xref: /openbmc/linux/drivers/mmc/host/sh_mmcif.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MMCIF eMMC driver.
4  *
5  * Copyright (C) 2010 Renesas Solutions Corp.
6  * Yusuke Goda <yusuke.goda.sx@renesas.com>
7  */
8 
9 /*
10  * The MMCIF driver is now processing MMC requests asynchronously, according
11  * to the Linux MMC API requirement.
12  *
13  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14  * data, and optional stop. To achieve asynchronous processing each of these
15  * stages is split into two halves: a top and a bottom half. The top half
16  * initialises the hardware, installs a timeout handler to handle completion
17  * timeouts, and returns. In case of the command stage this immediately returns
18  * control to the caller, leaving all further processing to run asynchronously.
19  * All further request processing is performed by the bottom halves.
20  *
21  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22  * thread, a DMA completion callback, if DMA is used, a timeout work, and
23  * request- and stage-specific handler methods.
24  *
25  * Each bottom half run begins with either a hardware interrupt, a DMA callback
26  * invocation, or a timeout work run. In case of an error or a successful
27  * processing completion, the MMC core is informed and the request processing is
28  * finished. In case processing has to continue, i.e., if data has to be read
29  * from or written to the card, or if a stop command has to be sent, the next
30  * top half is called, which performs the necessary hardware handling and
31  * reschedules the timeout work. This returns the driver state machine into the
32  * bottom half waiting state.
33  */
34 
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/slot-gpio.h>
47 #include <linux/mod_devicetable.h>
48 #include <linux/mutex.h>
49 #include <linux/pagemap.h>
50 #include <linux/platform_data/sh_mmcif.h>
51 #include <linux/platform_device.h>
52 #include <linux/pm_qos.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/sh_dma.h>
55 #include <linux/spinlock.h>
56 #include <linux/module.h>
57 
58 #define DRIVER_NAME	"sh_mmcif"
59 
60 /* CE_CMD_SET */
61 #define CMD_MASK		0x3f000000
62 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
63 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
64 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
65 #define CMD_SET_RBSY		(1 << 21) /* R1b */
66 #define CMD_SET_CCSEN		(1 << 20)
67 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
68 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
69 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
70 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
71 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
72 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
73 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
74 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
75 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
76 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
77 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
78 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
79 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
80 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
81 #define CMD_SET_CCSH		(1 << 5)
82 #define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
83 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
84 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
85 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
86 
87 /* CE_CMD_CTRL */
88 #define CMD_CTRL_BREAK		(1 << 0)
89 
90 /* CE_BLOCK_SET */
91 #define BLOCK_SIZE_MASK		0x0000ffff
92 
93 /* CE_INT */
94 #define INT_CCSDE		(1 << 29)
95 #define INT_CMD12DRE		(1 << 26)
96 #define INT_CMD12RBE		(1 << 25)
97 #define INT_CMD12CRE		(1 << 24)
98 #define INT_DTRANE		(1 << 23)
99 #define INT_BUFRE		(1 << 22)
100 #define INT_BUFWEN		(1 << 21)
101 #define INT_BUFREN		(1 << 20)
102 #define INT_CCSRCV		(1 << 19)
103 #define INT_RBSYE		(1 << 17)
104 #define INT_CRSPE		(1 << 16)
105 #define INT_CMDVIO		(1 << 15)
106 #define INT_BUFVIO		(1 << 14)
107 #define INT_WDATERR		(1 << 11)
108 #define INT_RDATERR		(1 << 10)
109 #define INT_RIDXERR		(1 << 9)
110 #define INT_RSPERR		(1 << 8)
111 #define INT_CCSTO		(1 << 5)
112 #define INT_CRCSTO		(1 << 4)
113 #define INT_WDATTO		(1 << 3)
114 #define INT_RDATTO		(1 << 2)
115 #define INT_RBSYTO		(1 << 1)
116 #define INT_RSPTO		(1 << 0)
117 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
118 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
119 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
120 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
121 
122 #define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
123 				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
124 				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
125 
126 #define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
127 
128 /* CE_INT_MASK */
129 #define MASK_ALL		0x00000000
130 #define MASK_MCCSDE		(1 << 29)
131 #define MASK_MCMD12DRE		(1 << 26)
132 #define MASK_MCMD12RBE		(1 << 25)
133 #define MASK_MCMD12CRE		(1 << 24)
134 #define MASK_MDTRANE		(1 << 23)
135 #define MASK_MBUFRE		(1 << 22)
136 #define MASK_MBUFWEN		(1 << 21)
137 #define MASK_MBUFREN		(1 << 20)
138 #define MASK_MCCSRCV		(1 << 19)
139 #define MASK_MRBSYE		(1 << 17)
140 #define MASK_MCRSPE		(1 << 16)
141 #define MASK_MCMDVIO		(1 << 15)
142 #define MASK_MBUFVIO		(1 << 14)
143 #define MASK_MWDATERR		(1 << 11)
144 #define MASK_MRDATERR		(1 << 10)
145 #define MASK_MRIDXERR		(1 << 9)
146 #define MASK_MRSPERR		(1 << 8)
147 #define MASK_MCCSTO		(1 << 5)
148 #define MASK_MCRCSTO		(1 << 4)
149 #define MASK_MWDATTO		(1 << 3)
150 #define MASK_MRDATTO		(1 << 2)
151 #define MASK_MRBSYTO		(1 << 1)
152 #define MASK_MRSPTO		(1 << 0)
153 
154 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156 				 MASK_MCRCSTO | MASK_MWDATTO | \
157 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
158 
159 #define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
160 				 MASK_MBUFREN | MASK_MBUFWEN |			\
161 				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
162 				 MASK_MCMD12RBE | MASK_MCMD12CRE)
163 
164 /* CE_HOST_STS1 */
165 #define STS1_CMDSEQ		(1 << 31)
166 
167 /* CE_HOST_STS2 */
168 #define STS2_CRCSTE		(1 << 31)
169 #define STS2_CRC16E		(1 << 30)
170 #define STS2_AC12CRCE		(1 << 29)
171 #define STS2_RSPCRC7E		(1 << 28)
172 #define STS2_CRCSTEBE		(1 << 27)
173 #define STS2_RDATEBE		(1 << 26)
174 #define STS2_AC12REBE		(1 << 25)
175 #define STS2_RSPEBE		(1 << 24)
176 #define STS2_AC12IDXE		(1 << 23)
177 #define STS2_RSPIDXE		(1 << 22)
178 #define STS2_CCSTO		(1 << 15)
179 #define STS2_RDATTO		(1 << 14)
180 #define STS2_DATBSYTO		(1 << 13)
181 #define STS2_CRCSTTO		(1 << 12)
182 #define STS2_AC12BSYTO		(1 << 11)
183 #define STS2_RSPBSYTO		(1 << 10)
184 #define STS2_AC12RSPTO		(1 << 9)
185 #define STS2_RSPTO		(1 << 8)
186 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
187 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
188 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
189 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
190 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
191 				 STS2_AC12RSPTO | STS2_RSPTO)
192 
193 #define CLKDEV_EMMC_DATA	52000000 /* 52 MHz */
194 #define CLKDEV_MMC_DATA		20000000 /* 20 MHz */
195 #define CLKDEV_INIT		400000   /* 400 kHz */
196 
197 enum sh_mmcif_state {
198 	STATE_IDLE,
199 	STATE_REQUEST,
200 	STATE_IOS,
201 	STATE_TIMEOUT,
202 };
203 
204 enum sh_mmcif_wait_for {
205 	MMCIF_WAIT_FOR_REQUEST,
206 	MMCIF_WAIT_FOR_CMD,
207 	MMCIF_WAIT_FOR_MREAD,
208 	MMCIF_WAIT_FOR_MWRITE,
209 	MMCIF_WAIT_FOR_READ,
210 	MMCIF_WAIT_FOR_WRITE,
211 	MMCIF_WAIT_FOR_READ_END,
212 	MMCIF_WAIT_FOR_WRITE_END,
213 	MMCIF_WAIT_FOR_STOP,
214 };
215 
216 /*
217  * difference for each SoC
218  */
219 struct sh_mmcif_host {
220 	struct mmc_host *mmc;
221 	struct mmc_request *mrq;
222 	struct platform_device *pd;
223 	struct clk *clk;
224 	int bus_width;
225 	unsigned char timing;
226 	bool sd_error;
227 	bool dying;
228 	long timeout;
229 	void __iomem *addr;
230 	u32 *pio_ptr;
231 	spinlock_t lock;		/* protect sh_mmcif_host::state */
232 	enum sh_mmcif_state state;
233 	enum sh_mmcif_wait_for wait_for;
234 	struct delayed_work timeout_work;
235 	size_t blocksize;
236 	int sg_idx;
237 	int sg_blkidx;
238 	bool power;
239 	bool ccs_enable;		/* Command Completion Signal support */
240 	bool clk_ctrl2_enable;
241 	struct mutex thread_lock;
242 	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
243 
244 	/* DMA support */
245 	struct dma_chan		*chan_rx;
246 	struct dma_chan		*chan_tx;
247 	struct completion	dma_complete;
248 	bool			dma_active;
249 };
250 
251 static const struct of_device_id sh_mmcif_of_match[] = {
252 	{ .compatible = "renesas,sh-mmcif" },
253 	{ }
254 };
255 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
256 
257 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
258 
259 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
260 					unsigned int reg, u32 val)
261 {
262 	writel(val | readl(host->addr + reg), host->addr + reg);
263 }
264 
265 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
266 					unsigned int reg, u32 val)
267 {
268 	writel(~val & readl(host->addr + reg), host->addr + reg);
269 }
270 
271 static void sh_mmcif_dma_complete(void *arg)
272 {
273 	struct sh_mmcif_host *host = arg;
274 	struct mmc_request *mrq = host->mrq;
275 	struct device *dev = sh_mmcif_host_to_dev(host);
276 
277 	dev_dbg(dev, "Command completed\n");
278 
279 	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280 		 dev_name(dev)))
281 		return;
282 
283 	complete(&host->dma_complete);
284 }
285 
286 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
287 {
288 	struct mmc_data *data = host->mrq->data;
289 	struct scatterlist *sg = data->sg;
290 	struct dma_async_tx_descriptor *desc = NULL;
291 	struct dma_chan *chan = host->chan_rx;
292 	struct device *dev = sh_mmcif_host_to_dev(host);
293 	dma_cookie_t cookie = -EINVAL;
294 	int ret;
295 
296 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
297 			 DMA_FROM_DEVICE);
298 	if (ret > 0) {
299 		host->dma_active = true;
300 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
301 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
302 	}
303 
304 	if (desc) {
305 		desc->callback = sh_mmcif_dma_complete;
306 		desc->callback_param = host;
307 		cookie = dmaengine_submit(desc);
308 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
309 		dma_async_issue_pending(chan);
310 	}
311 	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
312 		__func__, data->sg_len, ret, cookie);
313 
314 	if (!desc) {
315 		/* DMA failed, fall back to PIO */
316 		if (ret >= 0)
317 			ret = -EIO;
318 		host->chan_rx = NULL;
319 		host->dma_active = false;
320 		dma_release_channel(chan);
321 		/* Free the Tx channel too */
322 		chan = host->chan_tx;
323 		if (chan) {
324 			host->chan_tx = NULL;
325 			dma_release_channel(chan);
326 		}
327 		dev_warn(dev,
328 			 "DMA failed: %d, falling back to PIO\n", ret);
329 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
330 	}
331 
332 	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
333 		desc, cookie, data->sg_len);
334 }
335 
336 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
337 {
338 	struct mmc_data *data = host->mrq->data;
339 	struct scatterlist *sg = data->sg;
340 	struct dma_async_tx_descriptor *desc = NULL;
341 	struct dma_chan *chan = host->chan_tx;
342 	struct device *dev = sh_mmcif_host_to_dev(host);
343 	dma_cookie_t cookie = -EINVAL;
344 	int ret;
345 
346 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
347 			 DMA_TO_DEVICE);
348 	if (ret > 0) {
349 		host->dma_active = true;
350 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
351 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
352 	}
353 
354 	if (desc) {
355 		desc->callback = sh_mmcif_dma_complete;
356 		desc->callback_param = host;
357 		cookie = dmaengine_submit(desc);
358 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
359 		dma_async_issue_pending(chan);
360 	}
361 	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
362 		__func__, data->sg_len, ret, cookie);
363 
364 	if (!desc) {
365 		/* DMA failed, fall back to PIO */
366 		if (ret >= 0)
367 			ret = -EIO;
368 		host->chan_tx = NULL;
369 		host->dma_active = false;
370 		dma_release_channel(chan);
371 		/* Free the Rx channel too */
372 		chan = host->chan_rx;
373 		if (chan) {
374 			host->chan_rx = NULL;
375 			dma_release_channel(chan);
376 		}
377 		dev_warn(dev,
378 			 "DMA failed: %d, falling back to PIO\n", ret);
379 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
380 	}
381 
382 	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
383 		desc, cookie);
384 }
385 
386 static struct dma_chan *
387 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
388 {
389 	dma_cap_mask_t mask;
390 
391 	dma_cap_zero(mask);
392 	dma_cap_set(DMA_SLAVE, mask);
393 	if (slave_id <= 0)
394 		return NULL;
395 
396 	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
397 }
398 
399 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
400 				     struct dma_chan *chan,
401 				     enum dma_transfer_direction direction)
402 {
403 	struct resource *res;
404 	struct dma_slave_config cfg = { 0, };
405 
406 	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
407 	if (!res)
408 		return -EINVAL;
409 
410 	cfg.direction = direction;
411 
412 	if (direction == DMA_DEV_TO_MEM) {
413 		cfg.src_addr = res->start + MMCIF_CE_DATA;
414 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
415 	} else {
416 		cfg.dst_addr = res->start + MMCIF_CE_DATA;
417 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
418 	}
419 
420 	return dmaengine_slave_config(chan, &cfg);
421 }
422 
423 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
424 {
425 	struct device *dev = sh_mmcif_host_to_dev(host);
426 	host->dma_active = false;
427 
428 	/* We can only either use DMA for both Tx and Rx or not use it at all */
429 	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
430 		struct sh_mmcif_plat_data *pdata = dev->platform_data;
431 
432 		host->chan_tx = sh_mmcif_request_dma_pdata(host,
433 							pdata->slave_id_tx);
434 		host->chan_rx = sh_mmcif_request_dma_pdata(host,
435 							pdata->slave_id_rx);
436 	} else {
437 		host->chan_tx = dma_request_chan(dev, "tx");
438 		if (IS_ERR(host->chan_tx))
439 			host->chan_tx = NULL;
440 		host->chan_rx = dma_request_chan(dev, "rx");
441 		if (IS_ERR(host->chan_rx))
442 			host->chan_rx = NULL;
443 	}
444 	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
445 		host->chan_rx);
446 
447 	if (!host->chan_tx || !host->chan_rx ||
448 	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
449 	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
450 		goto error;
451 
452 	return;
453 
454 error:
455 	if (host->chan_tx)
456 		dma_release_channel(host->chan_tx);
457 	if (host->chan_rx)
458 		dma_release_channel(host->chan_rx);
459 	host->chan_tx = host->chan_rx = NULL;
460 }
461 
462 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
463 {
464 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
465 	/* Descriptors are freed automatically */
466 	if (host->chan_tx) {
467 		struct dma_chan *chan = host->chan_tx;
468 		host->chan_tx = NULL;
469 		dma_release_channel(chan);
470 	}
471 	if (host->chan_rx) {
472 		struct dma_chan *chan = host->chan_rx;
473 		host->chan_rx = NULL;
474 		dma_release_channel(chan);
475 	}
476 
477 	host->dma_active = false;
478 }
479 
480 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
481 {
482 	struct device *dev = sh_mmcif_host_to_dev(host);
483 	struct sh_mmcif_plat_data *p = dev->platform_data;
484 	bool sup_pclk = p ? p->sup_pclk : false;
485 	unsigned int current_clk = clk_get_rate(host->clk);
486 	unsigned int clkdiv;
487 
488 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
489 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
490 
491 	if (!clk)
492 		return;
493 
494 	if (host->clkdiv_map) {
495 		unsigned int freq, best_freq, myclk, div, diff_min, diff;
496 		int i;
497 
498 		clkdiv = 0;
499 		diff_min = ~0;
500 		best_freq = 0;
501 		for (i = 31; i >= 0; i--) {
502 			if (!((1 << i) & host->clkdiv_map))
503 				continue;
504 
505 			/*
506 			 * clk = parent_freq / div
507 			 * -> parent_freq = clk x div
508 			 */
509 
510 			div = 1 << (i + 1);
511 			freq = clk_round_rate(host->clk, clk * div);
512 			myclk = freq / div;
513 			diff = (myclk > clk) ? myclk - clk : clk - myclk;
514 
515 			if (diff <= diff_min) {
516 				best_freq = freq;
517 				clkdiv = i;
518 				diff_min = diff;
519 			}
520 		}
521 
522 		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
523 			(best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
524 
525 		clk_set_rate(host->clk, best_freq);
526 		clkdiv = clkdiv << 16;
527 	} else if (sup_pclk && clk == current_clk) {
528 		clkdiv = CLK_SUP_PCLK;
529 	} else {
530 		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
531 	}
532 
533 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
534 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
535 }
536 
537 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
538 {
539 	u32 tmp;
540 
541 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
542 
543 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
544 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
545 	if (host->ccs_enable)
546 		tmp |= SCCSTO_29;
547 	if (host->clk_ctrl2_enable)
548 		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
549 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
550 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
551 	/* byte swap on */
552 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
553 }
554 
555 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
556 {
557 	struct device *dev = sh_mmcif_host_to_dev(host);
558 	u32 state1, state2;
559 	int ret, timeout;
560 
561 	host->sd_error = false;
562 
563 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
564 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
565 	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
566 	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
567 
568 	if (state1 & STS1_CMDSEQ) {
569 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
570 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
571 		for (timeout = 10000; timeout; timeout--) {
572 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
573 			      & STS1_CMDSEQ))
574 				break;
575 			mdelay(1);
576 		}
577 		if (!timeout) {
578 			dev_err(dev,
579 				"Forced end of command sequence timeout err\n");
580 			return -EIO;
581 		}
582 		sh_mmcif_sync_reset(host);
583 		dev_dbg(dev, "Forced end of command sequence\n");
584 		return -EIO;
585 	}
586 
587 	if (state2 & STS2_CRC_ERR) {
588 		dev_err(dev, " CRC error: state %u, wait %u\n",
589 			host->state, host->wait_for);
590 		ret = -EIO;
591 	} else if (state2 & STS2_TIMEOUT_ERR) {
592 		dev_err(dev, " Timeout: state %u, wait %u\n",
593 			host->state, host->wait_for);
594 		ret = -ETIMEDOUT;
595 	} else {
596 		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
597 			host->state, host->wait_for);
598 		ret = -EIO;
599 	}
600 	return ret;
601 }
602 
603 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
604 {
605 	struct mmc_data *data = host->mrq->data;
606 
607 	host->sg_blkidx += host->blocksize;
608 
609 	/* data->sg->length must be a multiple of host->blocksize? */
610 	BUG_ON(host->sg_blkidx > data->sg->length);
611 
612 	if (host->sg_blkidx == data->sg->length) {
613 		host->sg_blkidx = 0;
614 		if (++host->sg_idx < data->sg_len)
615 			host->pio_ptr = sg_virt(++data->sg);
616 	} else {
617 		host->pio_ptr = p;
618 	}
619 
620 	return host->sg_idx != data->sg_len;
621 }
622 
623 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
624 				 struct mmc_request *mrq)
625 {
626 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
627 			   BLOCK_SIZE_MASK) + 3;
628 
629 	host->wait_for = MMCIF_WAIT_FOR_READ;
630 
631 	/* buf read enable */
632 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
633 }
634 
635 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
636 {
637 	struct device *dev = sh_mmcif_host_to_dev(host);
638 	struct mmc_data *data = host->mrq->data;
639 	u32 *p = sg_virt(data->sg);
640 	int i;
641 
642 	if (host->sd_error) {
643 		data->error = sh_mmcif_error_manage(host);
644 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
645 		return false;
646 	}
647 
648 	for (i = 0; i < host->blocksize / 4; i++)
649 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
650 
651 	/* buffer read end */
652 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
653 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
654 
655 	return true;
656 }
657 
658 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
659 				struct mmc_request *mrq)
660 {
661 	struct mmc_data *data = mrq->data;
662 
663 	if (!data->sg_len || !data->sg->length)
664 		return;
665 
666 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
667 		BLOCK_SIZE_MASK;
668 
669 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
670 	host->sg_idx = 0;
671 	host->sg_blkidx = 0;
672 	host->pio_ptr = sg_virt(data->sg);
673 
674 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
675 }
676 
677 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
678 {
679 	struct device *dev = sh_mmcif_host_to_dev(host);
680 	struct mmc_data *data = host->mrq->data;
681 	u32 *p = host->pio_ptr;
682 	int i;
683 
684 	if (host->sd_error) {
685 		data->error = sh_mmcif_error_manage(host);
686 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
687 		return false;
688 	}
689 
690 	BUG_ON(!data->sg->length);
691 
692 	for (i = 0; i < host->blocksize / 4; i++)
693 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
694 
695 	if (!sh_mmcif_next_block(host, p))
696 		return false;
697 
698 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
699 
700 	return true;
701 }
702 
703 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
704 					struct mmc_request *mrq)
705 {
706 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
707 			   BLOCK_SIZE_MASK) + 3;
708 
709 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
710 
711 	/* buf write enable */
712 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
713 }
714 
715 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
716 {
717 	struct device *dev = sh_mmcif_host_to_dev(host);
718 	struct mmc_data *data = host->mrq->data;
719 	u32 *p = sg_virt(data->sg);
720 	int i;
721 
722 	if (host->sd_error) {
723 		data->error = sh_mmcif_error_manage(host);
724 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
725 		return false;
726 	}
727 
728 	for (i = 0; i < host->blocksize / 4; i++)
729 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
730 
731 	/* buffer write end */
732 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
733 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
734 
735 	return true;
736 }
737 
738 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
739 				struct mmc_request *mrq)
740 {
741 	struct mmc_data *data = mrq->data;
742 
743 	if (!data->sg_len || !data->sg->length)
744 		return;
745 
746 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
747 		BLOCK_SIZE_MASK;
748 
749 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
750 	host->sg_idx = 0;
751 	host->sg_blkidx = 0;
752 	host->pio_ptr = sg_virt(data->sg);
753 
754 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
755 }
756 
757 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
758 {
759 	struct device *dev = sh_mmcif_host_to_dev(host);
760 	struct mmc_data *data = host->mrq->data;
761 	u32 *p = host->pio_ptr;
762 	int i;
763 
764 	if (host->sd_error) {
765 		data->error = sh_mmcif_error_manage(host);
766 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
767 		return false;
768 	}
769 
770 	BUG_ON(!data->sg->length);
771 
772 	for (i = 0; i < host->blocksize / 4; i++)
773 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
774 
775 	if (!sh_mmcif_next_block(host, p))
776 		return false;
777 
778 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
779 
780 	return true;
781 }
782 
783 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
784 						struct mmc_command *cmd)
785 {
786 	if (cmd->flags & MMC_RSP_136) {
787 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
788 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
789 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
790 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
791 	} else
792 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
793 }
794 
795 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
796 						struct mmc_command *cmd)
797 {
798 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
799 }
800 
801 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
802 			    struct mmc_request *mrq)
803 {
804 	struct device *dev = sh_mmcif_host_to_dev(host);
805 	struct mmc_data *data = mrq->data;
806 	struct mmc_command *cmd = mrq->cmd;
807 	u32 opc = cmd->opcode;
808 	u32 tmp = 0;
809 
810 	/* Response Type check */
811 	switch (mmc_resp_type(cmd)) {
812 	case MMC_RSP_NONE:
813 		tmp |= CMD_SET_RTYP_NO;
814 		break;
815 	case MMC_RSP_R1:
816 	case MMC_RSP_R3:
817 		tmp |= CMD_SET_RTYP_6B;
818 		break;
819 	case MMC_RSP_R1B:
820 		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
821 		break;
822 	case MMC_RSP_R2:
823 		tmp |= CMD_SET_RTYP_17B;
824 		break;
825 	default:
826 		dev_err(dev, "Unsupported response type.\n");
827 		break;
828 	}
829 
830 	/* WDAT / DATW */
831 	if (data) {
832 		tmp |= CMD_SET_WDAT;
833 		switch (host->bus_width) {
834 		case MMC_BUS_WIDTH_1:
835 			tmp |= CMD_SET_DATW_1;
836 			break;
837 		case MMC_BUS_WIDTH_4:
838 			tmp |= CMD_SET_DATW_4;
839 			break;
840 		case MMC_BUS_WIDTH_8:
841 			tmp |= CMD_SET_DATW_8;
842 			break;
843 		default:
844 			dev_err(dev, "Unsupported bus width.\n");
845 			break;
846 		}
847 		switch (host->timing) {
848 		case MMC_TIMING_MMC_DDR52:
849 			/*
850 			 * MMC core will only set this timing, if the host
851 			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
852 			 * capability. MMCIF implementations with this
853 			 * capability, e.g. sh73a0, will have to set it
854 			 * in their platform data.
855 			 */
856 			tmp |= CMD_SET_DARS;
857 			break;
858 		}
859 	}
860 	/* DWEN */
861 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
862 		tmp |= CMD_SET_DWEN;
863 	/* CMLTE/CMD12EN */
864 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
865 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
866 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
867 				data->blocks << 16);
868 	}
869 	/* RIDXC[1:0] check bits */
870 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
871 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
872 		tmp |= CMD_SET_RIDXC_BITS;
873 	/* RCRC7C[1:0] check bits */
874 	if (opc == MMC_SEND_OP_COND)
875 		tmp |= CMD_SET_CRC7C_BITS;
876 	/* RCRC7C[1:0] internal CRC7 */
877 	if (opc == MMC_ALL_SEND_CID ||
878 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
879 		tmp |= CMD_SET_CRC7C_INTERNAL;
880 
881 	return (opc << 24) | tmp;
882 }
883 
884 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
885 			       struct mmc_request *mrq, u32 opc)
886 {
887 	struct device *dev = sh_mmcif_host_to_dev(host);
888 
889 	switch (opc) {
890 	case MMC_READ_MULTIPLE_BLOCK:
891 		sh_mmcif_multi_read(host, mrq);
892 		return 0;
893 	case MMC_WRITE_MULTIPLE_BLOCK:
894 		sh_mmcif_multi_write(host, mrq);
895 		return 0;
896 	case MMC_WRITE_BLOCK:
897 		sh_mmcif_single_write(host, mrq);
898 		return 0;
899 	case MMC_READ_SINGLE_BLOCK:
900 	case MMC_SEND_EXT_CSD:
901 		sh_mmcif_single_read(host, mrq);
902 		return 0;
903 	default:
904 		dev_err(dev, "Unsupported CMD%d\n", opc);
905 		return -EINVAL;
906 	}
907 }
908 
909 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
910 			       struct mmc_request *mrq)
911 {
912 	struct mmc_command *cmd = mrq->cmd;
913 	u32 opc;
914 	u32 mask = 0;
915 	unsigned long flags;
916 
917 	if (cmd->flags & MMC_RSP_BUSY)
918 		mask = MASK_START_CMD | MASK_MRBSYE;
919 	else
920 		mask = MASK_START_CMD | MASK_MCRSPE;
921 
922 	if (host->ccs_enable)
923 		mask |= MASK_MCCSTO;
924 
925 	if (mrq->data) {
926 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
927 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
928 				mrq->data->blksz);
929 	}
930 	opc = sh_mmcif_set_cmd(host, mrq);
931 
932 	if (host->ccs_enable)
933 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
934 	else
935 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
936 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
937 	/* set arg */
938 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
939 	/* set cmd */
940 	spin_lock_irqsave(&host->lock, flags);
941 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
942 
943 	host->wait_for = MMCIF_WAIT_FOR_CMD;
944 	schedule_delayed_work(&host->timeout_work, host->timeout);
945 	spin_unlock_irqrestore(&host->lock, flags);
946 }
947 
948 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
949 			      struct mmc_request *mrq)
950 {
951 	struct device *dev = sh_mmcif_host_to_dev(host);
952 
953 	switch (mrq->cmd->opcode) {
954 	case MMC_READ_MULTIPLE_BLOCK:
955 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
956 		break;
957 	case MMC_WRITE_MULTIPLE_BLOCK:
958 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
959 		break;
960 	default:
961 		dev_err(dev, "unsupported stop cmd\n");
962 		mrq->stop->error = sh_mmcif_error_manage(host);
963 		return;
964 	}
965 
966 	host->wait_for = MMCIF_WAIT_FOR_STOP;
967 }
968 
969 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
970 {
971 	struct sh_mmcif_host *host = mmc_priv(mmc);
972 	struct device *dev = sh_mmcif_host_to_dev(host);
973 	unsigned long flags;
974 
975 	spin_lock_irqsave(&host->lock, flags);
976 	if (host->state != STATE_IDLE) {
977 		dev_dbg(dev, "%s() rejected, state %u\n",
978 			__func__, host->state);
979 		spin_unlock_irqrestore(&host->lock, flags);
980 		mrq->cmd->error = -EAGAIN;
981 		mmc_request_done(mmc, mrq);
982 		return;
983 	}
984 
985 	host->state = STATE_REQUEST;
986 	spin_unlock_irqrestore(&host->lock, flags);
987 
988 	host->mrq = mrq;
989 
990 	sh_mmcif_start_cmd(host, mrq);
991 }
992 
993 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
994 {
995 	struct device *dev = sh_mmcif_host_to_dev(host);
996 
997 	if (host->mmc->f_max) {
998 		unsigned int f_max, f_min = 0, f_min_old;
999 
1000 		f_max = host->mmc->f_max;
1001 		for (f_min_old = f_max; f_min_old > 2;) {
1002 			f_min = clk_round_rate(host->clk, f_min_old / 2);
1003 			if (f_min == f_min_old)
1004 				break;
1005 			f_min_old = f_min;
1006 		}
1007 
1008 		/*
1009 		 * This driver assumes this SoC is R-Car Gen2 or later
1010 		 */
1011 		host->clkdiv_map = 0x3ff;
1012 
1013 		host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
1014 		host->mmc->f_min = f_min >> fls(host->clkdiv_map);
1015 	} else {
1016 		unsigned int clk = clk_get_rate(host->clk);
1017 
1018 		host->mmc->f_max = clk / 2;
1019 		host->mmc->f_min = clk / 512;
1020 	}
1021 
1022 	dev_dbg(dev, "clk max/min = %d/%d\n",
1023 		host->mmc->f_max, host->mmc->f_min);
1024 }
1025 
1026 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1027 {
1028 	struct sh_mmcif_host *host = mmc_priv(mmc);
1029 	struct device *dev = sh_mmcif_host_to_dev(host);
1030 	unsigned long flags;
1031 
1032 	spin_lock_irqsave(&host->lock, flags);
1033 	if (host->state != STATE_IDLE) {
1034 		dev_dbg(dev, "%s() rejected, state %u\n",
1035 			__func__, host->state);
1036 		spin_unlock_irqrestore(&host->lock, flags);
1037 		return;
1038 	}
1039 
1040 	host->state = STATE_IOS;
1041 	spin_unlock_irqrestore(&host->lock, flags);
1042 
1043 	switch (ios->power_mode) {
1044 	case MMC_POWER_UP:
1045 		if (!IS_ERR(mmc->supply.vmmc))
1046 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1047 		if (!host->power) {
1048 			clk_prepare_enable(host->clk);
1049 			pm_runtime_get_sync(dev);
1050 			sh_mmcif_sync_reset(host);
1051 			sh_mmcif_request_dma(host);
1052 			host->power = true;
1053 		}
1054 		break;
1055 	case MMC_POWER_OFF:
1056 		if (!IS_ERR(mmc->supply.vmmc))
1057 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1058 		if (host->power) {
1059 			sh_mmcif_clock_control(host, 0);
1060 			sh_mmcif_release_dma(host);
1061 			pm_runtime_put(dev);
1062 			clk_disable_unprepare(host->clk);
1063 			host->power = false;
1064 		}
1065 		break;
1066 	case MMC_POWER_ON:
1067 		sh_mmcif_clock_control(host, ios->clock);
1068 		break;
1069 	}
1070 
1071 	host->timing = ios->timing;
1072 	host->bus_width = ios->bus_width;
1073 	host->state = STATE_IDLE;
1074 }
1075 
1076 static const struct mmc_host_ops sh_mmcif_ops = {
1077 	.request	= sh_mmcif_request,
1078 	.set_ios	= sh_mmcif_set_ios,
1079 	.get_cd		= mmc_gpio_get_cd,
1080 };
1081 
1082 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1083 {
1084 	struct mmc_command *cmd = host->mrq->cmd;
1085 	struct mmc_data *data = host->mrq->data;
1086 	struct device *dev = sh_mmcif_host_to_dev(host);
1087 	long time;
1088 
1089 	if (host->sd_error) {
1090 		switch (cmd->opcode) {
1091 		case MMC_ALL_SEND_CID:
1092 		case MMC_SELECT_CARD:
1093 		case MMC_APP_CMD:
1094 			cmd->error = -ETIMEDOUT;
1095 			break;
1096 		default:
1097 			cmd->error = sh_mmcif_error_manage(host);
1098 			break;
1099 		}
1100 		dev_dbg(dev, "CMD%d error %d\n",
1101 			cmd->opcode, cmd->error);
1102 		host->sd_error = false;
1103 		return false;
1104 	}
1105 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1106 		cmd->error = 0;
1107 		return false;
1108 	}
1109 
1110 	sh_mmcif_get_response(host, cmd);
1111 
1112 	if (!data)
1113 		return false;
1114 
1115 	/*
1116 	 * Completion can be signalled from DMA callback and error, so, have to
1117 	 * reset here, before setting .dma_active
1118 	 */
1119 	init_completion(&host->dma_complete);
1120 
1121 	if (data->flags & MMC_DATA_READ) {
1122 		if (host->chan_rx)
1123 			sh_mmcif_start_dma_rx(host);
1124 	} else {
1125 		if (host->chan_tx)
1126 			sh_mmcif_start_dma_tx(host);
1127 	}
1128 
1129 	if (!host->dma_active) {
1130 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1131 		return !data->error;
1132 	}
1133 
1134 	/* Running in the IRQ thread, can sleep */
1135 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1136 							 host->timeout);
1137 
1138 	if (data->flags & MMC_DATA_READ)
1139 		dma_unmap_sg(host->chan_rx->device->dev,
1140 			     data->sg, data->sg_len,
1141 			     DMA_FROM_DEVICE);
1142 	else
1143 		dma_unmap_sg(host->chan_tx->device->dev,
1144 			     data->sg, data->sg_len,
1145 			     DMA_TO_DEVICE);
1146 
1147 	if (host->sd_error) {
1148 		dev_err(host->mmc->parent,
1149 			"Error IRQ while waiting for DMA completion!\n");
1150 		/* Woken up by an error IRQ: abort DMA */
1151 		data->error = sh_mmcif_error_manage(host);
1152 	} else if (!time) {
1153 		dev_err(host->mmc->parent, "DMA timeout!\n");
1154 		data->error = -ETIMEDOUT;
1155 	} else if (time < 0) {
1156 		dev_err(host->mmc->parent,
1157 			"wait_for_completion_...() error %ld!\n", time);
1158 		data->error = time;
1159 	}
1160 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1161 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1162 	host->dma_active = false;
1163 
1164 	if (data->error) {
1165 		data->bytes_xfered = 0;
1166 		/* Abort DMA */
1167 		if (data->flags & MMC_DATA_READ)
1168 			dmaengine_terminate_sync(host->chan_rx);
1169 		else
1170 			dmaengine_terminate_sync(host->chan_tx);
1171 	}
1172 
1173 	return false;
1174 }
1175 
1176 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1177 {
1178 	struct sh_mmcif_host *host = dev_id;
1179 	struct mmc_request *mrq;
1180 	struct device *dev = sh_mmcif_host_to_dev(host);
1181 	bool wait = false;
1182 	unsigned long flags;
1183 	int wait_work;
1184 
1185 	spin_lock_irqsave(&host->lock, flags);
1186 	wait_work = host->wait_for;
1187 	spin_unlock_irqrestore(&host->lock, flags);
1188 
1189 	cancel_delayed_work_sync(&host->timeout_work);
1190 
1191 	mutex_lock(&host->thread_lock);
1192 
1193 	mrq = host->mrq;
1194 	if (!mrq) {
1195 		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1196 			host->state, host->wait_for);
1197 		mutex_unlock(&host->thread_lock);
1198 		return IRQ_HANDLED;
1199 	}
1200 
1201 	/*
1202 	 * All handlers return true, if processing continues, and false, if the
1203 	 * request has to be completed - successfully or not
1204 	 */
1205 	switch (wait_work) {
1206 	case MMCIF_WAIT_FOR_REQUEST:
1207 		/* We're too late, the timeout has already kicked in */
1208 		mutex_unlock(&host->thread_lock);
1209 		return IRQ_HANDLED;
1210 	case MMCIF_WAIT_FOR_CMD:
1211 		/* Wait for data? */
1212 		wait = sh_mmcif_end_cmd(host);
1213 		break;
1214 	case MMCIF_WAIT_FOR_MREAD:
1215 		/* Wait for more data? */
1216 		wait = sh_mmcif_mread_block(host);
1217 		break;
1218 	case MMCIF_WAIT_FOR_READ:
1219 		/* Wait for data end? */
1220 		wait = sh_mmcif_read_block(host);
1221 		break;
1222 	case MMCIF_WAIT_FOR_MWRITE:
1223 		/* Wait data to write? */
1224 		wait = sh_mmcif_mwrite_block(host);
1225 		break;
1226 	case MMCIF_WAIT_FOR_WRITE:
1227 		/* Wait for data end? */
1228 		wait = sh_mmcif_write_block(host);
1229 		break;
1230 	case MMCIF_WAIT_FOR_STOP:
1231 		if (host->sd_error) {
1232 			mrq->stop->error = sh_mmcif_error_manage(host);
1233 			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1234 			break;
1235 		}
1236 		sh_mmcif_get_cmd12response(host, mrq->stop);
1237 		mrq->stop->error = 0;
1238 		break;
1239 	case MMCIF_WAIT_FOR_READ_END:
1240 	case MMCIF_WAIT_FOR_WRITE_END:
1241 		if (host->sd_error) {
1242 			mrq->data->error = sh_mmcif_error_manage(host);
1243 			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1244 		}
1245 		break;
1246 	default:
1247 		BUG();
1248 	}
1249 
1250 	if (wait) {
1251 		schedule_delayed_work(&host->timeout_work, host->timeout);
1252 		/* Wait for more data */
1253 		mutex_unlock(&host->thread_lock);
1254 		return IRQ_HANDLED;
1255 	}
1256 
1257 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1258 		struct mmc_data *data = mrq->data;
1259 		if (!mrq->cmd->error && data && !data->error)
1260 			data->bytes_xfered =
1261 				data->blocks * data->blksz;
1262 
1263 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1264 			sh_mmcif_stop_cmd(host, mrq);
1265 			if (!mrq->stop->error) {
1266 				schedule_delayed_work(&host->timeout_work, host->timeout);
1267 				mutex_unlock(&host->thread_lock);
1268 				return IRQ_HANDLED;
1269 			}
1270 		}
1271 	}
1272 
1273 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1274 	host->state = STATE_IDLE;
1275 	host->mrq = NULL;
1276 	mmc_request_done(host->mmc, mrq);
1277 
1278 	mutex_unlock(&host->thread_lock);
1279 
1280 	return IRQ_HANDLED;
1281 }
1282 
1283 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1284 {
1285 	struct sh_mmcif_host *host = dev_id;
1286 	struct device *dev = sh_mmcif_host_to_dev(host);
1287 	u32 state, mask;
1288 
1289 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1290 	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1291 	if (host->ccs_enable)
1292 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1293 	else
1294 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1295 	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1296 
1297 	if (state & ~MASK_CLEAN)
1298 		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1299 			state);
1300 
1301 	if (state & INT_ERR_STS || state & ~INT_ALL) {
1302 		host->sd_error = true;
1303 		dev_dbg(dev, "int err state = 0x%08x\n", state);
1304 	}
1305 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1306 		if (!host->mrq)
1307 			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1308 		if (!host->dma_active)
1309 			return IRQ_WAKE_THREAD;
1310 		else if (host->sd_error)
1311 			sh_mmcif_dma_complete(host);
1312 	} else {
1313 		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1314 	}
1315 
1316 	return IRQ_HANDLED;
1317 }
1318 
1319 static void sh_mmcif_timeout_work(struct work_struct *work)
1320 {
1321 	struct delayed_work *d = to_delayed_work(work);
1322 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1323 	struct mmc_request *mrq = host->mrq;
1324 	struct device *dev = sh_mmcif_host_to_dev(host);
1325 	unsigned long flags;
1326 
1327 	if (host->dying)
1328 		/* Don't run after mmc_remove_host() */
1329 		return;
1330 
1331 	spin_lock_irqsave(&host->lock, flags);
1332 	if (host->state == STATE_IDLE) {
1333 		spin_unlock_irqrestore(&host->lock, flags);
1334 		return;
1335 	}
1336 
1337 	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1338 		host->wait_for, mrq->cmd->opcode);
1339 
1340 	host->state = STATE_TIMEOUT;
1341 	spin_unlock_irqrestore(&host->lock, flags);
1342 
1343 	/*
1344 	 * Handle races with cancel_delayed_work(), unless
1345 	 * cancel_delayed_work_sync() is used
1346 	 */
1347 	switch (host->wait_for) {
1348 	case MMCIF_WAIT_FOR_CMD:
1349 		mrq->cmd->error = sh_mmcif_error_manage(host);
1350 		break;
1351 	case MMCIF_WAIT_FOR_STOP:
1352 		mrq->stop->error = sh_mmcif_error_manage(host);
1353 		break;
1354 	case MMCIF_WAIT_FOR_MREAD:
1355 	case MMCIF_WAIT_FOR_MWRITE:
1356 	case MMCIF_WAIT_FOR_READ:
1357 	case MMCIF_WAIT_FOR_WRITE:
1358 	case MMCIF_WAIT_FOR_READ_END:
1359 	case MMCIF_WAIT_FOR_WRITE_END:
1360 		mrq->data->error = sh_mmcif_error_manage(host);
1361 		break;
1362 	default:
1363 		BUG();
1364 	}
1365 
1366 	host->state = STATE_IDLE;
1367 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1368 	host->mrq = NULL;
1369 	mmc_request_done(host->mmc, mrq);
1370 }
1371 
1372 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1373 {
1374 	struct device *dev = sh_mmcif_host_to_dev(host);
1375 	struct sh_mmcif_plat_data *pd = dev->platform_data;
1376 	struct mmc_host *mmc = host->mmc;
1377 
1378 	mmc_regulator_get_supply(mmc);
1379 
1380 	if (!pd)
1381 		return;
1382 
1383 	if (!mmc->ocr_avail)
1384 		mmc->ocr_avail = pd->ocr;
1385 	else if (pd->ocr)
1386 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1387 }
1388 
1389 static int sh_mmcif_probe(struct platform_device *pdev)
1390 {
1391 	int ret = 0, irq[2];
1392 	struct mmc_host *mmc;
1393 	struct sh_mmcif_host *host;
1394 	struct device *dev = &pdev->dev;
1395 	struct sh_mmcif_plat_data *pd = dev->platform_data;
1396 	void __iomem *reg;
1397 	const char *name;
1398 
1399 	irq[0] = platform_get_irq(pdev, 0);
1400 	irq[1] = platform_get_irq_optional(pdev, 1);
1401 	if (irq[0] < 0)
1402 		return irq[0];
1403 
1404 	reg = devm_platform_ioremap_resource(pdev, 0);
1405 	if (IS_ERR(reg))
1406 		return PTR_ERR(reg);
1407 
1408 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1409 	if (!mmc)
1410 		return -ENOMEM;
1411 
1412 	ret = mmc_of_parse(mmc);
1413 	if (ret < 0)
1414 		goto err_host;
1415 
1416 	host		= mmc_priv(mmc);
1417 	host->mmc	= mmc;
1418 	host->addr	= reg;
1419 	host->timeout	= msecs_to_jiffies(10000);
1420 	host->ccs_enable = true;
1421 	host->clk_ctrl2_enable = false;
1422 
1423 	host->pd = pdev;
1424 
1425 	spin_lock_init(&host->lock);
1426 
1427 	mmc->ops = &sh_mmcif_ops;
1428 	sh_mmcif_init_ocr(host);
1429 
1430 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1431 	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1432 	mmc->max_busy_timeout = 10000;
1433 
1434 	if (pd && pd->caps)
1435 		mmc->caps |= pd->caps;
1436 	mmc->max_segs = 32;
1437 	mmc->max_blk_size = 512;
1438 	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1439 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1440 	mmc->max_seg_size = mmc->max_req_size;
1441 
1442 	platform_set_drvdata(pdev, host);
1443 
1444 	host->clk = devm_clk_get(dev, NULL);
1445 	if (IS_ERR(host->clk)) {
1446 		ret = PTR_ERR(host->clk);
1447 		dev_err(dev, "cannot get clock: %d\n", ret);
1448 		goto err_host;
1449 	}
1450 
1451 	ret = clk_prepare_enable(host->clk);
1452 	if (ret < 0)
1453 		goto err_host;
1454 
1455 	sh_mmcif_clk_setup(host);
1456 
1457 	pm_runtime_enable(dev);
1458 	host->power = false;
1459 
1460 	ret = pm_runtime_get_sync(dev);
1461 	if (ret < 0)
1462 		goto err_clk;
1463 
1464 	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1465 
1466 	sh_mmcif_sync_reset(host);
1467 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1468 
1469 	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1470 	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1471 					sh_mmcif_irqt, 0, name, host);
1472 	if (ret) {
1473 		dev_err(dev, "request_irq error (%s)\n", name);
1474 		goto err_clk;
1475 	}
1476 	if (irq[1] >= 0) {
1477 		ret = devm_request_threaded_irq(dev, irq[1],
1478 						sh_mmcif_intr, sh_mmcif_irqt,
1479 						0, "sh_mmc:int", host);
1480 		if (ret) {
1481 			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1482 			goto err_clk;
1483 		}
1484 	}
1485 
1486 	mutex_init(&host->thread_lock);
1487 
1488 	ret = mmc_add_host(mmc);
1489 	if (ret < 0)
1490 		goto err_clk;
1491 
1492 	dev_pm_qos_expose_latency_limit(dev, 100);
1493 
1494 	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1495 		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1496 		 clk_get_rate(host->clk) / 1000000UL);
1497 
1498 	pm_runtime_put(dev);
1499 	clk_disable_unprepare(host->clk);
1500 	return ret;
1501 
1502 err_clk:
1503 	clk_disable_unprepare(host->clk);
1504 	pm_runtime_put_sync(dev);
1505 	pm_runtime_disable(dev);
1506 err_host:
1507 	mmc_free_host(mmc);
1508 	return ret;
1509 }
1510 
1511 static void sh_mmcif_remove(struct platform_device *pdev)
1512 {
1513 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1514 
1515 	host->dying = true;
1516 	clk_prepare_enable(host->clk);
1517 	pm_runtime_get_sync(&pdev->dev);
1518 
1519 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1520 
1521 	mmc_remove_host(host->mmc);
1522 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1523 
1524 	/*
1525 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1526 	 * mmc_remove_host() call above. But swapping order doesn't help either
1527 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1528 	 */
1529 	cancel_delayed_work_sync(&host->timeout_work);
1530 
1531 	clk_disable_unprepare(host->clk);
1532 	mmc_free_host(host->mmc);
1533 	pm_runtime_put_sync(&pdev->dev);
1534 	pm_runtime_disable(&pdev->dev);
1535 }
1536 
1537 #ifdef CONFIG_PM_SLEEP
1538 static int sh_mmcif_suspend(struct device *dev)
1539 {
1540 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1541 
1542 	pm_runtime_get_sync(dev);
1543 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1544 	pm_runtime_put(dev);
1545 
1546 	return 0;
1547 }
1548 
1549 static int sh_mmcif_resume(struct device *dev)
1550 {
1551 	return 0;
1552 }
1553 #endif
1554 
1555 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1556 	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1557 };
1558 
1559 static struct platform_driver sh_mmcif_driver = {
1560 	.probe		= sh_mmcif_probe,
1561 	.remove_new	= sh_mmcif_remove,
1562 	.driver		= {
1563 		.name	= DRIVER_NAME,
1564 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1565 		.pm	= &sh_mmcif_dev_pm_ops,
1566 		.of_match_table = sh_mmcif_of_match,
1567 	},
1568 };
1569 
1570 module_platform_driver(sh_mmcif_driver);
1571 
1572 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1573 MODULE_LICENSE("GPL v2");
1574 MODULE_ALIAS("platform:" DRIVER_NAME);
1575 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1576