xref: /openbmc/linux/drivers/mmc/host/sh_mmcif.c (revision 60985c39)
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18 
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44 
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/pagemap.h>
61 #include <linux/platform_device.h>
62 #include <linux/pm_qos.h>
63 #include <linux/pm_runtime.h>
64 #include <linux/sh_dma.h>
65 #include <linux/spinlock.h>
66 #include <linux/module.h>
67 
68 #define DRIVER_NAME	"sh_mmcif"
69 #define DRIVER_VERSION	"2010-04-28"
70 
71 /* CE_CMD_SET */
72 #define CMD_MASK		0x3f000000
73 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
74 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
75 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
76 #define CMD_SET_RBSY		(1 << 21) /* R1b */
77 #define CMD_SET_CCSEN		(1 << 20)
78 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
79 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
80 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
81 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
82 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
83 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
84 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
85 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
86 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
87 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
88 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
89 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
90 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
91 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
92 #define CMD_SET_CCSH		(1 << 5)
93 #define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
94 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
95 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
96 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
97 
98 /* CE_CMD_CTRL */
99 #define CMD_CTRL_BREAK		(1 << 0)
100 
101 /* CE_BLOCK_SET */
102 #define BLOCK_SIZE_MASK		0x0000ffff
103 
104 /* CE_INT */
105 #define INT_CCSDE		(1 << 29)
106 #define INT_CMD12DRE		(1 << 26)
107 #define INT_CMD12RBE		(1 << 25)
108 #define INT_CMD12CRE		(1 << 24)
109 #define INT_DTRANE		(1 << 23)
110 #define INT_BUFRE		(1 << 22)
111 #define INT_BUFWEN		(1 << 21)
112 #define INT_BUFREN		(1 << 20)
113 #define INT_CCSRCV		(1 << 19)
114 #define INT_RBSYE		(1 << 17)
115 #define INT_CRSPE		(1 << 16)
116 #define INT_CMDVIO		(1 << 15)
117 #define INT_BUFVIO		(1 << 14)
118 #define INT_WDATERR		(1 << 11)
119 #define INT_RDATERR		(1 << 10)
120 #define INT_RIDXERR		(1 << 9)
121 #define INT_RSPERR		(1 << 8)
122 #define INT_CCSTO		(1 << 5)
123 #define INT_CRCSTO		(1 << 4)
124 #define INT_WDATTO		(1 << 3)
125 #define INT_RDATTO		(1 << 2)
126 #define INT_RBSYTO		(1 << 1)
127 #define INT_RSPTO		(1 << 0)
128 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
129 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
130 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
131 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
132 
133 #define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
134 				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
135 				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
136 
137 #define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
138 
139 /* CE_INT_MASK */
140 #define MASK_ALL		0x00000000
141 #define MASK_MCCSDE		(1 << 29)
142 #define MASK_MCMD12DRE		(1 << 26)
143 #define MASK_MCMD12RBE		(1 << 25)
144 #define MASK_MCMD12CRE		(1 << 24)
145 #define MASK_MDTRANE		(1 << 23)
146 #define MASK_MBUFRE		(1 << 22)
147 #define MASK_MBUFWEN		(1 << 21)
148 #define MASK_MBUFREN		(1 << 20)
149 #define MASK_MCCSRCV		(1 << 19)
150 #define MASK_MRBSYE		(1 << 17)
151 #define MASK_MCRSPE		(1 << 16)
152 #define MASK_MCMDVIO		(1 << 15)
153 #define MASK_MBUFVIO		(1 << 14)
154 #define MASK_MWDATERR		(1 << 11)
155 #define MASK_MRDATERR		(1 << 10)
156 #define MASK_MRIDXERR		(1 << 9)
157 #define MASK_MRSPERR		(1 << 8)
158 #define MASK_MCCSTO		(1 << 5)
159 #define MASK_MCRCSTO		(1 << 4)
160 #define MASK_MWDATTO		(1 << 3)
161 #define MASK_MRDATTO		(1 << 2)
162 #define MASK_MRBSYTO		(1 << 1)
163 #define MASK_MRSPTO		(1 << 0)
164 
165 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
166 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
167 				 MASK_MCRCSTO | MASK_MWDATTO | \
168 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
169 
170 #define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
171 				 MASK_MBUFREN | MASK_MBUFWEN |			\
172 				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
173 				 MASK_MCMD12RBE | MASK_MCMD12CRE)
174 
175 /* CE_HOST_STS1 */
176 #define STS1_CMDSEQ		(1 << 31)
177 
178 /* CE_HOST_STS2 */
179 #define STS2_CRCSTE		(1 << 31)
180 #define STS2_CRC16E		(1 << 30)
181 #define STS2_AC12CRCE		(1 << 29)
182 #define STS2_RSPCRC7E		(1 << 28)
183 #define STS2_CRCSTEBE		(1 << 27)
184 #define STS2_RDATEBE		(1 << 26)
185 #define STS2_AC12REBE		(1 << 25)
186 #define STS2_RSPEBE		(1 << 24)
187 #define STS2_AC12IDXE		(1 << 23)
188 #define STS2_RSPIDXE		(1 << 22)
189 #define STS2_CCSTO		(1 << 15)
190 #define STS2_RDATTO		(1 << 14)
191 #define STS2_DATBSYTO		(1 << 13)
192 #define STS2_CRCSTTO		(1 << 12)
193 #define STS2_AC12BSYTO		(1 << 11)
194 #define STS2_RSPBSYTO		(1 << 10)
195 #define STS2_AC12RSPTO		(1 << 9)
196 #define STS2_RSPTO		(1 << 8)
197 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
198 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
199 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
200 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
201 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
202 				 STS2_AC12RSPTO | STS2_RSPTO)
203 
204 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
205 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
206 #define CLKDEV_INIT		400000   /* 400 KHz */
207 
208 enum mmcif_state {
209 	STATE_IDLE,
210 	STATE_REQUEST,
211 	STATE_IOS,
212 	STATE_TIMEOUT,
213 };
214 
215 enum mmcif_wait_for {
216 	MMCIF_WAIT_FOR_REQUEST,
217 	MMCIF_WAIT_FOR_CMD,
218 	MMCIF_WAIT_FOR_MREAD,
219 	MMCIF_WAIT_FOR_MWRITE,
220 	MMCIF_WAIT_FOR_READ,
221 	MMCIF_WAIT_FOR_WRITE,
222 	MMCIF_WAIT_FOR_READ_END,
223 	MMCIF_WAIT_FOR_WRITE_END,
224 	MMCIF_WAIT_FOR_STOP,
225 };
226 
227 struct sh_mmcif_host {
228 	struct mmc_host *mmc;
229 	struct mmc_request *mrq;
230 	struct platform_device *pd;
231 	struct clk *hclk;
232 	unsigned int clk;
233 	int bus_width;
234 	unsigned char timing;
235 	bool sd_error;
236 	bool dying;
237 	long timeout;
238 	void __iomem *addr;
239 	u32 *pio_ptr;
240 	spinlock_t lock;		/* protect sh_mmcif_host::state */
241 	enum mmcif_state state;
242 	enum mmcif_wait_for wait_for;
243 	struct delayed_work timeout_work;
244 	size_t blocksize;
245 	int sg_idx;
246 	int sg_blkidx;
247 	bool power;
248 	bool card_present;
249 	bool ccs_enable;		/* Command Completion Signal support */
250 	bool clk_ctrl2_enable;
251 	struct mutex thread_lock;
252 
253 	/* DMA support */
254 	struct dma_chan		*chan_rx;
255 	struct dma_chan		*chan_tx;
256 	struct completion	dma_complete;
257 	bool			dma_active;
258 };
259 
260 static const struct of_device_id mmcif_of_match[] = {
261 	{ .compatible = "renesas,sh-mmcif" },
262 	{ }
263 };
264 MODULE_DEVICE_TABLE(of, mmcif_of_match);
265 
266 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
267 					unsigned int reg, u32 val)
268 {
269 	writel(val | readl(host->addr + reg), host->addr + reg);
270 }
271 
272 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
273 					unsigned int reg, u32 val)
274 {
275 	writel(~val & readl(host->addr + reg), host->addr + reg);
276 }
277 
278 static void mmcif_dma_complete(void *arg)
279 {
280 	struct sh_mmcif_host *host = arg;
281 	struct mmc_request *mrq = host->mrq;
282 
283 	dev_dbg(&host->pd->dev, "Command completed\n");
284 
285 	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
286 		 dev_name(&host->pd->dev)))
287 		return;
288 
289 	complete(&host->dma_complete);
290 }
291 
292 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
293 {
294 	struct mmc_data *data = host->mrq->data;
295 	struct scatterlist *sg = data->sg;
296 	struct dma_async_tx_descriptor *desc = NULL;
297 	struct dma_chan *chan = host->chan_rx;
298 	dma_cookie_t cookie = -EINVAL;
299 	int ret;
300 
301 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
302 			 DMA_FROM_DEVICE);
303 	if (ret > 0) {
304 		host->dma_active = true;
305 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
306 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
307 	}
308 
309 	if (desc) {
310 		desc->callback = mmcif_dma_complete;
311 		desc->callback_param = host;
312 		cookie = dmaengine_submit(desc);
313 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
314 		dma_async_issue_pending(chan);
315 	}
316 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
317 		__func__, data->sg_len, ret, cookie);
318 
319 	if (!desc) {
320 		/* DMA failed, fall back to PIO */
321 		if (ret >= 0)
322 			ret = -EIO;
323 		host->chan_rx = NULL;
324 		host->dma_active = false;
325 		dma_release_channel(chan);
326 		/* Free the Tx channel too */
327 		chan = host->chan_tx;
328 		if (chan) {
329 			host->chan_tx = NULL;
330 			dma_release_channel(chan);
331 		}
332 		dev_warn(&host->pd->dev,
333 			 "DMA failed: %d, falling back to PIO\n", ret);
334 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
335 	}
336 
337 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
338 		desc, cookie, data->sg_len);
339 }
340 
341 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
342 {
343 	struct mmc_data *data = host->mrq->data;
344 	struct scatterlist *sg = data->sg;
345 	struct dma_async_tx_descriptor *desc = NULL;
346 	struct dma_chan *chan = host->chan_tx;
347 	dma_cookie_t cookie = -EINVAL;
348 	int ret;
349 
350 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
351 			 DMA_TO_DEVICE);
352 	if (ret > 0) {
353 		host->dma_active = true;
354 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
355 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
356 	}
357 
358 	if (desc) {
359 		desc->callback = mmcif_dma_complete;
360 		desc->callback_param = host;
361 		cookie = dmaengine_submit(desc);
362 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
363 		dma_async_issue_pending(chan);
364 	}
365 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
366 		__func__, data->sg_len, ret, cookie);
367 
368 	if (!desc) {
369 		/* DMA failed, fall back to PIO */
370 		if (ret >= 0)
371 			ret = -EIO;
372 		host->chan_tx = NULL;
373 		host->dma_active = false;
374 		dma_release_channel(chan);
375 		/* Free the Rx channel too */
376 		chan = host->chan_rx;
377 		if (chan) {
378 			host->chan_rx = NULL;
379 			dma_release_channel(chan);
380 		}
381 		dev_warn(&host->pd->dev,
382 			 "DMA failed: %d, falling back to PIO\n", ret);
383 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
384 	}
385 
386 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
387 		desc, cookie);
388 }
389 
390 static struct dma_chan *
391 sh_mmcif_request_dma_one(struct sh_mmcif_host *host,
392 			 struct sh_mmcif_plat_data *pdata,
393 			 enum dma_transfer_direction direction)
394 {
395 	struct dma_slave_config cfg = { 0, };
396 	struct dma_chan *chan;
397 	void *slave_data = NULL;
398 	struct resource *res;
399 	dma_cap_mask_t mask;
400 	int ret;
401 
402 	dma_cap_zero(mask);
403 	dma_cap_set(DMA_SLAVE, mask);
404 
405 	if (pdata)
406 		slave_data = direction == DMA_MEM_TO_DEV ?
407 			(void *)pdata->slave_id_tx :
408 			(void *)pdata->slave_id_rx;
409 
410 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
411 				slave_data, &host->pd->dev,
412 				direction == DMA_MEM_TO_DEV ? "tx" : "rx");
413 
414 	dev_dbg(&host->pd->dev, "%s: %s: got channel %p\n", __func__,
415 		direction == DMA_MEM_TO_DEV ? "TX" : "RX", chan);
416 
417 	if (!chan)
418 		return NULL;
419 
420 	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
421 
422 	cfg.direction = direction;
423 
424 	if (direction == DMA_DEV_TO_MEM) {
425 		cfg.src_addr = res->start + MMCIF_CE_DATA;
426 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
427 	} else {
428 		cfg.dst_addr = res->start + MMCIF_CE_DATA;
429 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
430 	}
431 
432 	ret = dmaengine_slave_config(chan, &cfg);
433 	if (ret < 0) {
434 		dma_release_channel(chan);
435 		return NULL;
436 	}
437 
438 	return chan;
439 }
440 
441 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
442 				 struct sh_mmcif_plat_data *pdata)
443 {
444 	host->dma_active = false;
445 
446 	if (pdata) {
447 		if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
448 			return;
449 	} else if (!host->pd->dev.of_node) {
450 		return;
451 	}
452 
453 	/* We can only either use DMA for both Tx and Rx or not use it at all */
454 	host->chan_tx = sh_mmcif_request_dma_one(host, pdata, DMA_MEM_TO_DEV);
455 	if (!host->chan_tx)
456 		return;
457 
458 	host->chan_rx = sh_mmcif_request_dma_one(host, pdata, DMA_DEV_TO_MEM);
459 	if (!host->chan_rx) {
460 		dma_release_channel(host->chan_tx);
461 		host->chan_tx = NULL;
462 	}
463 }
464 
465 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
466 {
467 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
468 	/* Descriptors are freed automatically */
469 	if (host->chan_tx) {
470 		struct dma_chan *chan = host->chan_tx;
471 		host->chan_tx = NULL;
472 		dma_release_channel(chan);
473 	}
474 	if (host->chan_rx) {
475 		struct dma_chan *chan = host->chan_rx;
476 		host->chan_rx = NULL;
477 		dma_release_channel(chan);
478 	}
479 
480 	host->dma_active = false;
481 }
482 
483 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
484 {
485 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
486 	bool sup_pclk = p ? p->sup_pclk : false;
487 
488 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
489 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
490 
491 	if (!clk)
492 		return;
493 	if (sup_pclk && clk == host->clk)
494 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
495 	else
496 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
497 				((fls(DIV_ROUND_UP(host->clk,
498 						   clk) - 1) - 1) << 16));
499 
500 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
501 }
502 
503 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
504 {
505 	u32 tmp;
506 
507 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
508 
509 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
510 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
511 	if (host->ccs_enable)
512 		tmp |= SCCSTO_29;
513 	if (host->clk_ctrl2_enable)
514 		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
515 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
516 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
517 	/* byte swap on */
518 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
519 }
520 
521 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
522 {
523 	u32 state1, state2;
524 	int ret, timeout;
525 
526 	host->sd_error = false;
527 
528 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
529 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
530 	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
531 	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
532 
533 	if (state1 & STS1_CMDSEQ) {
534 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
535 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
536 		for (timeout = 10000000; timeout; timeout--) {
537 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
538 			      & STS1_CMDSEQ))
539 				break;
540 			mdelay(1);
541 		}
542 		if (!timeout) {
543 			dev_err(&host->pd->dev,
544 				"Forced end of command sequence timeout err\n");
545 			return -EIO;
546 		}
547 		sh_mmcif_sync_reset(host);
548 		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
549 		return -EIO;
550 	}
551 
552 	if (state2 & STS2_CRC_ERR) {
553 		dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
554 			host->state, host->wait_for);
555 		ret = -EIO;
556 	} else if (state2 & STS2_TIMEOUT_ERR) {
557 		dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
558 			host->state, host->wait_for);
559 		ret = -ETIMEDOUT;
560 	} else {
561 		dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
562 			host->state, host->wait_for);
563 		ret = -EIO;
564 	}
565 	return ret;
566 }
567 
568 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
569 {
570 	struct mmc_data *data = host->mrq->data;
571 
572 	host->sg_blkidx += host->blocksize;
573 
574 	/* data->sg->length must be a multiple of host->blocksize? */
575 	BUG_ON(host->sg_blkidx > data->sg->length);
576 
577 	if (host->sg_blkidx == data->sg->length) {
578 		host->sg_blkidx = 0;
579 		if (++host->sg_idx < data->sg_len)
580 			host->pio_ptr = sg_virt(++data->sg);
581 	} else {
582 		host->pio_ptr = p;
583 	}
584 
585 	return host->sg_idx != data->sg_len;
586 }
587 
588 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
589 				 struct mmc_request *mrq)
590 {
591 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
592 			   BLOCK_SIZE_MASK) + 3;
593 
594 	host->wait_for = MMCIF_WAIT_FOR_READ;
595 
596 	/* buf read enable */
597 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
598 }
599 
600 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
601 {
602 	struct mmc_data *data = host->mrq->data;
603 	u32 *p = sg_virt(data->sg);
604 	int i;
605 
606 	if (host->sd_error) {
607 		data->error = sh_mmcif_error_manage(host);
608 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
609 		return false;
610 	}
611 
612 	for (i = 0; i < host->blocksize / 4; i++)
613 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
614 
615 	/* buffer read end */
616 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
617 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
618 
619 	return true;
620 }
621 
622 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
623 				struct mmc_request *mrq)
624 {
625 	struct mmc_data *data = mrq->data;
626 
627 	if (!data->sg_len || !data->sg->length)
628 		return;
629 
630 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
631 		BLOCK_SIZE_MASK;
632 
633 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
634 	host->sg_idx = 0;
635 	host->sg_blkidx = 0;
636 	host->pio_ptr = sg_virt(data->sg);
637 
638 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
639 }
640 
641 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
642 {
643 	struct mmc_data *data = host->mrq->data;
644 	u32 *p = host->pio_ptr;
645 	int i;
646 
647 	if (host->sd_error) {
648 		data->error = sh_mmcif_error_manage(host);
649 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
650 		return false;
651 	}
652 
653 	BUG_ON(!data->sg->length);
654 
655 	for (i = 0; i < host->blocksize / 4; i++)
656 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
657 
658 	if (!sh_mmcif_next_block(host, p))
659 		return false;
660 
661 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
662 
663 	return true;
664 }
665 
666 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
667 					struct mmc_request *mrq)
668 {
669 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
670 			   BLOCK_SIZE_MASK) + 3;
671 
672 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
673 
674 	/* buf write enable */
675 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
676 }
677 
678 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
679 {
680 	struct mmc_data *data = host->mrq->data;
681 	u32 *p = sg_virt(data->sg);
682 	int i;
683 
684 	if (host->sd_error) {
685 		data->error = sh_mmcif_error_manage(host);
686 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
687 		return false;
688 	}
689 
690 	for (i = 0; i < host->blocksize / 4; i++)
691 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
692 
693 	/* buffer write end */
694 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
695 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
696 
697 	return true;
698 }
699 
700 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
701 				struct mmc_request *mrq)
702 {
703 	struct mmc_data *data = mrq->data;
704 
705 	if (!data->sg_len || !data->sg->length)
706 		return;
707 
708 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
709 		BLOCK_SIZE_MASK;
710 
711 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
712 	host->sg_idx = 0;
713 	host->sg_blkidx = 0;
714 	host->pio_ptr = sg_virt(data->sg);
715 
716 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
717 }
718 
719 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
720 {
721 	struct mmc_data *data = host->mrq->data;
722 	u32 *p = host->pio_ptr;
723 	int i;
724 
725 	if (host->sd_error) {
726 		data->error = sh_mmcif_error_manage(host);
727 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
728 		return false;
729 	}
730 
731 	BUG_ON(!data->sg->length);
732 
733 	for (i = 0; i < host->blocksize / 4; i++)
734 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
735 
736 	if (!sh_mmcif_next_block(host, p))
737 		return false;
738 
739 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
740 
741 	return true;
742 }
743 
744 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
745 						struct mmc_command *cmd)
746 {
747 	if (cmd->flags & MMC_RSP_136) {
748 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
749 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
750 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
751 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
752 	} else
753 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
754 }
755 
756 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
757 						struct mmc_command *cmd)
758 {
759 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
760 }
761 
762 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
763 			    struct mmc_request *mrq)
764 {
765 	struct mmc_data *data = mrq->data;
766 	struct mmc_command *cmd = mrq->cmd;
767 	u32 opc = cmd->opcode;
768 	u32 tmp = 0;
769 
770 	/* Response Type check */
771 	switch (mmc_resp_type(cmd)) {
772 	case MMC_RSP_NONE:
773 		tmp |= CMD_SET_RTYP_NO;
774 		break;
775 	case MMC_RSP_R1:
776 	case MMC_RSP_R1B:
777 	case MMC_RSP_R3:
778 		tmp |= CMD_SET_RTYP_6B;
779 		break;
780 	case MMC_RSP_R2:
781 		tmp |= CMD_SET_RTYP_17B;
782 		break;
783 	default:
784 		dev_err(&host->pd->dev, "Unsupported response type.\n");
785 		break;
786 	}
787 	switch (opc) {
788 	/* RBSY */
789 	case MMC_SLEEP_AWAKE:
790 	case MMC_SWITCH:
791 	case MMC_STOP_TRANSMISSION:
792 	case MMC_SET_WRITE_PROT:
793 	case MMC_CLR_WRITE_PROT:
794 	case MMC_ERASE:
795 		tmp |= CMD_SET_RBSY;
796 		break;
797 	}
798 	/* WDAT / DATW */
799 	if (data) {
800 		tmp |= CMD_SET_WDAT;
801 		switch (host->bus_width) {
802 		case MMC_BUS_WIDTH_1:
803 			tmp |= CMD_SET_DATW_1;
804 			break;
805 		case MMC_BUS_WIDTH_4:
806 			tmp |= CMD_SET_DATW_4;
807 			break;
808 		case MMC_BUS_WIDTH_8:
809 			tmp |= CMD_SET_DATW_8;
810 			break;
811 		default:
812 			dev_err(&host->pd->dev, "Unsupported bus width.\n");
813 			break;
814 		}
815 		switch (host->timing) {
816 		case MMC_TIMING_MMC_DDR52:
817 			/*
818 			 * MMC core will only set this timing, if the host
819 			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
820 			 * capability. MMCIF implementations with this
821 			 * capability, e.g. sh73a0, will have to set it
822 			 * in their platform data.
823 			 */
824 			tmp |= CMD_SET_DARS;
825 			break;
826 		}
827 	}
828 	/* DWEN */
829 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
830 		tmp |= CMD_SET_DWEN;
831 	/* CMLTE/CMD12EN */
832 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
833 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
834 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
835 				data->blocks << 16);
836 	}
837 	/* RIDXC[1:0] check bits */
838 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
839 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
840 		tmp |= CMD_SET_RIDXC_BITS;
841 	/* RCRC7C[1:0] check bits */
842 	if (opc == MMC_SEND_OP_COND)
843 		tmp |= CMD_SET_CRC7C_BITS;
844 	/* RCRC7C[1:0] internal CRC7 */
845 	if (opc == MMC_ALL_SEND_CID ||
846 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
847 		tmp |= CMD_SET_CRC7C_INTERNAL;
848 
849 	return (opc << 24) | tmp;
850 }
851 
852 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
853 			       struct mmc_request *mrq, u32 opc)
854 {
855 	switch (opc) {
856 	case MMC_READ_MULTIPLE_BLOCK:
857 		sh_mmcif_multi_read(host, mrq);
858 		return 0;
859 	case MMC_WRITE_MULTIPLE_BLOCK:
860 		sh_mmcif_multi_write(host, mrq);
861 		return 0;
862 	case MMC_WRITE_BLOCK:
863 		sh_mmcif_single_write(host, mrq);
864 		return 0;
865 	case MMC_READ_SINGLE_BLOCK:
866 	case MMC_SEND_EXT_CSD:
867 		sh_mmcif_single_read(host, mrq);
868 		return 0;
869 	default:
870 		dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
871 		return -EINVAL;
872 	}
873 }
874 
875 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
876 			       struct mmc_request *mrq)
877 {
878 	struct mmc_command *cmd = mrq->cmd;
879 	u32 opc = cmd->opcode;
880 	u32 mask;
881 	unsigned long flags;
882 
883 	switch (opc) {
884 	/* response busy check */
885 	case MMC_SLEEP_AWAKE:
886 	case MMC_SWITCH:
887 	case MMC_STOP_TRANSMISSION:
888 	case MMC_SET_WRITE_PROT:
889 	case MMC_CLR_WRITE_PROT:
890 	case MMC_ERASE:
891 		mask = MASK_START_CMD | MASK_MRBSYE;
892 		break;
893 	default:
894 		mask = MASK_START_CMD | MASK_MCRSPE;
895 		break;
896 	}
897 
898 	if (host->ccs_enable)
899 		mask |= MASK_MCCSTO;
900 
901 	if (mrq->data) {
902 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
903 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
904 				mrq->data->blksz);
905 	}
906 	opc = sh_mmcif_set_cmd(host, mrq);
907 
908 	if (host->ccs_enable)
909 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
910 	else
911 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
912 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
913 	/* set arg */
914 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
915 	/* set cmd */
916 	spin_lock_irqsave(&host->lock, flags);
917 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
918 
919 	host->wait_for = MMCIF_WAIT_FOR_CMD;
920 	schedule_delayed_work(&host->timeout_work, host->timeout);
921 	spin_unlock_irqrestore(&host->lock, flags);
922 }
923 
924 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
925 			      struct mmc_request *mrq)
926 {
927 	switch (mrq->cmd->opcode) {
928 	case MMC_READ_MULTIPLE_BLOCK:
929 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
930 		break;
931 	case MMC_WRITE_MULTIPLE_BLOCK:
932 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
933 		break;
934 	default:
935 		dev_err(&host->pd->dev, "unsupported stop cmd\n");
936 		mrq->stop->error = sh_mmcif_error_manage(host);
937 		return;
938 	}
939 
940 	host->wait_for = MMCIF_WAIT_FOR_STOP;
941 }
942 
943 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
944 {
945 	struct sh_mmcif_host *host = mmc_priv(mmc);
946 	unsigned long flags;
947 
948 	spin_lock_irqsave(&host->lock, flags);
949 	if (host->state != STATE_IDLE) {
950 		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
951 		spin_unlock_irqrestore(&host->lock, flags);
952 		mrq->cmd->error = -EAGAIN;
953 		mmc_request_done(mmc, mrq);
954 		return;
955 	}
956 
957 	host->state = STATE_REQUEST;
958 	spin_unlock_irqrestore(&host->lock, flags);
959 
960 	switch (mrq->cmd->opcode) {
961 	/* MMCIF does not support SD/SDIO command */
962 	case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
963 	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
964 		if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
965 			break;
966 	case MMC_APP_CMD:
967 	case SD_IO_RW_DIRECT:
968 		host->state = STATE_IDLE;
969 		mrq->cmd->error = -ETIMEDOUT;
970 		mmc_request_done(mmc, mrq);
971 		return;
972 	default:
973 		break;
974 	}
975 
976 	host->mrq = mrq;
977 
978 	sh_mmcif_start_cmd(host, mrq);
979 }
980 
981 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
982 {
983 	int ret = clk_prepare_enable(host->hclk);
984 
985 	if (!ret) {
986 		host->clk = clk_get_rate(host->hclk);
987 		host->mmc->f_max = host->clk / 2;
988 		host->mmc->f_min = host->clk / 512;
989 	}
990 
991 	return ret;
992 }
993 
994 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
995 {
996 	struct mmc_host *mmc = host->mmc;
997 
998 	if (!IS_ERR(mmc->supply.vmmc))
999 		/* Errors ignored... */
1000 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1001 				      ios->power_mode ? ios->vdd : 0);
1002 }
1003 
1004 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1005 {
1006 	struct sh_mmcif_host *host = mmc_priv(mmc);
1007 	unsigned long flags;
1008 
1009 	spin_lock_irqsave(&host->lock, flags);
1010 	if (host->state != STATE_IDLE) {
1011 		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
1012 		spin_unlock_irqrestore(&host->lock, flags);
1013 		return;
1014 	}
1015 
1016 	host->state = STATE_IOS;
1017 	spin_unlock_irqrestore(&host->lock, flags);
1018 
1019 	if (ios->power_mode == MMC_POWER_UP) {
1020 		if (!host->card_present) {
1021 			/* See if we also get DMA */
1022 			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
1023 			host->card_present = true;
1024 		}
1025 		sh_mmcif_set_power(host, ios);
1026 	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1027 		/* clock stop */
1028 		sh_mmcif_clock_control(host, 0);
1029 		if (ios->power_mode == MMC_POWER_OFF) {
1030 			if (host->card_present) {
1031 				sh_mmcif_release_dma(host);
1032 				host->card_present = false;
1033 			}
1034 		}
1035 		if (host->power) {
1036 			pm_runtime_put_sync(&host->pd->dev);
1037 			clk_disable_unprepare(host->hclk);
1038 			host->power = false;
1039 			if (ios->power_mode == MMC_POWER_OFF)
1040 				sh_mmcif_set_power(host, ios);
1041 		}
1042 		host->state = STATE_IDLE;
1043 		return;
1044 	}
1045 
1046 	if (ios->clock) {
1047 		if (!host->power) {
1048 			sh_mmcif_clk_update(host);
1049 			pm_runtime_get_sync(&host->pd->dev);
1050 			host->power = true;
1051 			sh_mmcif_sync_reset(host);
1052 		}
1053 		sh_mmcif_clock_control(host, ios->clock);
1054 	}
1055 
1056 	host->timing = ios->timing;
1057 	host->bus_width = ios->bus_width;
1058 	host->state = STATE_IDLE;
1059 }
1060 
1061 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1062 {
1063 	struct sh_mmcif_host *host = mmc_priv(mmc);
1064 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1065 	int ret = mmc_gpio_get_cd(mmc);
1066 
1067 	if (ret >= 0)
1068 		return ret;
1069 
1070 	if (!p || !p->get_cd)
1071 		return -ENOSYS;
1072 	else
1073 		return p->get_cd(host->pd);
1074 }
1075 
1076 static struct mmc_host_ops sh_mmcif_ops = {
1077 	.request	= sh_mmcif_request,
1078 	.set_ios	= sh_mmcif_set_ios,
1079 	.get_cd		= sh_mmcif_get_cd,
1080 };
1081 
1082 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1083 {
1084 	struct mmc_command *cmd = host->mrq->cmd;
1085 	struct mmc_data *data = host->mrq->data;
1086 	long time;
1087 
1088 	if (host->sd_error) {
1089 		switch (cmd->opcode) {
1090 		case MMC_ALL_SEND_CID:
1091 		case MMC_SELECT_CARD:
1092 		case MMC_APP_CMD:
1093 			cmd->error = -ETIMEDOUT;
1094 			break;
1095 		default:
1096 			cmd->error = sh_mmcif_error_manage(host);
1097 			break;
1098 		}
1099 		dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1100 			cmd->opcode, cmd->error);
1101 		host->sd_error = false;
1102 		return false;
1103 	}
1104 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1105 		cmd->error = 0;
1106 		return false;
1107 	}
1108 
1109 	sh_mmcif_get_response(host, cmd);
1110 
1111 	if (!data)
1112 		return false;
1113 
1114 	/*
1115 	 * Completion can be signalled from DMA callback and error, so, have to
1116 	 * reset here, before setting .dma_active
1117 	 */
1118 	init_completion(&host->dma_complete);
1119 
1120 	if (data->flags & MMC_DATA_READ) {
1121 		if (host->chan_rx)
1122 			sh_mmcif_start_dma_rx(host);
1123 	} else {
1124 		if (host->chan_tx)
1125 			sh_mmcif_start_dma_tx(host);
1126 	}
1127 
1128 	if (!host->dma_active) {
1129 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1130 		return !data->error;
1131 	}
1132 
1133 	/* Running in the IRQ thread, can sleep */
1134 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1135 							 host->timeout);
1136 
1137 	if (data->flags & MMC_DATA_READ)
1138 		dma_unmap_sg(host->chan_rx->device->dev,
1139 			     data->sg, data->sg_len,
1140 			     DMA_FROM_DEVICE);
1141 	else
1142 		dma_unmap_sg(host->chan_tx->device->dev,
1143 			     data->sg, data->sg_len,
1144 			     DMA_TO_DEVICE);
1145 
1146 	if (host->sd_error) {
1147 		dev_err(host->mmc->parent,
1148 			"Error IRQ while waiting for DMA completion!\n");
1149 		/* Woken up by an error IRQ: abort DMA */
1150 		data->error = sh_mmcif_error_manage(host);
1151 	} else if (!time) {
1152 		dev_err(host->mmc->parent, "DMA timeout!\n");
1153 		data->error = -ETIMEDOUT;
1154 	} else if (time < 0) {
1155 		dev_err(host->mmc->parent,
1156 			"wait_for_completion_...() error %ld!\n", time);
1157 		data->error = time;
1158 	}
1159 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1160 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1161 	host->dma_active = false;
1162 
1163 	if (data->error) {
1164 		data->bytes_xfered = 0;
1165 		/* Abort DMA */
1166 		if (data->flags & MMC_DATA_READ)
1167 			dmaengine_terminate_all(host->chan_rx);
1168 		else
1169 			dmaengine_terminate_all(host->chan_tx);
1170 	}
1171 
1172 	return false;
1173 }
1174 
1175 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1176 {
1177 	struct sh_mmcif_host *host = dev_id;
1178 	struct mmc_request *mrq;
1179 	bool wait = false;
1180 	unsigned long flags;
1181 	int wait_work;
1182 
1183 	spin_lock_irqsave(&host->lock, flags);
1184 	wait_work = host->wait_for;
1185 	spin_unlock_irqrestore(&host->lock, flags);
1186 
1187 	cancel_delayed_work_sync(&host->timeout_work);
1188 
1189 	mutex_lock(&host->thread_lock);
1190 
1191 	mrq = host->mrq;
1192 	if (!mrq) {
1193 		dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1194 			host->state, host->wait_for);
1195 		mutex_unlock(&host->thread_lock);
1196 		return IRQ_HANDLED;
1197 	}
1198 
1199 	/*
1200 	 * All handlers return true, if processing continues, and false, if the
1201 	 * request has to be completed - successfully or not
1202 	 */
1203 	switch (wait_work) {
1204 	case MMCIF_WAIT_FOR_REQUEST:
1205 		/* We're too late, the timeout has already kicked in */
1206 		mutex_unlock(&host->thread_lock);
1207 		return IRQ_HANDLED;
1208 	case MMCIF_WAIT_FOR_CMD:
1209 		/* Wait for data? */
1210 		wait = sh_mmcif_end_cmd(host);
1211 		break;
1212 	case MMCIF_WAIT_FOR_MREAD:
1213 		/* Wait for more data? */
1214 		wait = sh_mmcif_mread_block(host);
1215 		break;
1216 	case MMCIF_WAIT_FOR_READ:
1217 		/* Wait for data end? */
1218 		wait = sh_mmcif_read_block(host);
1219 		break;
1220 	case MMCIF_WAIT_FOR_MWRITE:
1221 		/* Wait data to write? */
1222 		wait = sh_mmcif_mwrite_block(host);
1223 		break;
1224 	case MMCIF_WAIT_FOR_WRITE:
1225 		/* Wait for data end? */
1226 		wait = sh_mmcif_write_block(host);
1227 		break;
1228 	case MMCIF_WAIT_FOR_STOP:
1229 		if (host->sd_error) {
1230 			mrq->stop->error = sh_mmcif_error_manage(host);
1231 			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1232 			break;
1233 		}
1234 		sh_mmcif_get_cmd12response(host, mrq->stop);
1235 		mrq->stop->error = 0;
1236 		break;
1237 	case MMCIF_WAIT_FOR_READ_END:
1238 	case MMCIF_WAIT_FOR_WRITE_END:
1239 		if (host->sd_error) {
1240 			mrq->data->error = sh_mmcif_error_manage(host);
1241 			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1242 		}
1243 		break;
1244 	default:
1245 		BUG();
1246 	}
1247 
1248 	if (wait) {
1249 		schedule_delayed_work(&host->timeout_work, host->timeout);
1250 		/* Wait for more data */
1251 		mutex_unlock(&host->thread_lock);
1252 		return IRQ_HANDLED;
1253 	}
1254 
1255 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1256 		struct mmc_data *data = mrq->data;
1257 		if (!mrq->cmd->error && data && !data->error)
1258 			data->bytes_xfered =
1259 				data->blocks * data->blksz;
1260 
1261 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1262 			sh_mmcif_stop_cmd(host, mrq);
1263 			if (!mrq->stop->error) {
1264 				schedule_delayed_work(&host->timeout_work, host->timeout);
1265 				mutex_unlock(&host->thread_lock);
1266 				return IRQ_HANDLED;
1267 			}
1268 		}
1269 	}
1270 
1271 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1272 	host->state = STATE_IDLE;
1273 	host->mrq = NULL;
1274 	mmc_request_done(host->mmc, mrq);
1275 
1276 	mutex_unlock(&host->thread_lock);
1277 
1278 	return IRQ_HANDLED;
1279 }
1280 
1281 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1282 {
1283 	struct sh_mmcif_host *host = dev_id;
1284 	u32 state, mask;
1285 
1286 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1287 	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1288 	if (host->ccs_enable)
1289 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1290 	else
1291 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1292 	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1293 
1294 	if (state & ~MASK_CLEAN)
1295 		dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1296 			state);
1297 
1298 	if (state & INT_ERR_STS || state & ~INT_ALL) {
1299 		host->sd_error = true;
1300 		dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1301 	}
1302 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1303 		if (!host->mrq)
1304 			dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1305 		if (!host->dma_active)
1306 			return IRQ_WAKE_THREAD;
1307 		else if (host->sd_error)
1308 			mmcif_dma_complete(host);
1309 	} else {
1310 		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1311 	}
1312 
1313 	return IRQ_HANDLED;
1314 }
1315 
1316 static void mmcif_timeout_work(struct work_struct *work)
1317 {
1318 	struct delayed_work *d = container_of(work, struct delayed_work, work);
1319 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1320 	struct mmc_request *mrq = host->mrq;
1321 	unsigned long flags;
1322 
1323 	if (host->dying)
1324 		/* Don't run after mmc_remove_host() */
1325 		return;
1326 
1327 	spin_lock_irqsave(&host->lock, flags);
1328 	if (host->state == STATE_IDLE) {
1329 		spin_unlock_irqrestore(&host->lock, flags);
1330 		return;
1331 	}
1332 
1333 	dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1334 		host->wait_for, mrq->cmd->opcode);
1335 
1336 	host->state = STATE_TIMEOUT;
1337 	spin_unlock_irqrestore(&host->lock, flags);
1338 
1339 	/*
1340 	 * Handle races with cancel_delayed_work(), unless
1341 	 * cancel_delayed_work_sync() is used
1342 	 */
1343 	switch (host->wait_for) {
1344 	case MMCIF_WAIT_FOR_CMD:
1345 		mrq->cmd->error = sh_mmcif_error_manage(host);
1346 		break;
1347 	case MMCIF_WAIT_FOR_STOP:
1348 		mrq->stop->error = sh_mmcif_error_manage(host);
1349 		break;
1350 	case MMCIF_WAIT_FOR_MREAD:
1351 	case MMCIF_WAIT_FOR_MWRITE:
1352 	case MMCIF_WAIT_FOR_READ:
1353 	case MMCIF_WAIT_FOR_WRITE:
1354 	case MMCIF_WAIT_FOR_READ_END:
1355 	case MMCIF_WAIT_FOR_WRITE_END:
1356 		mrq->data->error = sh_mmcif_error_manage(host);
1357 		break;
1358 	default:
1359 		BUG();
1360 	}
1361 
1362 	host->state = STATE_IDLE;
1363 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1364 	host->mrq = NULL;
1365 	mmc_request_done(host->mmc, mrq);
1366 }
1367 
1368 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1369 {
1370 	struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1371 	struct mmc_host *mmc = host->mmc;
1372 
1373 	mmc_regulator_get_supply(mmc);
1374 
1375 	if (!pd)
1376 		return;
1377 
1378 	if (!mmc->ocr_avail)
1379 		mmc->ocr_avail = pd->ocr;
1380 	else if (pd->ocr)
1381 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1382 }
1383 
1384 static int sh_mmcif_probe(struct platform_device *pdev)
1385 {
1386 	int ret = 0, irq[2];
1387 	struct mmc_host *mmc;
1388 	struct sh_mmcif_host *host;
1389 	struct device *dev = &pdev->dev;
1390 	struct sh_mmcif_plat_data *pd = dev->platform_data;
1391 	struct resource *res;
1392 	void __iomem *reg;
1393 	const char *name;
1394 
1395 	irq[0] = platform_get_irq(pdev, 0);
1396 	irq[1] = platform_get_irq(pdev, 1);
1397 	if (irq[0] < 0) {
1398 		dev_err(dev, "Get irq error\n");
1399 		return -ENXIO;
1400 	}
1401 
1402 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1403 	reg = devm_ioremap_resource(dev, res);
1404 	if (IS_ERR(reg))
1405 		return PTR_ERR(reg);
1406 
1407 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1408 	if (!mmc)
1409 		return -ENOMEM;
1410 
1411 	ret = mmc_of_parse(mmc);
1412 	if (ret < 0)
1413 		goto err_host;
1414 
1415 	host		= mmc_priv(mmc);
1416 	host->mmc	= mmc;
1417 	host->addr	= reg;
1418 	host->timeout	= msecs_to_jiffies(10000);
1419 	host->ccs_enable = !pd || !pd->ccs_unsupported;
1420 	host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1421 
1422 	host->pd = pdev;
1423 
1424 	spin_lock_init(&host->lock);
1425 
1426 	mmc->ops = &sh_mmcif_ops;
1427 	sh_mmcif_init_ocr(host);
1428 
1429 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1430 	if (pd && pd->caps)
1431 		mmc->caps |= pd->caps;
1432 	mmc->max_segs = 32;
1433 	mmc->max_blk_size = 512;
1434 	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1435 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1436 	mmc->max_seg_size = mmc->max_req_size;
1437 
1438 	platform_set_drvdata(pdev, host);
1439 
1440 	pm_runtime_enable(dev);
1441 	host->power = false;
1442 
1443 	host->hclk = devm_clk_get(dev, NULL);
1444 	if (IS_ERR(host->hclk)) {
1445 		ret = PTR_ERR(host->hclk);
1446 		dev_err(dev, "cannot get clock: %d\n", ret);
1447 		goto err_pm;
1448 	}
1449 	ret = sh_mmcif_clk_update(host);
1450 	if (ret < 0)
1451 		goto err_pm;
1452 
1453 	ret = pm_runtime_resume(dev);
1454 	if (ret < 0)
1455 		goto err_clk;
1456 
1457 	INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1458 
1459 	sh_mmcif_sync_reset(host);
1460 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1461 
1462 	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1463 	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1464 					sh_mmcif_irqt, 0, name, host);
1465 	if (ret) {
1466 		dev_err(dev, "request_irq error (%s)\n", name);
1467 		goto err_clk;
1468 	}
1469 	if (irq[1] >= 0) {
1470 		ret = devm_request_threaded_irq(dev, irq[1],
1471 						sh_mmcif_intr, sh_mmcif_irqt,
1472 						0, "sh_mmc:int", host);
1473 		if (ret) {
1474 			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1475 			goto err_clk;
1476 		}
1477 	}
1478 
1479 	if (pd && pd->use_cd_gpio) {
1480 		ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1481 		if (ret < 0)
1482 			goto err_clk;
1483 	}
1484 
1485 	mutex_init(&host->thread_lock);
1486 
1487 	ret = mmc_add_host(mmc);
1488 	if (ret < 0)
1489 		goto err_clk;
1490 
1491 	dev_pm_qos_expose_latency_limit(dev, 100);
1492 
1493 	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1494 		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1495 		 clk_get_rate(host->hclk) / 1000000UL);
1496 
1497 	clk_disable_unprepare(host->hclk);
1498 	return ret;
1499 
1500 err_clk:
1501 	clk_disable_unprepare(host->hclk);
1502 err_pm:
1503 	pm_runtime_disable(dev);
1504 err_host:
1505 	mmc_free_host(mmc);
1506 	return ret;
1507 }
1508 
1509 static int sh_mmcif_remove(struct platform_device *pdev)
1510 {
1511 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1512 
1513 	host->dying = true;
1514 	clk_prepare_enable(host->hclk);
1515 	pm_runtime_get_sync(&pdev->dev);
1516 
1517 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1518 
1519 	mmc_remove_host(host->mmc);
1520 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1521 
1522 	/*
1523 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1524 	 * mmc_remove_host() call above. But swapping order doesn't help either
1525 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1526 	 */
1527 	cancel_delayed_work_sync(&host->timeout_work);
1528 
1529 	clk_disable_unprepare(host->hclk);
1530 	mmc_free_host(host->mmc);
1531 	pm_runtime_put_sync(&pdev->dev);
1532 	pm_runtime_disable(&pdev->dev);
1533 
1534 	return 0;
1535 }
1536 
1537 #ifdef CONFIG_PM_SLEEP
1538 static int sh_mmcif_suspend(struct device *dev)
1539 {
1540 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1541 
1542 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1543 
1544 	return 0;
1545 }
1546 
1547 static int sh_mmcif_resume(struct device *dev)
1548 {
1549 	return 0;
1550 }
1551 #endif
1552 
1553 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1554 	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1555 };
1556 
1557 static struct platform_driver sh_mmcif_driver = {
1558 	.probe		= sh_mmcif_probe,
1559 	.remove		= sh_mmcif_remove,
1560 	.driver		= {
1561 		.name	= DRIVER_NAME,
1562 		.pm	= &sh_mmcif_dev_pm_ops,
1563 		.of_match_table = mmcif_of_match,
1564 	},
1565 };
1566 
1567 module_platform_driver(sh_mmcif_driver);
1568 
1569 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1570 MODULE_LICENSE("GPL");
1571 MODULE_ALIAS("platform:" DRIVER_NAME);
1572 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1573