1 /* 2 * MMCIF eMMC driver. 3 * 4 * Copyright (C) 2010 Renesas Solutions Corp. 5 * Yusuke Goda <yusuke.goda.sx@renesas.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License. 10 * 11 * 12 * TODO 13 * 1. DMA 14 * 2. Power management 15 * 3. Handle MMC errors better 16 * 17 */ 18 19 /* 20 * The MMCIF driver is now processing MMC requests asynchronously, according 21 * to the Linux MMC API requirement. 22 * 23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional 24 * data, and optional stop. To achieve asynchronous processing each of these 25 * stages is split into two halves: a top and a bottom half. The top half 26 * initialises the hardware, installs a timeout handler to handle completion 27 * timeouts, and returns. In case of the command stage this immediately returns 28 * control to the caller, leaving all further processing to run asynchronously. 29 * All further request processing is performed by the bottom halves. 30 * 31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler 32 * thread, a DMA completion callback, if DMA is used, a timeout work, and 33 * request- and stage-specific handler methods. 34 * 35 * Each bottom half run begins with either a hardware interrupt, a DMA callback 36 * invocation, or a timeout work run. In case of an error or a successful 37 * processing completion, the MMC core is informed and the request processing is 38 * finished. In case processing has to continue, i.e., if data has to be read 39 * from or written to the card, or if a stop command has to be sent, the next 40 * top half is called, which performs the necessary hardware handling and 41 * reschedules the timeout work. This returns the driver state machine into the 42 * bottom half waiting state. 43 */ 44 45 #include <linux/bitops.h> 46 #include <linux/clk.h> 47 #include <linux/completion.h> 48 #include <linux/delay.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/dmaengine.h> 51 #include <linux/mmc/card.h> 52 #include <linux/mmc/core.h> 53 #include <linux/mmc/host.h> 54 #include <linux/mmc/mmc.h> 55 #include <linux/mmc/sdio.h> 56 #include <linux/mmc/sh_mmcif.h> 57 #include <linux/mmc/slot-gpio.h> 58 #include <linux/mod_devicetable.h> 59 #include <linux/mutex.h> 60 #include <linux/pagemap.h> 61 #include <linux/platform_device.h> 62 #include <linux/pm_qos.h> 63 #include <linux/pm_runtime.h> 64 #include <linux/spinlock.h> 65 #include <linux/module.h> 66 67 #define DRIVER_NAME "sh_mmcif" 68 #define DRIVER_VERSION "2010-04-28" 69 70 /* CE_CMD_SET */ 71 #define CMD_MASK 0x3f000000 72 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22)) 73 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */ 74 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */ 75 #define CMD_SET_RBSY (1 << 21) /* R1b */ 76 #define CMD_SET_CCSEN (1 << 20) 77 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */ 78 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */ 79 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */ 80 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */ 81 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */ 82 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */ 83 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */ 84 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/ 85 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/ 86 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/ 87 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/ 88 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */ 89 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */ 90 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */ 91 #define CMD_SET_CCSH (1 << 5) 92 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */ 93 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */ 94 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */ 95 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */ 96 97 /* CE_CMD_CTRL */ 98 #define CMD_CTRL_BREAK (1 << 0) 99 100 /* CE_BLOCK_SET */ 101 #define BLOCK_SIZE_MASK 0x0000ffff 102 103 /* CE_INT */ 104 #define INT_CCSDE (1 << 29) 105 #define INT_CMD12DRE (1 << 26) 106 #define INT_CMD12RBE (1 << 25) 107 #define INT_CMD12CRE (1 << 24) 108 #define INT_DTRANE (1 << 23) 109 #define INT_BUFRE (1 << 22) 110 #define INT_BUFWEN (1 << 21) 111 #define INT_BUFREN (1 << 20) 112 #define INT_CCSRCV (1 << 19) 113 #define INT_RBSYE (1 << 17) 114 #define INT_CRSPE (1 << 16) 115 #define INT_CMDVIO (1 << 15) 116 #define INT_BUFVIO (1 << 14) 117 #define INT_WDATERR (1 << 11) 118 #define INT_RDATERR (1 << 10) 119 #define INT_RIDXERR (1 << 9) 120 #define INT_RSPERR (1 << 8) 121 #define INT_CCSTO (1 << 5) 122 #define INT_CRCSTO (1 << 4) 123 #define INT_WDATTO (1 << 3) 124 #define INT_RDATTO (1 << 2) 125 #define INT_RBSYTO (1 << 1) 126 #define INT_RSPTO (1 << 0) 127 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \ 128 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \ 129 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \ 130 INT_RDATTO | INT_RBSYTO | INT_RSPTO) 131 132 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \ 133 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \ 134 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE) 135 136 /* CE_INT_MASK */ 137 #define MASK_ALL 0x00000000 138 #define MASK_MCCSDE (1 << 29) 139 #define MASK_MCMD12DRE (1 << 26) 140 #define MASK_MCMD12RBE (1 << 25) 141 #define MASK_MCMD12CRE (1 << 24) 142 #define MASK_MDTRANE (1 << 23) 143 #define MASK_MBUFRE (1 << 22) 144 #define MASK_MBUFWEN (1 << 21) 145 #define MASK_MBUFREN (1 << 20) 146 #define MASK_MCCSRCV (1 << 19) 147 #define MASK_MRBSYE (1 << 17) 148 #define MASK_MCRSPE (1 << 16) 149 #define MASK_MCMDVIO (1 << 15) 150 #define MASK_MBUFVIO (1 << 14) 151 #define MASK_MWDATERR (1 << 11) 152 #define MASK_MRDATERR (1 << 10) 153 #define MASK_MRIDXERR (1 << 9) 154 #define MASK_MRSPERR (1 << 8) 155 #define MASK_MCCSTO (1 << 5) 156 #define MASK_MCRCSTO (1 << 4) 157 #define MASK_MWDATTO (1 << 3) 158 #define MASK_MRDATTO (1 << 2) 159 #define MASK_MRBSYTO (1 << 1) 160 #define MASK_MRSPTO (1 << 0) 161 162 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \ 163 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \ 164 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \ 165 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO) 166 167 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \ 168 MASK_MBUFREN | MASK_MBUFWEN | \ 169 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \ 170 MASK_MCMD12RBE | MASK_MCMD12CRE) 171 172 /* CE_HOST_STS1 */ 173 #define STS1_CMDSEQ (1 << 31) 174 175 /* CE_HOST_STS2 */ 176 #define STS2_CRCSTE (1 << 31) 177 #define STS2_CRC16E (1 << 30) 178 #define STS2_AC12CRCE (1 << 29) 179 #define STS2_RSPCRC7E (1 << 28) 180 #define STS2_CRCSTEBE (1 << 27) 181 #define STS2_RDATEBE (1 << 26) 182 #define STS2_AC12REBE (1 << 25) 183 #define STS2_RSPEBE (1 << 24) 184 #define STS2_AC12IDXE (1 << 23) 185 #define STS2_RSPIDXE (1 << 22) 186 #define STS2_CCSTO (1 << 15) 187 #define STS2_RDATTO (1 << 14) 188 #define STS2_DATBSYTO (1 << 13) 189 #define STS2_CRCSTTO (1 << 12) 190 #define STS2_AC12BSYTO (1 << 11) 191 #define STS2_RSPBSYTO (1 << 10) 192 #define STS2_AC12RSPTO (1 << 9) 193 #define STS2_RSPTO (1 << 8) 194 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \ 195 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE) 196 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \ 197 STS2_DATBSYTO | STS2_CRCSTTO | \ 198 STS2_AC12BSYTO | STS2_RSPBSYTO | \ 199 STS2_AC12RSPTO | STS2_RSPTO) 200 201 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */ 202 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */ 203 #define CLKDEV_INIT 400000 /* 400 KHz */ 204 205 enum mmcif_state { 206 STATE_IDLE, 207 STATE_REQUEST, 208 STATE_IOS, 209 STATE_TIMEOUT, 210 }; 211 212 enum mmcif_wait_for { 213 MMCIF_WAIT_FOR_REQUEST, 214 MMCIF_WAIT_FOR_CMD, 215 MMCIF_WAIT_FOR_MREAD, 216 MMCIF_WAIT_FOR_MWRITE, 217 MMCIF_WAIT_FOR_READ, 218 MMCIF_WAIT_FOR_WRITE, 219 MMCIF_WAIT_FOR_READ_END, 220 MMCIF_WAIT_FOR_WRITE_END, 221 MMCIF_WAIT_FOR_STOP, 222 }; 223 224 struct sh_mmcif_host { 225 struct mmc_host *mmc; 226 struct mmc_request *mrq; 227 struct platform_device *pd; 228 struct clk *hclk; 229 unsigned int clk; 230 int bus_width; 231 unsigned char timing; 232 bool sd_error; 233 bool dying; 234 long timeout; 235 void __iomem *addr; 236 u32 *pio_ptr; 237 spinlock_t lock; /* protect sh_mmcif_host::state */ 238 enum mmcif_state state; 239 enum mmcif_wait_for wait_for; 240 struct delayed_work timeout_work; 241 size_t blocksize; 242 int sg_idx; 243 int sg_blkidx; 244 bool power; 245 bool card_present; 246 struct mutex thread_lock; 247 248 /* DMA support */ 249 struct dma_chan *chan_rx; 250 struct dma_chan *chan_tx; 251 struct completion dma_complete; 252 bool dma_active; 253 }; 254 255 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host, 256 unsigned int reg, u32 val) 257 { 258 writel(val | readl(host->addr + reg), host->addr + reg); 259 } 260 261 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host, 262 unsigned int reg, u32 val) 263 { 264 writel(~val & readl(host->addr + reg), host->addr + reg); 265 } 266 267 static void mmcif_dma_complete(void *arg) 268 { 269 struct sh_mmcif_host *host = arg; 270 struct mmc_request *mrq = host->mrq; 271 272 dev_dbg(&host->pd->dev, "Command completed\n"); 273 274 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n", 275 dev_name(&host->pd->dev))) 276 return; 277 278 complete(&host->dma_complete); 279 } 280 281 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host) 282 { 283 struct mmc_data *data = host->mrq->data; 284 struct scatterlist *sg = data->sg; 285 struct dma_async_tx_descriptor *desc = NULL; 286 struct dma_chan *chan = host->chan_rx; 287 dma_cookie_t cookie = -EINVAL; 288 int ret; 289 290 ret = dma_map_sg(chan->device->dev, sg, data->sg_len, 291 DMA_FROM_DEVICE); 292 if (ret > 0) { 293 host->dma_active = true; 294 desc = dmaengine_prep_slave_sg(chan, sg, ret, 295 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 296 } 297 298 if (desc) { 299 desc->callback = mmcif_dma_complete; 300 desc->callback_param = host; 301 cookie = dmaengine_submit(desc); 302 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN); 303 dma_async_issue_pending(chan); 304 } 305 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n", 306 __func__, data->sg_len, ret, cookie); 307 308 if (!desc) { 309 /* DMA failed, fall back to PIO */ 310 if (ret >= 0) 311 ret = -EIO; 312 host->chan_rx = NULL; 313 host->dma_active = false; 314 dma_release_channel(chan); 315 /* Free the Tx channel too */ 316 chan = host->chan_tx; 317 if (chan) { 318 host->chan_tx = NULL; 319 dma_release_channel(chan); 320 } 321 dev_warn(&host->pd->dev, 322 "DMA failed: %d, falling back to PIO\n", ret); 323 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 324 } 325 326 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__, 327 desc, cookie, data->sg_len); 328 } 329 330 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host) 331 { 332 struct mmc_data *data = host->mrq->data; 333 struct scatterlist *sg = data->sg; 334 struct dma_async_tx_descriptor *desc = NULL; 335 struct dma_chan *chan = host->chan_tx; 336 dma_cookie_t cookie = -EINVAL; 337 int ret; 338 339 ret = dma_map_sg(chan->device->dev, sg, data->sg_len, 340 DMA_TO_DEVICE); 341 if (ret > 0) { 342 host->dma_active = true; 343 desc = dmaengine_prep_slave_sg(chan, sg, ret, 344 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 345 } 346 347 if (desc) { 348 desc->callback = mmcif_dma_complete; 349 desc->callback_param = host; 350 cookie = dmaengine_submit(desc); 351 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN); 352 dma_async_issue_pending(chan); 353 } 354 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n", 355 __func__, data->sg_len, ret, cookie); 356 357 if (!desc) { 358 /* DMA failed, fall back to PIO */ 359 if (ret >= 0) 360 ret = -EIO; 361 host->chan_tx = NULL; 362 host->dma_active = false; 363 dma_release_channel(chan); 364 /* Free the Rx channel too */ 365 chan = host->chan_rx; 366 if (chan) { 367 host->chan_rx = NULL; 368 dma_release_channel(chan); 369 } 370 dev_warn(&host->pd->dev, 371 "DMA failed: %d, falling back to PIO\n", ret); 372 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 373 } 374 375 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__, 376 desc, cookie); 377 } 378 379 static void sh_mmcif_request_dma(struct sh_mmcif_host *host, 380 struct sh_mmcif_plat_data *pdata) 381 { 382 struct resource *res = platform_get_resource(host->pd, IORESOURCE_MEM, 0); 383 struct dma_slave_config cfg; 384 dma_cap_mask_t mask; 385 int ret; 386 387 host->dma_active = false; 388 389 if (!pdata) 390 return; 391 392 if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0) 393 return; 394 395 /* We can only either use DMA for both Tx and Rx or not use it at all */ 396 dma_cap_zero(mask); 397 dma_cap_set(DMA_SLAVE, mask); 398 399 host->chan_tx = dma_request_channel(mask, shdma_chan_filter, 400 (void *)pdata->slave_id_tx); 401 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__, 402 host->chan_tx); 403 404 if (!host->chan_tx) 405 return; 406 407 cfg.slave_id = pdata->slave_id_tx; 408 cfg.direction = DMA_MEM_TO_DEV; 409 cfg.dst_addr = res->start + MMCIF_CE_DATA; 410 cfg.src_addr = 0; 411 ret = dmaengine_slave_config(host->chan_tx, &cfg); 412 if (ret < 0) 413 goto ecfgtx; 414 415 host->chan_rx = dma_request_channel(mask, shdma_chan_filter, 416 (void *)pdata->slave_id_rx); 417 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__, 418 host->chan_rx); 419 420 if (!host->chan_rx) 421 goto erqrx; 422 423 cfg.slave_id = pdata->slave_id_rx; 424 cfg.direction = DMA_DEV_TO_MEM; 425 cfg.dst_addr = 0; 426 cfg.src_addr = res->start + MMCIF_CE_DATA; 427 ret = dmaengine_slave_config(host->chan_rx, &cfg); 428 if (ret < 0) 429 goto ecfgrx; 430 431 return; 432 433 ecfgrx: 434 dma_release_channel(host->chan_rx); 435 host->chan_rx = NULL; 436 erqrx: 437 ecfgtx: 438 dma_release_channel(host->chan_tx); 439 host->chan_tx = NULL; 440 } 441 442 static void sh_mmcif_release_dma(struct sh_mmcif_host *host) 443 { 444 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 445 /* Descriptors are freed automatically */ 446 if (host->chan_tx) { 447 struct dma_chan *chan = host->chan_tx; 448 host->chan_tx = NULL; 449 dma_release_channel(chan); 450 } 451 if (host->chan_rx) { 452 struct dma_chan *chan = host->chan_rx; 453 host->chan_rx = NULL; 454 dma_release_channel(chan); 455 } 456 457 host->dma_active = false; 458 } 459 460 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk) 461 { 462 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data; 463 bool sup_pclk = p ? p->sup_pclk : false; 464 465 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); 466 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR); 467 468 if (!clk) 469 return; 470 if (sup_pclk && clk == host->clk) 471 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK); 472 else 473 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & 474 ((fls(DIV_ROUND_UP(host->clk, 475 clk) - 1) - 1) << 16)); 476 477 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); 478 } 479 480 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host) 481 { 482 u32 tmp; 483 484 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL); 485 486 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON); 487 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF); 488 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp | 489 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29); 490 /* byte swap on */ 491 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP); 492 } 493 494 static int sh_mmcif_error_manage(struct sh_mmcif_host *host) 495 { 496 u32 state1, state2; 497 int ret, timeout; 498 499 host->sd_error = false; 500 501 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1); 502 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2); 503 dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1); 504 dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2); 505 506 if (state1 & STS1_CMDSEQ) { 507 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK); 508 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK); 509 for (timeout = 10000000; timeout; timeout--) { 510 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1) 511 & STS1_CMDSEQ)) 512 break; 513 mdelay(1); 514 } 515 if (!timeout) { 516 dev_err(&host->pd->dev, 517 "Forced end of command sequence timeout err\n"); 518 return -EIO; 519 } 520 sh_mmcif_sync_reset(host); 521 dev_dbg(&host->pd->dev, "Forced end of command sequence\n"); 522 return -EIO; 523 } 524 525 if (state2 & STS2_CRC_ERR) { 526 dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n", 527 host->state, host->wait_for); 528 ret = -EIO; 529 } else if (state2 & STS2_TIMEOUT_ERR) { 530 dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n", 531 host->state, host->wait_for); 532 ret = -ETIMEDOUT; 533 } else { 534 dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n", 535 host->state, host->wait_for); 536 ret = -EIO; 537 } 538 return ret; 539 } 540 541 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p) 542 { 543 struct mmc_data *data = host->mrq->data; 544 545 host->sg_blkidx += host->blocksize; 546 547 /* data->sg->length must be a multiple of host->blocksize? */ 548 BUG_ON(host->sg_blkidx > data->sg->length); 549 550 if (host->sg_blkidx == data->sg->length) { 551 host->sg_blkidx = 0; 552 if (++host->sg_idx < data->sg_len) 553 host->pio_ptr = sg_virt(++data->sg); 554 } else { 555 host->pio_ptr = p; 556 } 557 558 return host->sg_idx != data->sg_len; 559 } 560 561 static void sh_mmcif_single_read(struct sh_mmcif_host *host, 562 struct mmc_request *mrq) 563 { 564 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 565 BLOCK_SIZE_MASK) + 3; 566 567 host->wait_for = MMCIF_WAIT_FOR_READ; 568 569 /* buf read enable */ 570 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 571 } 572 573 static bool sh_mmcif_read_block(struct sh_mmcif_host *host) 574 { 575 struct mmc_data *data = host->mrq->data; 576 u32 *p = sg_virt(data->sg); 577 int i; 578 579 if (host->sd_error) { 580 data->error = sh_mmcif_error_manage(host); 581 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error); 582 return false; 583 } 584 585 for (i = 0; i < host->blocksize / 4; i++) 586 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); 587 588 /* buffer read end */ 589 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE); 590 host->wait_for = MMCIF_WAIT_FOR_READ_END; 591 592 return true; 593 } 594 595 static void sh_mmcif_multi_read(struct sh_mmcif_host *host, 596 struct mmc_request *mrq) 597 { 598 struct mmc_data *data = mrq->data; 599 600 if (!data->sg_len || !data->sg->length) 601 return; 602 603 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 604 BLOCK_SIZE_MASK; 605 606 host->wait_for = MMCIF_WAIT_FOR_MREAD; 607 host->sg_idx = 0; 608 host->sg_blkidx = 0; 609 host->pio_ptr = sg_virt(data->sg); 610 611 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 612 } 613 614 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host) 615 { 616 struct mmc_data *data = host->mrq->data; 617 u32 *p = host->pio_ptr; 618 int i; 619 620 if (host->sd_error) { 621 data->error = sh_mmcif_error_manage(host); 622 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error); 623 return false; 624 } 625 626 BUG_ON(!data->sg->length); 627 628 for (i = 0; i < host->blocksize / 4; i++) 629 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); 630 631 if (!sh_mmcif_next_block(host, p)) 632 return false; 633 634 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 635 636 return true; 637 } 638 639 static void sh_mmcif_single_write(struct sh_mmcif_host *host, 640 struct mmc_request *mrq) 641 { 642 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 643 BLOCK_SIZE_MASK) + 3; 644 645 host->wait_for = MMCIF_WAIT_FOR_WRITE; 646 647 /* buf write enable */ 648 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 649 } 650 651 static bool sh_mmcif_write_block(struct sh_mmcif_host *host) 652 { 653 struct mmc_data *data = host->mrq->data; 654 u32 *p = sg_virt(data->sg); 655 int i; 656 657 if (host->sd_error) { 658 data->error = sh_mmcif_error_manage(host); 659 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error); 660 return false; 661 } 662 663 for (i = 0; i < host->blocksize / 4; i++) 664 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); 665 666 /* buffer write end */ 667 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE); 668 host->wait_for = MMCIF_WAIT_FOR_WRITE_END; 669 670 return true; 671 } 672 673 static void sh_mmcif_multi_write(struct sh_mmcif_host *host, 674 struct mmc_request *mrq) 675 { 676 struct mmc_data *data = mrq->data; 677 678 if (!data->sg_len || !data->sg->length) 679 return; 680 681 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 682 BLOCK_SIZE_MASK; 683 684 host->wait_for = MMCIF_WAIT_FOR_MWRITE; 685 host->sg_idx = 0; 686 host->sg_blkidx = 0; 687 host->pio_ptr = sg_virt(data->sg); 688 689 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 690 } 691 692 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host) 693 { 694 struct mmc_data *data = host->mrq->data; 695 u32 *p = host->pio_ptr; 696 int i; 697 698 if (host->sd_error) { 699 data->error = sh_mmcif_error_manage(host); 700 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error); 701 return false; 702 } 703 704 BUG_ON(!data->sg->length); 705 706 for (i = 0; i < host->blocksize / 4; i++) 707 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); 708 709 if (!sh_mmcif_next_block(host, p)) 710 return false; 711 712 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 713 714 return true; 715 } 716 717 static void sh_mmcif_get_response(struct sh_mmcif_host *host, 718 struct mmc_command *cmd) 719 { 720 if (cmd->flags & MMC_RSP_136) { 721 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3); 722 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2); 723 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1); 724 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); 725 } else 726 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); 727 } 728 729 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host, 730 struct mmc_command *cmd) 731 { 732 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12); 733 } 734 735 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host, 736 struct mmc_request *mrq) 737 { 738 struct mmc_data *data = mrq->data; 739 struct mmc_command *cmd = mrq->cmd; 740 u32 opc = cmd->opcode; 741 u32 tmp = 0; 742 743 /* Response Type check */ 744 switch (mmc_resp_type(cmd)) { 745 case MMC_RSP_NONE: 746 tmp |= CMD_SET_RTYP_NO; 747 break; 748 case MMC_RSP_R1: 749 case MMC_RSP_R1B: 750 case MMC_RSP_R3: 751 tmp |= CMD_SET_RTYP_6B; 752 break; 753 case MMC_RSP_R2: 754 tmp |= CMD_SET_RTYP_17B; 755 break; 756 default: 757 dev_err(&host->pd->dev, "Unsupported response type.\n"); 758 break; 759 } 760 switch (opc) { 761 /* RBSY */ 762 case MMC_SLEEP_AWAKE: 763 case MMC_SWITCH: 764 case MMC_STOP_TRANSMISSION: 765 case MMC_SET_WRITE_PROT: 766 case MMC_CLR_WRITE_PROT: 767 case MMC_ERASE: 768 tmp |= CMD_SET_RBSY; 769 break; 770 } 771 /* WDAT / DATW */ 772 if (data) { 773 tmp |= CMD_SET_WDAT; 774 switch (host->bus_width) { 775 case MMC_BUS_WIDTH_1: 776 tmp |= CMD_SET_DATW_1; 777 break; 778 case MMC_BUS_WIDTH_4: 779 tmp |= CMD_SET_DATW_4; 780 break; 781 case MMC_BUS_WIDTH_8: 782 tmp |= CMD_SET_DATW_8; 783 break; 784 default: 785 dev_err(&host->pd->dev, "Unsupported bus width.\n"); 786 break; 787 } 788 switch (host->timing) { 789 case MMC_TIMING_UHS_DDR50: 790 /* 791 * MMC core will only set this timing, if the host 792 * advertises the MMC_CAP_UHS_DDR50 capability. MMCIF 793 * implementations with this capability, e.g. sh73a0, 794 * will have to set it in their platform data. 795 */ 796 tmp |= CMD_SET_DARS; 797 break; 798 } 799 } 800 /* DWEN */ 801 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) 802 tmp |= CMD_SET_DWEN; 803 /* CMLTE/CMD12EN */ 804 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) { 805 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN; 806 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET, 807 data->blocks << 16); 808 } 809 /* RIDXC[1:0] check bits */ 810 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID || 811 opc == MMC_SEND_CSD || opc == MMC_SEND_CID) 812 tmp |= CMD_SET_RIDXC_BITS; 813 /* RCRC7C[1:0] check bits */ 814 if (opc == MMC_SEND_OP_COND) 815 tmp |= CMD_SET_CRC7C_BITS; 816 /* RCRC7C[1:0] internal CRC7 */ 817 if (opc == MMC_ALL_SEND_CID || 818 opc == MMC_SEND_CSD || opc == MMC_SEND_CID) 819 tmp |= CMD_SET_CRC7C_INTERNAL; 820 821 return (opc << 24) | tmp; 822 } 823 824 static int sh_mmcif_data_trans(struct sh_mmcif_host *host, 825 struct mmc_request *mrq, u32 opc) 826 { 827 switch (opc) { 828 case MMC_READ_MULTIPLE_BLOCK: 829 sh_mmcif_multi_read(host, mrq); 830 return 0; 831 case MMC_WRITE_MULTIPLE_BLOCK: 832 sh_mmcif_multi_write(host, mrq); 833 return 0; 834 case MMC_WRITE_BLOCK: 835 sh_mmcif_single_write(host, mrq); 836 return 0; 837 case MMC_READ_SINGLE_BLOCK: 838 case MMC_SEND_EXT_CSD: 839 sh_mmcif_single_read(host, mrq); 840 return 0; 841 default: 842 dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc); 843 return -EINVAL; 844 } 845 } 846 847 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host, 848 struct mmc_request *mrq) 849 { 850 struct mmc_command *cmd = mrq->cmd; 851 u32 opc = cmd->opcode; 852 u32 mask; 853 854 switch (opc) { 855 /* response busy check */ 856 case MMC_SLEEP_AWAKE: 857 case MMC_SWITCH: 858 case MMC_STOP_TRANSMISSION: 859 case MMC_SET_WRITE_PROT: 860 case MMC_CLR_WRITE_PROT: 861 case MMC_ERASE: 862 mask = MASK_START_CMD | MASK_MRBSYE; 863 break; 864 default: 865 mask = MASK_START_CMD | MASK_MCRSPE; 866 break; 867 } 868 869 if (mrq->data) { 870 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0); 871 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 872 mrq->data->blksz); 873 } 874 opc = sh_mmcif_set_cmd(host, mrq); 875 876 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0); 877 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask); 878 /* set arg */ 879 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg); 880 /* set cmd */ 881 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc); 882 883 host->wait_for = MMCIF_WAIT_FOR_CMD; 884 schedule_delayed_work(&host->timeout_work, host->timeout); 885 } 886 887 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host, 888 struct mmc_request *mrq) 889 { 890 switch (mrq->cmd->opcode) { 891 case MMC_READ_MULTIPLE_BLOCK: 892 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE); 893 break; 894 case MMC_WRITE_MULTIPLE_BLOCK: 895 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE); 896 break; 897 default: 898 dev_err(&host->pd->dev, "unsupported stop cmd\n"); 899 mrq->stop->error = sh_mmcif_error_manage(host); 900 return; 901 } 902 903 host->wait_for = MMCIF_WAIT_FOR_STOP; 904 } 905 906 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq) 907 { 908 struct sh_mmcif_host *host = mmc_priv(mmc); 909 unsigned long flags; 910 911 spin_lock_irqsave(&host->lock, flags); 912 if (host->state != STATE_IDLE) { 913 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state); 914 spin_unlock_irqrestore(&host->lock, flags); 915 mrq->cmd->error = -EAGAIN; 916 mmc_request_done(mmc, mrq); 917 return; 918 } 919 920 host->state = STATE_REQUEST; 921 spin_unlock_irqrestore(&host->lock, flags); 922 923 switch (mrq->cmd->opcode) { 924 /* MMCIF does not support SD/SDIO command */ 925 case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */ 926 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */ 927 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR) 928 break; 929 case MMC_APP_CMD: 930 case SD_IO_RW_DIRECT: 931 host->state = STATE_IDLE; 932 mrq->cmd->error = -ETIMEDOUT; 933 mmc_request_done(mmc, mrq); 934 return; 935 default: 936 break; 937 } 938 939 host->mrq = mrq; 940 941 sh_mmcif_start_cmd(host, mrq); 942 } 943 944 static int sh_mmcif_clk_update(struct sh_mmcif_host *host) 945 { 946 int ret = clk_enable(host->hclk); 947 948 if (!ret) { 949 host->clk = clk_get_rate(host->hclk); 950 host->mmc->f_max = host->clk / 2; 951 host->mmc->f_min = host->clk / 512; 952 } 953 954 return ret; 955 } 956 957 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios) 958 { 959 struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data; 960 struct mmc_host *mmc = host->mmc; 961 962 if (pd && pd->set_pwr) 963 pd->set_pwr(host->pd, ios->power_mode != MMC_POWER_OFF); 964 if (!IS_ERR(mmc->supply.vmmc)) 965 /* Errors ignored... */ 966 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 967 ios->power_mode ? ios->vdd : 0); 968 } 969 970 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 971 { 972 struct sh_mmcif_host *host = mmc_priv(mmc); 973 unsigned long flags; 974 975 spin_lock_irqsave(&host->lock, flags); 976 if (host->state != STATE_IDLE) { 977 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state); 978 spin_unlock_irqrestore(&host->lock, flags); 979 return; 980 } 981 982 host->state = STATE_IOS; 983 spin_unlock_irqrestore(&host->lock, flags); 984 985 if (ios->power_mode == MMC_POWER_UP) { 986 if (!host->card_present) { 987 /* See if we also get DMA */ 988 sh_mmcif_request_dma(host, host->pd->dev.platform_data); 989 host->card_present = true; 990 } 991 sh_mmcif_set_power(host, ios); 992 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) { 993 /* clock stop */ 994 sh_mmcif_clock_control(host, 0); 995 if (ios->power_mode == MMC_POWER_OFF) { 996 if (host->card_present) { 997 sh_mmcif_release_dma(host); 998 host->card_present = false; 999 } 1000 } 1001 if (host->power) { 1002 pm_runtime_put_sync(&host->pd->dev); 1003 clk_disable(host->hclk); 1004 host->power = false; 1005 if (ios->power_mode == MMC_POWER_OFF) 1006 sh_mmcif_set_power(host, ios); 1007 } 1008 host->state = STATE_IDLE; 1009 return; 1010 } 1011 1012 if (ios->clock) { 1013 if (!host->power) { 1014 sh_mmcif_clk_update(host); 1015 pm_runtime_get_sync(&host->pd->dev); 1016 host->power = true; 1017 sh_mmcif_sync_reset(host); 1018 } 1019 sh_mmcif_clock_control(host, ios->clock); 1020 } 1021 1022 host->timing = ios->timing; 1023 host->bus_width = ios->bus_width; 1024 host->state = STATE_IDLE; 1025 } 1026 1027 static int sh_mmcif_get_cd(struct mmc_host *mmc) 1028 { 1029 struct sh_mmcif_host *host = mmc_priv(mmc); 1030 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data; 1031 int ret = mmc_gpio_get_cd(mmc); 1032 1033 if (ret >= 0) 1034 return ret; 1035 1036 if (!p || !p->get_cd) 1037 return -ENOSYS; 1038 else 1039 return p->get_cd(host->pd); 1040 } 1041 1042 static struct mmc_host_ops sh_mmcif_ops = { 1043 .request = sh_mmcif_request, 1044 .set_ios = sh_mmcif_set_ios, 1045 .get_cd = sh_mmcif_get_cd, 1046 }; 1047 1048 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host) 1049 { 1050 struct mmc_command *cmd = host->mrq->cmd; 1051 struct mmc_data *data = host->mrq->data; 1052 long time; 1053 1054 if (host->sd_error) { 1055 switch (cmd->opcode) { 1056 case MMC_ALL_SEND_CID: 1057 case MMC_SELECT_CARD: 1058 case MMC_APP_CMD: 1059 cmd->error = -ETIMEDOUT; 1060 break; 1061 default: 1062 cmd->error = sh_mmcif_error_manage(host); 1063 break; 1064 } 1065 dev_dbg(&host->pd->dev, "CMD%d error %d\n", 1066 cmd->opcode, cmd->error); 1067 host->sd_error = false; 1068 return false; 1069 } 1070 if (!(cmd->flags & MMC_RSP_PRESENT)) { 1071 cmd->error = 0; 1072 return false; 1073 } 1074 1075 sh_mmcif_get_response(host, cmd); 1076 1077 if (!data) 1078 return false; 1079 1080 /* 1081 * Completion can be signalled from DMA callback and error, so, have to 1082 * reset here, before setting .dma_active 1083 */ 1084 init_completion(&host->dma_complete); 1085 1086 if (data->flags & MMC_DATA_READ) { 1087 if (host->chan_rx) 1088 sh_mmcif_start_dma_rx(host); 1089 } else { 1090 if (host->chan_tx) 1091 sh_mmcif_start_dma_tx(host); 1092 } 1093 1094 if (!host->dma_active) { 1095 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode); 1096 return !data->error; 1097 } 1098 1099 /* Running in the IRQ thread, can sleep */ 1100 time = wait_for_completion_interruptible_timeout(&host->dma_complete, 1101 host->timeout); 1102 1103 if (data->flags & MMC_DATA_READ) 1104 dma_unmap_sg(host->chan_rx->device->dev, 1105 data->sg, data->sg_len, 1106 DMA_FROM_DEVICE); 1107 else 1108 dma_unmap_sg(host->chan_tx->device->dev, 1109 data->sg, data->sg_len, 1110 DMA_TO_DEVICE); 1111 1112 if (host->sd_error) { 1113 dev_err(host->mmc->parent, 1114 "Error IRQ while waiting for DMA completion!\n"); 1115 /* Woken up by an error IRQ: abort DMA */ 1116 data->error = sh_mmcif_error_manage(host); 1117 } else if (!time) { 1118 dev_err(host->mmc->parent, "DMA timeout!\n"); 1119 data->error = -ETIMEDOUT; 1120 } else if (time < 0) { 1121 dev_err(host->mmc->parent, 1122 "wait_for_completion_...() error %ld!\n", time); 1123 data->error = time; 1124 } 1125 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, 1126 BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 1127 host->dma_active = false; 1128 1129 if (data->error) { 1130 data->bytes_xfered = 0; 1131 /* Abort DMA */ 1132 if (data->flags & MMC_DATA_READ) 1133 dmaengine_terminate_all(host->chan_rx); 1134 else 1135 dmaengine_terminate_all(host->chan_tx); 1136 } 1137 1138 return false; 1139 } 1140 1141 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id) 1142 { 1143 struct sh_mmcif_host *host = dev_id; 1144 struct mmc_request *mrq; 1145 bool wait = false; 1146 1147 cancel_delayed_work_sync(&host->timeout_work); 1148 1149 mutex_lock(&host->thread_lock); 1150 1151 mrq = host->mrq; 1152 if (!mrq) { 1153 dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n", 1154 host->state, host->wait_for); 1155 mutex_unlock(&host->thread_lock); 1156 return IRQ_HANDLED; 1157 } 1158 1159 /* 1160 * All handlers return true, if processing continues, and false, if the 1161 * request has to be completed - successfully or not 1162 */ 1163 switch (host->wait_for) { 1164 case MMCIF_WAIT_FOR_REQUEST: 1165 /* We're too late, the timeout has already kicked in */ 1166 mutex_unlock(&host->thread_lock); 1167 return IRQ_HANDLED; 1168 case MMCIF_WAIT_FOR_CMD: 1169 /* Wait for data? */ 1170 wait = sh_mmcif_end_cmd(host); 1171 break; 1172 case MMCIF_WAIT_FOR_MREAD: 1173 /* Wait for more data? */ 1174 wait = sh_mmcif_mread_block(host); 1175 break; 1176 case MMCIF_WAIT_FOR_READ: 1177 /* Wait for data end? */ 1178 wait = sh_mmcif_read_block(host); 1179 break; 1180 case MMCIF_WAIT_FOR_MWRITE: 1181 /* Wait data to write? */ 1182 wait = sh_mmcif_mwrite_block(host); 1183 break; 1184 case MMCIF_WAIT_FOR_WRITE: 1185 /* Wait for data end? */ 1186 wait = sh_mmcif_write_block(host); 1187 break; 1188 case MMCIF_WAIT_FOR_STOP: 1189 if (host->sd_error) { 1190 mrq->stop->error = sh_mmcif_error_manage(host); 1191 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error); 1192 break; 1193 } 1194 sh_mmcif_get_cmd12response(host, mrq->stop); 1195 mrq->stop->error = 0; 1196 break; 1197 case MMCIF_WAIT_FOR_READ_END: 1198 case MMCIF_WAIT_FOR_WRITE_END: 1199 if (host->sd_error) { 1200 mrq->data->error = sh_mmcif_error_manage(host); 1201 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error); 1202 } 1203 break; 1204 default: 1205 BUG(); 1206 } 1207 1208 if (wait) { 1209 schedule_delayed_work(&host->timeout_work, host->timeout); 1210 /* Wait for more data */ 1211 mutex_unlock(&host->thread_lock); 1212 return IRQ_HANDLED; 1213 } 1214 1215 if (host->wait_for != MMCIF_WAIT_FOR_STOP) { 1216 struct mmc_data *data = mrq->data; 1217 if (!mrq->cmd->error && data && !data->error) 1218 data->bytes_xfered = 1219 data->blocks * data->blksz; 1220 1221 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) { 1222 sh_mmcif_stop_cmd(host, mrq); 1223 if (!mrq->stop->error) { 1224 schedule_delayed_work(&host->timeout_work, host->timeout); 1225 mutex_unlock(&host->thread_lock); 1226 return IRQ_HANDLED; 1227 } 1228 } 1229 } 1230 1231 host->wait_for = MMCIF_WAIT_FOR_REQUEST; 1232 host->state = STATE_IDLE; 1233 host->mrq = NULL; 1234 mmc_request_done(host->mmc, mrq); 1235 1236 mutex_unlock(&host->thread_lock); 1237 1238 return IRQ_HANDLED; 1239 } 1240 1241 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id) 1242 { 1243 struct sh_mmcif_host *host = dev_id; 1244 u32 state; 1245 1246 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT); 1247 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state); 1248 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN); 1249 1250 if (state & ~MASK_CLEAN) 1251 dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n", 1252 state); 1253 1254 if (state & INT_ERR_STS || state & ~INT_ALL) { 1255 host->sd_error = true; 1256 dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state); 1257 } 1258 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) { 1259 if (!host->mrq) 1260 dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state); 1261 if (!host->dma_active) 1262 return IRQ_WAKE_THREAD; 1263 else if (host->sd_error) 1264 mmcif_dma_complete(host); 1265 } else { 1266 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state); 1267 } 1268 1269 return IRQ_HANDLED; 1270 } 1271 1272 static void mmcif_timeout_work(struct work_struct *work) 1273 { 1274 struct delayed_work *d = container_of(work, struct delayed_work, work); 1275 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work); 1276 struct mmc_request *mrq = host->mrq; 1277 unsigned long flags; 1278 1279 if (host->dying) 1280 /* Don't run after mmc_remove_host() */ 1281 return; 1282 1283 dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n", 1284 host->wait_for, mrq->cmd->opcode); 1285 1286 spin_lock_irqsave(&host->lock, flags); 1287 if (host->state == STATE_IDLE) { 1288 spin_unlock_irqrestore(&host->lock, flags); 1289 return; 1290 } 1291 1292 host->state = STATE_TIMEOUT; 1293 spin_unlock_irqrestore(&host->lock, flags); 1294 1295 /* 1296 * Handle races with cancel_delayed_work(), unless 1297 * cancel_delayed_work_sync() is used 1298 */ 1299 switch (host->wait_for) { 1300 case MMCIF_WAIT_FOR_CMD: 1301 mrq->cmd->error = sh_mmcif_error_manage(host); 1302 break; 1303 case MMCIF_WAIT_FOR_STOP: 1304 mrq->stop->error = sh_mmcif_error_manage(host); 1305 break; 1306 case MMCIF_WAIT_FOR_MREAD: 1307 case MMCIF_WAIT_FOR_MWRITE: 1308 case MMCIF_WAIT_FOR_READ: 1309 case MMCIF_WAIT_FOR_WRITE: 1310 case MMCIF_WAIT_FOR_READ_END: 1311 case MMCIF_WAIT_FOR_WRITE_END: 1312 mrq->data->error = sh_mmcif_error_manage(host); 1313 break; 1314 default: 1315 BUG(); 1316 } 1317 1318 host->state = STATE_IDLE; 1319 host->wait_for = MMCIF_WAIT_FOR_REQUEST; 1320 host->mrq = NULL; 1321 mmc_request_done(host->mmc, mrq); 1322 } 1323 1324 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host) 1325 { 1326 struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data; 1327 struct mmc_host *mmc = host->mmc; 1328 1329 mmc_regulator_get_supply(mmc); 1330 1331 if (!pd) 1332 return; 1333 1334 if (!mmc->ocr_avail) 1335 mmc->ocr_avail = pd->ocr; 1336 else if (pd->ocr) 1337 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); 1338 } 1339 1340 static int sh_mmcif_probe(struct platform_device *pdev) 1341 { 1342 int ret = 0, irq[2]; 1343 struct mmc_host *mmc; 1344 struct sh_mmcif_host *host; 1345 struct sh_mmcif_plat_data *pd = pdev->dev.platform_data; 1346 struct resource *res; 1347 void __iomem *reg; 1348 const char *name; 1349 1350 irq[0] = platform_get_irq(pdev, 0); 1351 irq[1] = platform_get_irq(pdev, 1); 1352 if (irq[0] < 0) { 1353 dev_err(&pdev->dev, "Get irq error\n"); 1354 return -ENXIO; 1355 } 1356 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1357 if (!res) { 1358 dev_err(&pdev->dev, "platform_get_resource error.\n"); 1359 return -ENXIO; 1360 } 1361 reg = ioremap(res->start, resource_size(res)); 1362 if (!reg) { 1363 dev_err(&pdev->dev, "ioremap error.\n"); 1364 return -ENOMEM; 1365 } 1366 1367 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev); 1368 if (!mmc) { 1369 ret = -ENOMEM; 1370 goto ealloch; 1371 } 1372 mmc_of_parse(mmc); 1373 host = mmc_priv(mmc); 1374 host->mmc = mmc; 1375 host->addr = reg; 1376 host->timeout = msecs_to_jiffies(1000); 1377 1378 host->pd = pdev; 1379 1380 spin_lock_init(&host->lock); 1381 1382 mmc->ops = &sh_mmcif_ops; 1383 sh_mmcif_init_ocr(host); 1384 1385 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY; 1386 if (pd && pd->caps) 1387 mmc->caps |= pd->caps; 1388 mmc->max_segs = 32; 1389 mmc->max_blk_size = 512; 1390 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs; 1391 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size; 1392 mmc->max_seg_size = mmc->max_req_size; 1393 1394 platform_set_drvdata(pdev, host); 1395 1396 pm_runtime_enable(&pdev->dev); 1397 host->power = false; 1398 1399 host->hclk = clk_get(&pdev->dev, NULL); 1400 if (IS_ERR(host->hclk)) { 1401 ret = PTR_ERR(host->hclk); 1402 dev_err(&pdev->dev, "cannot get clock: %d\n", ret); 1403 goto eclkget; 1404 } 1405 ret = sh_mmcif_clk_update(host); 1406 if (ret < 0) 1407 goto eclkupdate; 1408 1409 ret = pm_runtime_resume(&pdev->dev); 1410 if (ret < 0) 1411 goto eresume; 1412 1413 INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work); 1414 1415 sh_mmcif_sync_reset(host); 1416 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1417 1418 name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error"; 1419 ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, name, host); 1420 if (ret) { 1421 dev_err(&pdev->dev, "request_irq error (%s)\n", name); 1422 goto ereqirq0; 1423 } 1424 if (irq[1] >= 0) { 1425 ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 1426 0, "sh_mmc:int", host); 1427 if (ret) { 1428 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n"); 1429 goto ereqirq1; 1430 } 1431 } 1432 1433 if (pd && pd->use_cd_gpio) { 1434 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio); 1435 if (ret < 0) 1436 goto erqcd; 1437 } 1438 1439 mutex_init(&host->thread_lock); 1440 1441 clk_disable(host->hclk); 1442 ret = mmc_add_host(mmc); 1443 if (ret < 0) 1444 goto emmcaddh; 1445 1446 dev_pm_qos_expose_latency_limit(&pdev->dev, 100); 1447 1448 dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION); 1449 dev_dbg(&pdev->dev, "chip ver H'%04x\n", 1450 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff); 1451 return ret; 1452 1453 emmcaddh: 1454 erqcd: 1455 if (irq[1] >= 0) 1456 free_irq(irq[1], host); 1457 ereqirq1: 1458 free_irq(irq[0], host); 1459 ereqirq0: 1460 pm_runtime_suspend(&pdev->dev); 1461 eresume: 1462 clk_disable(host->hclk); 1463 eclkupdate: 1464 clk_put(host->hclk); 1465 eclkget: 1466 pm_runtime_disable(&pdev->dev); 1467 mmc_free_host(mmc); 1468 ealloch: 1469 iounmap(reg); 1470 return ret; 1471 } 1472 1473 static int sh_mmcif_remove(struct platform_device *pdev) 1474 { 1475 struct sh_mmcif_host *host = platform_get_drvdata(pdev); 1476 int irq[2]; 1477 1478 host->dying = true; 1479 clk_enable(host->hclk); 1480 pm_runtime_get_sync(&pdev->dev); 1481 1482 dev_pm_qos_hide_latency_limit(&pdev->dev); 1483 1484 mmc_remove_host(host->mmc); 1485 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1486 1487 /* 1488 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the 1489 * mmc_remove_host() call above. But swapping order doesn't help either 1490 * (a query on the linux-mmc mailing list didn't bring any replies). 1491 */ 1492 cancel_delayed_work_sync(&host->timeout_work); 1493 1494 if (host->addr) 1495 iounmap(host->addr); 1496 1497 irq[0] = platform_get_irq(pdev, 0); 1498 irq[1] = platform_get_irq(pdev, 1); 1499 1500 free_irq(irq[0], host); 1501 if (irq[1] >= 0) 1502 free_irq(irq[1], host); 1503 1504 platform_set_drvdata(pdev, NULL); 1505 1506 clk_disable(host->hclk); 1507 mmc_free_host(host->mmc); 1508 pm_runtime_put_sync(&pdev->dev); 1509 pm_runtime_disable(&pdev->dev); 1510 1511 return 0; 1512 } 1513 1514 #ifdef CONFIG_PM 1515 static int sh_mmcif_suspend(struct device *dev) 1516 { 1517 struct sh_mmcif_host *host = dev_get_drvdata(dev); 1518 int ret = mmc_suspend_host(host->mmc); 1519 1520 if (!ret) 1521 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1522 1523 return ret; 1524 } 1525 1526 static int sh_mmcif_resume(struct device *dev) 1527 { 1528 struct sh_mmcif_host *host = dev_get_drvdata(dev); 1529 1530 return mmc_resume_host(host->mmc); 1531 } 1532 #else 1533 #define sh_mmcif_suspend NULL 1534 #define sh_mmcif_resume NULL 1535 #endif /* CONFIG_PM */ 1536 1537 static const struct of_device_id mmcif_of_match[] = { 1538 { .compatible = "renesas,sh-mmcif" }, 1539 { } 1540 }; 1541 MODULE_DEVICE_TABLE(of, mmcif_of_match); 1542 1543 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = { 1544 .suspend = sh_mmcif_suspend, 1545 .resume = sh_mmcif_resume, 1546 }; 1547 1548 static struct platform_driver sh_mmcif_driver = { 1549 .probe = sh_mmcif_probe, 1550 .remove = sh_mmcif_remove, 1551 .driver = { 1552 .name = DRIVER_NAME, 1553 .pm = &sh_mmcif_dev_pm_ops, 1554 .owner = THIS_MODULE, 1555 .of_match_table = mmcif_of_match, 1556 }, 1557 }; 1558 1559 module_platform_driver(sh_mmcif_driver); 1560 1561 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver"); 1562 MODULE_LICENSE("GPL"); 1563 MODULE_ALIAS("platform:" DRIVER_NAME); 1564 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>"); 1565