xref: /openbmc/linux/drivers/mmc/host/sh_mmcif.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  */
11 
12 /*
13  * The MMCIF driver is now processing MMC requests asynchronously, according
14  * to the Linux MMC API requirement.
15  *
16  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
17  * data, and optional stop. To achieve asynchronous processing each of these
18  * stages is split into two halves: a top and a bottom half. The top half
19  * initialises the hardware, installs a timeout handler to handle completion
20  * timeouts, and returns. In case of the command stage this immediately returns
21  * control to the caller, leaving all further processing to run asynchronously.
22  * All further request processing is performed by the bottom halves.
23  *
24  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
25  * thread, a DMA completion callback, if DMA is used, a timeout work, and
26  * request- and stage-specific handler methods.
27  *
28  * Each bottom half run begins with either a hardware interrupt, a DMA callback
29  * invocation, or a timeout work run. In case of an error or a successful
30  * processing completion, the MMC core is informed and the request processing is
31  * finished. In case processing has to continue, i.e., if data has to be read
32  * from or written to the card, or if a stop command has to be sent, the next
33  * top half is called, which performs the necessary hardware handling and
34  * reschedules the timeout work. This returns the driver state machine into the
35  * bottom half waiting state.
36  */
37 
38 #include <linux/bitops.h>
39 #include <linux/clk.h>
40 #include <linux/completion.h>
41 #include <linux/delay.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/dmaengine.h>
44 #include <linux/mmc/card.h>
45 #include <linux/mmc/core.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sdio.h>
49 #include <linux/mmc/sh_mmcif.h>
50 #include <linux/mmc/slot-gpio.h>
51 #include <linux/mod_devicetable.h>
52 #include <linux/mutex.h>
53 #include <linux/of_device.h>
54 #include <linux/pagemap.h>
55 #include <linux/platform_device.h>
56 #include <linux/pm_qos.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/sh_dma.h>
59 #include <linux/spinlock.h>
60 #include <linux/module.h>
61 
62 #define DRIVER_NAME	"sh_mmcif"
63 
64 /* CE_CMD_SET */
65 #define CMD_MASK		0x3f000000
66 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
67 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
68 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
69 #define CMD_SET_RBSY		(1 << 21) /* R1b */
70 #define CMD_SET_CCSEN		(1 << 20)
71 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
72 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
73 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
74 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
75 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
76 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
77 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
78 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
79 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
80 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
81 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
82 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
83 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
84 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
85 #define CMD_SET_CCSH		(1 << 5)
86 #define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
87 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
88 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
89 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
90 
91 /* CE_CMD_CTRL */
92 #define CMD_CTRL_BREAK		(1 << 0)
93 
94 /* CE_BLOCK_SET */
95 #define BLOCK_SIZE_MASK		0x0000ffff
96 
97 /* CE_INT */
98 #define INT_CCSDE		(1 << 29)
99 #define INT_CMD12DRE		(1 << 26)
100 #define INT_CMD12RBE		(1 << 25)
101 #define INT_CMD12CRE		(1 << 24)
102 #define INT_DTRANE		(1 << 23)
103 #define INT_BUFRE		(1 << 22)
104 #define INT_BUFWEN		(1 << 21)
105 #define INT_BUFREN		(1 << 20)
106 #define INT_CCSRCV		(1 << 19)
107 #define INT_RBSYE		(1 << 17)
108 #define INT_CRSPE		(1 << 16)
109 #define INT_CMDVIO		(1 << 15)
110 #define INT_BUFVIO		(1 << 14)
111 #define INT_WDATERR		(1 << 11)
112 #define INT_RDATERR		(1 << 10)
113 #define INT_RIDXERR		(1 << 9)
114 #define INT_RSPERR		(1 << 8)
115 #define INT_CCSTO		(1 << 5)
116 #define INT_CRCSTO		(1 << 4)
117 #define INT_WDATTO		(1 << 3)
118 #define INT_RDATTO		(1 << 2)
119 #define INT_RBSYTO		(1 << 1)
120 #define INT_RSPTO		(1 << 0)
121 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
122 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
123 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
124 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
125 
126 #define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
127 				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
128 				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
129 
130 #define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
131 
132 /* CE_INT_MASK */
133 #define MASK_ALL		0x00000000
134 #define MASK_MCCSDE		(1 << 29)
135 #define MASK_MCMD12DRE		(1 << 26)
136 #define MASK_MCMD12RBE		(1 << 25)
137 #define MASK_MCMD12CRE		(1 << 24)
138 #define MASK_MDTRANE		(1 << 23)
139 #define MASK_MBUFRE		(1 << 22)
140 #define MASK_MBUFWEN		(1 << 21)
141 #define MASK_MBUFREN		(1 << 20)
142 #define MASK_MCCSRCV		(1 << 19)
143 #define MASK_MRBSYE		(1 << 17)
144 #define MASK_MCRSPE		(1 << 16)
145 #define MASK_MCMDVIO		(1 << 15)
146 #define MASK_MBUFVIO		(1 << 14)
147 #define MASK_MWDATERR		(1 << 11)
148 #define MASK_MRDATERR		(1 << 10)
149 #define MASK_MRIDXERR		(1 << 9)
150 #define MASK_MRSPERR		(1 << 8)
151 #define MASK_MCCSTO		(1 << 5)
152 #define MASK_MCRCSTO		(1 << 4)
153 #define MASK_MWDATTO		(1 << 3)
154 #define MASK_MRDATTO		(1 << 2)
155 #define MASK_MRBSYTO		(1 << 1)
156 #define MASK_MRSPTO		(1 << 0)
157 
158 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
159 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
160 				 MASK_MCRCSTO | MASK_MWDATTO | \
161 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
162 
163 #define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
164 				 MASK_MBUFREN | MASK_MBUFWEN |			\
165 				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
166 				 MASK_MCMD12RBE | MASK_MCMD12CRE)
167 
168 /* CE_HOST_STS1 */
169 #define STS1_CMDSEQ		(1 << 31)
170 
171 /* CE_HOST_STS2 */
172 #define STS2_CRCSTE		(1 << 31)
173 #define STS2_CRC16E		(1 << 30)
174 #define STS2_AC12CRCE		(1 << 29)
175 #define STS2_RSPCRC7E		(1 << 28)
176 #define STS2_CRCSTEBE		(1 << 27)
177 #define STS2_RDATEBE		(1 << 26)
178 #define STS2_AC12REBE		(1 << 25)
179 #define STS2_RSPEBE		(1 << 24)
180 #define STS2_AC12IDXE		(1 << 23)
181 #define STS2_RSPIDXE		(1 << 22)
182 #define STS2_CCSTO		(1 << 15)
183 #define STS2_RDATTO		(1 << 14)
184 #define STS2_DATBSYTO		(1 << 13)
185 #define STS2_CRCSTTO		(1 << 12)
186 #define STS2_AC12BSYTO		(1 << 11)
187 #define STS2_RSPBSYTO		(1 << 10)
188 #define STS2_AC12RSPTO		(1 << 9)
189 #define STS2_RSPTO		(1 << 8)
190 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
191 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
192 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
193 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
194 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
195 				 STS2_AC12RSPTO | STS2_RSPTO)
196 
197 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
198 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
199 #define CLKDEV_INIT		400000   /* 400 KHz */
200 
201 enum sh_mmcif_state {
202 	STATE_IDLE,
203 	STATE_REQUEST,
204 	STATE_IOS,
205 	STATE_TIMEOUT,
206 };
207 
208 enum sh_mmcif_wait_for {
209 	MMCIF_WAIT_FOR_REQUEST,
210 	MMCIF_WAIT_FOR_CMD,
211 	MMCIF_WAIT_FOR_MREAD,
212 	MMCIF_WAIT_FOR_MWRITE,
213 	MMCIF_WAIT_FOR_READ,
214 	MMCIF_WAIT_FOR_WRITE,
215 	MMCIF_WAIT_FOR_READ_END,
216 	MMCIF_WAIT_FOR_WRITE_END,
217 	MMCIF_WAIT_FOR_STOP,
218 };
219 
220 /*
221  * difference for each SoC
222  */
223 struct sh_mmcif_host {
224 	struct mmc_host *mmc;
225 	struct mmc_request *mrq;
226 	struct platform_device *pd;
227 	struct clk *clk;
228 	int bus_width;
229 	unsigned char timing;
230 	bool sd_error;
231 	bool dying;
232 	long timeout;
233 	void __iomem *addr;
234 	u32 *pio_ptr;
235 	spinlock_t lock;		/* protect sh_mmcif_host::state */
236 	enum sh_mmcif_state state;
237 	enum sh_mmcif_wait_for wait_for;
238 	struct delayed_work timeout_work;
239 	size_t blocksize;
240 	int sg_idx;
241 	int sg_blkidx;
242 	bool power;
243 	bool ccs_enable;		/* Command Completion Signal support */
244 	bool clk_ctrl2_enable;
245 	struct mutex thread_lock;
246 	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
247 
248 	/* DMA support */
249 	struct dma_chan		*chan_rx;
250 	struct dma_chan		*chan_tx;
251 	struct completion	dma_complete;
252 	bool			dma_active;
253 };
254 
255 static const struct of_device_id sh_mmcif_of_match[] = {
256 	{ .compatible = "renesas,sh-mmcif" },
257 	{ }
258 };
259 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
260 
261 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
262 
263 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
264 					unsigned int reg, u32 val)
265 {
266 	writel(val | readl(host->addr + reg), host->addr + reg);
267 }
268 
269 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
270 					unsigned int reg, u32 val)
271 {
272 	writel(~val & readl(host->addr + reg), host->addr + reg);
273 }
274 
275 static void sh_mmcif_dma_complete(void *arg)
276 {
277 	struct sh_mmcif_host *host = arg;
278 	struct mmc_request *mrq = host->mrq;
279 	struct device *dev = sh_mmcif_host_to_dev(host);
280 
281 	dev_dbg(dev, "Command completed\n");
282 
283 	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
284 		 dev_name(dev)))
285 		return;
286 
287 	complete(&host->dma_complete);
288 }
289 
290 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
291 {
292 	struct mmc_data *data = host->mrq->data;
293 	struct scatterlist *sg = data->sg;
294 	struct dma_async_tx_descriptor *desc = NULL;
295 	struct dma_chan *chan = host->chan_rx;
296 	struct device *dev = sh_mmcif_host_to_dev(host);
297 	dma_cookie_t cookie = -EINVAL;
298 	int ret;
299 
300 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
301 			 DMA_FROM_DEVICE);
302 	if (ret > 0) {
303 		host->dma_active = true;
304 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
305 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
306 	}
307 
308 	if (desc) {
309 		desc->callback = sh_mmcif_dma_complete;
310 		desc->callback_param = host;
311 		cookie = dmaengine_submit(desc);
312 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
313 		dma_async_issue_pending(chan);
314 	}
315 	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
316 		__func__, data->sg_len, ret, cookie);
317 
318 	if (!desc) {
319 		/* DMA failed, fall back to PIO */
320 		if (ret >= 0)
321 			ret = -EIO;
322 		host->chan_rx = NULL;
323 		host->dma_active = false;
324 		dma_release_channel(chan);
325 		/* Free the Tx channel too */
326 		chan = host->chan_tx;
327 		if (chan) {
328 			host->chan_tx = NULL;
329 			dma_release_channel(chan);
330 		}
331 		dev_warn(dev,
332 			 "DMA failed: %d, falling back to PIO\n", ret);
333 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
334 	}
335 
336 	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
337 		desc, cookie, data->sg_len);
338 }
339 
340 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
341 {
342 	struct mmc_data *data = host->mrq->data;
343 	struct scatterlist *sg = data->sg;
344 	struct dma_async_tx_descriptor *desc = NULL;
345 	struct dma_chan *chan = host->chan_tx;
346 	struct device *dev = sh_mmcif_host_to_dev(host);
347 	dma_cookie_t cookie = -EINVAL;
348 	int ret;
349 
350 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
351 			 DMA_TO_DEVICE);
352 	if (ret > 0) {
353 		host->dma_active = true;
354 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
355 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
356 	}
357 
358 	if (desc) {
359 		desc->callback = sh_mmcif_dma_complete;
360 		desc->callback_param = host;
361 		cookie = dmaengine_submit(desc);
362 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
363 		dma_async_issue_pending(chan);
364 	}
365 	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
366 		__func__, data->sg_len, ret, cookie);
367 
368 	if (!desc) {
369 		/* DMA failed, fall back to PIO */
370 		if (ret >= 0)
371 			ret = -EIO;
372 		host->chan_tx = NULL;
373 		host->dma_active = false;
374 		dma_release_channel(chan);
375 		/* Free the Rx channel too */
376 		chan = host->chan_rx;
377 		if (chan) {
378 			host->chan_rx = NULL;
379 			dma_release_channel(chan);
380 		}
381 		dev_warn(dev,
382 			 "DMA failed: %d, falling back to PIO\n", ret);
383 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
384 	}
385 
386 	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
387 		desc, cookie);
388 }
389 
390 static struct dma_chan *
391 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
392 {
393 	dma_cap_mask_t mask;
394 
395 	dma_cap_zero(mask);
396 	dma_cap_set(DMA_SLAVE, mask);
397 	if (slave_id <= 0)
398 		return NULL;
399 
400 	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
401 }
402 
403 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
404 				     struct dma_chan *chan,
405 				     enum dma_transfer_direction direction)
406 {
407 	struct resource *res;
408 	struct dma_slave_config cfg = { 0, };
409 
410 	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
411 	cfg.direction = direction;
412 
413 	if (direction == DMA_DEV_TO_MEM) {
414 		cfg.src_addr = res->start + MMCIF_CE_DATA;
415 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416 	} else {
417 		cfg.dst_addr = res->start + MMCIF_CE_DATA;
418 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
419 	}
420 
421 	return dmaengine_slave_config(chan, &cfg);
422 }
423 
424 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
425 {
426 	struct device *dev = sh_mmcif_host_to_dev(host);
427 	host->dma_active = false;
428 
429 	/* We can only either use DMA for both Tx and Rx or not use it at all */
430 	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
431 		struct sh_mmcif_plat_data *pdata = dev->platform_data;
432 
433 		host->chan_tx = sh_mmcif_request_dma_pdata(host,
434 							pdata->slave_id_tx);
435 		host->chan_rx = sh_mmcif_request_dma_pdata(host,
436 							pdata->slave_id_rx);
437 	} else {
438 		host->chan_tx = dma_request_slave_channel(dev, "tx");
439 		host->chan_rx = dma_request_slave_channel(dev, "rx");
440 	}
441 	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
442 		host->chan_rx);
443 
444 	if (!host->chan_tx || !host->chan_rx ||
445 	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
446 	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
447 		goto error;
448 
449 	return;
450 
451 error:
452 	if (host->chan_tx)
453 		dma_release_channel(host->chan_tx);
454 	if (host->chan_rx)
455 		dma_release_channel(host->chan_rx);
456 	host->chan_tx = host->chan_rx = NULL;
457 }
458 
459 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
460 {
461 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
462 	/* Descriptors are freed automatically */
463 	if (host->chan_tx) {
464 		struct dma_chan *chan = host->chan_tx;
465 		host->chan_tx = NULL;
466 		dma_release_channel(chan);
467 	}
468 	if (host->chan_rx) {
469 		struct dma_chan *chan = host->chan_rx;
470 		host->chan_rx = NULL;
471 		dma_release_channel(chan);
472 	}
473 
474 	host->dma_active = false;
475 }
476 
477 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
478 {
479 	struct device *dev = sh_mmcif_host_to_dev(host);
480 	struct sh_mmcif_plat_data *p = dev->platform_data;
481 	bool sup_pclk = p ? p->sup_pclk : false;
482 	unsigned int current_clk = clk_get_rate(host->clk);
483 	unsigned int clkdiv;
484 
485 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
486 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
487 
488 	if (!clk)
489 		return;
490 
491 	if (host->clkdiv_map) {
492 		unsigned int freq, best_freq, myclk, div, diff_min, diff;
493 		int i;
494 
495 		clkdiv = 0;
496 		diff_min = ~0;
497 		best_freq = 0;
498 		for (i = 31; i >= 0; i--) {
499 			if (!((1 << i) & host->clkdiv_map))
500 				continue;
501 
502 			/*
503 			 * clk = parent_freq / div
504 			 * -> parent_freq = clk x div
505 			 */
506 
507 			div = 1 << (i + 1);
508 			freq = clk_round_rate(host->clk, clk * div);
509 			myclk = freq / div;
510 			diff = (myclk > clk) ? myclk - clk : clk - myclk;
511 
512 			if (diff <= diff_min) {
513 				best_freq = freq;
514 				clkdiv = i;
515 				diff_min = diff;
516 			}
517 		}
518 
519 		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
520 			(best_freq / (1 << (clkdiv + 1))), clk,
521 			best_freq, clkdiv);
522 
523 		clk_set_rate(host->clk, best_freq);
524 		clkdiv = clkdiv << 16;
525 	} else if (sup_pclk && clk == current_clk) {
526 		clkdiv = CLK_SUP_PCLK;
527 	} else {
528 		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
529 	}
530 
531 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
532 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
533 }
534 
535 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
536 {
537 	u32 tmp;
538 
539 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
540 
541 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
542 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
543 	if (host->ccs_enable)
544 		tmp |= SCCSTO_29;
545 	if (host->clk_ctrl2_enable)
546 		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
547 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
548 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
549 	/* byte swap on */
550 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
551 }
552 
553 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
554 {
555 	struct device *dev = sh_mmcif_host_to_dev(host);
556 	u32 state1, state2;
557 	int ret, timeout;
558 
559 	host->sd_error = false;
560 
561 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
562 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
563 	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
564 	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
565 
566 	if (state1 & STS1_CMDSEQ) {
567 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
568 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
569 		for (timeout = 10000; timeout; timeout--) {
570 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
571 			      & STS1_CMDSEQ))
572 				break;
573 			mdelay(1);
574 		}
575 		if (!timeout) {
576 			dev_err(dev,
577 				"Forced end of command sequence timeout err\n");
578 			return -EIO;
579 		}
580 		sh_mmcif_sync_reset(host);
581 		dev_dbg(dev, "Forced end of command sequence\n");
582 		return -EIO;
583 	}
584 
585 	if (state2 & STS2_CRC_ERR) {
586 		dev_err(dev, " CRC error: state %u, wait %u\n",
587 			host->state, host->wait_for);
588 		ret = -EIO;
589 	} else if (state2 & STS2_TIMEOUT_ERR) {
590 		dev_err(dev, " Timeout: state %u, wait %u\n",
591 			host->state, host->wait_for);
592 		ret = -ETIMEDOUT;
593 	} else {
594 		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
595 			host->state, host->wait_for);
596 		ret = -EIO;
597 	}
598 	return ret;
599 }
600 
601 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
602 {
603 	struct mmc_data *data = host->mrq->data;
604 
605 	host->sg_blkidx += host->blocksize;
606 
607 	/* data->sg->length must be a multiple of host->blocksize? */
608 	BUG_ON(host->sg_blkidx > data->sg->length);
609 
610 	if (host->sg_blkidx == data->sg->length) {
611 		host->sg_blkidx = 0;
612 		if (++host->sg_idx < data->sg_len)
613 			host->pio_ptr = sg_virt(++data->sg);
614 	} else {
615 		host->pio_ptr = p;
616 	}
617 
618 	return host->sg_idx != data->sg_len;
619 }
620 
621 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
622 				 struct mmc_request *mrq)
623 {
624 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
625 			   BLOCK_SIZE_MASK) + 3;
626 
627 	host->wait_for = MMCIF_WAIT_FOR_READ;
628 
629 	/* buf read enable */
630 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
631 }
632 
633 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
634 {
635 	struct device *dev = sh_mmcif_host_to_dev(host);
636 	struct mmc_data *data = host->mrq->data;
637 	u32 *p = sg_virt(data->sg);
638 	int i;
639 
640 	if (host->sd_error) {
641 		data->error = sh_mmcif_error_manage(host);
642 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
643 		return false;
644 	}
645 
646 	for (i = 0; i < host->blocksize / 4; i++)
647 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
648 
649 	/* buffer read end */
650 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
651 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
652 
653 	return true;
654 }
655 
656 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
657 				struct mmc_request *mrq)
658 {
659 	struct mmc_data *data = mrq->data;
660 
661 	if (!data->sg_len || !data->sg->length)
662 		return;
663 
664 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
665 		BLOCK_SIZE_MASK;
666 
667 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
668 	host->sg_idx = 0;
669 	host->sg_blkidx = 0;
670 	host->pio_ptr = sg_virt(data->sg);
671 
672 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
673 }
674 
675 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
676 {
677 	struct device *dev = sh_mmcif_host_to_dev(host);
678 	struct mmc_data *data = host->mrq->data;
679 	u32 *p = host->pio_ptr;
680 	int i;
681 
682 	if (host->sd_error) {
683 		data->error = sh_mmcif_error_manage(host);
684 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
685 		return false;
686 	}
687 
688 	BUG_ON(!data->sg->length);
689 
690 	for (i = 0; i < host->blocksize / 4; i++)
691 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
692 
693 	if (!sh_mmcif_next_block(host, p))
694 		return false;
695 
696 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
697 
698 	return true;
699 }
700 
701 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
702 					struct mmc_request *mrq)
703 {
704 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
705 			   BLOCK_SIZE_MASK) + 3;
706 
707 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
708 
709 	/* buf write enable */
710 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
711 }
712 
713 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
714 {
715 	struct device *dev = sh_mmcif_host_to_dev(host);
716 	struct mmc_data *data = host->mrq->data;
717 	u32 *p = sg_virt(data->sg);
718 	int i;
719 
720 	if (host->sd_error) {
721 		data->error = sh_mmcif_error_manage(host);
722 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
723 		return false;
724 	}
725 
726 	for (i = 0; i < host->blocksize / 4; i++)
727 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
728 
729 	/* buffer write end */
730 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
731 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
732 
733 	return true;
734 }
735 
736 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
737 				struct mmc_request *mrq)
738 {
739 	struct mmc_data *data = mrq->data;
740 
741 	if (!data->sg_len || !data->sg->length)
742 		return;
743 
744 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
745 		BLOCK_SIZE_MASK;
746 
747 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
748 	host->sg_idx = 0;
749 	host->sg_blkidx = 0;
750 	host->pio_ptr = sg_virt(data->sg);
751 
752 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
753 }
754 
755 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
756 {
757 	struct device *dev = sh_mmcif_host_to_dev(host);
758 	struct mmc_data *data = host->mrq->data;
759 	u32 *p = host->pio_ptr;
760 	int i;
761 
762 	if (host->sd_error) {
763 		data->error = sh_mmcif_error_manage(host);
764 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
765 		return false;
766 	}
767 
768 	BUG_ON(!data->sg->length);
769 
770 	for (i = 0; i < host->blocksize / 4; i++)
771 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
772 
773 	if (!sh_mmcif_next_block(host, p))
774 		return false;
775 
776 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
777 
778 	return true;
779 }
780 
781 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
782 						struct mmc_command *cmd)
783 {
784 	if (cmd->flags & MMC_RSP_136) {
785 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
786 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
787 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
788 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
789 	} else
790 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
791 }
792 
793 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
794 						struct mmc_command *cmd)
795 {
796 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
797 }
798 
799 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
800 			    struct mmc_request *mrq)
801 {
802 	struct device *dev = sh_mmcif_host_to_dev(host);
803 	struct mmc_data *data = mrq->data;
804 	struct mmc_command *cmd = mrq->cmd;
805 	u32 opc = cmd->opcode;
806 	u32 tmp = 0;
807 
808 	/* Response Type check */
809 	switch (mmc_resp_type(cmd)) {
810 	case MMC_RSP_NONE:
811 		tmp |= CMD_SET_RTYP_NO;
812 		break;
813 	case MMC_RSP_R1:
814 	case MMC_RSP_R3:
815 		tmp |= CMD_SET_RTYP_6B;
816 		break;
817 	case MMC_RSP_R1B:
818 		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
819 		break;
820 	case MMC_RSP_R2:
821 		tmp |= CMD_SET_RTYP_17B;
822 		break;
823 	default:
824 		dev_err(dev, "Unsupported response type.\n");
825 		break;
826 	}
827 
828 	/* WDAT / DATW */
829 	if (data) {
830 		tmp |= CMD_SET_WDAT;
831 		switch (host->bus_width) {
832 		case MMC_BUS_WIDTH_1:
833 			tmp |= CMD_SET_DATW_1;
834 			break;
835 		case MMC_BUS_WIDTH_4:
836 			tmp |= CMD_SET_DATW_4;
837 			break;
838 		case MMC_BUS_WIDTH_8:
839 			tmp |= CMD_SET_DATW_8;
840 			break;
841 		default:
842 			dev_err(dev, "Unsupported bus width.\n");
843 			break;
844 		}
845 		switch (host->timing) {
846 		case MMC_TIMING_MMC_DDR52:
847 			/*
848 			 * MMC core will only set this timing, if the host
849 			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
850 			 * capability. MMCIF implementations with this
851 			 * capability, e.g. sh73a0, will have to set it
852 			 * in their platform data.
853 			 */
854 			tmp |= CMD_SET_DARS;
855 			break;
856 		}
857 	}
858 	/* DWEN */
859 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
860 		tmp |= CMD_SET_DWEN;
861 	/* CMLTE/CMD12EN */
862 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
863 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
864 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
865 				data->blocks << 16);
866 	}
867 	/* RIDXC[1:0] check bits */
868 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
869 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
870 		tmp |= CMD_SET_RIDXC_BITS;
871 	/* RCRC7C[1:0] check bits */
872 	if (opc == MMC_SEND_OP_COND)
873 		tmp |= CMD_SET_CRC7C_BITS;
874 	/* RCRC7C[1:0] internal CRC7 */
875 	if (opc == MMC_ALL_SEND_CID ||
876 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
877 		tmp |= CMD_SET_CRC7C_INTERNAL;
878 
879 	return (opc << 24) | tmp;
880 }
881 
882 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
883 			       struct mmc_request *mrq, u32 opc)
884 {
885 	struct device *dev = sh_mmcif_host_to_dev(host);
886 
887 	switch (opc) {
888 	case MMC_READ_MULTIPLE_BLOCK:
889 		sh_mmcif_multi_read(host, mrq);
890 		return 0;
891 	case MMC_WRITE_MULTIPLE_BLOCK:
892 		sh_mmcif_multi_write(host, mrq);
893 		return 0;
894 	case MMC_WRITE_BLOCK:
895 		sh_mmcif_single_write(host, mrq);
896 		return 0;
897 	case MMC_READ_SINGLE_BLOCK:
898 	case MMC_SEND_EXT_CSD:
899 		sh_mmcif_single_read(host, mrq);
900 		return 0;
901 	default:
902 		dev_err(dev, "Unsupported CMD%d\n", opc);
903 		return -EINVAL;
904 	}
905 }
906 
907 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
908 			       struct mmc_request *mrq)
909 {
910 	struct mmc_command *cmd = mrq->cmd;
911 	u32 opc;
912 	u32 mask = 0;
913 	unsigned long flags;
914 
915 	if (cmd->flags & MMC_RSP_BUSY)
916 		mask = MASK_START_CMD | MASK_MRBSYE;
917 	else
918 		mask = MASK_START_CMD | MASK_MCRSPE;
919 
920 	if (host->ccs_enable)
921 		mask |= MASK_MCCSTO;
922 
923 	if (mrq->data) {
924 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
925 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
926 				mrq->data->blksz);
927 	}
928 	opc = sh_mmcif_set_cmd(host, mrq);
929 
930 	if (host->ccs_enable)
931 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
932 	else
933 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
934 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
935 	/* set arg */
936 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
937 	/* set cmd */
938 	spin_lock_irqsave(&host->lock, flags);
939 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
940 
941 	host->wait_for = MMCIF_WAIT_FOR_CMD;
942 	schedule_delayed_work(&host->timeout_work, host->timeout);
943 	spin_unlock_irqrestore(&host->lock, flags);
944 }
945 
946 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
947 			      struct mmc_request *mrq)
948 {
949 	struct device *dev = sh_mmcif_host_to_dev(host);
950 
951 	switch (mrq->cmd->opcode) {
952 	case MMC_READ_MULTIPLE_BLOCK:
953 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
954 		break;
955 	case MMC_WRITE_MULTIPLE_BLOCK:
956 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
957 		break;
958 	default:
959 		dev_err(dev, "unsupported stop cmd\n");
960 		mrq->stop->error = sh_mmcif_error_manage(host);
961 		return;
962 	}
963 
964 	host->wait_for = MMCIF_WAIT_FOR_STOP;
965 }
966 
967 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
968 {
969 	struct sh_mmcif_host *host = mmc_priv(mmc);
970 	struct device *dev = sh_mmcif_host_to_dev(host);
971 	unsigned long flags;
972 
973 	spin_lock_irqsave(&host->lock, flags);
974 	if (host->state != STATE_IDLE) {
975 		dev_dbg(dev, "%s() rejected, state %u\n",
976 			__func__, host->state);
977 		spin_unlock_irqrestore(&host->lock, flags);
978 		mrq->cmd->error = -EAGAIN;
979 		mmc_request_done(mmc, mrq);
980 		return;
981 	}
982 
983 	host->state = STATE_REQUEST;
984 	spin_unlock_irqrestore(&host->lock, flags);
985 
986 	host->mrq = mrq;
987 
988 	sh_mmcif_start_cmd(host, mrq);
989 }
990 
991 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
992 {
993 	struct device *dev = sh_mmcif_host_to_dev(host);
994 
995 	if (host->mmc->f_max) {
996 		unsigned int f_max, f_min = 0, f_min_old;
997 
998 		f_max = host->mmc->f_max;
999 		for (f_min_old = f_max; f_min_old > 2;) {
1000 			f_min = clk_round_rate(host->clk, f_min_old / 2);
1001 			if (f_min == f_min_old)
1002 				break;
1003 			f_min_old = f_min;
1004 		}
1005 
1006 		/*
1007 		 * This driver assumes this SoC is R-Car Gen2 or later
1008 		 */
1009 		host->clkdiv_map = 0x3ff;
1010 
1011 		host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1012 		host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1013 	} else {
1014 		unsigned int clk = clk_get_rate(host->clk);
1015 
1016 		host->mmc->f_max = clk / 2;
1017 		host->mmc->f_min = clk / 512;
1018 	}
1019 
1020 	dev_dbg(dev, "clk max/min = %d/%d\n",
1021 		host->mmc->f_max, host->mmc->f_min);
1022 }
1023 
1024 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1025 {
1026 	struct sh_mmcif_host *host = mmc_priv(mmc);
1027 	struct device *dev = sh_mmcif_host_to_dev(host);
1028 	unsigned long flags;
1029 
1030 	spin_lock_irqsave(&host->lock, flags);
1031 	if (host->state != STATE_IDLE) {
1032 		dev_dbg(dev, "%s() rejected, state %u\n",
1033 			__func__, host->state);
1034 		spin_unlock_irqrestore(&host->lock, flags);
1035 		return;
1036 	}
1037 
1038 	host->state = STATE_IOS;
1039 	spin_unlock_irqrestore(&host->lock, flags);
1040 
1041 	switch (ios->power_mode) {
1042 	case MMC_POWER_UP:
1043 		if (!IS_ERR(mmc->supply.vmmc))
1044 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1045 		if (!host->power) {
1046 			clk_prepare_enable(host->clk);
1047 			pm_runtime_get_sync(dev);
1048 			sh_mmcif_sync_reset(host);
1049 			sh_mmcif_request_dma(host);
1050 			host->power = true;
1051 		}
1052 		break;
1053 	case MMC_POWER_OFF:
1054 		if (!IS_ERR(mmc->supply.vmmc))
1055 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1056 		if (host->power) {
1057 			sh_mmcif_clock_control(host, 0);
1058 			sh_mmcif_release_dma(host);
1059 			pm_runtime_put(dev);
1060 			clk_disable_unprepare(host->clk);
1061 			host->power = false;
1062 		}
1063 		break;
1064 	case MMC_POWER_ON:
1065 		sh_mmcif_clock_control(host, ios->clock);
1066 		break;
1067 	}
1068 
1069 	host->timing = ios->timing;
1070 	host->bus_width = ios->bus_width;
1071 	host->state = STATE_IDLE;
1072 }
1073 
1074 static const struct mmc_host_ops sh_mmcif_ops = {
1075 	.request	= sh_mmcif_request,
1076 	.set_ios	= sh_mmcif_set_ios,
1077 	.get_cd		= mmc_gpio_get_cd,
1078 };
1079 
1080 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1081 {
1082 	struct mmc_command *cmd = host->mrq->cmd;
1083 	struct mmc_data *data = host->mrq->data;
1084 	struct device *dev = sh_mmcif_host_to_dev(host);
1085 	long time;
1086 
1087 	if (host->sd_error) {
1088 		switch (cmd->opcode) {
1089 		case MMC_ALL_SEND_CID:
1090 		case MMC_SELECT_CARD:
1091 		case MMC_APP_CMD:
1092 			cmd->error = -ETIMEDOUT;
1093 			break;
1094 		default:
1095 			cmd->error = sh_mmcif_error_manage(host);
1096 			break;
1097 		}
1098 		dev_dbg(dev, "CMD%d error %d\n",
1099 			cmd->opcode, cmd->error);
1100 		host->sd_error = false;
1101 		return false;
1102 	}
1103 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1104 		cmd->error = 0;
1105 		return false;
1106 	}
1107 
1108 	sh_mmcif_get_response(host, cmd);
1109 
1110 	if (!data)
1111 		return false;
1112 
1113 	/*
1114 	 * Completion can be signalled from DMA callback and error, so, have to
1115 	 * reset here, before setting .dma_active
1116 	 */
1117 	init_completion(&host->dma_complete);
1118 
1119 	if (data->flags & MMC_DATA_READ) {
1120 		if (host->chan_rx)
1121 			sh_mmcif_start_dma_rx(host);
1122 	} else {
1123 		if (host->chan_tx)
1124 			sh_mmcif_start_dma_tx(host);
1125 	}
1126 
1127 	if (!host->dma_active) {
1128 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1129 		return !data->error;
1130 	}
1131 
1132 	/* Running in the IRQ thread, can sleep */
1133 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1134 							 host->timeout);
1135 
1136 	if (data->flags & MMC_DATA_READ)
1137 		dma_unmap_sg(host->chan_rx->device->dev,
1138 			     data->sg, data->sg_len,
1139 			     DMA_FROM_DEVICE);
1140 	else
1141 		dma_unmap_sg(host->chan_tx->device->dev,
1142 			     data->sg, data->sg_len,
1143 			     DMA_TO_DEVICE);
1144 
1145 	if (host->sd_error) {
1146 		dev_err(host->mmc->parent,
1147 			"Error IRQ while waiting for DMA completion!\n");
1148 		/* Woken up by an error IRQ: abort DMA */
1149 		data->error = sh_mmcif_error_manage(host);
1150 	} else if (!time) {
1151 		dev_err(host->mmc->parent, "DMA timeout!\n");
1152 		data->error = -ETIMEDOUT;
1153 	} else if (time < 0) {
1154 		dev_err(host->mmc->parent,
1155 			"wait_for_completion_...() error %ld!\n", time);
1156 		data->error = time;
1157 	}
1158 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1159 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1160 	host->dma_active = false;
1161 
1162 	if (data->error) {
1163 		data->bytes_xfered = 0;
1164 		/* Abort DMA */
1165 		if (data->flags & MMC_DATA_READ)
1166 			dmaengine_terminate_all(host->chan_rx);
1167 		else
1168 			dmaengine_terminate_all(host->chan_tx);
1169 	}
1170 
1171 	return false;
1172 }
1173 
1174 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1175 {
1176 	struct sh_mmcif_host *host = dev_id;
1177 	struct mmc_request *mrq;
1178 	struct device *dev = sh_mmcif_host_to_dev(host);
1179 	bool wait = false;
1180 	unsigned long flags;
1181 	int wait_work;
1182 
1183 	spin_lock_irqsave(&host->lock, flags);
1184 	wait_work = host->wait_for;
1185 	spin_unlock_irqrestore(&host->lock, flags);
1186 
1187 	cancel_delayed_work_sync(&host->timeout_work);
1188 
1189 	mutex_lock(&host->thread_lock);
1190 
1191 	mrq = host->mrq;
1192 	if (!mrq) {
1193 		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1194 			host->state, host->wait_for);
1195 		mutex_unlock(&host->thread_lock);
1196 		return IRQ_HANDLED;
1197 	}
1198 
1199 	/*
1200 	 * All handlers return true, if processing continues, and false, if the
1201 	 * request has to be completed - successfully or not
1202 	 */
1203 	switch (wait_work) {
1204 	case MMCIF_WAIT_FOR_REQUEST:
1205 		/* We're too late, the timeout has already kicked in */
1206 		mutex_unlock(&host->thread_lock);
1207 		return IRQ_HANDLED;
1208 	case MMCIF_WAIT_FOR_CMD:
1209 		/* Wait for data? */
1210 		wait = sh_mmcif_end_cmd(host);
1211 		break;
1212 	case MMCIF_WAIT_FOR_MREAD:
1213 		/* Wait for more data? */
1214 		wait = sh_mmcif_mread_block(host);
1215 		break;
1216 	case MMCIF_WAIT_FOR_READ:
1217 		/* Wait for data end? */
1218 		wait = sh_mmcif_read_block(host);
1219 		break;
1220 	case MMCIF_WAIT_FOR_MWRITE:
1221 		/* Wait data to write? */
1222 		wait = sh_mmcif_mwrite_block(host);
1223 		break;
1224 	case MMCIF_WAIT_FOR_WRITE:
1225 		/* Wait for data end? */
1226 		wait = sh_mmcif_write_block(host);
1227 		break;
1228 	case MMCIF_WAIT_FOR_STOP:
1229 		if (host->sd_error) {
1230 			mrq->stop->error = sh_mmcif_error_manage(host);
1231 			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1232 			break;
1233 		}
1234 		sh_mmcif_get_cmd12response(host, mrq->stop);
1235 		mrq->stop->error = 0;
1236 		break;
1237 	case MMCIF_WAIT_FOR_READ_END:
1238 	case MMCIF_WAIT_FOR_WRITE_END:
1239 		if (host->sd_error) {
1240 			mrq->data->error = sh_mmcif_error_manage(host);
1241 			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1242 		}
1243 		break;
1244 	default:
1245 		BUG();
1246 	}
1247 
1248 	if (wait) {
1249 		schedule_delayed_work(&host->timeout_work, host->timeout);
1250 		/* Wait for more data */
1251 		mutex_unlock(&host->thread_lock);
1252 		return IRQ_HANDLED;
1253 	}
1254 
1255 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1256 		struct mmc_data *data = mrq->data;
1257 		if (!mrq->cmd->error && data && !data->error)
1258 			data->bytes_xfered =
1259 				data->blocks * data->blksz;
1260 
1261 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1262 			sh_mmcif_stop_cmd(host, mrq);
1263 			if (!mrq->stop->error) {
1264 				schedule_delayed_work(&host->timeout_work, host->timeout);
1265 				mutex_unlock(&host->thread_lock);
1266 				return IRQ_HANDLED;
1267 			}
1268 		}
1269 	}
1270 
1271 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1272 	host->state = STATE_IDLE;
1273 	host->mrq = NULL;
1274 	mmc_request_done(host->mmc, mrq);
1275 
1276 	mutex_unlock(&host->thread_lock);
1277 
1278 	return IRQ_HANDLED;
1279 }
1280 
1281 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1282 {
1283 	struct sh_mmcif_host *host = dev_id;
1284 	struct device *dev = sh_mmcif_host_to_dev(host);
1285 	u32 state, mask;
1286 
1287 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1288 	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1289 	if (host->ccs_enable)
1290 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1291 	else
1292 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1293 	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1294 
1295 	if (state & ~MASK_CLEAN)
1296 		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1297 			state);
1298 
1299 	if (state & INT_ERR_STS || state & ~INT_ALL) {
1300 		host->sd_error = true;
1301 		dev_dbg(dev, "int err state = 0x%08x\n", state);
1302 	}
1303 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1304 		if (!host->mrq)
1305 			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1306 		if (!host->dma_active)
1307 			return IRQ_WAKE_THREAD;
1308 		else if (host->sd_error)
1309 			sh_mmcif_dma_complete(host);
1310 	} else {
1311 		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1312 	}
1313 
1314 	return IRQ_HANDLED;
1315 }
1316 
1317 static void sh_mmcif_timeout_work(struct work_struct *work)
1318 {
1319 	struct delayed_work *d = to_delayed_work(work);
1320 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1321 	struct mmc_request *mrq = host->mrq;
1322 	struct device *dev = sh_mmcif_host_to_dev(host);
1323 	unsigned long flags;
1324 
1325 	if (host->dying)
1326 		/* Don't run after mmc_remove_host() */
1327 		return;
1328 
1329 	spin_lock_irqsave(&host->lock, flags);
1330 	if (host->state == STATE_IDLE) {
1331 		spin_unlock_irqrestore(&host->lock, flags);
1332 		return;
1333 	}
1334 
1335 	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1336 		host->wait_for, mrq->cmd->opcode);
1337 
1338 	host->state = STATE_TIMEOUT;
1339 	spin_unlock_irqrestore(&host->lock, flags);
1340 
1341 	/*
1342 	 * Handle races with cancel_delayed_work(), unless
1343 	 * cancel_delayed_work_sync() is used
1344 	 */
1345 	switch (host->wait_for) {
1346 	case MMCIF_WAIT_FOR_CMD:
1347 		mrq->cmd->error = sh_mmcif_error_manage(host);
1348 		break;
1349 	case MMCIF_WAIT_FOR_STOP:
1350 		mrq->stop->error = sh_mmcif_error_manage(host);
1351 		break;
1352 	case MMCIF_WAIT_FOR_MREAD:
1353 	case MMCIF_WAIT_FOR_MWRITE:
1354 	case MMCIF_WAIT_FOR_READ:
1355 	case MMCIF_WAIT_FOR_WRITE:
1356 	case MMCIF_WAIT_FOR_READ_END:
1357 	case MMCIF_WAIT_FOR_WRITE_END:
1358 		mrq->data->error = sh_mmcif_error_manage(host);
1359 		break;
1360 	default:
1361 		BUG();
1362 	}
1363 
1364 	host->state = STATE_IDLE;
1365 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1366 	host->mrq = NULL;
1367 	mmc_request_done(host->mmc, mrq);
1368 }
1369 
1370 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1371 {
1372 	struct device *dev = sh_mmcif_host_to_dev(host);
1373 	struct sh_mmcif_plat_data *pd = dev->platform_data;
1374 	struct mmc_host *mmc = host->mmc;
1375 
1376 	mmc_regulator_get_supply(mmc);
1377 
1378 	if (!pd)
1379 		return;
1380 
1381 	if (!mmc->ocr_avail)
1382 		mmc->ocr_avail = pd->ocr;
1383 	else if (pd->ocr)
1384 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1385 }
1386 
1387 static int sh_mmcif_probe(struct platform_device *pdev)
1388 {
1389 	int ret = 0, irq[2];
1390 	struct mmc_host *mmc;
1391 	struct sh_mmcif_host *host;
1392 	struct device *dev = &pdev->dev;
1393 	struct sh_mmcif_plat_data *pd = dev->platform_data;
1394 	struct resource *res;
1395 	void __iomem *reg;
1396 	const char *name;
1397 
1398 	irq[0] = platform_get_irq(pdev, 0);
1399 	irq[1] = platform_get_irq(pdev, 1);
1400 	if (irq[0] < 0) {
1401 		dev_err(dev, "Get irq error\n");
1402 		return -ENXIO;
1403 	}
1404 
1405 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1406 	reg = devm_ioremap_resource(dev, res);
1407 	if (IS_ERR(reg))
1408 		return PTR_ERR(reg);
1409 
1410 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1411 	if (!mmc)
1412 		return -ENOMEM;
1413 
1414 	ret = mmc_of_parse(mmc);
1415 	if (ret < 0)
1416 		goto err_host;
1417 
1418 	host		= mmc_priv(mmc);
1419 	host->mmc	= mmc;
1420 	host->addr	= reg;
1421 	host->timeout	= msecs_to_jiffies(10000);
1422 	host->ccs_enable = true;
1423 	host->clk_ctrl2_enable = false;
1424 
1425 	host->pd = pdev;
1426 
1427 	spin_lock_init(&host->lock);
1428 
1429 	mmc->ops = &sh_mmcif_ops;
1430 	sh_mmcif_init_ocr(host);
1431 
1432 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1433 	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1434 	mmc->max_busy_timeout = 10000;
1435 
1436 	if (pd && pd->caps)
1437 		mmc->caps |= pd->caps;
1438 	mmc->max_segs = 32;
1439 	mmc->max_blk_size = 512;
1440 	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1441 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1442 	mmc->max_seg_size = mmc->max_req_size;
1443 
1444 	platform_set_drvdata(pdev, host);
1445 
1446 	host->clk = devm_clk_get(dev, NULL);
1447 	if (IS_ERR(host->clk)) {
1448 		ret = PTR_ERR(host->clk);
1449 		dev_err(dev, "cannot get clock: %d\n", ret);
1450 		goto err_host;
1451 	}
1452 
1453 	ret = clk_prepare_enable(host->clk);
1454 	if (ret < 0)
1455 		goto err_host;
1456 
1457 	sh_mmcif_clk_setup(host);
1458 
1459 	pm_runtime_enable(dev);
1460 	host->power = false;
1461 
1462 	ret = pm_runtime_get_sync(dev);
1463 	if (ret < 0)
1464 		goto err_clk;
1465 
1466 	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1467 
1468 	sh_mmcif_sync_reset(host);
1469 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1470 
1471 	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1472 	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1473 					sh_mmcif_irqt, 0, name, host);
1474 	if (ret) {
1475 		dev_err(dev, "request_irq error (%s)\n", name);
1476 		goto err_clk;
1477 	}
1478 	if (irq[1] >= 0) {
1479 		ret = devm_request_threaded_irq(dev, irq[1],
1480 						sh_mmcif_intr, sh_mmcif_irqt,
1481 						0, "sh_mmc:int", host);
1482 		if (ret) {
1483 			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1484 			goto err_clk;
1485 		}
1486 	}
1487 
1488 	mutex_init(&host->thread_lock);
1489 
1490 	ret = mmc_add_host(mmc);
1491 	if (ret < 0)
1492 		goto err_clk;
1493 
1494 	dev_pm_qos_expose_latency_limit(dev, 100);
1495 
1496 	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1497 		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1498 		 clk_get_rate(host->clk) / 1000000UL);
1499 
1500 	pm_runtime_put(dev);
1501 	clk_disable_unprepare(host->clk);
1502 	return ret;
1503 
1504 err_clk:
1505 	clk_disable_unprepare(host->clk);
1506 	pm_runtime_put_sync(dev);
1507 	pm_runtime_disable(dev);
1508 err_host:
1509 	mmc_free_host(mmc);
1510 	return ret;
1511 }
1512 
1513 static int sh_mmcif_remove(struct platform_device *pdev)
1514 {
1515 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1516 
1517 	host->dying = true;
1518 	clk_prepare_enable(host->clk);
1519 	pm_runtime_get_sync(&pdev->dev);
1520 
1521 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1522 
1523 	mmc_remove_host(host->mmc);
1524 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1525 
1526 	/*
1527 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1528 	 * mmc_remove_host() call above. But swapping order doesn't help either
1529 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1530 	 */
1531 	cancel_delayed_work_sync(&host->timeout_work);
1532 
1533 	clk_disable_unprepare(host->clk);
1534 	mmc_free_host(host->mmc);
1535 	pm_runtime_put_sync(&pdev->dev);
1536 	pm_runtime_disable(&pdev->dev);
1537 
1538 	return 0;
1539 }
1540 
1541 #ifdef CONFIG_PM_SLEEP
1542 static int sh_mmcif_suspend(struct device *dev)
1543 {
1544 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1545 
1546 	pm_runtime_get_sync(dev);
1547 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1548 	pm_runtime_put(dev);
1549 
1550 	return 0;
1551 }
1552 
1553 static int sh_mmcif_resume(struct device *dev)
1554 {
1555 	return 0;
1556 }
1557 #endif
1558 
1559 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1560 	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1561 };
1562 
1563 static struct platform_driver sh_mmcif_driver = {
1564 	.probe		= sh_mmcif_probe,
1565 	.remove		= sh_mmcif_remove,
1566 	.driver		= {
1567 		.name	= DRIVER_NAME,
1568 		.pm	= &sh_mmcif_dev_pm_ops,
1569 		.of_match_table = sh_mmcif_of_match,
1570 	},
1571 };
1572 
1573 module_platform_driver(sh_mmcif_driver);
1574 
1575 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1576 MODULE_LICENSE("GPL");
1577 MODULE_ALIAS("platform:" DRIVER_NAME);
1578 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1579