xref: /openbmc/linux/drivers/mmc/host/sh_mmcif.c (revision 83a0c779)
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18 
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44 
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/pagemap.h>
61 #include <linux/platform_device.h>
62 #include <linux/pm_qos.h>
63 #include <linux/pm_runtime.h>
64 #include <linux/spinlock.h>
65 #include <linux/module.h>
66 
67 #define DRIVER_NAME	"sh_mmcif"
68 #define DRIVER_VERSION	"2010-04-28"
69 
70 /* CE_CMD_SET */
71 #define CMD_MASK		0x3f000000
72 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
73 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
74 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
75 #define CMD_SET_RBSY		(1 << 21) /* R1b */
76 #define CMD_SET_CCSEN		(1 << 20)
77 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
78 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
79 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
80 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
81 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
82 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
83 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
84 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
85 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
86 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
87 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
88 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
89 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
90 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
91 #define CMD_SET_CCSH		(1 << 5)
92 #define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
93 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
94 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
95 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
96 
97 /* CE_CMD_CTRL */
98 #define CMD_CTRL_BREAK		(1 << 0)
99 
100 /* CE_BLOCK_SET */
101 #define BLOCK_SIZE_MASK		0x0000ffff
102 
103 /* CE_INT */
104 #define INT_CCSDE		(1 << 29)
105 #define INT_CMD12DRE		(1 << 26)
106 #define INT_CMD12RBE		(1 << 25)
107 #define INT_CMD12CRE		(1 << 24)
108 #define INT_DTRANE		(1 << 23)
109 #define INT_BUFRE		(1 << 22)
110 #define INT_BUFWEN		(1 << 21)
111 #define INT_BUFREN		(1 << 20)
112 #define INT_CCSRCV		(1 << 19)
113 #define INT_RBSYE		(1 << 17)
114 #define INT_CRSPE		(1 << 16)
115 #define INT_CMDVIO		(1 << 15)
116 #define INT_BUFVIO		(1 << 14)
117 #define INT_WDATERR		(1 << 11)
118 #define INT_RDATERR		(1 << 10)
119 #define INT_RIDXERR		(1 << 9)
120 #define INT_RSPERR		(1 << 8)
121 #define INT_CCSTO		(1 << 5)
122 #define INT_CRCSTO		(1 << 4)
123 #define INT_WDATTO		(1 << 3)
124 #define INT_RDATTO		(1 << 2)
125 #define INT_RBSYTO		(1 << 1)
126 #define INT_RSPTO		(1 << 0)
127 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
128 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
129 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
130 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
131 
132 #define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
133 				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
134 				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
135 
136 /* CE_INT_MASK */
137 #define MASK_ALL		0x00000000
138 #define MASK_MCCSDE		(1 << 29)
139 #define MASK_MCMD12DRE		(1 << 26)
140 #define MASK_MCMD12RBE		(1 << 25)
141 #define MASK_MCMD12CRE		(1 << 24)
142 #define MASK_MDTRANE		(1 << 23)
143 #define MASK_MBUFRE		(1 << 22)
144 #define MASK_MBUFWEN		(1 << 21)
145 #define MASK_MBUFREN		(1 << 20)
146 #define MASK_MCCSRCV		(1 << 19)
147 #define MASK_MRBSYE		(1 << 17)
148 #define MASK_MCRSPE		(1 << 16)
149 #define MASK_MCMDVIO		(1 << 15)
150 #define MASK_MBUFVIO		(1 << 14)
151 #define MASK_MWDATERR		(1 << 11)
152 #define MASK_MRDATERR		(1 << 10)
153 #define MASK_MRIDXERR		(1 << 9)
154 #define MASK_MRSPERR		(1 << 8)
155 #define MASK_MCCSTO		(1 << 5)
156 #define MASK_MCRCSTO		(1 << 4)
157 #define MASK_MWDATTO		(1 << 3)
158 #define MASK_MRDATTO		(1 << 2)
159 #define MASK_MRBSYTO		(1 << 1)
160 #define MASK_MRSPTO		(1 << 0)
161 
162 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
163 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
164 				 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
165 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
166 
167 #define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
168 				 MASK_MBUFREN | MASK_MBUFWEN |			\
169 				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
170 				 MASK_MCMD12RBE | MASK_MCMD12CRE)
171 
172 /* CE_HOST_STS1 */
173 #define STS1_CMDSEQ		(1 << 31)
174 
175 /* CE_HOST_STS2 */
176 #define STS2_CRCSTE		(1 << 31)
177 #define STS2_CRC16E		(1 << 30)
178 #define STS2_AC12CRCE		(1 << 29)
179 #define STS2_RSPCRC7E		(1 << 28)
180 #define STS2_CRCSTEBE		(1 << 27)
181 #define STS2_RDATEBE		(1 << 26)
182 #define STS2_AC12REBE		(1 << 25)
183 #define STS2_RSPEBE		(1 << 24)
184 #define STS2_AC12IDXE		(1 << 23)
185 #define STS2_RSPIDXE		(1 << 22)
186 #define STS2_CCSTO		(1 << 15)
187 #define STS2_RDATTO		(1 << 14)
188 #define STS2_DATBSYTO		(1 << 13)
189 #define STS2_CRCSTTO		(1 << 12)
190 #define STS2_AC12BSYTO		(1 << 11)
191 #define STS2_RSPBSYTO		(1 << 10)
192 #define STS2_AC12RSPTO		(1 << 9)
193 #define STS2_RSPTO		(1 << 8)
194 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
195 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
196 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
197 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
198 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
199 				 STS2_AC12RSPTO | STS2_RSPTO)
200 
201 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
202 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
203 #define CLKDEV_INIT		400000   /* 400 KHz */
204 
205 enum mmcif_state {
206 	STATE_IDLE,
207 	STATE_REQUEST,
208 	STATE_IOS,
209 	STATE_TIMEOUT,
210 };
211 
212 enum mmcif_wait_for {
213 	MMCIF_WAIT_FOR_REQUEST,
214 	MMCIF_WAIT_FOR_CMD,
215 	MMCIF_WAIT_FOR_MREAD,
216 	MMCIF_WAIT_FOR_MWRITE,
217 	MMCIF_WAIT_FOR_READ,
218 	MMCIF_WAIT_FOR_WRITE,
219 	MMCIF_WAIT_FOR_READ_END,
220 	MMCIF_WAIT_FOR_WRITE_END,
221 	MMCIF_WAIT_FOR_STOP,
222 };
223 
224 struct sh_mmcif_host {
225 	struct mmc_host *mmc;
226 	struct mmc_request *mrq;
227 	struct platform_device *pd;
228 	struct clk *hclk;
229 	unsigned int clk;
230 	int bus_width;
231 	unsigned char timing;
232 	bool sd_error;
233 	bool dying;
234 	long timeout;
235 	void __iomem *addr;
236 	u32 *pio_ptr;
237 	spinlock_t lock;		/* protect sh_mmcif_host::state */
238 	enum mmcif_state state;
239 	enum mmcif_wait_for wait_for;
240 	struct delayed_work timeout_work;
241 	size_t blocksize;
242 	int sg_idx;
243 	int sg_blkidx;
244 	bool power;
245 	bool card_present;
246 	struct mutex thread_lock;
247 
248 	/* DMA support */
249 	struct dma_chan		*chan_rx;
250 	struct dma_chan		*chan_tx;
251 	struct completion	dma_complete;
252 	bool			dma_active;
253 };
254 
255 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
256 					unsigned int reg, u32 val)
257 {
258 	writel(val | readl(host->addr + reg), host->addr + reg);
259 }
260 
261 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
262 					unsigned int reg, u32 val)
263 {
264 	writel(~val & readl(host->addr + reg), host->addr + reg);
265 }
266 
267 static void mmcif_dma_complete(void *arg)
268 {
269 	struct sh_mmcif_host *host = arg;
270 	struct mmc_request *mrq = host->mrq;
271 
272 	dev_dbg(&host->pd->dev, "Command completed\n");
273 
274 	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
275 		 dev_name(&host->pd->dev)))
276 		return;
277 
278 	complete(&host->dma_complete);
279 }
280 
281 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
282 {
283 	struct mmc_data *data = host->mrq->data;
284 	struct scatterlist *sg = data->sg;
285 	struct dma_async_tx_descriptor *desc = NULL;
286 	struct dma_chan *chan = host->chan_rx;
287 	dma_cookie_t cookie = -EINVAL;
288 	int ret;
289 
290 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
291 			 DMA_FROM_DEVICE);
292 	if (ret > 0) {
293 		host->dma_active = true;
294 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
295 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
296 	}
297 
298 	if (desc) {
299 		desc->callback = mmcif_dma_complete;
300 		desc->callback_param = host;
301 		cookie = dmaengine_submit(desc);
302 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
303 		dma_async_issue_pending(chan);
304 	}
305 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
306 		__func__, data->sg_len, ret, cookie);
307 
308 	if (!desc) {
309 		/* DMA failed, fall back to PIO */
310 		if (ret >= 0)
311 			ret = -EIO;
312 		host->chan_rx = NULL;
313 		host->dma_active = false;
314 		dma_release_channel(chan);
315 		/* Free the Tx channel too */
316 		chan = host->chan_tx;
317 		if (chan) {
318 			host->chan_tx = NULL;
319 			dma_release_channel(chan);
320 		}
321 		dev_warn(&host->pd->dev,
322 			 "DMA failed: %d, falling back to PIO\n", ret);
323 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
324 	}
325 
326 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
327 		desc, cookie, data->sg_len);
328 }
329 
330 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
331 {
332 	struct mmc_data *data = host->mrq->data;
333 	struct scatterlist *sg = data->sg;
334 	struct dma_async_tx_descriptor *desc = NULL;
335 	struct dma_chan *chan = host->chan_tx;
336 	dma_cookie_t cookie = -EINVAL;
337 	int ret;
338 
339 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
340 			 DMA_TO_DEVICE);
341 	if (ret > 0) {
342 		host->dma_active = true;
343 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
344 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
345 	}
346 
347 	if (desc) {
348 		desc->callback = mmcif_dma_complete;
349 		desc->callback_param = host;
350 		cookie = dmaengine_submit(desc);
351 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
352 		dma_async_issue_pending(chan);
353 	}
354 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
355 		__func__, data->sg_len, ret, cookie);
356 
357 	if (!desc) {
358 		/* DMA failed, fall back to PIO */
359 		if (ret >= 0)
360 			ret = -EIO;
361 		host->chan_tx = NULL;
362 		host->dma_active = false;
363 		dma_release_channel(chan);
364 		/* Free the Rx channel too */
365 		chan = host->chan_rx;
366 		if (chan) {
367 			host->chan_rx = NULL;
368 			dma_release_channel(chan);
369 		}
370 		dev_warn(&host->pd->dev,
371 			 "DMA failed: %d, falling back to PIO\n", ret);
372 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
373 	}
374 
375 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
376 		desc, cookie);
377 }
378 
379 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
380 				 struct sh_mmcif_plat_data *pdata)
381 {
382 	struct resource *res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
383 	struct dma_slave_config cfg;
384 	dma_cap_mask_t mask;
385 	int ret;
386 
387 	host->dma_active = false;
388 
389 	if (!pdata)
390 		return;
391 
392 	if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
393 		return;
394 
395 	/* We can only either use DMA for both Tx and Rx or not use it at all */
396 	dma_cap_zero(mask);
397 	dma_cap_set(DMA_SLAVE, mask);
398 
399 	host->chan_tx = dma_request_channel(mask, shdma_chan_filter,
400 					    (void *)pdata->slave_id_tx);
401 	dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
402 		host->chan_tx);
403 
404 	if (!host->chan_tx)
405 		return;
406 
407 	cfg.slave_id = pdata->slave_id_tx;
408 	cfg.direction = DMA_MEM_TO_DEV;
409 	cfg.dst_addr = res->start + MMCIF_CE_DATA;
410 	cfg.src_addr = 0;
411 	ret = dmaengine_slave_config(host->chan_tx, &cfg);
412 	if (ret < 0)
413 		goto ecfgtx;
414 
415 	host->chan_rx = dma_request_channel(mask, shdma_chan_filter,
416 					    (void *)pdata->slave_id_rx);
417 	dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
418 		host->chan_rx);
419 
420 	if (!host->chan_rx)
421 		goto erqrx;
422 
423 	cfg.slave_id = pdata->slave_id_rx;
424 	cfg.direction = DMA_DEV_TO_MEM;
425 	cfg.dst_addr = 0;
426 	cfg.src_addr = res->start + MMCIF_CE_DATA;
427 	ret = dmaengine_slave_config(host->chan_rx, &cfg);
428 	if (ret < 0)
429 		goto ecfgrx;
430 
431 	return;
432 
433 ecfgrx:
434 	dma_release_channel(host->chan_rx);
435 	host->chan_rx = NULL;
436 erqrx:
437 ecfgtx:
438 	dma_release_channel(host->chan_tx);
439 	host->chan_tx = NULL;
440 }
441 
442 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
443 {
444 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
445 	/* Descriptors are freed automatically */
446 	if (host->chan_tx) {
447 		struct dma_chan *chan = host->chan_tx;
448 		host->chan_tx = NULL;
449 		dma_release_channel(chan);
450 	}
451 	if (host->chan_rx) {
452 		struct dma_chan *chan = host->chan_rx;
453 		host->chan_rx = NULL;
454 		dma_release_channel(chan);
455 	}
456 
457 	host->dma_active = false;
458 }
459 
460 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
461 {
462 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
463 	bool sup_pclk = p ? p->sup_pclk : false;
464 
465 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
466 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
467 
468 	if (!clk)
469 		return;
470 	if (sup_pclk && clk == host->clk)
471 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
472 	else
473 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
474 				((fls(DIV_ROUND_UP(host->clk,
475 						   clk) - 1) - 1) << 16));
476 
477 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
478 }
479 
480 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
481 {
482 	u32 tmp;
483 
484 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
485 
486 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
487 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
488 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
489 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
490 	/* byte swap on */
491 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
492 }
493 
494 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
495 {
496 	u32 state1, state2;
497 	int ret, timeout;
498 
499 	host->sd_error = false;
500 
501 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
502 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
503 	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
504 	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
505 
506 	if (state1 & STS1_CMDSEQ) {
507 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
508 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
509 		for (timeout = 10000000; timeout; timeout--) {
510 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
511 			      & STS1_CMDSEQ))
512 				break;
513 			mdelay(1);
514 		}
515 		if (!timeout) {
516 			dev_err(&host->pd->dev,
517 				"Forced end of command sequence timeout err\n");
518 			return -EIO;
519 		}
520 		sh_mmcif_sync_reset(host);
521 		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
522 		return -EIO;
523 	}
524 
525 	if (state2 & STS2_CRC_ERR) {
526 		dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
527 			host->state, host->wait_for);
528 		ret = -EIO;
529 	} else if (state2 & STS2_TIMEOUT_ERR) {
530 		dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
531 			host->state, host->wait_for);
532 		ret = -ETIMEDOUT;
533 	} else {
534 		dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
535 			host->state, host->wait_for);
536 		ret = -EIO;
537 	}
538 	return ret;
539 }
540 
541 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
542 {
543 	struct mmc_data *data = host->mrq->data;
544 
545 	host->sg_blkidx += host->blocksize;
546 
547 	/* data->sg->length must be a multiple of host->blocksize? */
548 	BUG_ON(host->sg_blkidx > data->sg->length);
549 
550 	if (host->sg_blkidx == data->sg->length) {
551 		host->sg_blkidx = 0;
552 		if (++host->sg_idx < data->sg_len)
553 			host->pio_ptr = sg_virt(++data->sg);
554 	} else {
555 		host->pio_ptr = p;
556 	}
557 
558 	return host->sg_idx != data->sg_len;
559 }
560 
561 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
562 				 struct mmc_request *mrq)
563 {
564 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
565 			   BLOCK_SIZE_MASK) + 3;
566 
567 	host->wait_for = MMCIF_WAIT_FOR_READ;
568 
569 	/* buf read enable */
570 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
571 }
572 
573 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
574 {
575 	struct mmc_data *data = host->mrq->data;
576 	u32 *p = sg_virt(data->sg);
577 	int i;
578 
579 	if (host->sd_error) {
580 		data->error = sh_mmcif_error_manage(host);
581 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
582 		return false;
583 	}
584 
585 	for (i = 0; i < host->blocksize / 4; i++)
586 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
587 
588 	/* buffer read end */
589 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
590 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
591 
592 	return true;
593 }
594 
595 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
596 				struct mmc_request *mrq)
597 {
598 	struct mmc_data *data = mrq->data;
599 
600 	if (!data->sg_len || !data->sg->length)
601 		return;
602 
603 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
604 		BLOCK_SIZE_MASK;
605 
606 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
607 	host->sg_idx = 0;
608 	host->sg_blkidx = 0;
609 	host->pio_ptr = sg_virt(data->sg);
610 
611 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
612 }
613 
614 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
615 {
616 	struct mmc_data *data = host->mrq->data;
617 	u32 *p = host->pio_ptr;
618 	int i;
619 
620 	if (host->sd_error) {
621 		data->error = sh_mmcif_error_manage(host);
622 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
623 		return false;
624 	}
625 
626 	BUG_ON(!data->sg->length);
627 
628 	for (i = 0; i < host->blocksize / 4; i++)
629 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
630 
631 	if (!sh_mmcif_next_block(host, p))
632 		return false;
633 
634 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
635 
636 	return true;
637 }
638 
639 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
640 					struct mmc_request *mrq)
641 {
642 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
643 			   BLOCK_SIZE_MASK) + 3;
644 
645 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
646 
647 	/* buf write enable */
648 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
649 }
650 
651 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
652 {
653 	struct mmc_data *data = host->mrq->data;
654 	u32 *p = sg_virt(data->sg);
655 	int i;
656 
657 	if (host->sd_error) {
658 		data->error = sh_mmcif_error_manage(host);
659 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
660 		return false;
661 	}
662 
663 	for (i = 0; i < host->blocksize / 4; i++)
664 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
665 
666 	/* buffer write end */
667 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
668 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
669 
670 	return true;
671 }
672 
673 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
674 				struct mmc_request *mrq)
675 {
676 	struct mmc_data *data = mrq->data;
677 
678 	if (!data->sg_len || !data->sg->length)
679 		return;
680 
681 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
682 		BLOCK_SIZE_MASK;
683 
684 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
685 	host->sg_idx = 0;
686 	host->sg_blkidx = 0;
687 	host->pio_ptr = sg_virt(data->sg);
688 
689 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
690 }
691 
692 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
693 {
694 	struct mmc_data *data = host->mrq->data;
695 	u32 *p = host->pio_ptr;
696 	int i;
697 
698 	if (host->sd_error) {
699 		data->error = sh_mmcif_error_manage(host);
700 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
701 		return false;
702 	}
703 
704 	BUG_ON(!data->sg->length);
705 
706 	for (i = 0; i < host->blocksize / 4; i++)
707 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
708 
709 	if (!sh_mmcif_next_block(host, p))
710 		return false;
711 
712 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
713 
714 	return true;
715 }
716 
717 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
718 						struct mmc_command *cmd)
719 {
720 	if (cmd->flags & MMC_RSP_136) {
721 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
722 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
723 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
724 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
725 	} else
726 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
727 }
728 
729 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
730 						struct mmc_command *cmd)
731 {
732 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
733 }
734 
735 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
736 			    struct mmc_request *mrq)
737 {
738 	struct mmc_data *data = mrq->data;
739 	struct mmc_command *cmd = mrq->cmd;
740 	u32 opc = cmd->opcode;
741 	u32 tmp = 0;
742 
743 	/* Response Type check */
744 	switch (mmc_resp_type(cmd)) {
745 	case MMC_RSP_NONE:
746 		tmp |= CMD_SET_RTYP_NO;
747 		break;
748 	case MMC_RSP_R1:
749 	case MMC_RSP_R1B:
750 	case MMC_RSP_R3:
751 		tmp |= CMD_SET_RTYP_6B;
752 		break;
753 	case MMC_RSP_R2:
754 		tmp |= CMD_SET_RTYP_17B;
755 		break;
756 	default:
757 		dev_err(&host->pd->dev, "Unsupported response type.\n");
758 		break;
759 	}
760 	switch (opc) {
761 	/* RBSY */
762 	case MMC_SLEEP_AWAKE:
763 	case MMC_SWITCH:
764 	case MMC_STOP_TRANSMISSION:
765 	case MMC_SET_WRITE_PROT:
766 	case MMC_CLR_WRITE_PROT:
767 	case MMC_ERASE:
768 		tmp |= CMD_SET_RBSY;
769 		break;
770 	}
771 	/* WDAT / DATW */
772 	if (data) {
773 		tmp |= CMD_SET_WDAT;
774 		switch (host->bus_width) {
775 		case MMC_BUS_WIDTH_1:
776 			tmp |= CMD_SET_DATW_1;
777 			break;
778 		case MMC_BUS_WIDTH_4:
779 			tmp |= CMD_SET_DATW_4;
780 			break;
781 		case MMC_BUS_WIDTH_8:
782 			tmp |= CMD_SET_DATW_8;
783 			break;
784 		default:
785 			dev_err(&host->pd->dev, "Unsupported bus width.\n");
786 			break;
787 		}
788 		switch (host->timing) {
789 		case MMC_TIMING_UHS_DDR50:
790 			/*
791 			 * MMC core will only set this timing, if the host
792 			 * advertises the MMC_CAP_UHS_DDR50 capability. MMCIF
793 			 * implementations with this capability, e.g. sh73a0,
794 			 * will have to set it in their platform data.
795 			 */
796 			tmp |= CMD_SET_DARS;
797 			break;
798 		}
799 	}
800 	/* DWEN */
801 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
802 		tmp |= CMD_SET_DWEN;
803 	/* CMLTE/CMD12EN */
804 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
805 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
806 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
807 				data->blocks << 16);
808 	}
809 	/* RIDXC[1:0] check bits */
810 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
811 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
812 		tmp |= CMD_SET_RIDXC_BITS;
813 	/* RCRC7C[1:0] check bits */
814 	if (opc == MMC_SEND_OP_COND)
815 		tmp |= CMD_SET_CRC7C_BITS;
816 	/* RCRC7C[1:0] internal CRC7 */
817 	if (opc == MMC_ALL_SEND_CID ||
818 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
819 		tmp |= CMD_SET_CRC7C_INTERNAL;
820 
821 	return (opc << 24) | tmp;
822 }
823 
824 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
825 			       struct mmc_request *mrq, u32 opc)
826 {
827 	switch (opc) {
828 	case MMC_READ_MULTIPLE_BLOCK:
829 		sh_mmcif_multi_read(host, mrq);
830 		return 0;
831 	case MMC_WRITE_MULTIPLE_BLOCK:
832 		sh_mmcif_multi_write(host, mrq);
833 		return 0;
834 	case MMC_WRITE_BLOCK:
835 		sh_mmcif_single_write(host, mrq);
836 		return 0;
837 	case MMC_READ_SINGLE_BLOCK:
838 	case MMC_SEND_EXT_CSD:
839 		sh_mmcif_single_read(host, mrq);
840 		return 0;
841 	default:
842 		dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
843 		return -EINVAL;
844 	}
845 }
846 
847 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
848 			       struct mmc_request *mrq)
849 {
850 	struct mmc_command *cmd = mrq->cmd;
851 	u32 opc = cmd->opcode;
852 	u32 mask;
853 
854 	switch (opc) {
855 	/* response busy check */
856 	case MMC_SLEEP_AWAKE:
857 	case MMC_SWITCH:
858 	case MMC_STOP_TRANSMISSION:
859 	case MMC_SET_WRITE_PROT:
860 	case MMC_CLR_WRITE_PROT:
861 	case MMC_ERASE:
862 		mask = MASK_START_CMD | MASK_MRBSYE;
863 		break;
864 	default:
865 		mask = MASK_START_CMD | MASK_MCRSPE;
866 		break;
867 	}
868 
869 	if (mrq->data) {
870 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
871 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
872 				mrq->data->blksz);
873 	}
874 	opc = sh_mmcif_set_cmd(host, mrq);
875 
876 	sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
877 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
878 	/* set arg */
879 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
880 	/* set cmd */
881 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
882 
883 	host->wait_for = MMCIF_WAIT_FOR_CMD;
884 	schedule_delayed_work(&host->timeout_work, host->timeout);
885 }
886 
887 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
888 			      struct mmc_request *mrq)
889 {
890 	switch (mrq->cmd->opcode) {
891 	case MMC_READ_MULTIPLE_BLOCK:
892 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
893 		break;
894 	case MMC_WRITE_MULTIPLE_BLOCK:
895 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
896 		break;
897 	default:
898 		dev_err(&host->pd->dev, "unsupported stop cmd\n");
899 		mrq->stop->error = sh_mmcif_error_manage(host);
900 		return;
901 	}
902 
903 	host->wait_for = MMCIF_WAIT_FOR_STOP;
904 }
905 
906 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
907 {
908 	struct sh_mmcif_host *host = mmc_priv(mmc);
909 	unsigned long flags;
910 
911 	spin_lock_irqsave(&host->lock, flags);
912 	if (host->state != STATE_IDLE) {
913 		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
914 		spin_unlock_irqrestore(&host->lock, flags);
915 		mrq->cmd->error = -EAGAIN;
916 		mmc_request_done(mmc, mrq);
917 		return;
918 	}
919 
920 	host->state = STATE_REQUEST;
921 	spin_unlock_irqrestore(&host->lock, flags);
922 
923 	switch (mrq->cmd->opcode) {
924 	/* MMCIF does not support SD/SDIO command */
925 	case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
926 	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
927 		if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
928 			break;
929 	case MMC_APP_CMD:
930 	case SD_IO_RW_DIRECT:
931 		host->state = STATE_IDLE;
932 		mrq->cmd->error = -ETIMEDOUT;
933 		mmc_request_done(mmc, mrq);
934 		return;
935 	default:
936 		break;
937 	}
938 
939 	host->mrq = mrq;
940 
941 	sh_mmcif_start_cmd(host, mrq);
942 }
943 
944 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
945 {
946 	int ret = clk_enable(host->hclk);
947 
948 	if (!ret) {
949 		host->clk = clk_get_rate(host->hclk);
950 		host->mmc->f_max = host->clk / 2;
951 		host->mmc->f_min = host->clk / 512;
952 	}
953 
954 	return ret;
955 }
956 
957 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
958 {
959 	struct mmc_host *mmc = host->mmc;
960 
961 	if (!IS_ERR(mmc->supply.vmmc))
962 		/* Errors ignored... */
963 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
964 				      ios->power_mode ? ios->vdd : 0);
965 }
966 
967 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
968 {
969 	struct sh_mmcif_host *host = mmc_priv(mmc);
970 	unsigned long flags;
971 
972 	spin_lock_irqsave(&host->lock, flags);
973 	if (host->state != STATE_IDLE) {
974 		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
975 		spin_unlock_irqrestore(&host->lock, flags);
976 		return;
977 	}
978 
979 	host->state = STATE_IOS;
980 	spin_unlock_irqrestore(&host->lock, flags);
981 
982 	if (ios->power_mode == MMC_POWER_UP) {
983 		if (!host->card_present) {
984 			/* See if we also get DMA */
985 			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
986 			host->card_present = true;
987 		}
988 		sh_mmcif_set_power(host, ios);
989 	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
990 		/* clock stop */
991 		sh_mmcif_clock_control(host, 0);
992 		if (ios->power_mode == MMC_POWER_OFF) {
993 			if (host->card_present) {
994 				sh_mmcif_release_dma(host);
995 				host->card_present = false;
996 			}
997 		}
998 		if (host->power) {
999 			pm_runtime_put_sync(&host->pd->dev);
1000 			clk_disable(host->hclk);
1001 			host->power = false;
1002 			if (ios->power_mode == MMC_POWER_OFF)
1003 				sh_mmcif_set_power(host, ios);
1004 		}
1005 		host->state = STATE_IDLE;
1006 		return;
1007 	}
1008 
1009 	if (ios->clock) {
1010 		if (!host->power) {
1011 			sh_mmcif_clk_update(host);
1012 			pm_runtime_get_sync(&host->pd->dev);
1013 			host->power = true;
1014 			sh_mmcif_sync_reset(host);
1015 		}
1016 		sh_mmcif_clock_control(host, ios->clock);
1017 	}
1018 
1019 	host->timing = ios->timing;
1020 	host->bus_width = ios->bus_width;
1021 	host->state = STATE_IDLE;
1022 }
1023 
1024 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1025 {
1026 	struct sh_mmcif_host *host = mmc_priv(mmc);
1027 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1028 	int ret = mmc_gpio_get_cd(mmc);
1029 
1030 	if (ret >= 0)
1031 		return ret;
1032 
1033 	if (!p || !p->get_cd)
1034 		return -ENOSYS;
1035 	else
1036 		return p->get_cd(host->pd);
1037 }
1038 
1039 static struct mmc_host_ops sh_mmcif_ops = {
1040 	.request	= sh_mmcif_request,
1041 	.set_ios	= sh_mmcif_set_ios,
1042 	.get_cd		= sh_mmcif_get_cd,
1043 };
1044 
1045 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1046 {
1047 	struct mmc_command *cmd = host->mrq->cmd;
1048 	struct mmc_data *data = host->mrq->data;
1049 	long time;
1050 
1051 	if (host->sd_error) {
1052 		switch (cmd->opcode) {
1053 		case MMC_ALL_SEND_CID:
1054 		case MMC_SELECT_CARD:
1055 		case MMC_APP_CMD:
1056 			cmd->error = -ETIMEDOUT;
1057 			break;
1058 		default:
1059 			cmd->error = sh_mmcif_error_manage(host);
1060 			break;
1061 		}
1062 		dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1063 			cmd->opcode, cmd->error);
1064 		host->sd_error = false;
1065 		return false;
1066 	}
1067 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1068 		cmd->error = 0;
1069 		return false;
1070 	}
1071 
1072 	sh_mmcif_get_response(host, cmd);
1073 
1074 	if (!data)
1075 		return false;
1076 
1077 	/*
1078 	 * Completion can be signalled from DMA callback and error, so, have to
1079 	 * reset here, before setting .dma_active
1080 	 */
1081 	init_completion(&host->dma_complete);
1082 
1083 	if (data->flags & MMC_DATA_READ) {
1084 		if (host->chan_rx)
1085 			sh_mmcif_start_dma_rx(host);
1086 	} else {
1087 		if (host->chan_tx)
1088 			sh_mmcif_start_dma_tx(host);
1089 	}
1090 
1091 	if (!host->dma_active) {
1092 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1093 		return !data->error;
1094 	}
1095 
1096 	/* Running in the IRQ thread, can sleep */
1097 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1098 							 host->timeout);
1099 
1100 	if (data->flags & MMC_DATA_READ)
1101 		dma_unmap_sg(host->chan_rx->device->dev,
1102 			     data->sg, data->sg_len,
1103 			     DMA_FROM_DEVICE);
1104 	else
1105 		dma_unmap_sg(host->chan_tx->device->dev,
1106 			     data->sg, data->sg_len,
1107 			     DMA_TO_DEVICE);
1108 
1109 	if (host->sd_error) {
1110 		dev_err(host->mmc->parent,
1111 			"Error IRQ while waiting for DMA completion!\n");
1112 		/* Woken up by an error IRQ: abort DMA */
1113 		data->error = sh_mmcif_error_manage(host);
1114 	} else if (!time) {
1115 		dev_err(host->mmc->parent, "DMA timeout!\n");
1116 		data->error = -ETIMEDOUT;
1117 	} else if (time < 0) {
1118 		dev_err(host->mmc->parent,
1119 			"wait_for_completion_...() error %ld!\n", time);
1120 		data->error = time;
1121 	}
1122 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1123 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1124 	host->dma_active = false;
1125 
1126 	if (data->error) {
1127 		data->bytes_xfered = 0;
1128 		/* Abort DMA */
1129 		if (data->flags & MMC_DATA_READ)
1130 			dmaengine_terminate_all(host->chan_rx);
1131 		else
1132 			dmaengine_terminate_all(host->chan_tx);
1133 	}
1134 
1135 	return false;
1136 }
1137 
1138 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1139 {
1140 	struct sh_mmcif_host *host = dev_id;
1141 	struct mmc_request *mrq;
1142 	bool wait = false;
1143 
1144 	cancel_delayed_work_sync(&host->timeout_work);
1145 
1146 	mutex_lock(&host->thread_lock);
1147 
1148 	mrq = host->mrq;
1149 	if (!mrq) {
1150 		dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1151 			host->state, host->wait_for);
1152 		mutex_unlock(&host->thread_lock);
1153 		return IRQ_HANDLED;
1154 	}
1155 
1156 	/*
1157 	 * All handlers return true, if processing continues, and false, if the
1158 	 * request has to be completed - successfully or not
1159 	 */
1160 	switch (host->wait_for) {
1161 	case MMCIF_WAIT_FOR_REQUEST:
1162 		/* We're too late, the timeout has already kicked in */
1163 		mutex_unlock(&host->thread_lock);
1164 		return IRQ_HANDLED;
1165 	case MMCIF_WAIT_FOR_CMD:
1166 		/* Wait for data? */
1167 		wait = sh_mmcif_end_cmd(host);
1168 		break;
1169 	case MMCIF_WAIT_FOR_MREAD:
1170 		/* Wait for more data? */
1171 		wait = sh_mmcif_mread_block(host);
1172 		break;
1173 	case MMCIF_WAIT_FOR_READ:
1174 		/* Wait for data end? */
1175 		wait = sh_mmcif_read_block(host);
1176 		break;
1177 	case MMCIF_WAIT_FOR_MWRITE:
1178 		/* Wait data to write? */
1179 		wait = sh_mmcif_mwrite_block(host);
1180 		break;
1181 	case MMCIF_WAIT_FOR_WRITE:
1182 		/* Wait for data end? */
1183 		wait = sh_mmcif_write_block(host);
1184 		break;
1185 	case MMCIF_WAIT_FOR_STOP:
1186 		if (host->sd_error) {
1187 			mrq->stop->error = sh_mmcif_error_manage(host);
1188 			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1189 			break;
1190 		}
1191 		sh_mmcif_get_cmd12response(host, mrq->stop);
1192 		mrq->stop->error = 0;
1193 		break;
1194 	case MMCIF_WAIT_FOR_READ_END:
1195 	case MMCIF_WAIT_FOR_WRITE_END:
1196 		if (host->sd_error) {
1197 			mrq->data->error = sh_mmcif_error_manage(host);
1198 			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1199 		}
1200 		break;
1201 	default:
1202 		BUG();
1203 	}
1204 
1205 	if (wait) {
1206 		schedule_delayed_work(&host->timeout_work, host->timeout);
1207 		/* Wait for more data */
1208 		mutex_unlock(&host->thread_lock);
1209 		return IRQ_HANDLED;
1210 	}
1211 
1212 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1213 		struct mmc_data *data = mrq->data;
1214 		if (!mrq->cmd->error && data && !data->error)
1215 			data->bytes_xfered =
1216 				data->blocks * data->blksz;
1217 
1218 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1219 			sh_mmcif_stop_cmd(host, mrq);
1220 			if (!mrq->stop->error) {
1221 				schedule_delayed_work(&host->timeout_work, host->timeout);
1222 				mutex_unlock(&host->thread_lock);
1223 				return IRQ_HANDLED;
1224 			}
1225 		}
1226 	}
1227 
1228 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1229 	host->state = STATE_IDLE;
1230 	host->mrq = NULL;
1231 	mmc_request_done(host->mmc, mrq);
1232 
1233 	mutex_unlock(&host->thread_lock);
1234 
1235 	return IRQ_HANDLED;
1236 }
1237 
1238 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1239 {
1240 	struct sh_mmcif_host *host = dev_id;
1241 	u32 state;
1242 
1243 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1244 	sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1245 			~(state & sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK)));
1246 	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1247 
1248 	if (state & ~MASK_CLEAN)
1249 		dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1250 			state);
1251 
1252 	if (state & INT_ERR_STS || state & ~INT_ALL) {
1253 		host->sd_error = true;
1254 		dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1255 	}
1256 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1257 		if (!host->mrq)
1258 			dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1259 		if (!host->dma_active)
1260 			return IRQ_WAKE_THREAD;
1261 		else if (host->sd_error)
1262 			mmcif_dma_complete(host);
1263 	} else {
1264 		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1265 	}
1266 
1267 	return IRQ_HANDLED;
1268 }
1269 
1270 static void mmcif_timeout_work(struct work_struct *work)
1271 {
1272 	struct delayed_work *d = container_of(work, struct delayed_work, work);
1273 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1274 	struct mmc_request *mrq = host->mrq;
1275 	unsigned long flags;
1276 
1277 	if (host->dying)
1278 		/* Don't run after mmc_remove_host() */
1279 		return;
1280 
1281 	dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1282 		host->wait_for, mrq->cmd->opcode);
1283 
1284 	spin_lock_irqsave(&host->lock, flags);
1285 	if (host->state == STATE_IDLE) {
1286 		spin_unlock_irqrestore(&host->lock, flags);
1287 		return;
1288 	}
1289 
1290 	host->state = STATE_TIMEOUT;
1291 	spin_unlock_irqrestore(&host->lock, flags);
1292 
1293 	/*
1294 	 * Handle races with cancel_delayed_work(), unless
1295 	 * cancel_delayed_work_sync() is used
1296 	 */
1297 	switch (host->wait_for) {
1298 	case MMCIF_WAIT_FOR_CMD:
1299 		mrq->cmd->error = sh_mmcif_error_manage(host);
1300 		break;
1301 	case MMCIF_WAIT_FOR_STOP:
1302 		mrq->stop->error = sh_mmcif_error_manage(host);
1303 		break;
1304 	case MMCIF_WAIT_FOR_MREAD:
1305 	case MMCIF_WAIT_FOR_MWRITE:
1306 	case MMCIF_WAIT_FOR_READ:
1307 	case MMCIF_WAIT_FOR_WRITE:
1308 	case MMCIF_WAIT_FOR_READ_END:
1309 	case MMCIF_WAIT_FOR_WRITE_END:
1310 		mrq->data->error = sh_mmcif_error_manage(host);
1311 		break;
1312 	default:
1313 		BUG();
1314 	}
1315 
1316 	host->state = STATE_IDLE;
1317 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1318 	host->mrq = NULL;
1319 	mmc_request_done(host->mmc, mrq);
1320 }
1321 
1322 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1323 {
1324 	struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1325 	struct mmc_host *mmc = host->mmc;
1326 
1327 	mmc_regulator_get_supply(mmc);
1328 
1329 	if (!pd)
1330 		return;
1331 
1332 	if (!mmc->ocr_avail)
1333 		mmc->ocr_avail = pd->ocr;
1334 	else if (pd->ocr)
1335 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1336 }
1337 
1338 static int sh_mmcif_probe(struct platform_device *pdev)
1339 {
1340 	int ret = 0, irq[2];
1341 	struct mmc_host *mmc;
1342 	struct sh_mmcif_host *host;
1343 	struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1344 	struct resource *res;
1345 	void __iomem *reg;
1346 	const char *name;
1347 
1348 	irq[0] = platform_get_irq(pdev, 0);
1349 	irq[1] = platform_get_irq(pdev, 1);
1350 	if (irq[0] < 0) {
1351 		dev_err(&pdev->dev, "Get irq error\n");
1352 		return -ENXIO;
1353 	}
1354 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1355 	if (!res) {
1356 		dev_err(&pdev->dev, "platform_get_resource error.\n");
1357 		return -ENXIO;
1358 	}
1359 	reg = ioremap(res->start, resource_size(res));
1360 	if (!reg) {
1361 		dev_err(&pdev->dev, "ioremap error.\n");
1362 		return -ENOMEM;
1363 	}
1364 
1365 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1366 	if (!mmc) {
1367 		ret = -ENOMEM;
1368 		goto ealloch;
1369 	}
1370 
1371 	ret = mmc_of_parse(mmc);
1372 	if (ret < 0)
1373 		goto eofparse;
1374 
1375 	host		= mmc_priv(mmc);
1376 	host->mmc	= mmc;
1377 	host->addr	= reg;
1378 	host->timeout	= msecs_to_jiffies(1000);
1379 
1380 	host->pd = pdev;
1381 
1382 	spin_lock_init(&host->lock);
1383 
1384 	mmc->ops = &sh_mmcif_ops;
1385 	sh_mmcif_init_ocr(host);
1386 
1387 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1388 	if (pd && pd->caps)
1389 		mmc->caps |= pd->caps;
1390 	mmc->max_segs = 32;
1391 	mmc->max_blk_size = 512;
1392 	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1393 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1394 	mmc->max_seg_size = mmc->max_req_size;
1395 
1396 	platform_set_drvdata(pdev, host);
1397 
1398 	pm_runtime_enable(&pdev->dev);
1399 	host->power = false;
1400 
1401 	host->hclk = clk_get(&pdev->dev, NULL);
1402 	if (IS_ERR(host->hclk)) {
1403 		ret = PTR_ERR(host->hclk);
1404 		dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1405 		goto eclkget;
1406 	}
1407 	ret = sh_mmcif_clk_update(host);
1408 	if (ret < 0)
1409 		goto eclkupdate;
1410 
1411 	ret = pm_runtime_resume(&pdev->dev);
1412 	if (ret < 0)
1413 		goto eresume;
1414 
1415 	INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1416 
1417 	sh_mmcif_sync_reset(host);
1418 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1419 
1420 	name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1421 	ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, name, host);
1422 	if (ret) {
1423 		dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1424 		goto ereqirq0;
1425 	}
1426 	if (irq[1] >= 0) {
1427 		ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt,
1428 					   0, "sh_mmc:int", host);
1429 		if (ret) {
1430 			dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1431 			goto ereqirq1;
1432 		}
1433 	}
1434 
1435 	if (pd && pd->use_cd_gpio) {
1436 		ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1437 		if (ret < 0)
1438 			goto erqcd;
1439 	}
1440 
1441 	mutex_init(&host->thread_lock);
1442 
1443 	clk_disable(host->hclk);
1444 	ret = mmc_add_host(mmc);
1445 	if (ret < 0)
1446 		goto emmcaddh;
1447 
1448 	dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1449 
1450 	dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1451 	dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1452 		sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1453 	return ret;
1454 
1455 emmcaddh:
1456 erqcd:
1457 	if (irq[1] >= 0)
1458 		free_irq(irq[1], host);
1459 ereqirq1:
1460 	free_irq(irq[0], host);
1461 ereqirq0:
1462 	pm_runtime_suspend(&pdev->dev);
1463 eresume:
1464 	clk_disable(host->hclk);
1465 eclkupdate:
1466 	clk_put(host->hclk);
1467 eclkget:
1468 	pm_runtime_disable(&pdev->dev);
1469 eofparse:
1470 	mmc_free_host(mmc);
1471 ealloch:
1472 	iounmap(reg);
1473 	return ret;
1474 }
1475 
1476 static int sh_mmcif_remove(struct platform_device *pdev)
1477 {
1478 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1479 	int irq[2];
1480 
1481 	host->dying = true;
1482 	clk_enable(host->hclk);
1483 	pm_runtime_get_sync(&pdev->dev);
1484 
1485 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1486 
1487 	mmc_remove_host(host->mmc);
1488 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1489 
1490 	/*
1491 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1492 	 * mmc_remove_host() call above. But swapping order doesn't help either
1493 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1494 	 */
1495 	cancel_delayed_work_sync(&host->timeout_work);
1496 
1497 	if (host->addr)
1498 		iounmap(host->addr);
1499 
1500 	irq[0] = platform_get_irq(pdev, 0);
1501 	irq[1] = platform_get_irq(pdev, 1);
1502 
1503 	free_irq(irq[0], host);
1504 	if (irq[1] >= 0)
1505 		free_irq(irq[1], host);
1506 
1507 	clk_disable(host->hclk);
1508 	mmc_free_host(host->mmc);
1509 	pm_runtime_put_sync(&pdev->dev);
1510 	pm_runtime_disable(&pdev->dev);
1511 
1512 	return 0;
1513 }
1514 
1515 #ifdef CONFIG_PM
1516 static int sh_mmcif_suspend(struct device *dev)
1517 {
1518 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1519 	int ret = mmc_suspend_host(host->mmc);
1520 
1521 	if (!ret)
1522 		sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1523 
1524 	return ret;
1525 }
1526 
1527 static int sh_mmcif_resume(struct device *dev)
1528 {
1529 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1530 
1531 	return mmc_resume_host(host->mmc);
1532 }
1533 #else
1534 #define sh_mmcif_suspend	NULL
1535 #define sh_mmcif_resume		NULL
1536 #endif	/* CONFIG_PM */
1537 
1538 static const struct of_device_id mmcif_of_match[] = {
1539 	{ .compatible = "renesas,sh-mmcif" },
1540 	{ }
1541 };
1542 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1543 
1544 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1545 	.suspend = sh_mmcif_suspend,
1546 	.resume = sh_mmcif_resume,
1547 };
1548 
1549 static struct platform_driver sh_mmcif_driver = {
1550 	.probe		= sh_mmcif_probe,
1551 	.remove		= sh_mmcif_remove,
1552 	.driver		= {
1553 		.name	= DRIVER_NAME,
1554 		.pm	= &sh_mmcif_dev_pm_ops,
1555 		.owner	= THIS_MODULE,
1556 		.of_match_table = mmcif_of_match,
1557 	},
1558 };
1559 
1560 module_platform_driver(sh_mmcif_driver);
1561 
1562 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1563 MODULE_LICENSE("GPL");
1564 MODULE_ALIAS("platform:" DRIVER_NAME);
1565 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1566