR_MREAD:
1194 		/* Wait for more data? */
1195 		wait = sh_mmcif_mread_block(host);
1196 		break;
1197 	case MMCIF_WAIT_FOR_READ:
1198 		/* Wait for data end? */
1199 		wait = sh_mmcif_read_block(host);
1200 		break;
1201 	case MMCIF_WAIT_FOR_MWRITE:
1202 		/* Wait data to write? */
1203 		wait = sh_mmcif_mwrite_block(host);
1204 		break;
1205 	case MMCIF_WAIT_FOR_WRITE:
1206 		/* Wait for data end? */
1207 		wait = sh_mmcif_write_block(host);
1208 		break;
1209 	case MMCIF_WAIT_FOR_STOP:
1210 		if (host->sd_error) {
1211 			mrq->stop->error = sh_mmcif_error_manage(host);
1212 			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1213 			break;
1214 		}
1215 		sh_mmcif_get_cmd12response(host, mrq->stop);
1216 		mrq->stop->error = 0;
1217 		break;
1218 	case MMCIF_WAIT_FOR_READ_END:
1219 	case MMCIF_WAIT_FOR_WRITE_END:
1220 		if (host->sd_error) {
1221 			mrq->data->error = sh_mmcif_error_manage(host);
1222 			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1223 		}
1224 		break;
1225 	default:
1226 		BUG();
1227 	}
1228 
1229 	if (wait) {
1230 		schedule_delayed_work(&host->timeout_work, host->timeout);
1231 		/* Wait for more data */
1232 		mutex_unlock(&host->thread_lock);
1233 		return IRQ_HANDLED;
1234 	}
1235 
1236 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1237 		struct mmc_data *data = mrq->data;
1238 		if (!mrq->cmd->error && data && !data->error)
1239 			data->bytes_xfered =
1240 				data->blocks * data->blksz;
1241 
1242 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1243 			sh_mmcif_stop_cmd(host, mrq);
1244 			if (!mrq->stop->error) {
1245 				schedule_delayed_work(&host->timeout_work, host->timeout);
1246 				mutex_unlock(&host->thread_lock);
1247 				return IRQ_HANDLED;
1248 			}
1249 		}
1250 	}
1251 
1252 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1253 	host->state = STATE_IDLE;
1254 	host->mrq = NULL;
1255 	mmc_request_done(host->mmc, mrq);
1256 
1257 	mutex_unlock(&host->thread_lock);
1258 
1259 	return IRQ_HANDLED;
1260 }
1261 
1262 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1263 {
1264 	struct sh_mmcif_host *host = dev_id;
1265 	u32 state, mask;
1266 
1267 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1268 	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1269 	if (host->ccs_enable)
1270 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1271 	else
1272 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1273 	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1274 
1275 	if (state & ~MASK_CLEAN)
1276 		dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1277 			state);
1278 
1279 	if (state & INT_ERR_STS || state & ~INT_ALL) {
1280 		host->sd_error = true;
1281 		dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1282 	}
1283 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1284 		if (!host->mrq)
1285 			dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1286 		if (!host->dma_active)
1287 			return IRQ_WAKE_THREAD;
1288 		else if (host->sd_error)
1289 			mmcif_dma_complete(host);
1290 	} else {
1291 		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1292 	}
1293 
1294 	return IRQ_HANDLED;
1295 }
1296 
1297 static void mmcif_timeout_work(struct work_struct *work)
1298 {
1299 	struct delayed_work *d = container_of(work, struct delayed_work, work);
1300 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1301 	struct mmc_request *mrq = host->mrq;
1302 	unsigned long flags;
1303 
1304 	if (host->dying)
1305 		/* Don't run after mmc_remove_host() */
1306 		return;
1307 
1308 	dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1309 		host->wait_for, mrq->cmd->opcode);
1310 
1311 	spin_lock_irqsave(&host->lock, flags);
1312 	if (host->state == STATE_IDLE) {
1313 		spin_unlock_irqrestore(&host->lock, flags);
1314 		return;
1315 	}
1316 
1317 	host->state = STATE_TIMEOUT;
1318 	spin_unlock_irqrestore(&host->lock, flags);
1319 
1320 	/*
1321 	 * Handle races with cancel_delayed_work(), unless
1322 	 * cancel_delayed_work_sync() is used
1323 	 */
1324 	switch (host->wait_for) {
1325 	case MMCIF_WAIT_FOR_CMD:
1326 		mrq->cmd->error = sh_mmcif_error_manage(host);
1327 		break;
1328 	case MMCIF_WAIT_FOR_STOP:
1329 		mrq->stop->error = sh_mmcif_error_manage(host);
1330 		break;
1331 	case MMCIF_WAIT_FOR_MREAD:
1332 	case MMCIF_WAIT_FOR_MWRITE:
1333 	case MMCIF_WAIT_FOR_READ:
1334 	case MMCIF_WAIT_FOR_WRITE:
1335 	case MMCIF_WAIT_FOR_READ_END:
1336 	case MMCIF_WAIT_FOR_WRITE_END:
1337 		mrq->data->error = sh_mmcif_error_manage(host);
1338 		break;
1339 	default:
1340 		BUG();
1341 	}
1342 
1343 	host->state = STATE_IDLE;
1344 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1345 	host->mrq = NULL;
1346 	mmc_request_done(host->mmc, mrq);
1347 }
1348 
1349 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1350 {
1351 	struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1352 	struct mmc_host *mmc = host->mmc;
1353 
1354 	mmc_regulator_get_supply(mmc);
1355 
1356 	if (!pd)
1357 		return;
1358 
1359 	if (!mmc->ocr_avail)
1360 		mmc->ocr_avail = pd->ocr;
1361 	else if (pd->ocr)
1362 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1363 }
1364 
1365 static int sh_mmcif_probe(struct platform_device *pdev)
1366 {
1367 	int ret = 0, irq[2];
1368 	struct mmc_host *mmc;
1369 	struct sh_mmcif_host *host;
1370 	struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1371 	struct resource *res;
1372 	void __iomem *reg;
1373 	const char *name;
1374 
1375 	irq[0] = platform_get_irq(pdev, 0);
1376 	irq[1] = platform_get_irq(pdev, 1);
1377 	if (irq[0] < 0) {
1378 		dev_err(&pdev->dev, "Get irq error\n");
1379 		return -ENXIO;
1380 	}
1381 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1382 	if (!res) {
1383 		dev_err(&pdev->dev, "platform_get_resource error.\n");
1384 		return -ENXIO;
1385 	}
1386 	reg = ioremap(res->start, resource_size(res));
1387 	if (!reg) {
1388 		dev_err(&pdev->dev, "ioremap error.\n");
1389 		return -ENOMEM;
1390 	}
1391 
1392 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1393 	if (!mmc) {
1394 		ret = -ENOMEM;
1395 		goto ealloch;
1396 	}
1397 
1398 	ret = mmc_of_parse(mmc);
1399 	if (ret < 0)
1400 		goto eofparse;
1401 
1402 	host		= mmc_priv(mmc);
1403 	host->mmc	= mmc;
1404 	host->addr	= reg;
1405 	host->timeout	= msecs_to_jiffies(1000);
1406 	host->ccs_enable = !pd || !pd->ccs_unsupported;
1407 	host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1408 
1409 	host->pd = pdev;
1410 
1411 	spin_lock_init(&host->lock);
1412 
1413 	mmc->ops = &sh_mmcif_ops;
1414 	sh_mmcif_init_ocr(host);
1415 
1416 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1417 	if (pd && pd->caps)
1418 		mmc->caps |= pd->caps;
1419 	mmc->max_segs = 32;
1420 	mmc->max_blk_size = 512;
1421 	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1422 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1423 	mmc->max_seg_size = mmc->max_req_size;
1424 
1425 	platform_set_drvdata(pdev, host);
1426 
1427 	pm_runtime_enable(&pdev->dev);
1428 	host->power = false;
1429 
1430 	host->hclk = clk_get(&pdev->dev, NULL);
1431 	if (IS_ERR(host->hclk)) {
1432 		ret = PTR_ERR(host->hclk);
1433 		dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1434 		goto eclkget;
1435 	}
1436 	ret = sh_mmcif_clk_update(host);
1437 	if (ret < 0)
1438 		goto eclkupdate;
1439 
1440 	ret = pm_runtime_resume(&pdev->dev);
1441 	if (ret < 0)
1442 		goto eresume;
1443 
1444 	INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1445 
1446 	sh_mmcif_sync_reset(host);
1447 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1448 
1449 	name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1450 	ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, name, host);
1451 	if (ret) {
1452 		dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1453 		goto ereqirq0;
1454 	}
1455 	if (irq[1] >= 0) {
1456 		ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt,
1457 					   0, "sh_mmc:int", host);
1458 		if (ret) {
1459 			dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1460 			goto ereqirq1;
1461 		}
1462 	}
1463 
1464 	if (pd && pd->use_cd_gpio) {
1465 		ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1466 		if (ret < 0)
1467 			goto erqcd;
1468 	}
1469 
1470 	mutex_init(&host->thread_lock);
1471 
1472 	clk_disable_unprepare(host->hclk);
1473 	ret = mmc_add_host(mmc);
1474 	if (ret < 0)
1475 		goto emmcaddh;
1476 
1477 	dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1478 
1479 	dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1480 	dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1481 		sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1482 	return ret;
1483 
1484 emmcaddh:
1485 erqcd:
1486 	if (irq[1] >= 0)
1487 		free_irq(irq[1], host);
1488 ereqirq1:
1489 	free_irq(irq[0], host);
1490 ereqirq0:
1491 	pm_runtime_suspend(&pdev->dev);
1492 eresume:
1493 	clk_disable_unprepare(host->hclk);
1494 eclkupdate:
1495 	clk_put(host->hclk);
1496 eclkget:
1497 	pm_runtime_disable(&pdev->dev);
1498 eofparse:
1499 	mmc_free_host(mmc);
1500 ealloch:
1501 	iounmap(reg);
1502 	return ret;
1503 }
1504 
1505 static int sh_mmcif_remove(struct platform_device *pdev)
1506 {
1507 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1508 	int irq[2];
1509 
1510 	host->dying = true;
1511 	clk_prepare_enable(host->hclk);
1512 	pm_runtime_get_sync(&pdev->dev);
1513 
1514 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1515 
1516 	mmc_remove_host(host->mmc);
1517 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1518 
1519 	/*
1520 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1521 	 * mmc_remove_host() call above. But swapping order doesn't help either
1522 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1523 	 */
1524 	cancel_delayed_work_sync(&host->timeout_work);
1525 
1526 	if (host->addr)
1527 		iounmap(host->addr);
1528 
1529 	irq[0] = platform_get_irq(pdev, 0);
1530 	irq[1] = platform_get_irq(pdev, 1);
1531 
1532 	free_irq(irq[0], host);
1533 	if (irq[1] >= 0)
1534 		free_irq(irq[1], host);
1535 
1536 	clk_disable_unprepare(host->hclk);
1537 	mmc_free_host(host->mmc);
1538 	pm_runtime_put_sync(&pdev->dev);
1539 	pm_runtime_disable(&pdev->dev);
1540 
1541 	return 0;
1542 }
1543 
1544 #ifdef CONFIG_PM_SLEEP
1545 static int sh_mmcif_suspend(struct device *dev)
1546 {
1547 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1548 
1549 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1550 
1551 	return 0;
1552 }
1553 
1554 static int sh_mmcif_resume(struct device *dev)
1555 {
1556 	return 0;
1557 }
1558 #endif
1559 
1560 static const struct of_device_id mmcif_of_match[] = {
1561 	{ .compatible = "renesas,sh-mmcif" },
1562 	{ }
1563 };
1564 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1565 
1566 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1567 	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1568 };
1569 
1570 static struct platform_driver sh_mmcif_driver = {
1571 	.probe		= sh_mmcif_probe,
1572 	.remove		= sh_mmcif_remove,
1573 	.driver		= {
1574 		.name	= DRIVER_NAME,
1575 		.pm	= &sh_mmcif_dev_pm_ops,
1576 		.owner	= THIS_MODULE,
1577 		.of_match_table = mmcif_of_match,
1578 	},
1579 };
1580 
1581 module_platform_driver(sh_mmcif_driver);
1582 
1583 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1584 MODULE_LICENSE("GPL");
1585 MODULE_ALIAS("platform:" DRIVER_NAME);
1586 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1587