xref: /openbmc/linux/drivers/mmc/host/sh_mmcif.c (revision 538f4696)
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18 
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44 
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/pagemap.h>
61 #include <linux/platform_device.h>
62 #include <linux/pm_qos.h>
63 #include <linux/pm_runtime.h>
64 #include <linux/sh_dma.h>
65 #include <linux/spinlock.h>
66 #include <linux/module.h>
67 
68 #define DRIVER_NAME	"sh_mmcif"
69 #define DRIVER_VERSION	"2010-04-28"
70 
71 /* CE_CMD_SET */
72 #define CMD_MASK		0x3f000000
73 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
74 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
75 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
76 #define CMD_SET_RBSY		(1 << 21) /* R1b */
77 #define CMD_SET_CCSEN		(1 << 20)
78 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
79 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
80 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
81 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
82 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
83 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
84 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
85 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
86 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
87 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
88 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
89 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
90 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
91 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
92 #define CMD_SET_CCSH		(1 << 5)
93 #define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
94 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
95 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
96 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
97 
98 /* CE_CMD_CTRL */
99 #define CMD_CTRL_BREAK		(1 << 0)
100 
101 /* CE_BLOCK_SET */
102 #define BLOCK_SIZE_MASK		0x0000ffff
103 
104 /* CE_INT */
105 #define INT_CCSDE		(1 << 29)
106 #define INT_CMD12DRE		(1 << 26)
107 #define INT_CMD12RBE		(1 << 25)
108 #define INT_CMD12CRE		(1 << 24)
109 #define INT_DTRANE		(1 << 23)
110 #define INT_BUFRE		(1 << 22)
111 #define INT_BUFWEN		(1 << 21)
112 #define INT_BUFREN		(1 << 20)
113 #define INT_CCSRCV		(1 << 19)
114 #define INT_RBSYE		(1 << 17)
115 #define INT_CRSPE		(1 << 16)
116 #define INT_CMDVIO		(1 << 15)
117 #define INT_BUFVIO		(1 << 14)
118 #define INT_WDATERR		(1 << 11)
119 #define INT_RDATERR		(1 << 10)
120 #define INT_RIDXERR		(1 << 9)
121 #define INT_RSPERR		(1 << 8)
122 #define INT_CCSTO		(1 << 5)
123 #define INT_CRCSTO		(1 << 4)
124 #define INT_WDATTO		(1 << 3)
125 #define INT_RDATTO		(1 << 2)
126 #define INT_RBSYTO		(1 << 1)
127 #define INT_RSPTO		(1 << 0)
128 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
129 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
130 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
131 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
132 
133 #define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
134 				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
135 				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
136 
137 #define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
138 
139 /* CE_INT_MASK */
140 #define MASK_ALL		0x00000000
141 #define MASK_MCCSDE		(1 << 29)
142 #define MASK_MCMD12DRE		(1 << 26)
143 #define MASK_MCMD12RBE		(1 << 25)
144 #define MASK_MCMD12CRE		(1 << 24)
145 #define MASK_MDTRANE		(1 << 23)
146 #define MASK_MBUFRE		(1 << 22)
147 #define MASK_MBUFWEN		(1 << 21)
148 #define MASK_MBUFREN		(1 << 20)
149 #define MASK_MCCSRCV		(1 << 19)
150 #define MASK_MRBSYE		(1 << 17)
151 #define MASK_MCRSPE		(1 << 16)
152 #define MASK_MCMDVIO		(1 << 15)
153 #define MASK_MBUFVIO		(1 << 14)
154 #define MASK_MWDATERR		(1 << 11)
155 #define MASK_MRDATERR		(1 << 10)
156 #define MASK_MRIDXERR		(1 << 9)
157 #define MASK_MRSPERR		(1 << 8)
158 #define MASK_MCCSTO		(1 << 5)
159 #define MASK_MCRCSTO		(1 << 4)
160 #define MASK_MWDATTO		(1 << 3)
161 #define MASK_MRDATTO		(1 << 2)
162 #define MASK_MRBSYTO		(1 << 1)
163 #define MASK_MRSPTO		(1 << 0)
164 
165 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
166 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
167 				 MASK_MCRCSTO | MASK_MWDATTO | \
168 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
169 
170 #define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
171 				 MASK_MBUFREN | MASK_MBUFWEN |			\
172 				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
173 				 MASK_MCMD12RBE | MASK_MCMD12CRE)
174 
175 /* CE_HOST_STS1 */
176 #define STS1_CMDSEQ		(1 << 31)
177 
178 /* CE_HOST_STS2 */
179 #define STS2_CRCSTE		(1 << 31)
180 #define STS2_CRC16E		(1 << 30)
181 #define STS2_AC12CRCE		(1 << 29)
182 #define STS2_RSPCRC7E		(1 << 28)
183 #define STS2_CRCSTEBE		(1 << 27)
184 #define STS2_RDATEBE		(1 << 26)
185 #define STS2_AC12REBE		(1 << 25)
186 #define STS2_RSPEBE		(1 << 24)
187 #define STS2_AC12IDXE		(1 << 23)
188 #define STS2_RSPIDXE		(1 << 22)
189 #define STS2_CCSTO		(1 << 15)
190 #define STS2_RDATTO		(1 << 14)
191 #define STS2_DATBSYTO		(1 << 13)
192 #define STS2_CRCSTTO		(1 << 12)
193 #define STS2_AC12BSYTO		(1 << 11)
194 #define STS2_RSPBSYTO		(1 << 10)
195 #define STS2_AC12RSPTO		(1 << 9)
196 #define STS2_RSPTO		(1 << 8)
197 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
198 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
199 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
200 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
201 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
202 				 STS2_AC12RSPTO | STS2_RSPTO)
203 
204 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
205 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
206 #define CLKDEV_INIT		400000   /* 400 KHz */
207 
208 enum mmcif_state {
209 	STATE_IDLE,
210 	STATE_REQUEST,
211 	STATE_IOS,
212 	STATE_TIMEOUT,
213 };
214 
215 enum mmcif_wait_for {
216 	MMCIF_WAIT_FOR_REQUEST,
217 	MMCIF_WAIT_FOR_CMD,
218 	MMCIF_WAIT_FOR_MREAD,
219 	MMCIF_WAIT_FOR_MWRITE,
220 	MMCIF_WAIT_FOR_READ,
221 	MMCIF_WAIT_FOR_WRITE,
222 	MMCIF_WAIT_FOR_READ_END,
223 	MMCIF_WAIT_FOR_WRITE_END,
224 	MMCIF_WAIT_FOR_STOP,
225 };
226 
227 struct sh_mmcif_host {
228 	struct mmc_host *mmc;
229 	struct mmc_request *mrq;
230 	struct platform_device *pd;
231 	struct clk *hclk;
232 	unsigned int clk;
233 	int bus_width;
234 	unsigned char timing;
235 	bool sd_error;
236 	bool dying;
237 	long timeout;
238 	void __iomem *addr;
239 	u32 *pio_ptr;
240 	spinlock_t lock;		/* protect sh_mmcif_host::state */
241 	enum mmcif_state state;
242 	enum mmcif_wait_for wait_for;
243 	struct delayed_work timeout_work;
244 	size_t blocksize;
245 	int sg_idx;
246 	int sg_blkidx;
247 	bool power;
248 	bool card_present;
249 	bool ccs_enable;		/* Command Completion Signal support */
250 	bool clk_ctrl2_enable;
251 	struct mutex thread_lock;
252 
253 	/* DMA support */
254 	struct dma_chan		*chan_rx;
255 	struct dma_chan		*chan_tx;
256 	struct completion	dma_complete;
257 	bool			dma_active;
258 };
259 
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261 					unsigned int reg, u32 val)
262 {
263 	writel(val | readl(host->addr + reg), host->addr + reg);
264 }
265 
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267 					unsigned int reg, u32 val)
268 {
269 	writel(~val & readl(host->addr + reg), host->addr + reg);
270 }
271 
272 static void mmcif_dma_complete(void *arg)
273 {
274 	struct sh_mmcif_host *host = arg;
275 	struct mmc_request *mrq = host->mrq;
276 
277 	dev_dbg(&host->pd->dev, "Command completed\n");
278 
279 	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280 		 dev_name(&host->pd->dev)))
281 		return;
282 
283 	complete(&host->dma_complete);
284 }
285 
286 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
287 {
288 	struct mmc_data *data = host->mrq->data;
289 	struct scatterlist *sg = data->sg;
290 	struct dma_async_tx_descriptor *desc = NULL;
291 	struct dma_chan *chan = host->chan_rx;
292 	dma_cookie_t cookie = -EINVAL;
293 	int ret;
294 
295 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
296 			 DMA_FROM_DEVICE);
297 	if (ret > 0) {
298 		host->dma_active = true;
299 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
300 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
301 	}
302 
303 	if (desc) {
304 		desc->callback = mmcif_dma_complete;
305 		desc->callback_param = host;
306 		cookie = dmaengine_submit(desc);
307 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
308 		dma_async_issue_pending(chan);
309 	}
310 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
311 		__func__, data->sg_len, ret, cookie);
312 
313 	if (!desc) {
314 		/* DMA failed, fall back to PIO */
315 		if (ret >= 0)
316 			ret = -EIO;
317 		host->chan_rx = NULL;
318 		host->dma_active = false;
319 		dma_release_channel(chan);
320 		/* Free the Tx channel too */
321 		chan = host->chan_tx;
322 		if (chan) {
323 			host->chan_tx = NULL;
324 			dma_release_channel(chan);
325 		}
326 		dev_warn(&host->pd->dev,
327 			 "DMA failed: %d, falling back to PIO\n", ret);
328 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
329 	}
330 
331 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
332 		desc, cookie, data->sg_len);
333 }
334 
335 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
336 {
337 	struct mmc_data *data = host->mrq->data;
338 	struct scatterlist *sg = data->sg;
339 	struct dma_async_tx_descriptor *desc = NULL;
340 	struct dma_chan *chan = host->chan_tx;
341 	dma_cookie_t cookie = -EINVAL;
342 	int ret;
343 
344 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345 			 DMA_TO_DEVICE);
346 	if (ret > 0) {
347 		host->dma_active = true;
348 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
349 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
350 	}
351 
352 	if (desc) {
353 		desc->callback = mmcif_dma_complete;
354 		desc->callback_param = host;
355 		cookie = dmaengine_submit(desc);
356 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357 		dma_async_issue_pending(chan);
358 	}
359 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
360 		__func__, data->sg_len, ret, cookie);
361 
362 	if (!desc) {
363 		/* DMA failed, fall back to PIO */
364 		if (ret >= 0)
365 			ret = -EIO;
366 		host->chan_tx = NULL;
367 		host->dma_active = false;
368 		dma_release_channel(chan);
369 		/* Free the Rx channel too */
370 		chan = host->chan_rx;
371 		if (chan) {
372 			host->chan_rx = NULL;
373 			dma_release_channel(chan);
374 		}
375 		dev_warn(&host->pd->dev,
376 			 "DMA failed: %d, falling back to PIO\n", ret);
377 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
378 	}
379 
380 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
381 		desc, cookie);
382 }
383 
384 static struct dma_chan *
385 sh_mmcif_request_dma_one(struct sh_mmcif_host *host,
386 			 struct sh_mmcif_plat_data *pdata,
387 			 enum dma_transfer_direction direction)
388 {
389 	struct dma_slave_config cfg;
390 	struct dma_chan *chan;
391 	unsigned int slave_id;
392 	struct resource *res;
393 	dma_cap_mask_t mask;
394 	int ret;
395 
396 	dma_cap_zero(mask);
397 	dma_cap_set(DMA_SLAVE, mask);
398 
399 	if (pdata)
400 		slave_id = direction == DMA_MEM_TO_DEV
401 			 ? pdata->slave_id_tx : pdata->slave_id_rx;
402 	else
403 		slave_id = 0;
404 
405 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
406 				(void *)(unsigned long)slave_id, &host->pd->dev,
407 				direction == DMA_MEM_TO_DEV ? "tx" : "rx");
408 
409 	dev_dbg(&host->pd->dev, "%s: %s: got channel %p\n", __func__,
410 		direction == DMA_MEM_TO_DEV ? "TX" : "RX", chan);
411 
412 	if (!chan)
413 		return NULL;
414 
415 	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
416 
417 	/* In the OF case the driver will get the slave ID from the DT */
418 	cfg.slave_id = slave_id;
419 	cfg.direction = direction;
420 	cfg.dst_addr = res->start + MMCIF_CE_DATA;
421 	cfg.src_addr = 0;
422 	ret = dmaengine_slave_config(chan, &cfg);
423 	if (ret < 0) {
424 		dma_release_channel(chan);
425 		return NULL;
426 	}
427 
428 	return chan;
429 }
430 
431 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
432 				 struct sh_mmcif_plat_data *pdata)
433 {
434 	host->dma_active = false;
435 
436 	if (pdata) {
437 		if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
438 			return;
439 	} else if (!host->pd->dev.of_node) {
440 		return;
441 	}
442 
443 	/* We can only either use DMA for both Tx and Rx or not use it at all */
444 	host->chan_tx = sh_mmcif_request_dma_one(host, pdata, DMA_MEM_TO_DEV);
445 	if (!host->chan_tx)
446 		return;
447 
448 	host->chan_rx = sh_mmcif_request_dma_one(host, pdata, DMA_DEV_TO_MEM);
449 	if (!host->chan_rx) {
450 		dma_release_channel(host->chan_tx);
451 		host->chan_tx = NULL;
452 	}
453 }
454 
455 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
456 {
457 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
458 	/* Descriptors are freed automatically */
459 	if (host->chan_tx) {
460 		struct dma_chan *chan = host->chan_tx;
461 		host->chan_tx = NULL;
462 		dma_release_channel(chan);
463 	}
464 	if (host->chan_rx) {
465 		struct dma_chan *chan = host->chan_rx;
466 		host->chan_rx = NULL;
467 		dma_release_channel(chan);
468 	}
469 
470 	host->dma_active = false;
471 }
472 
473 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
474 {
475 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
476 	bool sup_pclk = p ? p->sup_pclk : false;
477 
478 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
479 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
480 
481 	if (!clk)
482 		return;
483 	if (sup_pclk && clk == host->clk)
484 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
485 	else
486 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
487 				((fls(DIV_ROUND_UP(host->clk,
488 						   clk) - 1) - 1) << 16));
489 
490 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
491 }
492 
493 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
494 {
495 	u32 tmp;
496 
497 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
498 
499 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
500 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
501 	if (host->ccs_enable)
502 		tmp |= SCCSTO_29;
503 	if (host->clk_ctrl2_enable)
504 		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
505 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
506 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
507 	/* byte swap on */
508 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
509 }
510 
511 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
512 {
513 	u32 state1, state2;
514 	int ret, timeout;
515 
516 	host->sd_error = false;
517 
518 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
519 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
520 	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
521 	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
522 
523 	if (state1 & STS1_CMDSEQ) {
524 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
525 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
526 		for (timeout = 10000000; timeout; timeout--) {
527 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
528 			      & STS1_CMDSEQ))
529 				break;
530 			mdelay(1);
531 		}
532 		if (!timeout) {
533 			dev_err(&host->pd->dev,
534 				"Forced end of command sequence timeout err\n");
535 			return -EIO;
536 		}
537 		sh_mmcif_sync_reset(host);
538 		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
539 		return -EIO;
540 	}
541 
542 	if (state2 & STS2_CRC_ERR) {
543 		dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
544 			host->state, host->wait_for);
545 		ret = -EIO;
546 	} else if (state2 & STS2_TIMEOUT_ERR) {
547 		dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
548 			host->state, host->wait_for);
549 		ret = -ETIMEDOUT;
550 	} else {
551 		dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
552 			host->state, host->wait_for);
553 		ret = -EIO;
554 	}
555 	return ret;
556 }
557 
558 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
559 {
560 	struct mmc_data *data = host->mrq->data;
561 
562 	host->sg_blkidx += host->blocksize;
563 
564 	/* data->sg->length must be a multiple of host->blocksize? */
565 	BUG_ON(host->sg_blkidx > data->sg->length);
566 
567 	if (host->sg_blkidx == data->sg->length) {
568 		host->sg_blkidx = 0;
569 		if (++host->sg_idx < data->sg_len)
570 			host->pio_ptr = sg_virt(++data->sg);
571 	} else {
572 		host->pio_ptr = p;
573 	}
574 
575 	return host->sg_idx != data->sg_len;
576 }
577 
578 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
579 				 struct mmc_request *mrq)
580 {
581 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
582 			   BLOCK_SIZE_MASK) + 3;
583 
584 	host->wait_for = MMCIF_WAIT_FOR_READ;
585 
586 	/* buf read enable */
587 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
588 }
589 
590 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
591 {
592 	struct mmc_data *data = host->mrq->data;
593 	u32 *p = sg_virt(data->sg);
594 	int i;
595 
596 	if (host->sd_error) {
597 		data->error = sh_mmcif_error_manage(host);
598 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
599 		return false;
600 	}
601 
602 	for (i = 0; i < host->blocksize / 4; i++)
603 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
604 
605 	/* buffer read end */
606 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
607 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
608 
609 	return true;
610 }
611 
612 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
613 				struct mmc_request *mrq)
614 {
615 	struct mmc_data *data = mrq->data;
616 
617 	if (!data->sg_len || !data->sg->length)
618 		return;
619 
620 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
621 		BLOCK_SIZE_MASK;
622 
623 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
624 	host->sg_idx = 0;
625 	host->sg_blkidx = 0;
626 	host->pio_ptr = sg_virt(data->sg);
627 
628 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
629 }
630 
631 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
632 {
633 	struct mmc_data *data = host->mrq->data;
634 	u32 *p = host->pio_ptr;
635 	int i;
636 
637 	if (host->sd_error) {
638 		data->error = sh_mmcif_error_manage(host);
639 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
640 		return false;
641 	}
642 
643 	BUG_ON(!data->sg->length);
644 
645 	for (i = 0; i < host->blocksize / 4; i++)
646 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
647 
648 	if (!sh_mmcif_next_block(host, p))
649 		return false;
650 
651 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
652 
653 	return true;
654 }
655 
656 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
657 					struct mmc_request *mrq)
658 {
659 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
660 			   BLOCK_SIZE_MASK) + 3;
661 
662 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
663 
664 	/* buf write enable */
665 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
666 }
667 
668 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
669 {
670 	struct mmc_data *data = host->mrq->data;
671 	u32 *p = sg_virt(data->sg);
672 	int i;
673 
674 	if (host->sd_error) {
675 		data->error = sh_mmcif_error_manage(host);
676 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
677 		return false;
678 	}
679 
680 	for (i = 0; i < host->blocksize / 4; i++)
681 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
682 
683 	/* buffer write end */
684 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
685 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
686 
687 	return true;
688 }
689 
690 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
691 				struct mmc_request *mrq)
692 {
693 	struct mmc_data *data = mrq->data;
694 
695 	if (!data->sg_len || !data->sg->length)
696 		return;
697 
698 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
699 		BLOCK_SIZE_MASK;
700 
701 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
702 	host->sg_idx = 0;
703 	host->sg_blkidx = 0;
704 	host->pio_ptr = sg_virt(data->sg);
705 
706 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
707 }
708 
709 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
710 {
711 	struct mmc_data *data = host->mrq->data;
712 	u32 *p = host->pio_ptr;
713 	int i;
714 
715 	if (host->sd_error) {
716 		data->error = sh_mmcif_error_manage(host);
717 		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
718 		return false;
719 	}
720 
721 	BUG_ON(!data->sg->length);
722 
723 	for (i = 0; i < host->blocksize / 4; i++)
724 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
725 
726 	if (!sh_mmcif_next_block(host, p))
727 		return false;
728 
729 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
730 
731 	return true;
732 }
733 
734 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
735 						struct mmc_command *cmd)
736 {
737 	if (cmd->flags & MMC_RSP_136) {
738 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
739 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
740 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
741 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
742 	} else
743 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
744 }
745 
746 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
747 						struct mmc_command *cmd)
748 {
749 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
750 }
751 
752 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
753 			    struct mmc_request *mrq)
754 {
755 	struct mmc_data *data = mrq->data;
756 	struct mmc_command *cmd = mrq->cmd;
757 	u32 opc = cmd->opcode;
758 	u32 tmp = 0;
759 
760 	/* Response Type check */
761 	switch (mmc_resp_type(cmd)) {
762 	case MMC_RSP_NONE:
763 		tmp |= CMD_SET_RTYP_NO;
764 		break;
765 	case MMC_RSP_R1:
766 	case MMC_RSP_R1B:
767 	case MMC_RSP_R3:
768 		tmp |= CMD_SET_RTYP_6B;
769 		break;
770 	case MMC_RSP_R2:
771 		tmp |= CMD_SET_RTYP_17B;
772 		break;
773 	default:
774 		dev_err(&host->pd->dev, "Unsupported response type.\n");
775 		break;
776 	}
777 	switch (opc) {
778 	/* RBSY */
779 	case MMC_SLEEP_AWAKE:
780 	case MMC_SWITCH:
781 	case MMC_STOP_TRANSMISSION:
782 	case MMC_SET_WRITE_PROT:
783 	case MMC_CLR_WRITE_PROT:
784 	case MMC_ERASE:
785 		tmp |= CMD_SET_RBSY;
786 		break;
787 	}
788 	/* WDAT / DATW */
789 	if (data) {
790 		tmp |= CMD_SET_WDAT;
791 		switch (host->bus_width) {
792 		case MMC_BUS_WIDTH_1:
793 			tmp |= CMD_SET_DATW_1;
794 			break;
795 		case MMC_BUS_WIDTH_4:
796 			tmp |= CMD_SET_DATW_4;
797 			break;
798 		case MMC_BUS_WIDTH_8:
799 			tmp |= CMD_SET_DATW_8;
800 			break;
801 		default:
802 			dev_err(&host->pd->dev, "Unsupported bus width.\n");
803 			break;
804 		}
805 		switch (host->timing) {
806 		case MMC_TIMING_UHS_DDR50:
807 			/*
808 			 * MMC core will only set this timing, if the host
809 			 * advertises the MMC_CAP_UHS_DDR50 capability. MMCIF
810 			 * implementations with this capability, e.g. sh73a0,
811 			 * will have to set it in their platform data.
812 			 */
813 			tmp |= CMD_SET_DARS;
814 			break;
815 		}
816 	}
817 	/* DWEN */
818 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
819 		tmp |= CMD_SET_DWEN;
820 	/* CMLTE/CMD12EN */
821 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
822 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
823 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
824 				data->blocks << 16);
825 	}
826 	/* RIDXC[1:0] check bits */
827 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
828 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
829 		tmp |= CMD_SET_RIDXC_BITS;
830 	/* RCRC7C[1:0] check bits */
831 	if (opc == MMC_SEND_OP_COND)
832 		tmp |= CMD_SET_CRC7C_BITS;
833 	/* RCRC7C[1:0] internal CRC7 */
834 	if (opc == MMC_ALL_SEND_CID ||
835 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
836 		tmp |= CMD_SET_CRC7C_INTERNAL;
837 
838 	return (opc << 24) | tmp;
839 }
840 
841 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
842 			       struct mmc_request *mrq, u32 opc)
843 {
844 	switch (opc) {
845 	case MMC_READ_MULTIPLE_BLOCK:
846 		sh_mmcif_multi_read(host, mrq);
847 		return 0;
848 	case MMC_WRITE_MULTIPLE_BLOCK:
849 		sh_mmcif_multi_write(host, mrq);
850 		return 0;
851 	case MMC_WRITE_BLOCK:
852 		sh_mmcif_single_write(host, mrq);
853 		return 0;
854 	case MMC_READ_SINGLE_BLOCK:
855 	case MMC_SEND_EXT_CSD:
856 		sh_mmcif_single_read(host, mrq);
857 		return 0;
858 	default:
859 		dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
860 		return -EINVAL;
861 	}
862 }
863 
864 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
865 			       struct mmc_request *mrq)
866 {
867 	struct mmc_command *cmd = mrq->cmd;
868 	u32 opc = cmd->opcode;
869 	u32 mask;
870 
871 	switch (opc) {
872 	/* response busy check */
873 	case MMC_SLEEP_AWAKE:
874 	case MMC_SWITCH:
875 	case MMC_STOP_TRANSMISSION:
876 	case MMC_SET_WRITE_PROT:
877 	case MMC_CLR_WRITE_PROT:
878 	case MMC_ERASE:
879 		mask = MASK_START_CMD | MASK_MRBSYE;
880 		break;
881 	default:
882 		mask = MASK_START_CMD | MASK_MCRSPE;
883 		break;
884 	}
885 
886 	if (host->ccs_enable)
887 		mask |= MASK_MCCSTO;
888 
889 	if (mrq->data) {
890 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
891 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
892 				mrq->data->blksz);
893 	}
894 	opc = sh_mmcif_set_cmd(host, mrq);
895 
896 	if (host->ccs_enable)
897 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
898 	else
899 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
900 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
901 	/* set arg */
902 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
903 	/* set cmd */
904 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
905 
906 	host->wait_for = MMCIF_WAIT_FOR_CMD;
907 	schedule_delayed_work(&host->timeout_work, host->timeout);
908 }
909 
910 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
911 			      struct mmc_request *mrq)
912 {
913 	switch (mrq->cmd->opcode) {
914 	case MMC_READ_MULTIPLE_BLOCK:
915 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
916 		break;
917 	case MMC_WRITE_MULTIPLE_BLOCK:
918 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
919 		break;
920 	default:
921 		dev_err(&host->pd->dev, "unsupported stop cmd\n");
922 		mrq->stop->error = sh_mmcif_error_manage(host);
923 		return;
924 	}
925 
926 	host->wait_for = MMCIF_WAIT_FOR_STOP;
927 }
928 
929 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
930 {
931 	struct sh_mmcif_host *host = mmc_priv(mmc);
932 	unsigned long flags;
933 
934 	spin_lock_irqsave(&host->lock, flags);
935 	if (host->state != STATE_IDLE) {
936 		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
937 		spin_unlock_irqrestore(&host->lock, flags);
938 		mrq->cmd->error = -EAGAIN;
939 		mmc_request_done(mmc, mrq);
940 		return;
941 	}
942 
943 	host->state = STATE_REQUEST;
944 	spin_unlock_irqrestore(&host->lock, flags);
945 
946 	switch (mrq->cmd->opcode) {
947 	/* MMCIF does not support SD/SDIO command */
948 	case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
949 	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
950 		if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
951 			break;
952 	case MMC_APP_CMD:
953 	case SD_IO_RW_DIRECT:
954 		host->state = STATE_IDLE;
955 		mrq->cmd->error = -ETIMEDOUT;
956 		mmc_request_done(mmc, mrq);
957 		return;
958 	default:
959 		break;
960 	}
961 
962 	host->mrq = mrq;
963 
964 	sh_mmcif_start_cmd(host, mrq);
965 }
966 
967 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
968 {
969 	int ret = clk_prepare_enable(host->hclk);
970 
971 	if (!ret) {
972 		host->clk = clk_get_rate(host->hclk);
973 		host->mmc->f_max = host->clk / 2;
974 		host->mmc->f_min = host->clk / 512;
975 	}
976 
977 	return ret;
978 }
979 
980 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
981 {
982 	struct mmc_host *mmc = host->mmc;
983 
984 	if (!IS_ERR(mmc->supply.vmmc))
985 		/* Errors ignored... */
986 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
987 				      ios->power_mode ? ios->vdd : 0);
988 }
989 
990 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
991 {
992 	struct sh_mmcif_host *host = mmc_priv(mmc);
993 	unsigned long flags;
994 
995 	spin_lock_irqsave(&host->lock, flags);
996 	if (host->state != STATE_IDLE) {
997 		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
998 		spin_unlock_irqrestore(&host->lock, flags);
999 		return;
1000 	}
1001 
1002 	host->state = STATE_IOS;
1003 	spin_unlock_irqrestore(&host->lock, flags);
1004 
1005 	if (ios->power_mode == MMC_POWER_UP) {
1006 		if (!host->card_present) {
1007 			/* See if we also get DMA */
1008 			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
1009 			host->card_present = true;
1010 		}
1011 		sh_mmcif_set_power(host, ios);
1012 	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1013 		/* clock stop */
1014 		sh_mmcif_clock_control(host, 0);
1015 		if (ios->power_mode == MMC_POWER_OFF) {
1016 			if (host->card_present) {
1017 				sh_mmcif_release_dma(host);
1018 				host->card_present = false;
1019 			}
1020 		}
1021 		if (host->power) {
1022 			pm_runtime_put_sync(&host->pd->dev);
1023 			clk_disable_unprepare(host->hclk);
1024 			host->power = false;
1025 			if (ios->power_mode == MMC_POWER_OFF)
1026 				sh_mmcif_set_power(host, ios);
1027 		}
1028 		host->state = STATE_IDLE;
1029 		return;
1030 	}
1031 
1032 	if (ios->clock) {
1033 		if (!host->power) {
1034 			sh_mmcif_clk_update(host);
1035 			pm_runtime_get_sync(&host->pd->dev);
1036 			host->power = true;
1037 			sh_mmcif_sync_reset(host);
1038 		}
1039 		sh_mmcif_clock_control(host, ios->clock);
1040 	}
1041 
1042 	host->timing = ios->timing;
1043 	host->bus_width = ios->bus_width;
1044 	host->state = STATE_IDLE;
1045 }
1046 
1047 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1048 {
1049 	struct sh_mmcif_host *host = mmc_priv(mmc);
1050 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1051 	int ret = mmc_gpio_get_cd(mmc);
1052 
1053 	if (ret >= 0)
1054 		return ret;
1055 
1056 	if (!p || !p->get_cd)
1057 		return -ENOSYS;
1058 	else
1059 		return p->get_cd(host->pd);
1060 }
1061 
1062 static struct mmc_host_ops sh_mmcif_ops = {
1063 	.request	= sh_mmcif_request,
1064 	.set_ios	= sh_mmcif_set_ios,
1065 	.get_cd		= sh_mmcif_get_cd,
1066 };
1067 
1068 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1069 {
1070 	struct mmc_command *cmd = host->mrq->cmd;
1071 	struct mmc_data *data = host->mrq->data;
1072 	long time;
1073 
1074 	if (host->sd_error) {
1075 		switch (cmd->opcode) {
1076 		case MMC_ALL_SEND_CID:
1077 		case MMC_SELECT_CARD:
1078 		case MMC_APP_CMD:
1079 			cmd->error = -ETIMEDOUT;
1080 			break;
1081 		default:
1082 			cmd->error = sh_mmcif_error_manage(host);
1083 			break;
1084 		}
1085 		dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1086 			cmd->opcode, cmd->error);
1087 		host->sd_error = false;
1088 		return false;
1089 	}
1090 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1091 		cmd->error = 0;
1092 		return false;
1093 	}
1094 
1095 	sh_mmcif_get_response(host, cmd);
1096 
1097 	if (!data)
1098 		return false;
1099 
1100 	/*
1101 	 * Completion can be signalled from DMA callback and error, so, have to
1102 	 * reset here, before setting .dma_active
1103 	 */
1104 	init_completion(&host->dma_complete);
1105 
1106 	if (data->flags & MMC_DATA_READ) {
1107 		if (host->chan_rx)
1108 			sh_mmcif_start_dma_rx(host);
1109 	} else {
1110 		if (host->chan_tx)
1111 			sh_mmcif_start_dma_tx(host);
1112 	}
1113 
1114 	if (!host->dma_active) {
1115 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1116 		return !data->error;
1117 	}
1118 
1119 	/* Running in the IRQ thread, can sleep */
1120 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1121 							 host->timeout);
1122 
1123 	if (data->flags & MMC_DATA_READ)
1124 		dma_unmap_sg(host->chan_rx->device->dev,
1125 			     data->sg, data->sg_len,
1126 			     DMA_FROM_DEVICE);
1127 	else
1128 		dma_unmap_sg(host->chan_tx->device->dev,
1129 			     data->sg, data->sg_len,
1130 			     DMA_TO_DEVICE);
1131 
1132 	if (host->sd_error) {
1133 		dev_err(host->mmc->parent,
1134 			"Error IRQ while waiting for DMA completion!\n");
1135 		/* Woken up by an error IRQ: abort DMA */
1136 		data->error = sh_mmcif_error_manage(host);
1137 	} else if (!time) {
1138 		dev_err(host->mmc->parent, "DMA timeout!\n");
1139 		data->error = -ETIMEDOUT;
1140 	} else if (time < 0) {
1141 		dev_err(host->mmc->parent,
1142 			"wait_for_completion_...() error %ld!\n", time);
1143 		data->error = time;
1144 	}
1145 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1146 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1147 	host->dma_active = false;
1148 
1149 	if (data->error) {
1150 		data->bytes_xfered = 0;
1151 		/* Abort DMA */
1152 		if (data->flags & MMC_DATA_READ)
1153 			dmaengine_terminate_all(host->chan_rx);
1154 		else
1155 			dmaengine_terminate_all(host->chan_tx);
1156 	}
1157 
1158 	return false;
1159 }
1160 
1161 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1162 {
1163 	struct sh_mmcif_host *host = dev_id;
1164 	struct mmc_request *mrq;
1165 	bool wait = false;
1166 
1167 	cancel_delayed_work_sync(&host->timeout_work);
1168 
1169 	mutex_lock(&host->thread_lock);
1170 
1171 	mrq = host->mrq;
1172 	if (!mrq) {
1173 		dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1174 			host->state, host->wait_for);
1175 		mutex_unlock(&host->thread_lock);
1176 		return IRQ_HANDLED;
1177 	}
1178 
1179 	/*
1180 	 * All handlers return true, if processing continues, and false, if the
1181 	 * request has to be completed - successfully or not
1182 	 */
1183 	switch (host->wait_for) {
1184 	case MMCIF_WAIT_FOR_REQUEST:
1185 		/* We're too late, the timeout has already kicked in */
1186 		mutex_unlock(&host->thread_lock);
1187 		return IRQ_HANDLED;
1188 	case MMCIF_WAIT_FOR_CMD:
1189 		/* Wait for data? */
1190 		wait = sh_mmcif_end_cmd(host);
1191 		break;
1192 	case MMCIF_WAIT_FOR_MREAD:
1193 		/* Wait for more data? */
1194 		wait = sh_mmcif_mread_block(host);
1195 		break;
1196 	case MMCIF_WAIT_FOR_READ:
1197 		/* Wait for data end? */
1198 		wait = sh_mmcif_read_block(host);
1199 		break;
1200 	case MMCIF_WAIT_FOR_MWRITE:
1201 		/* Wait data to write? */
1202 		wait = sh_mmcif_mwrite_block(host);
1203 		break;
1204 	case MMCIF_WAIT_FOR_WRITE:
1205 		/* Wait for data end? */
1206 		wait = sh_mmcif_write_block(host);
1207 		break;
1208 	case MMCIF_WAIT_FOR_STOP:
1209 		if (host->sd_error) {
1210 			mrq->stop->error = sh_mmcif_error_manage(host);
1211 			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1212 			break;
1213 		}
1214 		sh_mmcif_get_cmd12response(host, mrq->stop);
1215 		mrq->stop->error = 0;
1216 		break;
1217 	case MMCIF_WAIT_FOR_READ_END:
1218 	case MMCIF_WAIT_FOR_WRITE_END:
1219 		if (host->sd_error) {
1220 			mrq->data->error = sh_mmcif_error_manage(host);
1221 			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1222 		}
1223 		break;
1224 	default:
1225 		BUG();
1226 	}
1227 
1228 	if (wait) {
1229 		schedule_delayed_work(&host->timeout_work, host->timeout);
1230 		/* Wait for more data */
1231 		mutex_unlock(&host->thread_lock);
1232 		return IRQ_HANDLED;
1233 	}
1234 
1235 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1236 		struct mmc_data *data = mrq->data;
1237 		if (!mrq->cmd->error && data && !data->error)
1238 			data->bytes_xfered =
1239 				data->blocks * data->blksz;
1240 
1241 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1242 			sh_mmcif_stop_cmd(host, mrq);
1243 			if (!mrq->stop->error) {
1244 				schedule_delayed_work(&host->timeout_work, host->timeout);
1245 				mutex_unlock(&host->thread_lock);
1246 				return IRQ_HANDLED;
1247 			}
1248 		}
1249 	}
1250 
1251 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1252 	host->state = STATE_IDLE;
1253 	host->mrq = NULL;
1254 	mmc_request_done(host->mmc, mrq);
1255 
1256 	mutex_unlock(&host->thread_lock);
1257 
1258 	return IRQ_HANDLED;
1259 }
1260 
1261 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1262 {
1263 	struct sh_mmcif_host *host = dev_id;
1264 	u32 state, mask;
1265 
1266 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1267 	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1268 	if (host->ccs_enable)
1269 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1270 	else
1271 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1272 	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1273 
1274 	if (state & ~MASK_CLEAN)
1275 		dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1276 			state);
1277 
1278 	if (state & INT_ERR_STS || state & ~INT_ALL) {
1279 		host->sd_error = true;
1280 		dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1281 	}
1282 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1283 		if (!host->mrq)
1284 			dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1285 		if (!host->dma_active)
1286 			return IRQ_WAKE_THREAD;
1287 		else if (host->sd_error)
1288 			mmcif_dma_complete(host);
1289 	} else {
1290 		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1291 	}
1292 
1293 	return IRQ_HANDLED;
1294 }
1295 
1296 static void mmcif_timeout_work(struct work_struct *work)
1297 {
1298 	struct delayed_work *d = container_of(work, struct delayed_work, work);
1299 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1300 	struct mmc_request *mrq = host->mrq;
1301 	unsigned long flags;
1302 
1303 	if (host->dying)
1304 		/* Don't run after mmc_remove_host() */
1305 		return;
1306 
1307 	dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1308 		host->wait_for, mrq->cmd->opcode);
1309 
1310 	spin_lock_irqsave(&host->lock, flags);
1311 	if (host->state == STATE_IDLE) {
1312 		spin_unlock_irqrestore(&host->lock, flags);
1313 		return;
1314 	}
1315 
1316 	host->state = STATE_TIMEOUT;
1317 	spin_unlock_irqrestore(&host->lock, flags);
1318 
1319 	/*
1320 	 * Handle races with cancel_delayed_work(), unless
1321 	 * cancel_delayed_work_sync() is used
1322 	 */
1323 	switch (host->wait_for) {
1324 	case MMCIF_WAIT_FOR_CMD:
1325 		mrq->cmd->error = sh_mmcif_error_manage(host);
1326 		break;
1327 	case MMCIF_WAIT_FOR_STOP:
1328 		mrq->stop->error = sh_mmcif_error_manage(host);
1329 		break;
1330 	case MMCIF_WAIT_FOR_MREAD:
1331 	case MMCIF_WAIT_FOR_MWRITE:
1332 	case MMCIF_WAIT_FOR_READ:
1333 	case MMCIF_WAIT_FOR_WRITE:
1334 	case MMCIF_WAIT_FOR_READ_END:
1335 	case MMCIF_WAIT_FOR_WRITE_END:
1336 		mrq->data->error = sh_mmcif_error_manage(host);
1337 		break;
1338 	default:
1339 		BUG();
1340 	}
1341 
1342 	host->state = STATE_IDLE;
1343 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1344 	host->mrq = NULL;
1345 	mmc_request_done(host->mmc, mrq);
1346 }
1347 
1348 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1349 {
1350 	struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1351 	struct mmc_host *mmc = host->mmc;
1352 
1353 	mmc_regulator_get_supply(mmc);
1354 
1355 	if (!pd)
1356 		return;
1357 
1358 	if (!mmc->ocr_avail)
1359 		mmc->ocr_avail = pd->ocr;
1360 	else if (pd->ocr)
1361 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1362 }
1363 
1364 static int sh_mmcif_probe(struct platform_device *pdev)
1365 {
1366 	int ret = 0, irq[2];
1367 	struct mmc_host *mmc;
1368 	struct sh_mmcif_host *host;
1369 	struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1370 	struct resource *res;
1371 	void __iomem *reg;
1372 	const char *name;
1373 
1374 	irq[0] = platform_get_irq(pdev, 0);
1375 	irq[1] = platform_get_irq(pdev, 1);
1376 	if (irq[0] < 0) {
1377 		dev_err(&pdev->dev, "Get irq error\n");
1378 		return -ENXIO;
1379 	}
1380 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1381 	if (!res) {
1382 		dev_err(&pdev->dev, "platform_get_resource error.\n");
1383 		return -ENXIO;
1384 	}
1385 	reg = ioremap(res->start, resource_size(res));
1386 	if (!reg) {
1387 		dev_err(&pdev->dev, "ioremap error.\n");
1388 		return -ENOMEM;
1389 	}
1390 
1391 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1392 	if (!mmc) {
1393 		ret = -ENOMEM;
1394 		goto ealloch;
1395 	}
1396 
1397 	ret = mmc_of_parse(mmc);
1398 	if (ret < 0)
1399 		goto eofparse;
1400 
1401 	host		= mmc_priv(mmc);
1402 	host->mmc	= mmc;
1403 	host->addr	= reg;
1404 	host->timeout	= msecs_to_jiffies(1000);
1405 	host->ccs_enable = !pd || !pd->ccs_unsupported;
1406 	host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1407 
1408 	host->pd = pdev;
1409 
1410 	spin_lock_init(&host->lock);
1411 
1412 	mmc->ops = &sh_mmcif_ops;
1413 	sh_mmcif_init_ocr(host);
1414 
1415 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1416 	if (pd && pd->caps)
1417 		mmc->caps |= pd->caps;
1418 	mmc->max_segs = 32;
1419 	mmc->max_blk_size = 512;
1420 	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1421 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1422 	mmc->max_seg_size = mmc->max_req_size;
1423 
1424 	platform_set_drvdata(pdev, host);
1425 
1426 	pm_runtime_enable(&pdev->dev);
1427 	host->power = false;
1428 
1429 	host->hclk = clk_get(&pdev->dev, NULL);
1430 	if (IS_ERR(host->hclk)) {
1431 		ret = PTR_ERR(host->hclk);
1432 		dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1433 		goto eclkget;
1434 	}
1435 	ret = sh_mmcif_clk_update(host);
1436 	if (ret < 0)
1437 		goto eclkupdate;
1438 
1439 	ret = pm_runtime_resume(&pdev->dev);
1440 	if (ret < 0)
1441 		goto eresume;
1442 
1443 	INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1444 
1445 	sh_mmcif_sync_reset(host);
1446 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1447 
1448 	name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1449 	ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, name, host);
1450 	if (ret) {
1451 		dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1452 		goto ereqirq0;
1453 	}
1454 	if (irq[1] >= 0) {
1455 		ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt,
1456 					   0, "sh_mmc:int", host);
1457 		if (ret) {
1458 			dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1459 			goto ereqirq1;
1460 		}
1461 	}
1462 
1463 	if (pd && pd->use_cd_gpio) {
1464 		ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1465 		if (ret < 0)
1466 			goto erqcd;
1467 	}
1468 
1469 	mutex_init(&host->thread_lock);
1470 
1471 	clk_disable_unprepare(host->hclk);
1472 	ret = mmc_add_host(mmc);
1473 	if (ret < 0)
1474 		goto emmcaddh;
1475 
1476 	dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1477 
1478 	dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1479 	dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1480 		sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1481 	return ret;
1482 
1483 emmcaddh:
1484 erqcd:
1485 	if (irq[1] >= 0)
1486 		free_irq(irq[1], host);
1487 ereqirq1:
1488 	free_irq(irq[0], host);
1489 ereqirq0:
1490 	pm_runtime_suspend(&pdev->dev);
1491 eresume:
1492 	clk_disable_unprepare(host->hclk);
1493 eclkupdate:
1494 	clk_put(host->hclk);
1495 eclkget:
1496 	pm_runtime_disable(&pdev->dev);
1497 eofparse:
1498 	mmc_free_host(mmc);
1499 ealloch:
1500 	iounmap(reg);
1501 	return ret;
1502 }
1503 
1504 static int sh_mmcif_remove(struct platform_device *pdev)
1505 {
1506 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1507 	int irq[2];
1508 
1509 	host->dying = true;
1510 	clk_prepare_enable(host->hclk);
1511 	pm_runtime_get_sync(&pdev->dev);
1512 
1513 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1514 
1515 	mmc_remove_host(host->mmc);
1516 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1517 
1518 	/*
1519 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1520 	 * mmc_remove_host() call above. But swapping order doesn't help either
1521 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1522 	 */
1523 	cancel_delayed_work_sync(&host->timeout_work);
1524 
1525 	if (host->addr)
1526 		iounmap(host->addr);
1527 
1528 	irq[0] = platform_get_irq(pdev, 0);
1529 	irq[1] = platform_get_irq(pdev, 1);
1530 
1531 	free_irq(irq[0], host);
1532 	if (irq[1] >= 0)
1533 		free_irq(irq[1], host);
1534 
1535 	clk_disable_unprepare(host->hclk);
1536 	mmc_free_host(host->mmc);
1537 	pm_runtime_put_sync(&pdev->dev);
1538 	pm_runtime_disable(&pdev->dev);
1539 
1540 	return 0;
1541 }
1542 
1543 #ifdef CONFIG_PM_SLEEP
1544 static int sh_mmcif_suspend(struct device *dev)
1545 {
1546 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1547 
1548 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1549 
1550 	return 0;
1551 }
1552 
1553 static int sh_mmcif_resume(struct device *dev)
1554 {
1555 	return 0;
1556 }
1557 #endif
1558 
1559 static const struct of_device_id mmcif_of_match[] = {
1560 	{ .compatible = "renesas,sh-mmcif" },
1561 	{ }
1562 };
1563 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1564 
1565 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1566 	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1567 };
1568 
1569 static struct platform_driver sh_mmcif_driver = {
1570 	.probe		= sh_mmcif_probe,
1571 	.remove		= sh_mmcif_remove,
1572 	.driver		= {
1573 		.name	= DRIVER_NAME,
1574 		.pm	= &sh_mmcif_dev_pm_ops,
1575 		.owner	= THIS_MODULE,
1576 		.of_match_table = mmcif_of_match,
1577 	},
1578 };
1579 
1580 module_platform_driver(sh_mmcif_driver);
1581 
1582 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1583 MODULE_LICENSE("GPL");
1584 MODULE_ALIAS("platform:" DRIVER_NAME);
1585 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1586