xref: /openbmc/linux/drivers/mmc/host/sh_mmcif.c (revision 482c86cc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MMCIF eMMC driver.
4  *
5  * Copyright (C) 2010 Renesas Solutions Corp.
6  * Yusuke Goda <yusuke.goda.sx@renesas.com>
7  */
8 
9 /*
10  * The MMCIF driver is now processing MMC requests asynchronously, according
11  * to the Linux MMC API requirement.
12  *
13  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14  * data, and optional stop. To achieve asynchronous processing each of these
15  * stages is split into two halves: a top and a bottom half. The top half
16  * initialises the hardware, installs a timeout handler to handle completion
17  * timeouts, and returns. In case of the command stage this immediately returns
18  * control to the caller, leaving all further processing to run asynchronously.
19  * All further request processing is performed by the bottom halves.
20  *
21  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22  * thread, a DMA completion callback, if DMA is used, a timeout work, and
23  * request- and stage-specific handler methods.
24  *
25  * Each bottom half run begins with either a hardware interrupt, a DMA callback
26  * invocation, or a timeout work run. In case of an error or a successful
27  * processing completion, the MMC core is informed and the request processing is
28  * finished. In case processing has to continue, i.e., if data has to be read
29  * from or written to the card, or if a stop command has to be sent, the next
30  * top half is called, which performs the necessary hardware handling and
31  * reschedules the timeout work. This returns the driver state machine into the
32  * bottom half waiting state.
33  */
34 
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/sh_mmcif.h>
47 #include <linux/mmc/slot-gpio.h>
48 #include <linux/mod_devicetable.h>
49 #include <linux/mutex.h>
50 #include <linux/of_device.h>
51 #include <linux/pagemap.h>
52 #include <linux/platform_device.h>
53 #include <linux/pm_qos.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/sh_dma.h>
56 #include <linux/spinlock.h>
57 #include <linux/module.h>
58 
59 #define DRIVER_NAME	"sh_mmcif"
60 
61 /* CE_CMD_SET */
62 #define CMD_MASK		0x3f000000
63 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
64 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
65 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
66 #define CMD_SET_RBSY		(1 << 21) /* R1b */
67 #define CMD_SET_CCSEN		(1 << 20)
68 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
69 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
70 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
71 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
72 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
73 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
74 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
75 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
76 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
77 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
78 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
79 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
80 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
81 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
82 #define CMD_SET_CCSH		(1 << 5)
83 #define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
84 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
85 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
86 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
87 
88 /* CE_CMD_CTRL */
89 #define CMD_CTRL_BREAK		(1 << 0)
90 
91 /* CE_BLOCK_SET */
92 #define BLOCK_SIZE_MASK		0x0000ffff
93 
94 /* CE_INT */
95 #define INT_CCSDE		(1 << 29)
96 #define INT_CMD12DRE		(1 << 26)
97 #define INT_CMD12RBE		(1 << 25)
98 #define INT_CMD12CRE		(1 << 24)
99 #define INT_DTRANE		(1 << 23)
100 #define INT_BUFRE		(1 << 22)
101 #define INT_BUFWEN		(1 << 21)
102 #define INT_BUFREN		(1 << 20)
103 #define INT_CCSRCV		(1 << 19)
104 #define INT_RBSYE		(1 << 17)
105 #define INT_CRSPE		(1 << 16)
106 #define INT_CMDVIO		(1 << 15)
107 #define INT_BUFVIO		(1 << 14)
108 #define INT_WDATERR		(1 << 11)
109 #define INT_RDATERR		(1 << 10)
110 #define INT_RIDXERR		(1 << 9)
111 #define INT_RSPERR		(1 << 8)
112 #define INT_CCSTO		(1 << 5)
113 #define INT_CRCSTO		(1 << 4)
114 #define INT_WDATTO		(1 << 3)
115 #define INT_RDATTO		(1 << 2)
116 #define INT_RBSYTO		(1 << 1)
117 #define INT_RSPTO		(1 << 0)
118 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
119 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
120 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
121 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
122 
123 #define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
124 				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
125 				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
126 
127 #define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
128 
129 /* CE_INT_MASK */
130 #define MASK_ALL		0x00000000
131 #define MASK_MCCSDE		(1 << 29)
132 #define MASK_MCMD12DRE		(1 << 26)
133 #define MASK_MCMD12RBE		(1 << 25)
134 #define MASK_MCMD12CRE		(1 << 24)
135 #define MASK_MDTRANE		(1 << 23)
136 #define MASK_MBUFRE		(1 << 22)
137 #define MASK_MBUFWEN		(1 << 21)
138 #define MASK_MBUFREN		(1 << 20)
139 #define MASK_MCCSRCV		(1 << 19)
140 #define MASK_MRBSYE		(1 << 17)
141 #define MASK_MCRSPE		(1 << 16)
142 #define MASK_MCMDVIO		(1 << 15)
143 #define MASK_MBUFVIO		(1 << 14)
144 #define MASK_MWDATERR		(1 << 11)
145 #define MASK_MRDATERR		(1 << 10)
146 #define MASK_MRIDXERR		(1 << 9)
147 #define MASK_MRSPERR		(1 << 8)
148 #define MASK_MCCSTO		(1 << 5)
149 #define MASK_MCRCSTO		(1 << 4)
150 #define MASK_MWDATTO		(1 << 3)
151 #define MASK_MRDATTO		(1 << 2)
152 #define MASK_MRBSYTO		(1 << 1)
153 #define MASK_MRSPTO		(1 << 0)
154 
155 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
156 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
157 				 MASK_MCRCSTO | MASK_MWDATTO | \
158 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
159 
160 #define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
161 				 MASK_MBUFREN | MASK_MBUFWEN |			\
162 				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
163 				 MASK_MCMD12RBE | MASK_MCMD12CRE)
164 
165 /* CE_HOST_STS1 */
166 #define STS1_CMDSEQ		(1 << 31)
167 
168 /* CE_HOST_STS2 */
169 #define STS2_CRCSTE		(1 << 31)
170 #define STS2_CRC16E		(1 << 30)
171 #define STS2_AC12CRCE		(1 << 29)
172 #define STS2_RSPCRC7E		(1 << 28)
173 #define STS2_CRCSTEBE		(1 << 27)
174 #define STS2_RDATEBE		(1 << 26)
175 #define STS2_AC12REBE		(1 << 25)
176 #define STS2_RSPEBE		(1 << 24)
177 #define STS2_AC12IDXE		(1 << 23)
178 #define STS2_RSPIDXE		(1 << 22)
179 #define STS2_CCSTO		(1 << 15)
180 #define STS2_RDATTO		(1 << 14)
181 #define STS2_DATBSYTO		(1 << 13)
182 #define STS2_CRCSTTO		(1 << 12)
183 #define STS2_AC12BSYTO		(1 << 11)
184 #define STS2_RSPBSYTO		(1 << 10)
185 #define STS2_AC12RSPTO		(1 << 9)
186 #define STS2_RSPTO		(1 << 8)
187 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
188 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
189 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
190 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
191 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
192 				 STS2_AC12RSPTO | STS2_RSPTO)
193 
194 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
195 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
196 #define CLKDEV_INIT		400000   /* 400 KHz */
197 
198 enum sh_mmcif_state {
199 	STATE_IDLE,
200 	STATE_REQUEST,
201 	STATE_IOS,
202 	STATE_TIMEOUT,
203 };
204 
205 enum sh_mmcif_wait_for {
206 	MMCIF_WAIT_FOR_REQUEST,
207 	MMCIF_WAIT_FOR_CMD,
208 	MMCIF_WAIT_FOR_MREAD,
209 	MMCIF_WAIT_FOR_MWRITE,
210 	MMCIF_WAIT_FOR_READ,
211 	MMCIF_WAIT_FOR_WRITE,
212 	MMCIF_WAIT_FOR_READ_END,
213 	MMCIF_WAIT_FOR_WRITE_END,
214 	MMCIF_WAIT_FOR_STOP,
215 };
216 
217 /*
218  * difference for each SoC
219  */
220 struct sh_mmcif_host {
221 	struct mmc_host *mmc;
222 	struct mmc_request *mrq;
223 	struct platform_device *pd;
224 	struct clk *clk;
225 	int bus_width;
226 	unsigned char timing;
227 	bool sd_error;
228 	bool dying;
229 	long timeout;
230 	void __iomem *addr;
231 	u32 *pio_ptr;
232 	spinlock_t lock;		/* protect sh_mmcif_host::state */
233 	enum sh_mmcif_state state;
234 	enum sh_mmcif_wait_for wait_for;
235 	struct delayed_work timeout_work;
236 	size_t blocksize;
237 	int sg_idx;
238 	int sg_blkidx;
239 	bool power;
240 	bool ccs_enable;		/* Command Completion Signal support */
241 	bool clk_ctrl2_enable;
242 	struct mutex thread_lock;
243 	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
244 
245 	/* DMA support */
246 	struct dma_chan		*chan_rx;
247 	struct dma_chan		*chan_tx;
248 	struct completion	dma_complete;
249 	bool			dma_active;
250 };
251 
252 static const struct of_device_id sh_mmcif_of_match[] = {
253 	{ .compatible = "renesas,sh-mmcif" },
254 	{ }
255 };
256 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
257 
258 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
259 
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261 					unsigned int reg, u32 val)
262 {
263 	writel(val | readl(host->addr + reg), host->addr + reg);
264 }
265 
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267 					unsigned int reg, u32 val)
268 {
269 	writel(~val & readl(host->addr + reg), host->addr + reg);
270 }
271 
272 static void sh_mmcif_dma_complete(void *arg)
273 {
274 	struct sh_mmcif_host *host = arg;
275 	struct mmc_request *mrq = host->mrq;
276 	struct device *dev = sh_mmcif_host_to_dev(host);
277 
278 	dev_dbg(dev, "Command completed\n");
279 
280 	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
281 		 dev_name(dev)))
282 		return;
283 
284 	complete(&host->dma_complete);
285 }
286 
287 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
288 {
289 	struct mmc_data *data = host->mrq->data;
290 	struct scatterlist *sg = data->sg;
291 	struct dma_async_tx_descriptor *desc = NULL;
292 	struct dma_chan *chan = host->chan_rx;
293 	struct device *dev = sh_mmcif_host_to_dev(host);
294 	dma_cookie_t cookie = -EINVAL;
295 	int ret;
296 
297 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
298 			 DMA_FROM_DEVICE);
299 	if (ret > 0) {
300 		host->dma_active = true;
301 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
302 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
303 	}
304 
305 	if (desc) {
306 		desc->callback = sh_mmcif_dma_complete;
307 		desc->callback_param = host;
308 		cookie = dmaengine_submit(desc);
309 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
310 		dma_async_issue_pending(chan);
311 	}
312 	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
313 		__func__, data->sg_len, ret, cookie);
314 
315 	if (!desc) {
316 		/* DMA failed, fall back to PIO */
317 		if (ret >= 0)
318 			ret = -EIO;
319 		host->chan_rx = NULL;
320 		host->dma_active = false;
321 		dma_release_channel(chan);
322 		/* Free the Tx channel too */
323 		chan = host->chan_tx;
324 		if (chan) {
325 			host->chan_tx = NULL;
326 			dma_release_channel(chan);
327 		}
328 		dev_warn(dev,
329 			 "DMA failed: %d, falling back to PIO\n", ret);
330 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
331 	}
332 
333 	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
334 		desc, cookie, data->sg_len);
335 }
336 
337 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
338 {
339 	struct mmc_data *data = host->mrq->data;
340 	struct scatterlist *sg = data->sg;
341 	struct dma_async_tx_descriptor *desc = NULL;
342 	struct dma_chan *chan = host->chan_tx;
343 	struct device *dev = sh_mmcif_host_to_dev(host);
344 	dma_cookie_t cookie = -EINVAL;
345 	int ret;
346 
347 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
348 			 DMA_TO_DEVICE);
349 	if (ret > 0) {
350 		host->dma_active = true;
351 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
352 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
353 	}
354 
355 	if (desc) {
356 		desc->callback = sh_mmcif_dma_complete;
357 		desc->callback_param = host;
358 		cookie = dmaengine_submit(desc);
359 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
360 		dma_async_issue_pending(chan);
361 	}
362 	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
363 		__func__, data->sg_len, ret, cookie);
364 
365 	if (!desc) {
366 		/* DMA failed, fall back to PIO */
367 		if (ret >= 0)
368 			ret = -EIO;
369 		host->chan_tx = NULL;
370 		host->dma_active = false;
371 		dma_release_channel(chan);
372 		/* Free the Rx channel too */
373 		chan = host->chan_rx;
374 		if (chan) {
375 			host->chan_rx = NULL;
376 			dma_release_channel(chan);
377 		}
378 		dev_warn(dev,
379 			 "DMA failed: %d, falling back to PIO\n", ret);
380 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
381 	}
382 
383 	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
384 		desc, cookie);
385 }
386 
387 static struct dma_chan *
388 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
389 {
390 	dma_cap_mask_t mask;
391 
392 	dma_cap_zero(mask);
393 	dma_cap_set(DMA_SLAVE, mask);
394 	if (slave_id <= 0)
395 		return NULL;
396 
397 	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
398 }
399 
400 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
401 				     struct dma_chan *chan,
402 				     enum dma_transfer_direction direction)
403 {
404 	struct resource *res;
405 	struct dma_slave_config cfg = { 0, };
406 
407 	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
408 	cfg.direction = direction;
409 
410 	if (direction == DMA_DEV_TO_MEM) {
411 		cfg.src_addr = res->start + MMCIF_CE_DATA;
412 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
413 	} else {
414 		cfg.dst_addr = res->start + MMCIF_CE_DATA;
415 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416 	}
417 
418 	return dmaengine_slave_config(chan, &cfg);
419 }
420 
421 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
422 {
423 	struct device *dev = sh_mmcif_host_to_dev(host);
424 	host->dma_active = false;
425 
426 	/* We can only either use DMA for both Tx and Rx or not use it at all */
427 	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
428 		struct sh_mmcif_plat_data *pdata = dev->platform_data;
429 
430 		host->chan_tx = sh_mmcif_request_dma_pdata(host,
431 							pdata->slave_id_tx);
432 		host->chan_rx = sh_mmcif_request_dma_pdata(host,
433 							pdata->slave_id_rx);
434 	} else {
435 		host->chan_tx = dma_request_slave_channel(dev, "tx");
436 		host->chan_rx = dma_request_slave_channel(dev, "rx");
437 	}
438 	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
439 		host->chan_rx);
440 
441 	if (!host->chan_tx || !host->chan_rx ||
442 	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
443 	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
444 		goto error;
445 
446 	return;
447 
448 error:
449 	if (host->chan_tx)
450 		dma_release_channel(host->chan_tx);
451 	if (host->chan_rx)
452 		dma_release_channel(host->chan_rx);
453 	host->chan_tx = host->chan_rx = NULL;
454 }
455 
456 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
457 {
458 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
459 	/* Descriptors are freed automatically */
460 	if (host->chan_tx) {
461 		struct dma_chan *chan = host->chan_tx;
462 		host->chan_tx = NULL;
463 		dma_release_channel(chan);
464 	}
465 	if (host->chan_rx) {
466 		struct dma_chan *chan = host->chan_rx;
467 		host->chan_rx = NULL;
468 		dma_release_channel(chan);
469 	}
470 
471 	host->dma_active = false;
472 }
473 
474 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
475 {
476 	struct device *dev = sh_mmcif_host_to_dev(host);
477 	struct sh_mmcif_plat_data *p = dev->platform_data;
478 	bool sup_pclk = p ? p->sup_pclk : false;
479 	unsigned int current_clk = clk_get_rate(host->clk);
480 	unsigned int clkdiv;
481 
482 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
483 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
484 
485 	if (!clk)
486 		return;
487 
488 	if (host->clkdiv_map) {
489 		unsigned int freq, best_freq, myclk, div, diff_min, diff;
490 		int i;
491 
492 		clkdiv = 0;
493 		diff_min = ~0;
494 		best_freq = 0;
495 		for (i = 31; i >= 0; i--) {
496 			if (!((1 << i) & host->clkdiv_map))
497 				continue;
498 
499 			/*
500 			 * clk = parent_freq / div
501 			 * -> parent_freq = clk x div
502 			 */
503 
504 			div = 1 << (i + 1);
505 			freq = clk_round_rate(host->clk, clk * div);
506 			myclk = freq / div;
507 			diff = (myclk > clk) ? myclk - clk : clk - myclk;
508 
509 			if (diff <= diff_min) {
510 				best_freq = freq;
511 				clkdiv = i;
512 				diff_min = diff;
513 			}
514 		}
515 
516 		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
517 			(best_freq / (1 << (clkdiv + 1))), clk,
518 			best_freq, clkdiv);
519 
520 		clk_set_rate(host->clk, best_freq);
521 		clkdiv = clkdiv << 16;
522 	} else if (sup_pclk && clk == current_clk) {
523 		clkdiv = CLK_SUP_PCLK;
524 	} else {
525 		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
526 	}
527 
528 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
529 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
530 }
531 
532 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
533 {
534 	u32 tmp;
535 
536 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
537 
538 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
539 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
540 	if (host->ccs_enable)
541 		tmp |= SCCSTO_29;
542 	if (host->clk_ctrl2_enable)
543 		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
544 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
545 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
546 	/* byte swap on */
547 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
548 }
549 
550 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
551 {
552 	struct device *dev = sh_mmcif_host_to_dev(host);
553 	u32 state1, state2;
554 	int ret, timeout;
555 
556 	host->sd_error = false;
557 
558 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
559 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
560 	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
561 	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
562 
563 	if (state1 & STS1_CMDSEQ) {
564 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
565 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
566 		for (timeout = 10000; timeout; timeout--) {
567 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
568 			      & STS1_CMDSEQ))
569 				break;
570 			mdelay(1);
571 		}
572 		if (!timeout) {
573 			dev_err(dev,
574 				"Forced end of command sequence timeout err\n");
575 			return -EIO;
576 		}
577 		sh_mmcif_sync_reset(host);
578 		dev_dbg(dev, "Forced end of command sequence\n");
579 		return -EIO;
580 	}
581 
582 	if (state2 & STS2_CRC_ERR) {
583 		dev_err(dev, " CRC error: state %u, wait %u\n",
584 			host->state, host->wait_for);
585 		ret = -EIO;
586 	} else if (state2 & STS2_TIMEOUT_ERR) {
587 		dev_err(dev, " Timeout: state %u, wait %u\n",
588 			host->state, host->wait_for);
589 		ret = -ETIMEDOUT;
590 	} else {
591 		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
592 			host->state, host->wait_for);
593 		ret = -EIO;
594 	}
595 	return ret;
596 }
597 
598 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
599 {
600 	struct mmc_data *data = host->mrq->data;
601 
602 	host->sg_blkidx += host->blocksize;
603 
604 	/* data->sg->length must be a multiple of host->blocksize? */
605 	BUG_ON(host->sg_blkidx > data->sg->length);
606 
607 	if (host->sg_blkidx == data->sg->length) {
608 		host->sg_blkidx = 0;
609 		if (++host->sg_idx < data->sg_len)
610 			host->pio_ptr = sg_virt(++data->sg);
611 	} else {
612 		host->pio_ptr = p;
613 	}
614 
615 	return host->sg_idx != data->sg_len;
616 }
617 
618 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
619 				 struct mmc_request *mrq)
620 {
621 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
622 			   BLOCK_SIZE_MASK) + 3;
623 
624 	host->wait_for = MMCIF_WAIT_FOR_READ;
625 
626 	/* buf read enable */
627 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
628 }
629 
630 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
631 {
632 	struct device *dev = sh_mmcif_host_to_dev(host);
633 	struct mmc_data *data = host->mrq->data;
634 	u32 *p = sg_virt(data->sg);
635 	int i;
636 
637 	if (host->sd_error) {
638 		data->error = sh_mmcif_error_manage(host);
639 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
640 		return false;
641 	}
642 
643 	for (i = 0; i < host->blocksize / 4; i++)
644 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
645 
646 	/* buffer read end */
647 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
648 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
649 
650 	return true;
651 }
652 
653 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
654 				struct mmc_request *mrq)
655 {
656 	struct mmc_data *data = mrq->data;
657 
658 	if (!data->sg_len || !data->sg->length)
659 		return;
660 
661 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
662 		BLOCK_SIZE_MASK;
663 
664 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
665 	host->sg_idx = 0;
666 	host->sg_blkidx = 0;
667 	host->pio_ptr = sg_virt(data->sg);
668 
669 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
670 }
671 
672 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
673 {
674 	struct device *dev = sh_mmcif_host_to_dev(host);
675 	struct mmc_data *data = host->mrq->data;
676 	u32 *p = host->pio_ptr;
677 	int i;
678 
679 	if (host->sd_error) {
680 		data->error = sh_mmcif_error_manage(host);
681 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
682 		return false;
683 	}
684 
685 	BUG_ON(!data->sg->length);
686 
687 	for (i = 0; i < host->blocksize / 4; i++)
688 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
689 
690 	if (!sh_mmcif_next_block(host, p))
691 		return false;
692 
693 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
694 
695 	return true;
696 }
697 
698 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
699 					struct mmc_request *mrq)
700 {
701 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
702 			   BLOCK_SIZE_MASK) + 3;
703 
704 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
705 
706 	/* buf write enable */
707 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
708 }
709 
710 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
711 {
712 	struct device *dev = sh_mmcif_host_to_dev(host);
713 	struct mmc_data *data = host->mrq->data;
714 	u32 *p = sg_virt(data->sg);
715 	int i;
716 
717 	if (host->sd_error) {
718 		data->error = sh_mmcif_error_manage(host);
719 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
720 		return false;
721 	}
722 
723 	for (i = 0; i < host->blocksize / 4; i++)
724 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
725 
726 	/* buffer write end */
727 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
728 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
729 
730 	return true;
731 }
732 
733 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
734 				struct mmc_request *mrq)
735 {
736 	struct mmc_data *data = mrq->data;
737 
738 	if (!data->sg_len || !data->sg->length)
739 		return;
740 
741 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
742 		BLOCK_SIZE_MASK;
743 
744 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
745 	host->sg_idx = 0;
746 	host->sg_blkidx = 0;
747 	host->pio_ptr = sg_virt(data->sg);
748 
749 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
750 }
751 
752 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
753 {
754 	struct device *dev = sh_mmcif_host_to_dev(host);
755 	struct mmc_data *data = host->mrq->data;
756 	u32 *p = host->pio_ptr;
757 	int i;
758 
759 	if (host->sd_error) {
760 		data->error = sh_mmcif_error_manage(host);
761 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
762 		return false;
763 	}
764 
765 	BUG_ON(!data->sg->length);
766 
767 	for (i = 0; i < host->blocksize / 4; i++)
768 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
769 
770 	if (!sh_mmcif_next_block(host, p))
771 		return false;
772 
773 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
774 
775 	return true;
776 }
777 
778 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
779 						struct mmc_command *cmd)
780 {
781 	if (cmd->flags & MMC_RSP_136) {
782 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
783 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
784 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
785 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
786 	} else
787 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
788 }
789 
790 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
791 						struct mmc_command *cmd)
792 {
793 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
794 }
795 
796 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
797 			    struct mmc_request *mrq)
798 {
799 	struct device *dev = sh_mmcif_host_to_dev(host);
800 	struct mmc_data *data = mrq->data;
801 	struct mmc_command *cmd = mrq->cmd;
802 	u32 opc = cmd->opcode;
803 	u32 tmp = 0;
804 
805 	/* Response Type check */
806 	switch (mmc_resp_type(cmd)) {
807 	case MMC_RSP_NONE:
808 		tmp |= CMD_SET_RTYP_NO;
809 		break;
810 	case MMC_RSP_R1:
811 	case MMC_RSP_R3:
812 		tmp |= CMD_SET_RTYP_6B;
813 		break;
814 	case MMC_RSP_R1B:
815 		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
816 		break;
817 	case MMC_RSP_R2:
818 		tmp |= CMD_SET_RTYP_17B;
819 		break;
820 	default:
821 		dev_err(dev, "Unsupported response type.\n");
822 		break;
823 	}
824 
825 	/* WDAT / DATW */
826 	if (data) {
827 		tmp |= CMD_SET_WDAT;
828 		switch (host->bus_width) {
829 		case MMC_BUS_WIDTH_1:
830 			tmp |= CMD_SET_DATW_1;
831 			break;
832 		case MMC_BUS_WIDTH_4:
833 			tmp |= CMD_SET_DATW_4;
834 			break;
835 		case MMC_BUS_WIDTH_8:
836 			tmp |= CMD_SET_DATW_8;
837 			break;
838 		default:
839 			dev_err(dev, "Unsupported bus width.\n");
840 			break;
841 		}
842 		switch (host->timing) {
843 		case MMC_TIMING_MMC_DDR52:
844 			/*
845 			 * MMC core will only set this timing, if the host
846 			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
847 			 * capability. MMCIF implementations with this
848 			 * capability, e.g. sh73a0, will have to set it
849 			 * in their platform data.
850 			 */
851 			tmp |= CMD_SET_DARS;
852 			break;
853 		}
854 	}
855 	/* DWEN */
856 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
857 		tmp |= CMD_SET_DWEN;
858 	/* CMLTE/CMD12EN */
859 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
860 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
861 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
862 				data->blocks << 16);
863 	}
864 	/* RIDXC[1:0] check bits */
865 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
866 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
867 		tmp |= CMD_SET_RIDXC_BITS;
868 	/* RCRC7C[1:0] check bits */
869 	if (opc == MMC_SEND_OP_COND)
870 		tmp |= CMD_SET_CRC7C_BITS;
871 	/* RCRC7C[1:0] internal CRC7 */
872 	if (opc == MMC_ALL_SEND_CID ||
873 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
874 		tmp |= CMD_SET_CRC7C_INTERNAL;
875 
876 	return (opc << 24) | tmp;
877 }
878 
879 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
880 			       struct mmc_request *mrq, u32 opc)
881 {
882 	struct device *dev = sh_mmcif_host_to_dev(host);
883 
884 	switch (opc) {
885 	case MMC_READ_MULTIPLE_BLOCK:
886 		sh_mmcif_multi_read(host, mrq);
887 		return 0;
888 	case MMC_WRITE_MULTIPLE_BLOCK:
889 		sh_mmcif_multi_write(host, mrq);
890 		return 0;
891 	case MMC_WRITE_BLOCK:
892 		sh_mmcif_single_write(host, mrq);
893 		return 0;
894 	case MMC_READ_SINGLE_BLOCK:
895 	case MMC_SEND_EXT_CSD:
896 		sh_mmcif_single_read(host, mrq);
897 		return 0;
898 	default:
899 		dev_err(dev, "Unsupported CMD%d\n", opc);
900 		return -EINVAL;
901 	}
902 }
903 
904 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
905 			       struct mmc_request *mrq)
906 {
907 	struct mmc_command *cmd = mrq->cmd;
908 	u32 opc;
909 	u32 mask = 0;
910 	unsigned long flags;
911 
912 	if (cmd->flags & MMC_RSP_BUSY)
913 		mask = MASK_START_CMD | MASK_MRBSYE;
914 	else
915 		mask = MASK_START_CMD | MASK_MCRSPE;
916 
917 	if (host->ccs_enable)
918 		mask |= MASK_MCCSTO;
919 
920 	if (mrq->data) {
921 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
922 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
923 				mrq->data->blksz);
924 	}
925 	opc = sh_mmcif_set_cmd(host, mrq);
926 
927 	if (host->ccs_enable)
928 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
929 	else
930 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
931 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
932 	/* set arg */
933 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
934 	/* set cmd */
935 	spin_lock_irqsave(&host->lock, flags);
936 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
937 
938 	host->wait_for = MMCIF_WAIT_FOR_CMD;
939 	schedule_delayed_work(&host->timeout_work, host->timeout);
940 	spin_unlock_irqrestore(&host->lock, flags);
941 }
942 
943 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
944 			      struct mmc_request *mrq)
945 {
946 	struct device *dev = sh_mmcif_host_to_dev(host);
947 
948 	switch (mrq->cmd->opcode) {
949 	case MMC_READ_MULTIPLE_BLOCK:
950 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
951 		break;
952 	case MMC_WRITE_MULTIPLE_BLOCK:
953 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
954 		break;
955 	default:
956 		dev_err(dev, "unsupported stop cmd\n");
957 		mrq->stop->error = sh_mmcif_error_manage(host);
958 		return;
959 	}
960 
961 	host->wait_for = MMCIF_WAIT_FOR_STOP;
962 }
963 
964 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
965 {
966 	struct sh_mmcif_host *host = mmc_priv(mmc);
967 	struct device *dev = sh_mmcif_host_to_dev(host);
968 	unsigned long flags;
969 
970 	spin_lock_irqsave(&host->lock, flags);
971 	if (host->state != STATE_IDLE) {
972 		dev_dbg(dev, "%s() rejected, state %u\n",
973 			__func__, host->state);
974 		spin_unlock_irqrestore(&host->lock, flags);
975 		mrq->cmd->error = -EAGAIN;
976 		mmc_request_done(mmc, mrq);
977 		return;
978 	}
979 
980 	host->state = STATE_REQUEST;
981 	spin_unlock_irqrestore(&host->lock, flags);
982 
983 	host->mrq = mrq;
984 
985 	sh_mmcif_start_cmd(host, mrq);
986 }
987 
988 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
989 {
990 	struct device *dev = sh_mmcif_host_to_dev(host);
991 
992 	if (host->mmc->f_max) {
993 		unsigned int f_max, f_min = 0, f_min_old;
994 
995 		f_max = host->mmc->f_max;
996 		for (f_min_old = f_max; f_min_old > 2;) {
997 			f_min = clk_round_rate(host->clk, f_min_old / 2);
998 			if (f_min == f_min_old)
999 				break;
1000 			f_min_old = f_min;
1001 		}
1002 
1003 		/*
1004 		 * This driver assumes this SoC is R-Car Gen2 or later
1005 		 */
1006 		host->clkdiv_map = 0x3ff;
1007 
1008 		host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1009 		host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1010 	} else {
1011 		unsigned int clk = clk_get_rate(host->clk);
1012 
1013 		host->mmc->f_max = clk / 2;
1014 		host->mmc->f_min = clk / 512;
1015 	}
1016 
1017 	dev_dbg(dev, "clk max/min = %d/%d\n",
1018 		host->mmc->f_max, host->mmc->f_min);
1019 }
1020 
1021 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1022 {
1023 	struct sh_mmcif_host *host = mmc_priv(mmc);
1024 	struct device *dev = sh_mmcif_host_to_dev(host);
1025 	unsigned long flags;
1026 
1027 	spin_lock_irqsave(&host->lock, flags);
1028 	if (host->state != STATE_IDLE) {
1029 		dev_dbg(dev, "%s() rejected, state %u\n",
1030 			__func__, host->state);
1031 		spin_unlock_irqrestore(&host->lock, flags);
1032 		return;
1033 	}
1034 
1035 	host->state = STATE_IOS;
1036 	spin_unlock_irqrestore(&host->lock, flags);
1037 
1038 	switch (ios->power_mode) {
1039 	case MMC_POWER_UP:
1040 		if (!IS_ERR(mmc->supply.vmmc))
1041 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1042 		if (!host->power) {
1043 			clk_prepare_enable(host->clk);
1044 			pm_runtime_get_sync(dev);
1045 			sh_mmcif_sync_reset(host);
1046 			sh_mmcif_request_dma(host);
1047 			host->power = true;
1048 		}
1049 		break;
1050 	case MMC_POWER_OFF:
1051 		if (!IS_ERR(mmc->supply.vmmc))
1052 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1053 		if (host->power) {
1054 			sh_mmcif_clock_control(host, 0);
1055 			sh_mmcif_release_dma(host);
1056 			pm_runtime_put(dev);
1057 			clk_disable_unprepare(host->clk);
1058 			host->power = false;
1059 		}
1060 		break;
1061 	case MMC_POWER_ON:
1062 		sh_mmcif_clock_control(host, ios->clock);
1063 		break;
1064 	}
1065 
1066 	host->timing = ios->timing;
1067 	host->bus_width = ios->bus_width;
1068 	host->state = STATE_IDLE;
1069 }
1070 
1071 static const struct mmc_host_ops sh_mmcif_ops = {
1072 	.request	= sh_mmcif_request,
1073 	.set_ios	= sh_mmcif_set_ios,
1074 	.get_cd		= mmc_gpio_get_cd,
1075 };
1076 
1077 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1078 {
1079 	struct mmc_command *cmd = host->mrq->cmd;
1080 	struct mmc_data *data = host->mrq->data;
1081 	struct device *dev = sh_mmcif_host_to_dev(host);
1082 	long time;
1083 
1084 	if (host->sd_error) {
1085 		switch (cmd->opcode) {
1086 		case MMC_ALL_SEND_CID:
1087 		case MMC_SELECT_CARD:
1088 		case MMC_APP_CMD:
1089 			cmd->error = -ETIMEDOUT;
1090 			break;
1091 		default:
1092 			cmd->error = sh_mmcif_error_manage(host);
1093 			break;
1094 		}
1095 		dev_dbg(dev, "CMD%d error %d\n",
1096 			cmd->opcode, cmd->error);
1097 		host->sd_error = false;
1098 		return false;
1099 	}
1100 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1101 		cmd->error = 0;
1102 		return false;
1103 	}
1104 
1105 	sh_mmcif_get_response(host, cmd);
1106 
1107 	if (!data)
1108 		return false;
1109 
1110 	/*
1111 	 * Completion can be signalled from DMA callback and error, so, have to
1112 	 * reset here, before setting .dma_active
1113 	 */
1114 	init_completion(&host->dma_complete);
1115 
1116 	if (data->flags & MMC_DATA_READ) {
1117 		if (host->chan_rx)
1118 			sh_mmcif_start_dma_rx(host);
1119 	} else {
1120 		if (host->chan_tx)
1121 			sh_mmcif_start_dma_tx(host);
1122 	}
1123 
1124 	if (!host->dma_active) {
1125 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1126 		return !data->error;
1127 	}
1128 
1129 	/* Running in the IRQ thread, can sleep */
1130 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1131 							 host->timeout);
1132 
1133 	if (data->flags & MMC_DATA_READ)
1134 		dma_unmap_sg(host->chan_rx->device->dev,
1135 			     data->sg, data->sg_len,
1136 			     DMA_FROM_DEVICE);
1137 	else
1138 		dma_unmap_sg(host->chan_tx->device->dev,
1139 			     data->sg, data->sg_len,
1140 			     DMA_TO_DEVICE);
1141 
1142 	if (host->sd_error) {
1143 		dev_err(host->mmc->parent,
1144 			"Error IRQ while waiting for DMA completion!\n");
1145 		/* Woken up by an error IRQ: abort DMA */
1146 		data->error = sh_mmcif_error_manage(host);
1147 	} else if (!time) {
1148 		dev_err(host->mmc->parent, "DMA timeout!\n");
1149 		data->error = -ETIMEDOUT;
1150 	} else if (time < 0) {
1151 		dev_err(host->mmc->parent,
1152 			"wait_for_completion_...() error %ld!\n", time);
1153 		data->error = time;
1154 	}
1155 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1156 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1157 	host->dma_active = false;
1158 
1159 	if (data->error) {
1160 		data->bytes_xfered = 0;
1161 		/* Abort DMA */
1162 		if (data->flags & MMC_DATA_READ)
1163 			dmaengine_terminate_all(host->chan_rx);
1164 		else
1165 			dmaengine_terminate_all(host->chan_tx);
1166 	}
1167 
1168 	return false;
1169 }
1170 
1171 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1172 {
1173 	struct sh_mmcif_host *host = dev_id;
1174 	struct mmc_request *mrq;
1175 	struct device *dev = sh_mmcif_host_to_dev(host);
1176 	bool wait = false;
1177 	unsigned long flags;
1178 	int wait_work;
1179 
1180 	spin_lock_irqsave(&host->lock, flags);
1181 	wait_work = host->wait_for;
1182 	spin_unlock_irqrestore(&host->lock, flags);
1183 
1184 	cancel_delayed_work_sync(&host->timeout_work);
1185 
1186 	mutex_lock(&host->thread_lock);
1187 
1188 	mrq = host->mrq;
1189 	if (!mrq) {
1190 		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1191 			host->state, host->wait_for);
1192 		mutex_unlock(&host->thread_lock);
1193 		return IRQ_HANDLED;
1194 	}
1195 
1196 	/*
1197 	 * All handlers return true, if processing continues, and false, if the
1198 	 * request has to be completed - successfully or not
1199 	 */
1200 	switch (wait_work) {
1201 	case MMCIF_WAIT_FOR_REQUEST:
1202 		/* We're too late, the timeout has already kicked in */
1203 		mutex_unlock(&host->thread_lock);
1204 		return IRQ_HANDLED;
1205 	case MMCIF_WAIT_FOR_CMD:
1206 		/* Wait for data? */
1207 		wait = sh_mmcif_end_cmd(host);
1208 		break;
1209 	case MMCIF_WAIT_FOR_MREAD:
1210 		/* Wait for more data? */
1211 		wait = sh_mmcif_mread_block(host);
1212 		break;
1213 	case MMCIF_WAIT_FOR_READ:
1214 		/* Wait for data end? */
1215 		wait = sh_mmcif_read_block(host);
1216 		break;
1217 	case MMCIF_WAIT_FOR_MWRITE:
1218 		/* Wait data to write? */
1219 		wait = sh_mmcif_mwrite_block(host);
1220 		break;
1221 	case MMCIF_WAIT_FOR_WRITE:
1222 		/* Wait for data end? */
1223 		wait = sh_mmcif_write_block(host);
1224 		break;
1225 	case MMCIF_WAIT_FOR_STOP:
1226 		if (host->sd_error) {
1227 			mrq->stop->error = sh_mmcif_error_manage(host);
1228 			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1229 			break;
1230 		}
1231 		sh_mmcif_get_cmd12response(host, mrq->stop);
1232 		mrq->stop->error = 0;
1233 		break;
1234 	case MMCIF_WAIT_FOR_READ_END:
1235 	case MMCIF_WAIT_FOR_WRITE_END:
1236 		if (host->sd_error) {
1237 			mrq->data->error = sh_mmcif_error_manage(host);
1238 			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1239 		}
1240 		break;
1241 	default:
1242 		BUG();
1243 	}
1244 
1245 	if (wait) {
1246 		schedule_delayed_work(&host->timeout_work, host->timeout);
1247 		/* Wait for more data */
1248 		mutex_unlock(&host->thread_lock);
1249 		return IRQ_HANDLED;
1250 	}
1251 
1252 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1253 		struct mmc_data *data = mrq->data;
1254 		if (!mrq->cmd->error && data && !data->error)
1255 			data->bytes_xfered =
1256 				data->blocks * data->blksz;
1257 
1258 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1259 			sh_mmcif_stop_cmd(host, mrq);
1260 			if (!mrq->stop->error) {
1261 				schedule_delayed_work(&host->timeout_work, host->timeout);
1262 				mutex_unlock(&host->thread_lock);
1263 				return IRQ_HANDLED;
1264 			}
1265 		}
1266 	}
1267 
1268 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1269 	host->state = STATE_IDLE;
1270 	host->mrq = NULL;
1271 	mmc_request_done(host->mmc, mrq);
1272 
1273 	mutex_unlock(&host->thread_lock);
1274 
1275 	return IRQ_HANDLED;
1276 }
1277 
1278 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1279 {
1280 	struct sh_mmcif_host *host = dev_id;
1281 	struct device *dev = sh_mmcif_host_to_dev(host);
1282 	u32 state, mask;
1283 
1284 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1285 	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1286 	if (host->ccs_enable)
1287 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1288 	else
1289 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1290 	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1291 
1292 	if (state & ~MASK_CLEAN)
1293 		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1294 			state);
1295 
1296 	if (state & INT_ERR_STS || state & ~INT_ALL) {
1297 		host->sd_error = true;
1298 		dev_dbg(dev, "int err state = 0x%08x\n", state);
1299 	}
1300 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1301 		if (!host->mrq)
1302 			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1303 		if (!host->dma_active)
1304 			return IRQ_WAKE_THREAD;
1305 		else if (host->sd_error)
1306 			sh_mmcif_dma_complete(host);
1307 	} else {
1308 		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1309 	}
1310 
1311 	return IRQ_HANDLED;
1312 }
1313 
1314 static void sh_mmcif_timeout_work(struct work_struct *work)
1315 {
1316 	struct delayed_work *d = to_delayed_work(work);
1317 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1318 	struct mmc_request *mrq = host->mrq;
1319 	struct device *dev = sh_mmcif_host_to_dev(host);
1320 	unsigned long flags;
1321 
1322 	if (host->dying)
1323 		/* Don't run after mmc_remove_host() */
1324 		return;
1325 
1326 	spin_lock_irqsave(&host->lock, flags);
1327 	if (host->state == STATE_IDLE) {
1328 		spin_unlock_irqrestore(&host->lock, flags);
1329 		return;
1330 	}
1331 
1332 	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1333 		host->wait_for, mrq->cmd->opcode);
1334 
1335 	host->state = STATE_TIMEOUT;
1336 	spin_unlock_irqrestore(&host->lock, flags);
1337 
1338 	/*
1339 	 * Handle races with cancel_delayed_work(), unless
1340 	 * cancel_delayed_work_sync() is used
1341 	 */
1342 	switch (host->wait_for) {
1343 	case MMCIF_WAIT_FOR_CMD:
1344 		mrq->cmd->error = sh_mmcif_error_manage(host);
1345 		break;
1346 	case MMCIF_WAIT_FOR_STOP:
1347 		mrq->stop->error = sh_mmcif_error_manage(host);
1348 		break;
1349 	case MMCIF_WAIT_FOR_MREAD:
1350 	case MMCIF_WAIT_FOR_MWRITE:
1351 	case MMCIF_WAIT_FOR_READ:
1352 	case MMCIF_WAIT_FOR_WRITE:
1353 	case MMCIF_WAIT_FOR_READ_END:
1354 	case MMCIF_WAIT_FOR_WRITE_END:
1355 		mrq->data->error = sh_mmcif_error_manage(host);
1356 		break;
1357 	default:
1358 		BUG();
1359 	}
1360 
1361 	host->state = STATE_IDLE;
1362 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1363 	host->mrq = NULL;
1364 	mmc_request_done(host->mmc, mrq);
1365 }
1366 
1367 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1368 {
1369 	struct device *dev = sh_mmcif_host_to_dev(host);
1370 	struct sh_mmcif_plat_data *pd = dev->platform_data;
1371 	struct mmc_host *mmc = host->mmc;
1372 
1373 	mmc_regulator_get_supply(mmc);
1374 
1375 	if (!pd)
1376 		return;
1377 
1378 	if (!mmc->ocr_avail)
1379 		mmc->ocr_avail = pd->ocr;
1380 	else if (pd->ocr)
1381 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1382 }
1383 
1384 static int sh_mmcif_probe(struct platform_device *pdev)
1385 {
1386 	int ret = 0, irq[2];
1387 	struct mmc_host *mmc;
1388 	struct sh_mmcif_host *host;
1389 	struct device *dev = &pdev->dev;
1390 	struct sh_mmcif_plat_data *pd = dev->platform_data;
1391 	struct resource *res;
1392 	void __iomem *reg;
1393 	const char *name;
1394 
1395 	irq[0] = platform_get_irq(pdev, 0);
1396 	irq[1] = platform_get_irq_optional(pdev, 1);
1397 	if (irq[0] < 0)
1398 		return -ENXIO;
1399 
1400 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1401 	reg = devm_ioremap_resource(dev, res);
1402 	if (IS_ERR(reg))
1403 		return PTR_ERR(reg);
1404 
1405 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1406 	if (!mmc)
1407 		return -ENOMEM;
1408 
1409 	ret = mmc_of_parse(mmc);
1410 	if (ret < 0)
1411 		goto err_host;
1412 
1413 	host		= mmc_priv(mmc);
1414 	host->mmc	= mmc;
1415 	host->addr	= reg;
1416 	host->timeout	= msecs_to_jiffies(10000);
1417 	host->ccs_enable = true;
1418 	host->clk_ctrl2_enable = false;
1419 
1420 	host->pd = pdev;
1421 
1422 	spin_lock_init(&host->lock);
1423 
1424 	mmc->ops = &sh_mmcif_ops;
1425 	sh_mmcif_init_ocr(host);
1426 
1427 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1428 	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1429 	mmc->max_busy_timeout = 10000;
1430 
1431 	if (pd && pd->caps)
1432 		mmc->caps |= pd->caps;
1433 	mmc->max_segs = 32;
1434 	mmc->max_blk_size = 512;
1435 	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1436 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1437 	mmc->max_seg_size = mmc->max_req_size;
1438 
1439 	platform_set_drvdata(pdev, host);
1440 
1441 	host->clk = devm_clk_get(dev, NULL);
1442 	if (IS_ERR(host->clk)) {
1443 		ret = PTR_ERR(host->clk);
1444 		dev_err(dev, "cannot get clock: %d\n", ret);
1445 		goto err_host;
1446 	}
1447 
1448 	ret = clk_prepare_enable(host->clk);
1449 	if (ret < 0)
1450 		goto err_host;
1451 
1452 	sh_mmcif_clk_setup(host);
1453 
1454 	pm_runtime_enable(dev);
1455 	host->power = false;
1456 
1457 	ret = pm_runtime_get_sync(dev);
1458 	if (ret < 0)
1459 		goto err_clk;
1460 
1461 	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1462 
1463 	sh_mmcif_sync_reset(host);
1464 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1465 
1466 	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1467 	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1468 					sh_mmcif_irqt, 0, name, host);
1469 	if (ret) {
1470 		dev_err(dev, "request_irq error (%s)\n", name);
1471 		goto err_clk;
1472 	}
1473 	if (irq[1] >= 0) {
1474 		ret = devm_request_threaded_irq(dev, irq[1],
1475 						sh_mmcif_intr, sh_mmcif_irqt,
1476 						0, "sh_mmc:int", host);
1477 		if (ret) {
1478 			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1479 			goto err_clk;
1480 		}
1481 	}
1482 
1483 	mutex_init(&host->thread_lock);
1484 
1485 	ret = mmc_add_host(mmc);
1486 	if (ret < 0)
1487 		goto err_clk;
1488 
1489 	dev_pm_qos_expose_latency_limit(dev, 100);
1490 
1491 	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1492 		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1493 		 clk_get_rate(host->clk) / 1000000UL);
1494 
1495 	pm_runtime_put(dev);
1496 	clk_disable_unprepare(host->clk);
1497 	return ret;
1498 
1499 err_clk:
1500 	clk_disable_unprepare(host->clk);
1501 	pm_runtime_put_sync(dev);
1502 	pm_runtime_disable(dev);
1503 err_host:
1504 	mmc_free_host(mmc);
1505 	return ret;
1506 }
1507 
1508 static int sh_mmcif_remove(struct platform_device *pdev)
1509 {
1510 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1511 
1512 	host->dying = true;
1513 	clk_prepare_enable(host->clk);
1514 	pm_runtime_get_sync(&pdev->dev);
1515 
1516 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1517 
1518 	mmc_remove_host(host->mmc);
1519 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1520 
1521 	/*
1522 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1523 	 * mmc_remove_host() call above. But swapping order doesn't help either
1524 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1525 	 */
1526 	cancel_delayed_work_sync(&host->timeout_work);
1527 
1528 	clk_disable_unprepare(host->clk);
1529 	mmc_free_host(host->mmc);
1530 	pm_runtime_put_sync(&pdev->dev);
1531 	pm_runtime_disable(&pdev->dev);
1532 
1533 	return 0;
1534 }
1535 
1536 #ifdef CONFIG_PM_SLEEP
1537 static int sh_mmcif_suspend(struct device *dev)
1538 {
1539 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1540 
1541 	pm_runtime_get_sync(dev);
1542 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1543 	pm_runtime_put(dev);
1544 
1545 	return 0;
1546 }
1547 
1548 static int sh_mmcif_resume(struct device *dev)
1549 {
1550 	return 0;
1551 }
1552 #endif
1553 
1554 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1555 	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1556 };
1557 
1558 static struct platform_driver sh_mmcif_driver = {
1559 	.probe		= sh_mmcif_probe,
1560 	.remove		= sh_mmcif_remove,
1561 	.driver		= {
1562 		.name	= DRIVER_NAME,
1563 		.pm	= &sh_mmcif_dev_pm_ops,
1564 		.of_match_table = sh_mmcif_of_match,
1565 	},
1566 };
1567 
1568 module_platform_driver(sh_mmcif_driver);
1569 
1570 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1571 MODULE_LICENSE("GPL v2");
1572 MODULE_ALIAS("platform:" DRIVER_NAME);
1573 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1574