1 /* 2 * MMCIF eMMC driver. 3 * 4 * Copyright (C) 2010 Renesas Solutions Corp. 5 * Yusuke Goda <yusuke.goda.sx@renesas.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License. 10 * 11 * 12 * TODO 13 * 1. DMA 14 * 2. Power management 15 * 3. Handle MMC errors better 16 * 17 */ 18 19 /* 20 * The MMCIF driver is now processing MMC requests asynchronously, according 21 * to the Linux MMC API requirement. 22 * 23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional 24 * data, and optional stop. To achieve asynchronous processing each of these 25 * stages is split into two halves: a top and a bottom half. The top half 26 * initialises the hardware, installs a timeout handler to handle completion 27 * timeouts, and returns. In case of the command stage this immediately returns 28 * control to the caller, leaving all further processing to run asynchronously. 29 * All further request processing is performed by the bottom halves. 30 * 31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler 32 * thread, a DMA completion callback, if DMA is used, a timeout work, and 33 * request- and stage-specific handler methods. 34 * 35 * Each bottom half run begins with either a hardware interrupt, a DMA callback 36 * invocation, or a timeout work run. In case of an error or a successful 37 * processing completion, the MMC core is informed and the request processing is 38 * finished. In case processing has to continue, i.e., if data has to be read 39 * from or written to the card, or if a stop command has to be sent, the next 40 * top half is called, which performs the necessary hardware handling and 41 * reschedules the timeout work. This returns the driver state machine into the 42 * bottom half waiting state. 43 */ 44 45 #include <linux/bitops.h> 46 #include <linux/clk.h> 47 #include <linux/completion.h> 48 #include <linux/delay.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/dmaengine.h> 51 #include <linux/mmc/card.h> 52 #include <linux/mmc/core.h> 53 #include <linux/mmc/host.h> 54 #include <linux/mmc/mmc.h> 55 #include <linux/mmc/sdio.h> 56 #include <linux/mmc/sh_mmcif.h> 57 #include <linux/mmc/slot-gpio.h> 58 #include <linux/mod_devicetable.h> 59 #include <linux/mutex.h> 60 #include <linux/of_device.h> 61 #include <linux/pagemap.h> 62 #include <linux/platform_device.h> 63 #include <linux/pm_qos.h> 64 #include <linux/pm_runtime.h> 65 #include <linux/sh_dma.h> 66 #include <linux/spinlock.h> 67 #include <linux/module.h> 68 69 #define DRIVER_NAME "sh_mmcif" 70 #define DRIVER_VERSION "2010-04-28" 71 72 /* CE_CMD_SET */ 73 #define CMD_MASK 0x3f000000 74 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22)) 75 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */ 76 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */ 77 #define CMD_SET_RBSY (1 << 21) /* R1b */ 78 #define CMD_SET_CCSEN (1 << 20) 79 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */ 80 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */ 81 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */ 82 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */ 83 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */ 84 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */ 85 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */ 86 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/ 87 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/ 88 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/ 89 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/ 90 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */ 91 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */ 92 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */ 93 #define CMD_SET_CCSH (1 << 5) 94 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */ 95 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */ 96 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */ 97 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */ 98 99 /* CE_CMD_CTRL */ 100 #define CMD_CTRL_BREAK (1 << 0) 101 102 /* CE_BLOCK_SET */ 103 #define BLOCK_SIZE_MASK 0x0000ffff 104 105 /* CE_INT */ 106 #define INT_CCSDE (1 << 29) 107 #define INT_CMD12DRE (1 << 26) 108 #define INT_CMD12RBE (1 << 25) 109 #define INT_CMD12CRE (1 << 24) 110 #define INT_DTRANE (1 << 23) 111 #define INT_BUFRE (1 << 22) 112 #define INT_BUFWEN (1 << 21) 113 #define INT_BUFREN (1 << 20) 114 #define INT_CCSRCV (1 << 19) 115 #define INT_RBSYE (1 << 17) 116 #define INT_CRSPE (1 << 16) 117 #define INT_CMDVIO (1 << 15) 118 #define INT_BUFVIO (1 << 14) 119 #define INT_WDATERR (1 << 11) 120 #define INT_RDATERR (1 << 10) 121 #define INT_RIDXERR (1 << 9) 122 #define INT_RSPERR (1 << 8) 123 #define INT_CCSTO (1 << 5) 124 #define INT_CRCSTO (1 << 4) 125 #define INT_WDATTO (1 << 3) 126 #define INT_RDATTO (1 << 2) 127 #define INT_RBSYTO (1 << 1) 128 #define INT_RSPTO (1 << 0) 129 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \ 130 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \ 131 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \ 132 INT_RDATTO | INT_RBSYTO | INT_RSPTO) 133 134 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \ 135 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \ 136 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE) 137 138 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE) 139 140 /* CE_INT_MASK */ 141 #define MASK_ALL 0x00000000 142 #define MASK_MCCSDE (1 << 29) 143 #define MASK_MCMD12DRE (1 << 26) 144 #define MASK_MCMD12RBE (1 << 25) 145 #define MASK_MCMD12CRE (1 << 24) 146 #define MASK_MDTRANE (1 << 23) 147 #define MASK_MBUFRE (1 << 22) 148 #define MASK_MBUFWEN (1 << 21) 149 #define MASK_MBUFREN (1 << 20) 150 #define MASK_MCCSRCV (1 << 19) 151 #define MASK_MRBSYE (1 << 17) 152 #define MASK_MCRSPE (1 << 16) 153 #define MASK_MCMDVIO (1 << 15) 154 #define MASK_MBUFVIO (1 << 14) 155 #define MASK_MWDATERR (1 << 11) 156 #define MASK_MRDATERR (1 << 10) 157 #define MASK_MRIDXERR (1 << 9) 158 #define MASK_MRSPERR (1 << 8) 159 #define MASK_MCCSTO (1 << 5) 160 #define MASK_MCRCSTO (1 << 4) 161 #define MASK_MWDATTO (1 << 3) 162 #define MASK_MRDATTO (1 << 2) 163 #define MASK_MRBSYTO (1 << 1) 164 #define MASK_MRSPTO (1 << 0) 165 166 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \ 167 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \ 168 MASK_MCRCSTO | MASK_MWDATTO | \ 169 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO) 170 171 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \ 172 MASK_MBUFREN | MASK_MBUFWEN | \ 173 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \ 174 MASK_MCMD12RBE | MASK_MCMD12CRE) 175 176 /* CE_HOST_STS1 */ 177 #define STS1_CMDSEQ (1 << 31) 178 179 /* CE_HOST_STS2 */ 180 #define STS2_CRCSTE (1 << 31) 181 #define STS2_CRC16E (1 << 30) 182 #define STS2_AC12CRCE (1 << 29) 183 #define STS2_RSPCRC7E (1 << 28) 184 #define STS2_CRCSTEBE (1 << 27) 185 #define STS2_RDATEBE (1 << 26) 186 #define STS2_AC12REBE (1 << 25) 187 #define STS2_RSPEBE (1 << 24) 188 #define STS2_AC12IDXE (1 << 23) 189 #define STS2_RSPIDXE (1 << 22) 190 #define STS2_CCSTO (1 << 15) 191 #define STS2_RDATTO (1 << 14) 192 #define STS2_DATBSYTO (1 << 13) 193 #define STS2_CRCSTTO (1 << 12) 194 #define STS2_AC12BSYTO (1 << 11) 195 #define STS2_RSPBSYTO (1 << 10) 196 #define STS2_AC12RSPTO (1 << 9) 197 #define STS2_RSPTO (1 << 8) 198 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \ 199 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE) 200 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \ 201 STS2_DATBSYTO | STS2_CRCSTTO | \ 202 STS2_AC12BSYTO | STS2_RSPBSYTO | \ 203 STS2_AC12RSPTO | STS2_RSPTO) 204 205 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */ 206 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */ 207 #define CLKDEV_INIT 400000 /* 400 KHz */ 208 209 enum sh_mmcif_state { 210 STATE_IDLE, 211 STATE_REQUEST, 212 STATE_IOS, 213 STATE_TIMEOUT, 214 }; 215 216 enum sh_mmcif_wait_for { 217 MMCIF_WAIT_FOR_REQUEST, 218 MMCIF_WAIT_FOR_CMD, 219 MMCIF_WAIT_FOR_MREAD, 220 MMCIF_WAIT_FOR_MWRITE, 221 MMCIF_WAIT_FOR_READ, 222 MMCIF_WAIT_FOR_WRITE, 223 MMCIF_WAIT_FOR_READ_END, 224 MMCIF_WAIT_FOR_WRITE_END, 225 MMCIF_WAIT_FOR_STOP, 226 }; 227 228 /* 229 * difference for each SoC 230 */ 231 struct sh_mmcif_host { 232 struct mmc_host *mmc; 233 struct mmc_request *mrq; 234 struct platform_device *pd; 235 struct clk *clk; 236 int bus_width; 237 unsigned char timing; 238 bool sd_error; 239 bool dying; 240 long timeout; 241 void __iomem *addr; 242 u32 *pio_ptr; 243 spinlock_t lock; /* protect sh_mmcif_host::state */ 244 enum sh_mmcif_state state; 245 enum sh_mmcif_wait_for wait_for; 246 struct delayed_work timeout_work; 247 size_t blocksize; 248 int sg_idx; 249 int sg_blkidx; 250 bool power; 251 bool ccs_enable; /* Command Completion Signal support */ 252 bool clk_ctrl2_enable; 253 struct mutex thread_lock; 254 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */ 255 256 /* DMA support */ 257 struct dma_chan *chan_rx; 258 struct dma_chan *chan_tx; 259 struct completion dma_complete; 260 bool dma_active; 261 }; 262 263 static const struct of_device_id sh_mmcif_of_match[] = { 264 { .compatible = "renesas,sh-mmcif" }, 265 { } 266 }; 267 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match); 268 269 #define sh_mmcif_host_to_dev(host) (&host->pd->dev) 270 271 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host, 272 unsigned int reg, u32 val) 273 { 274 writel(val | readl(host->addr + reg), host->addr + reg); 275 } 276 277 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host, 278 unsigned int reg, u32 val) 279 { 280 writel(~val & readl(host->addr + reg), host->addr + reg); 281 } 282 283 static void sh_mmcif_dma_complete(void *arg) 284 { 285 struct sh_mmcif_host *host = arg; 286 struct mmc_request *mrq = host->mrq; 287 struct device *dev = sh_mmcif_host_to_dev(host); 288 289 dev_dbg(dev, "Command completed\n"); 290 291 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n", 292 dev_name(dev))) 293 return; 294 295 complete(&host->dma_complete); 296 } 297 298 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host) 299 { 300 struct mmc_data *data = host->mrq->data; 301 struct scatterlist *sg = data->sg; 302 struct dma_async_tx_descriptor *desc = NULL; 303 struct dma_chan *chan = host->chan_rx; 304 struct device *dev = sh_mmcif_host_to_dev(host); 305 dma_cookie_t cookie = -EINVAL; 306 int ret; 307 308 ret = dma_map_sg(chan->device->dev, sg, data->sg_len, 309 DMA_FROM_DEVICE); 310 if (ret > 0) { 311 host->dma_active = true; 312 desc = dmaengine_prep_slave_sg(chan, sg, ret, 313 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 314 } 315 316 if (desc) { 317 desc->callback = sh_mmcif_dma_complete; 318 desc->callback_param = host; 319 cookie = dmaengine_submit(desc); 320 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN); 321 dma_async_issue_pending(chan); 322 } 323 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n", 324 __func__, data->sg_len, ret, cookie); 325 326 if (!desc) { 327 /* DMA failed, fall back to PIO */ 328 if (ret >= 0) 329 ret = -EIO; 330 host->chan_rx = NULL; 331 host->dma_active = false; 332 dma_release_channel(chan); 333 /* Free the Tx channel too */ 334 chan = host->chan_tx; 335 if (chan) { 336 host->chan_tx = NULL; 337 dma_release_channel(chan); 338 } 339 dev_warn(dev, 340 "DMA failed: %d, falling back to PIO\n", ret); 341 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 342 } 343 344 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__, 345 desc, cookie, data->sg_len); 346 } 347 348 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host) 349 { 350 struct mmc_data *data = host->mrq->data; 351 struct scatterlist *sg = data->sg; 352 struct dma_async_tx_descriptor *desc = NULL; 353 struct dma_chan *chan = host->chan_tx; 354 struct device *dev = sh_mmcif_host_to_dev(host); 355 dma_cookie_t cookie = -EINVAL; 356 int ret; 357 358 ret = dma_map_sg(chan->device->dev, sg, data->sg_len, 359 DMA_TO_DEVICE); 360 if (ret > 0) { 361 host->dma_active = true; 362 desc = dmaengine_prep_slave_sg(chan, sg, ret, 363 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 364 } 365 366 if (desc) { 367 desc->callback = sh_mmcif_dma_complete; 368 desc->callback_param = host; 369 cookie = dmaengine_submit(desc); 370 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN); 371 dma_async_issue_pending(chan); 372 } 373 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n", 374 __func__, data->sg_len, ret, cookie); 375 376 if (!desc) { 377 /* DMA failed, fall back to PIO */ 378 if (ret >= 0) 379 ret = -EIO; 380 host->chan_tx = NULL; 381 host->dma_active = false; 382 dma_release_channel(chan); 383 /* Free the Rx channel too */ 384 chan = host->chan_rx; 385 if (chan) { 386 host->chan_rx = NULL; 387 dma_release_channel(chan); 388 } 389 dev_warn(dev, 390 "DMA failed: %d, falling back to PIO\n", ret); 391 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 392 } 393 394 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__, 395 desc, cookie); 396 } 397 398 static struct dma_chan * 399 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id) 400 { 401 dma_cap_mask_t mask; 402 403 dma_cap_zero(mask); 404 dma_cap_set(DMA_SLAVE, mask); 405 if (slave_id <= 0) 406 return NULL; 407 408 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id); 409 } 410 411 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host, 412 struct dma_chan *chan, 413 enum dma_transfer_direction direction) 414 { 415 struct resource *res; 416 struct dma_slave_config cfg = { 0, }; 417 418 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0); 419 cfg.direction = direction; 420 421 if (direction == DMA_DEV_TO_MEM) { 422 cfg.src_addr = res->start + MMCIF_CE_DATA; 423 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 424 } else { 425 cfg.dst_addr = res->start + MMCIF_CE_DATA; 426 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 427 } 428 429 return dmaengine_slave_config(chan, &cfg); 430 } 431 432 static void sh_mmcif_request_dma(struct sh_mmcif_host *host) 433 { 434 struct device *dev = sh_mmcif_host_to_dev(host); 435 host->dma_active = false; 436 437 /* We can only either use DMA for both Tx and Rx or not use it at all */ 438 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) { 439 struct sh_mmcif_plat_data *pdata = dev->platform_data; 440 441 host->chan_tx = sh_mmcif_request_dma_pdata(host, 442 pdata->slave_id_tx); 443 host->chan_rx = sh_mmcif_request_dma_pdata(host, 444 pdata->slave_id_rx); 445 } else { 446 host->chan_tx = dma_request_slave_channel(dev, "tx"); 447 host->chan_rx = dma_request_slave_channel(dev, "rx"); 448 } 449 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx, 450 host->chan_rx); 451 452 if (!host->chan_tx || !host->chan_rx || 453 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) || 454 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM)) 455 goto error; 456 457 return; 458 459 error: 460 if (host->chan_tx) 461 dma_release_channel(host->chan_tx); 462 if (host->chan_rx) 463 dma_release_channel(host->chan_rx); 464 host->chan_tx = host->chan_rx = NULL; 465 } 466 467 static void sh_mmcif_release_dma(struct sh_mmcif_host *host) 468 { 469 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 470 /* Descriptors are freed automatically */ 471 if (host->chan_tx) { 472 struct dma_chan *chan = host->chan_tx; 473 host->chan_tx = NULL; 474 dma_release_channel(chan); 475 } 476 if (host->chan_rx) { 477 struct dma_chan *chan = host->chan_rx; 478 host->chan_rx = NULL; 479 dma_release_channel(chan); 480 } 481 482 host->dma_active = false; 483 } 484 485 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk) 486 { 487 struct device *dev = sh_mmcif_host_to_dev(host); 488 struct sh_mmcif_plat_data *p = dev->platform_data; 489 bool sup_pclk = p ? p->sup_pclk : false; 490 unsigned int current_clk = clk_get_rate(host->clk); 491 unsigned int clkdiv; 492 493 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); 494 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR); 495 496 if (!clk) 497 return; 498 499 if (host->clkdiv_map) { 500 unsigned int freq, best_freq, myclk, div, diff_min, diff; 501 int i; 502 503 clkdiv = 0; 504 diff_min = ~0; 505 best_freq = 0; 506 for (i = 31; i >= 0; i--) { 507 if (!((1 << i) & host->clkdiv_map)) 508 continue; 509 510 /* 511 * clk = parent_freq / div 512 * -> parent_freq = clk x div 513 */ 514 515 div = 1 << (i + 1); 516 freq = clk_round_rate(host->clk, clk * div); 517 myclk = freq / div; 518 diff = (myclk > clk) ? myclk - clk : clk - myclk; 519 520 if (diff <= diff_min) { 521 best_freq = freq; 522 clkdiv = i; 523 diff_min = diff; 524 } 525 } 526 527 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n", 528 (best_freq / (1 << (clkdiv + 1))), clk, 529 best_freq, clkdiv); 530 531 clk_set_rate(host->clk, best_freq); 532 clkdiv = clkdiv << 16; 533 } else if (sup_pclk && clk == current_clk) { 534 clkdiv = CLK_SUP_PCLK; 535 } else { 536 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16; 537 } 538 539 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv); 540 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); 541 } 542 543 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host) 544 { 545 u32 tmp; 546 547 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL); 548 549 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON); 550 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF); 551 if (host->ccs_enable) 552 tmp |= SCCSTO_29; 553 if (host->clk_ctrl2_enable) 554 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000); 555 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp | 556 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29); 557 /* byte swap on */ 558 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP); 559 } 560 561 static int sh_mmcif_error_manage(struct sh_mmcif_host *host) 562 { 563 struct device *dev = sh_mmcif_host_to_dev(host); 564 u32 state1, state2; 565 int ret, timeout; 566 567 host->sd_error = false; 568 569 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1); 570 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2); 571 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1); 572 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2); 573 574 if (state1 & STS1_CMDSEQ) { 575 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK); 576 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK); 577 for (timeout = 10000000; timeout; timeout--) { 578 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1) 579 & STS1_CMDSEQ)) 580 break; 581 mdelay(1); 582 } 583 if (!timeout) { 584 dev_err(dev, 585 "Forced end of command sequence timeout err\n"); 586 return -EIO; 587 } 588 sh_mmcif_sync_reset(host); 589 dev_dbg(dev, "Forced end of command sequence\n"); 590 return -EIO; 591 } 592 593 if (state2 & STS2_CRC_ERR) { 594 dev_err(dev, " CRC error: state %u, wait %u\n", 595 host->state, host->wait_for); 596 ret = -EIO; 597 } else if (state2 & STS2_TIMEOUT_ERR) { 598 dev_err(dev, " Timeout: state %u, wait %u\n", 599 host->state, host->wait_for); 600 ret = -ETIMEDOUT; 601 } else { 602 dev_dbg(dev, " End/Index error: state %u, wait %u\n", 603 host->state, host->wait_for); 604 ret = -EIO; 605 } 606 return ret; 607 } 608 609 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p) 610 { 611 struct mmc_data *data = host->mrq->data; 612 613 host->sg_blkidx += host->blocksize; 614 615 /* data->sg->length must be a multiple of host->blocksize? */ 616 BUG_ON(host->sg_blkidx > data->sg->length); 617 618 if (host->sg_blkidx == data->sg->length) { 619 host->sg_blkidx = 0; 620 if (++host->sg_idx < data->sg_len) 621 host->pio_ptr = sg_virt(++data->sg); 622 } else { 623 host->pio_ptr = p; 624 } 625 626 return host->sg_idx != data->sg_len; 627 } 628 629 static void sh_mmcif_single_read(struct sh_mmcif_host *host, 630 struct mmc_request *mrq) 631 { 632 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 633 BLOCK_SIZE_MASK) + 3; 634 635 host->wait_for = MMCIF_WAIT_FOR_READ; 636 637 /* buf read enable */ 638 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 639 } 640 641 static bool sh_mmcif_read_block(struct sh_mmcif_host *host) 642 { 643 struct device *dev = sh_mmcif_host_to_dev(host); 644 struct mmc_data *data = host->mrq->data; 645 u32 *p = sg_virt(data->sg); 646 int i; 647 648 if (host->sd_error) { 649 data->error = sh_mmcif_error_manage(host); 650 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 651 return false; 652 } 653 654 for (i = 0; i < host->blocksize / 4; i++) 655 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); 656 657 /* buffer read end */ 658 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE); 659 host->wait_for = MMCIF_WAIT_FOR_READ_END; 660 661 return true; 662 } 663 664 static void sh_mmcif_multi_read(struct sh_mmcif_host *host, 665 struct mmc_request *mrq) 666 { 667 struct mmc_data *data = mrq->data; 668 669 if (!data->sg_len || !data->sg->length) 670 return; 671 672 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 673 BLOCK_SIZE_MASK; 674 675 host->wait_for = MMCIF_WAIT_FOR_MREAD; 676 host->sg_idx = 0; 677 host->sg_blkidx = 0; 678 host->pio_ptr = sg_virt(data->sg); 679 680 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 681 } 682 683 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host) 684 { 685 struct device *dev = sh_mmcif_host_to_dev(host); 686 struct mmc_data *data = host->mrq->data; 687 u32 *p = host->pio_ptr; 688 int i; 689 690 if (host->sd_error) { 691 data->error = sh_mmcif_error_manage(host); 692 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 693 return false; 694 } 695 696 BUG_ON(!data->sg->length); 697 698 for (i = 0; i < host->blocksize / 4; i++) 699 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); 700 701 if (!sh_mmcif_next_block(host, p)) 702 return false; 703 704 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); 705 706 return true; 707 } 708 709 static void sh_mmcif_single_write(struct sh_mmcif_host *host, 710 struct mmc_request *mrq) 711 { 712 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 713 BLOCK_SIZE_MASK) + 3; 714 715 host->wait_for = MMCIF_WAIT_FOR_WRITE; 716 717 /* buf write enable */ 718 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 719 } 720 721 static bool sh_mmcif_write_block(struct sh_mmcif_host *host) 722 { 723 struct device *dev = sh_mmcif_host_to_dev(host); 724 struct mmc_data *data = host->mrq->data; 725 u32 *p = sg_virt(data->sg); 726 int i; 727 728 if (host->sd_error) { 729 data->error = sh_mmcif_error_manage(host); 730 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 731 return false; 732 } 733 734 for (i = 0; i < host->blocksize / 4; i++) 735 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); 736 737 /* buffer write end */ 738 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE); 739 host->wait_for = MMCIF_WAIT_FOR_WRITE_END; 740 741 return true; 742 } 743 744 static void sh_mmcif_multi_write(struct sh_mmcif_host *host, 745 struct mmc_request *mrq) 746 { 747 struct mmc_data *data = mrq->data; 748 749 if (!data->sg_len || !data->sg->length) 750 return; 751 752 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & 753 BLOCK_SIZE_MASK; 754 755 host->wait_for = MMCIF_WAIT_FOR_MWRITE; 756 host->sg_idx = 0; 757 host->sg_blkidx = 0; 758 host->pio_ptr = sg_virt(data->sg); 759 760 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 761 } 762 763 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host) 764 { 765 struct device *dev = sh_mmcif_host_to_dev(host); 766 struct mmc_data *data = host->mrq->data; 767 u32 *p = host->pio_ptr; 768 int i; 769 770 if (host->sd_error) { 771 data->error = sh_mmcif_error_manage(host); 772 dev_dbg(dev, "%s(): %d\n", __func__, data->error); 773 return false; 774 } 775 776 BUG_ON(!data->sg->length); 777 778 for (i = 0; i < host->blocksize / 4; i++) 779 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); 780 781 if (!sh_mmcif_next_block(host, p)) 782 return false; 783 784 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); 785 786 return true; 787 } 788 789 static void sh_mmcif_get_response(struct sh_mmcif_host *host, 790 struct mmc_command *cmd) 791 { 792 if (cmd->flags & MMC_RSP_136) { 793 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3); 794 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2); 795 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1); 796 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); 797 } else 798 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); 799 } 800 801 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host, 802 struct mmc_command *cmd) 803 { 804 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12); 805 } 806 807 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host, 808 struct mmc_request *mrq) 809 { 810 struct device *dev = sh_mmcif_host_to_dev(host); 811 struct mmc_data *data = mrq->data; 812 struct mmc_command *cmd = mrq->cmd; 813 u32 opc = cmd->opcode; 814 u32 tmp = 0; 815 816 /* Response Type check */ 817 switch (mmc_resp_type(cmd)) { 818 case MMC_RSP_NONE: 819 tmp |= CMD_SET_RTYP_NO; 820 break; 821 case MMC_RSP_R1: 822 case MMC_RSP_R1B: 823 case MMC_RSP_R3: 824 tmp |= CMD_SET_RTYP_6B; 825 break; 826 case MMC_RSP_R2: 827 tmp |= CMD_SET_RTYP_17B; 828 break; 829 default: 830 dev_err(dev, "Unsupported response type.\n"); 831 break; 832 } 833 switch (opc) { 834 /* RBSY */ 835 case MMC_SLEEP_AWAKE: 836 case MMC_SWITCH: 837 case MMC_STOP_TRANSMISSION: 838 case MMC_SET_WRITE_PROT: 839 case MMC_CLR_WRITE_PROT: 840 case MMC_ERASE: 841 tmp |= CMD_SET_RBSY; 842 break; 843 } 844 /* WDAT / DATW */ 845 if (data) { 846 tmp |= CMD_SET_WDAT; 847 switch (host->bus_width) { 848 case MMC_BUS_WIDTH_1: 849 tmp |= CMD_SET_DATW_1; 850 break; 851 case MMC_BUS_WIDTH_4: 852 tmp |= CMD_SET_DATW_4; 853 break; 854 case MMC_BUS_WIDTH_8: 855 tmp |= CMD_SET_DATW_8; 856 break; 857 default: 858 dev_err(dev, "Unsupported bus width.\n"); 859 break; 860 } 861 switch (host->timing) { 862 case MMC_TIMING_MMC_DDR52: 863 /* 864 * MMC core will only set this timing, if the host 865 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR 866 * capability. MMCIF implementations with this 867 * capability, e.g. sh73a0, will have to set it 868 * in their platform data. 869 */ 870 tmp |= CMD_SET_DARS; 871 break; 872 } 873 } 874 /* DWEN */ 875 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) 876 tmp |= CMD_SET_DWEN; 877 /* CMLTE/CMD12EN */ 878 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) { 879 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN; 880 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET, 881 data->blocks << 16); 882 } 883 /* RIDXC[1:0] check bits */ 884 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID || 885 opc == MMC_SEND_CSD || opc == MMC_SEND_CID) 886 tmp |= CMD_SET_RIDXC_BITS; 887 /* RCRC7C[1:0] check bits */ 888 if (opc == MMC_SEND_OP_COND) 889 tmp |= CMD_SET_CRC7C_BITS; 890 /* RCRC7C[1:0] internal CRC7 */ 891 if (opc == MMC_ALL_SEND_CID || 892 opc == MMC_SEND_CSD || opc == MMC_SEND_CID) 893 tmp |= CMD_SET_CRC7C_INTERNAL; 894 895 return (opc << 24) | tmp; 896 } 897 898 static int sh_mmcif_data_trans(struct sh_mmcif_host *host, 899 struct mmc_request *mrq, u32 opc) 900 { 901 struct device *dev = sh_mmcif_host_to_dev(host); 902 903 switch (opc) { 904 case MMC_READ_MULTIPLE_BLOCK: 905 sh_mmcif_multi_read(host, mrq); 906 return 0; 907 case MMC_WRITE_MULTIPLE_BLOCK: 908 sh_mmcif_multi_write(host, mrq); 909 return 0; 910 case MMC_WRITE_BLOCK: 911 sh_mmcif_single_write(host, mrq); 912 return 0; 913 case MMC_READ_SINGLE_BLOCK: 914 case MMC_SEND_EXT_CSD: 915 sh_mmcif_single_read(host, mrq); 916 return 0; 917 default: 918 dev_err(dev, "Unsupported CMD%d\n", opc); 919 return -EINVAL; 920 } 921 } 922 923 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host, 924 struct mmc_request *mrq) 925 { 926 struct mmc_command *cmd = mrq->cmd; 927 u32 opc = cmd->opcode; 928 u32 mask; 929 unsigned long flags; 930 931 switch (opc) { 932 /* response busy check */ 933 case MMC_SLEEP_AWAKE: 934 case MMC_SWITCH: 935 case MMC_STOP_TRANSMISSION: 936 case MMC_SET_WRITE_PROT: 937 case MMC_CLR_WRITE_PROT: 938 case MMC_ERASE: 939 mask = MASK_START_CMD | MASK_MRBSYE; 940 break; 941 default: 942 mask = MASK_START_CMD | MASK_MCRSPE; 943 break; 944 } 945 946 if (host->ccs_enable) 947 mask |= MASK_MCCSTO; 948 949 if (mrq->data) { 950 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0); 951 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 952 mrq->data->blksz); 953 } 954 opc = sh_mmcif_set_cmd(host, mrq); 955 956 if (host->ccs_enable) 957 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0); 958 else 959 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS); 960 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask); 961 /* set arg */ 962 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg); 963 /* set cmd */ 964 spin_lock_irqsave(&host->lock, flags); 965 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc); 966 967 host->wait_for = MMCIF_WAIT_FOR_CMD; 968 schedule_delayed_work(&host->timeout_work, host->timeout); 969 spin_unlock_irqrestore(&host->lock, flags); 970 } 971 972 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host, 973 struct mmc_request *mrq) 974 { 975 struct device *dev = sh_mmcif_host_to_dev(host); 976 977 switch (mrq->cmd->opcode) { 978 case MMC_READ_MULTIPLE_BLOCK: 979 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE); 980 break; 981 case MMC_WRITE_MULTIPLE_BLOCK: 982 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE); 983 break; 984 default: 985 dev_err(dev, "unsupported stop cmd\n"); 986 mrq->stop->error = sh_mmcif_error_manage(host); 987 return; 988 } 989 990 host->wait_for = MMCIF_WAIT_FOR_STOP; 991 } 992 993 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq) 994 { 995 struct sh_mmcif_host *host = mmc_priv(mmc); 996 struct device *dev = sh_mmcif_host_to_dev(host); 997 unsigned long flags; 998 999 spin_lock_irqsave(&host->lock, flags); 1000 if (host->state != STATE_IDLE) { 1001 dev_dbg(dev, "%s() rejected, state %u\n", 1002 __func__, host->state); 1003 spin_unlock_irqrestore(&host->lock, flags); 1004 mrq->cmd->error = -EAGAIN; 1005 mmc_request_done(mmc, mrq); 1006 return; 1007 } 1008 1009 host->state = STATE_REQUEST; 1010 spin_unlock_irqrestore(&host->lock, flags); 1011 1012 switch (mrq->cmd->opcode) { 1013 /* MMCIF does not support SD/SDIO command */ 1014 case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */ 1015 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */ 1016 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR) 1017 break; 1018 case MMC_APP_CMD: 1019 case SD_IO_RW_DIRECT: 1020 host->state = STATE_IDLE; 1021 mrq->cmd->error = -ETIMEDOUT; 1022 mmc_request_done(mmc, mrq); 1023 return; 1024 default: 1025 break; 1026 } 1027 1028 host->mrq = mrq; 1029 1030 sh_mmcif_start_cmd(host, mrq); 1031 } 1032 1033 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host) 1034 { 1035 struct device *dev = sh_mmcif_host_to_dev(host); 1036 1037 if (host->mmc->f_max) { 1038 unsigned int f_max, f_min = 0, f_min_old; 1039 1040 f_max = host->mmc->f_max; 1041 for (f_min_old = f_max; f_min_old > 2;) { 1042 f_min = clk_round_rate(host->clk, f_min_old / 2); 1043 if (f_min == f_min_old) 1044 break; 1045 f_min_old = f_min; 1046 } 1047 1048 /* 1049 * This driver assumes this SoC is R-Car Gen2 or later 1050 */ 1051 host->clkdiv_map = 0x3ff; 1052 1053 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map)); 1054 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map)); 1055 } else { 1056 unsigned int clk = clk_get_rate(host->clk); 1057 1058 host->mmc->f_max = clk / 2; 1059 host->mmc->f_min = clk / 512; 1060 } 1061 1062 dev_dbg(dev, "clk max/min = %d/%d\n", 1063 host->mmc->f_max, host->mmc->f_min); 1064 } 1065 1066 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1067 { 1068 struct sh_mmcif_host *host = mmc_priv(mmc); 1069 struct device *dev = sh_mmcif_host_to_dev(host); 1070 unsigned long flags; 1071 1072 spin_lock_irqsave(&host->lock, flags); 1073 if (host->state != STATE_IDLE) { 1074 dev_dbg(dev, "%s() rejected, state %u\n", 1075 __func__, host->state); 1076 spin_unlock_irqrestore(&host->lock, flags); 1077 return; 1078 } 1079 1080 host->state = STATE_IOS; 1081 spin_unlock_irqrestore(&host->lock, flags); 1082 1083 switch (ios->power_mode) { 1084 case MMC_POWER_UP: 1085 if (!IS_ERR(mmc->supply.vmmc)) 1086 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 1087 if (!host->power) { 1088 clk_prepare_enable(host->clk); 1089 pm_runtime_get_sync(dev); 1090 sh_mmcif_sync_reset(host); 1091 sh_mmcif_request_dma(host); 1092 host->power = true; 1093 } 1094 break; 1095 case MMC_POWER_OFF: 1096 if (!IS_ERR(mmc->supply.vmmc)) 1097 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1098 if (host->power) { 1099 sh_mmcif_clock_control(host, 0); 1100 sh_mmcif_release_dma(host); 1101 pm_runtime_put(dev); 1102 clk_disable_unprepare(host->clk); 1103 host->power = false; 1104 } 1105 break; 1106 case MMC_POWER_ON: 1107 sh_mmcif_clock_control(host, ios->clock); 1108 break; 1109 } 1110 1111 host->timing = ios->timing; 1112 host->bus_width = ios->bus_width; 1113 host->state = STATE_IDLE; 1114 } 1115 1116 static int sh_mmcif_get_cd(struct mmc_host *mmc) 1117 { 1118 struct sh_mmcif_host *host = mmc_priv(mmc); 1119 struct device *dev = sh_mmcif_host_to_dev(host); 1120 struct sh_mmcif_plat_data *p = dev->platform_data; 1121 int ret = mmc_gpio_get_cd(mmc); 1122 1123 if (ret >= 0) 1124 return ret; 1125 1126 if (!p || !p->get_cd) 1127 return -ENOSYS; 1128 else 1129 return p->get_cd(host->pd); 1130 } 1131 1132 static struct mmc_host_ops sh_mmcif_ops = { 1133 .request = sh_mmcif_request, 1134 .set_ios = sh_mmcif_set_ios, 1135 .get_cd = sh_mmcif_get_cd, 1136 }; 1137 1138 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host) 1139 { 1140 struct mmc_command *cmd = host->mrq->cmd; 1141 struct mmc_data *data = host->mrq->data; 1142 struct device *dev = sh_mmcif_host_to_dev(host); 1143 long time; 1144 1145 if (host->sd_error) { 1146 switch (cmd->opcode) { 1147 case MMC_ALL_SEND_CID: 1148 case MMC_SELECT_CARD: 1149 case MMC_APP_CMD: 1150 cmd->error = -ETIMEDOUT; 1151 break; 1152 default: 1153 cmd->error = sh_mmcif_error_manage(host); 1154 break; 1155 } 1156 dev_dbg(dev, "CMD%d error %d\n", 1157 cmd->opcode, cmd->error); 1158 host->sd_error = false; 1159 return false; 1160 } 1161 if (!(cmd->flags & MMC_RSP_PRESENT)) { 1162 cmd->error = 0; 1163 return false; 1164 } 1165 1166 sh_mmcif_get_response(host, cmd); 1167 1168 if (!data) 1169 return false; 1170 1171 /* 1172 * Completion can be signalled from DMA callback and error, so, have to 1173 * reset here, before setting .dma_active 1174 */ 1175 init_completion(&host->dma_complete); 1176 1177 if (data->flags & MMC_DATA_READ) { 1178 if (host->chan_rx) 1179 sh_mmcif_start_dma_rx(host); 1180 } else { 1181 if (host->chan_tx) 1182 sh_mmcif_start_dma_tx(host); 1183 } 1184 1185 if (!host->dma_active) { 1186 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode); 1187 return !data->error; 1188 } 1189 1190 /* Running in the IRQ thread, can sleep */ 1191 time = wait_for_completion_interruptible_timeout(&host->dma_complete, 1192 host->timeout); 1193 1194 if (data->flags & MMC_DATA_READ) 1195 dma_unmap_sg(host->chan_rx->device->dev, 1196 data->sg, data->sg_len, 1197 DMA_FROM_DEVICE); 1198 else 1199 dma_unmap_sg(host->chan_tx->device->dev, 1200 data->sg, data->sg_len, 1201 DMA_TO_DEVICE); 1202 1203 if (host->sd_error) { 1204 dev_err(host->mmc->parent, 1205 "Error IRQ while waiting for DMA completion!\n"); 1206 /* Woken up by an error IRQ: abort DMA */ 1207 data->error = sh_mmcif_error_manage(host); 1208 } else if (!time) { 1209 dev_err(host->mmc->parent, "DMA timeout!\n"); 1210 data->error = -ETIMEDOUT; 1211 } else if (time < 0) { 1212 dev_err(host->mmc->parent, 1213 "wait_for_completion_...() error %ld!\n", time); 1214 data->error = time; 1215 } 1216 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, 1217 BUF_ACC_DMAREN | BUF_ACC_DMAWEN); 1218 host->dma_active = false; 1219 1220 if (data->error) { 1221 data->bytes_xfered = 0; 1222 /* Abort DMA */ 1223 if (data->flags & MMC_DATA_READ) 1224 dmaengine_terminate_all(host->chan_rx); 1225 else 1226 dmaengine_terminate_all(host->chan_tx); 1227 } 1228 1229 return false; 1230 } 1231 1232 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id) 1233 { 1234 struct sh_mmcif_host *host = dev_id; 1235 struct mmc_request *mrq; 1236 struct device *dev = sh_mmcif_host_to_dev(host); 1237 bool wait = false; 1238 unsigned long flags; 1239 int wait_work; 1240 1241 spin_lock_irqsave(&host->lock, flags); 1242 wait_work = host->wait_for; 1243 spin_unlock_irqrestore(&host->lock, flags); 1244 1245 cancel_delayed_work_sync(&host->timeout_work); 1246 1247 mutex_lock(&host->thread_lock); 1248 1249 mrq = host->mrq; 1250 if (!mrq) { 1251 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n", 1252 host->state, host->wait_for); 1253 mutex_unlock(&host->thread_lock); 1254 return IRQ_HANDLED; 1255 } 1256 1257 /* 1258 * All handlers return true, if processing continues, and false, if the 1259 * request has to be completed - successfully or not 1260 */ 1261 switch (wait_work) { 1262 case MMCIF_WAIT_FOR_REQUEST: 1263 /* We're too late, the timeout has already kicked in */ 1264 mutex_unlock(&host->thread_lock); 1265 return IRQ_HANDLED; 1266 case MMCIF_WAIT_FOR_CMD: 1267 /* Wait for data? */ 1268 wait = sh_mmcif_end_cmd(host); 1269 break; 1270 case MMCIF_WAIT_FOR_MREAD: 1271 /* Wait for more data? */ 1272 wait = sh_mmcif_mread_block(host); 1273 break; 1274 case MMCIF_WAIT_FOR_READ: 1275 /* Wait for data end? */ 1276 wait = sh_mmcif_read_block(host); 1277 break; 1278 case MMCIF_WAIT_FOR_MWRITE: 1279 /* Wait data to write? */ 1280 wait = sh_mmcif_mwrite_block(host); 1281 break; 1282 case MMCIF_WAIT_FOR_WRITE: 1283 /* Wait for data end? */ 1284 wait = sh_mmcif_write_block(host); 1285 break; 1286 case MMCIF_WAIT_FOR_STOP: 1287 if (host->sd_error) { 1288 mrq->stop->error = sh_mmcif_error_manage(host); 1289 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error); 1290 break; 1291 } 1292 sh_mmcif_get_cmd12response(host, mrq->stop); 1293 mrq->stop->error = 0; 1294 break; 1295 case MMCIF_WAIT_FOR_READ_END: 1296 case MMCIF_WAIT_FOR_WRITE_END: 1297 if (host->sd_error) { 1298 mrq->data->error = sh_mmcif_error_manage(host); 1299 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error); 1300 } 1301 break; 1302 default: 1303 BUG(); 1304 } 1305 1306 if (wait) { 1307 schedule_delayed_work(&host->timeout_work, host->timeout); 1308 /* Wait for more data */ 1309 mutex_unlock(&host->thread_lock); 1310 return IRQ_HANDLED; 1311 } 1312 1313 if (host->wait_for != MMCIF_WAIT_FOR_STOP) { 1314 struct mmc_data *data = mrq->data; 1315 if (!mrq->cmd->error && data && !data->error) 1316 data->bytes_xfered = 1317 data->blocks * data->blksz; 1318 1319 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) { 1320 sh_mmcif_stop_cmd(host, mrq); 1321 if (!mrq->stop->error) { 1322 schedule_delayed_work(&host->timeout_work, host->timeout); 1323 mutex_unlock(&host->thread_lock); 1324 return IRQ_HANDLED; 1325 } 1326 } 1327 } 1328 1329 host->wait_for = MMCIF_WAIT_FOR_REQUEST; 1330 host->state = STATE_IDLE; 1331 host->mrq = NULL; 1332 mmc_request_done(host->mmc, mrq); 1333 1334 mutex_unlock(&host->thread_lock); 1335 1336 return IRQ_HANDLED; 1337 } 1338 1339 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id) 1340 { 1341 struct sh_mmcif_host *host = dev_id; 1342 struct device *dev = sh_mmcif_host_to_dev(host); 1343 u32 state, mask; 1344 1345 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT); 1346 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK); 1347 if (host->ccs_enable) 1348 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask)); 1349 else 1350 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask)); 1351 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN); 1352 1353 if (state & ~MASK_CLEAN) 1354 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n", 1355 state); 1356 1357 if (state & INT_ERR_STS || state & ~INT_ALL) { 1358 host->sd_error = true; 1359 dev_dbg(dev, "int err state = 0x%08x\n", state); 1360 } 1361 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) { 1362 if (!host->mrq) 1363 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state); 1364 if (!host->dma_active) 1365 return IRQ_WAKE_THREAD; 1366 else if (host->sd_error) 1367 sh_mmcif_dma_complete(host); 1368 } else { 1369 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state); 1370 } 1371 1372 return IRQ_HANDLED; 1373 } 1374 1375 static void sh_mmcif_timeout_work(struct work_struct *work) 1376 { 1377 struct delayed_work *d = to_delayed_work(work); 1378 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work); 1379 struct mmc_request *mrq = host->mrq; 1380 struct device *dev = sh_mmcif_host_to_dev(host); 1381 unsigned long flags; 1382 1383 if (host->dying) 1384 /* Don't run after mmc_remove_host() */ 1385 return; 1386 1387 spin_lock_irqsave(&host->lock, flags); 1388 if (host->state == STATE_IDLE) { 1389 spin_unlock_irqrestore(&host->lock, flags); 1390 return; 1391 } 1392 1393 dev_err(dev, "Timeout waiting for %u on CMD%u\n", 1394 host->wait_for, mrq->cmd->opcode); 1395 1396 host->state = STATE_TIMEOUT; 1397 spin_unlock_irqrestore(&host->lock, flags); 1398 1399 /* 1400 * Handle races with cancel_delayed_work(), unless 1401 * cancel_delayed_work_sync() is used 1402 */ 1403 switch (host->wait_for) { 1404 case MMCIF_WAIT_FOR_CMD: 1405 mrq->cmd->error = sh_mmcif_error_manage(host); 1406 break; 1407 case MMCIF_WAIT_FOR_STOP: 1408 mrq->stop->error = sh_mmcif_error_manage(host); 1409 break; 1410 case MMCIF_WAIT_FOR_MREAD: 1411 case MMCIF_WAIT_FOR_MWRITE: 1412 case MMCIF_WAIT_FOR_READ: 1413 case MMCIF_WAIT_FOR_WRITE: 1414 case MMCIF_WAIT_FOR_READ_END: 1415 case MMCIF_WAIT_FOR_WRITE_END: 1416 mrq->data->error = sh_mmcif_error_manage(host); 1417 break; 1418 default: 1419 BUG(); 1420 } 1421 1422 host->state = STATE_IDLE; 1423 host->wait_for = MMCIF_WAIT_FOR_REQUEST; 1424 host->mrq = NULL; 1425 mmc_request_done(host->mmc, mrq); 1426 } 1427 1428 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host) 1429 { 1430 struct device *dev = sh_mmcif_host_to_dev(host); 1431 struct sh_mmcif_plat_data *pd = dev->platform_data; 1432 struct mmc_host *mmc = host->mmc; 1433 1434 mmc_regulator_get_supply(mmc); 1435 1436 if (!pd) 1437 return; 1438 1439 if (!mmc->ocr_avail) 1440 mmc->ocr_avail = pd->ocr; 1441 else if (pd->ocr) 1442 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); 1443 } 1444 1445 static int sh_mmcif_probe(struct platform_device *pdev) 1446 { 1447 int ret = 0, irq[2]; 1448 struct mmc_host *mmc; 1449 struct sh_mmcif_host *host; 1450 struct device *dev = &pdev->dev; 1451 struct sh_mmcif_plat_data *pd = dev->platform_data; 1452 struct resource *res; 1453 void __iomem *reg; 1454 const char *name; 1455 1456 irq[0] = platform_get_irq(pdev, 0); 1457 irq[1] = platform_get_irq(pdev, 1); 1458 if (irq[0] < 0) { 1459 dev_err(dev, "Get irq error\n"); 1460 return -ENXIO; 1461 } 1462 1463 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1464 reg = devm_ioremap_resource(dev, res); 1465 if (IS_ERR(reg)) 1466 return PTR_ERR(reg); 1467 1468 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev); 1469 if (!mmc) 1470 return -ENOMEM; 1471 1472 ret = mmc_of_parse(mmc); 1473 if (ret < 0) 1474 goto err_host; 1475 1476 host = mmc_priv(mmc); 1477 host->mmc = mmc; 1478 host->addr = reg; 1479 host->timeout = msecs_to_jiffies(10000); 1480 host->ccs_enable = !pd || !pd->ccs_unsupported; 1481 host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present; 1482 1483 host->pd = pdev; 1484 1485 spin_lock_init(&host->lock); 1486 1487 mmc->ops = &sh_mmcif_ops; 1488 sh_mmcif_init_ocr(host); 1489 1490 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY; 1491 if (pd && pd->caps) 1492 mmc->caps |= pd->caps; 1493 mmc->max_segs = 32; 1494 mmc->max_blk_size = 512; 1495 mmc->max_req_size = PAGE_SIZE * mmc->max_segs; 1496 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size; 1497 mmc->max_seg_size = mmc->max_req_size; 1498 1499 platform_set_drvdata(pdev, host); 1500 1501 host->clk = devm_clk_get(dev, NULL); 1502 if (IS_ERR(host->clk)) { 1503 ret = PTR_ERR(host->clk); 1504 dev_err(dev, "cannot get clock: %d\n", ret); 1505 goto err_host; 1506 } 1507 1508 ret = clk_prepare_enable(host->clk); 1509 if (ret < 0) 1510 goto err_host; 1511 1512 sh_mmcif_clk_setup(host); 1513 1514 pm_runtime_enable(dev); 1515 host->power = false; 1516 1517 ret = pm_runtime_get_sync(dev); 1518 if (ret < 0) 1519 goto err_clk; 1520 1521 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work); 1522 1523 sh_mmcif_sync_reset(host); 1524 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1525 1526 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error"; 1527 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr, 1528 sh_mmcif_irqt, 0, name, host); 1529 if (ret) { 1530 dev_err(dev, "request_irq error (%s)\n", name); 1531 goto err_clk; 1532 } 1533 if (irq[1] >= 0) { 1534 ret = devm_request_threaded_irq(dev, irq[1], 1535 sh_mmcif_intr, sh_mmcif_irqt, 1536 0, "sh_mmc:int", host); 1537 if (ret) { 1538 dev_err(dev, "request_irq error (sh_mmc:int)\n"); 1539 goto err_clk; 1540 } 1541 } 1542 1543 if (pd && pd->use_cd_gpio) { 1544 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0); 1545 if (ret < 0) 1546 goto err_clk; 1547 } 1548 1549 mutex_init(&host->thread_lock); 1550 1551 ret = mmc_add_host(mmc); 1552 if (ret < 0) 1553 goto err_clk; 1554 1555 dev_pm_qos_expose_latency_limit(dev, 100); 1556 1557 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n", 1558 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff, 1559 clk_get_rate(host->clk) / 1000000UL); 1560 1561 pm_runtime_put(dev); 1562 clk_disable_unprepare(host->clk); 1563 return ret; 1564 1565 err_clk: 1566 clk_disable_unprepare(host->clk); 1567 pm_runtime_put_sync(dev); 1568 pm_runtime_disable(dev); 1569 err_host: 1570 mmc_free_host(mmc); 1571 return ret; 1572 } 1573 1574 static int sh_mmcif_remove(struct platform_device *pdev) 1575 { 1576 struct sh_mmcif_host *host = platform_get_drvdata(pdev); 1577 1578 host->dying = true; 1579 clk_prepare_enable(host->clk); 1580 pm_runtime_get_sync(&pdev->dev); 1581 1582 dev_pm_qos_hide_latency_limit(&pdev->dev); 1583 1584 mmc_remove_host(host->mmc); 1585 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1586 1587 /* 1588 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the 1589 * mmc_remove_host() call above. But swapping order doesn't help either 1590 * (a query on the linux-mmc mailing list didn't bring any replies). 1591 */ 1592 cancel_delayed_work_sync(&host->timeout_work); 1593 1594 clk_disable_unprepare(host->clk); 1595 mmc_free_host(host->mmc); 1596 pm_runtime_put_sync(&pdev->dev); 1597 pm_runtime_disable(&pdev->dev); 1598 1599 return 0; 1600 } 1601 1602 #ifdef CONFIG_PM_SLEEP 1603 static int sh_mmcif_suspend(struct device *dev) 1604 { 1605 struct sh_mmcif_host *host = dev_get_drvdata(dev); 1606 1607 pm_runtime_get_sync(dev); 1608 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); 1609 pm_runtime_put(dev); 1610 1611 return 0; 1612 } 1613 1614 static int sh_mmcif_resume(struct device *dev) 1615 { 1616 return 0; 1617 } 1618 #endif 1619 1620 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = { 1621 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume) 1622 }; 1623 1624 static struct platform_driver sh_mmcif_driver = { 1625 .probe = sh_mmcif_probe, 1626 .remove = sh_mmcif_remove, 1627 .driver = { 1628 .name = DRIVER_NAME, 1629 .pm = &sh_mmcif_dev_pm_ops, 1630 .of_match_table = sh_mmcif_of_match, 1631 }, 1632 }; 1633 1634 module_platform_driver(sh_mmcif_driver); 1635 1636 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver"); 1637 MODULE_LICENSE("GPL"); 1638 MODULE_ALIAS("platform:" DRIVER_NAME); 1639 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>"); 1640