xref: /openbmc/linux/drivers/mmc/host/sh_mmcif.c (revision 0d456bad)
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18 
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44 
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/pagemap.h>
60 #include <linux/platform_device.h>
61 #include <linux/pm_qos.h>
62 #include <linux/pm_runtime.h>
63 #include <linux/spinlock.h>
64 #include <linux/module.h>
65 
66 #define DRIVER_NAME	"sh_mmcif"
67 #define DRIVER_VERSION	"2010-04-28"
68 
69 /* CE_CMD_SET */
70 #define CMD_MASK		0x3f000000
71 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
72 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
73 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
74 #define CMD_SET_RBSY		(1 << 21) /* R1b */
75 #define CMD_SET_CCSEN		(1 << 20)
76 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
77 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
78 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
79 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
80 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
81 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
82 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
83 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
84 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
85 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
86 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
87 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
88 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
89 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
90 #define CMD_SET_CCSH		(1 << 5)
91 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
92 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
93 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
94 
95 /* CE_CMD_CTRL */
96 #define CMD_CTRL_BREAK		(1 << 0)
97 
98 /* CE_BLOCK_SET */
99 #define BLOCK_SIZE_MASK		0x0000ffff
100 
101 /* CE_INT */
102 #define INT_CCSDE		(1 << 29)
103 #define INT_CMD12DRE		(1 << 26)
104 #define INT_CMD12RBE		(1 << 25)
105 #define INT_CMD12CRE		(1 << 24)
106 #define INT_DTRANE		(1 << 23)
107 #define INT_BUFRE		(1 << 22)
108 #define INT_BUFWEN		(1 << 21)
109 #define INT_BUFREN		(1 << 20)
110 #define INT_CCSRCV		(1 << 19)
111 #define INT_RBSYE		(1 << 17)
112 #define INT_CRSPE		(1 << 16)
113 #define INT_CMDVIO		(1 << 15)
114 #define INT_BUFVIO		(1 << 14)
115 #define INT_WDATERR		(1 << 11)
116 #define INT_RDATERR		(1 << 10)
117 #define INT_RIDXERR		(1 << 9)
118 #define INT_RSPERR		(1 << 8)
119 #define INT_CCSTO		(1 << 5)
120 #define INT_CRCSTO		(1 << 4)
121 #define INT_WDATTO		(1 << 3)
122 #define INT_RDATTO		(1 << 2)
123 #define INT_RBSYTO		(1 << 1)
124 #define INT_RSPTO		(1 << 0)
125 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
126 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
127 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
128 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
129 
130 /* CE_INT_MASK */
131 #define MASK_ALL		0x00000000
132 #define MASK_MCCSDE		(1 << 29)
133 #define MASK_MCMD12DRE		(1 << 26)
134 #define MASK_MCMD12RBE		(1 << 25)
135 #define MASK_MCMD12CRE		(1 << 24)
136 #define MASK_MDTRANE		(1 << 23)
137 #define MASK_MBUFRE		(1 << 22)
138 #define MASK_MBUFWEN		(1 << 21)
139 #define MASK_MBUFREN		(1 << 20)
140 #define MASK_MCCSRCV		(1 << 19)
141 #define MASK_MRBSYE		(1 << 17)
142 #define MASK_MCRSPE		(1 << 16)
143 #define MASK_MCMDVIO		(1 << 15)
144 #define MASK_MBUFVIO		(1 << 14)
145 #define MASK_MWDATERR		(1 << 11)
146 #define MASK_MRDATERR		(1 << 10)
147 #define MASK_MRIDXERR		(1 << 9)
148 #define MASK_MRSPERR		(1 << 8)
149 #define MASK_MCCSTO		(1 << 5)
150 #define MASK_MCRCSTO		(1 << 4)
151 #define MASK_MWDATTO		(1 << 3)
152 #define MASK_MRDATTO		(1 << 2)
153 #define MASK_MRBSYTO		(1 << 1)
154 #define MASK_MRSPTO		(1 << 0)
155 
156 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
157 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
158 				 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
159 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
160 
161 /* CE_HOST_STS1 */
162 #define STS1_CMDSEQ		(1 << 31)
163 
164 /* CE_HOST_STS2 */
165 #define STS2_CRCSTE		(1 << 31)
166 #define STS2_CRC16E		(1 << 30)
167 #define STS2_AC12CRCE		(1 << 29)
168 #define STS2_RSPCRC7E		(1 << 28)
169 #define STS2_CRCSTEBE		(1 << 27)
170 #define STS2_RDATEBE		(1 << 26)
171 #define STS2_AC12REBE		(1 << 25)
172 #define STS2_RSPEBE		(1 << 24)
173 #define STS2_AC12IDXE		(1 << 23)
174 #define STS2_RSPIDXE		(1 << 22)
175 #define STS2_CCSTO		(1 << 15)
176 #define STS2_RDATTO		(1 << 14)
177 #define STS2_DATBSYTO		(1 << 13)
178 #define STS2_CRCSTTO		(1 << 12)
179 #define STS2_AC12BSYTO		(1 << 11)
180 #define STS2_RSPBSYTO		(1 << 10)
181 #define STS2_AC12RSPTO		(1 << 9)
182 #define STS2_RSPTO		(1 << 8)
183 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
184 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
185 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
186 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
187 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
188 				 STS2_AC12RSPTO | STS2_RSPTO)
189 
190 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
191 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
192 #define CLKDEV_INIT		400000   /* 400 KHz */
193 
194 enum mmcif_state {
195 	STATE_IDLE,
196 	STATE_REQUEST,
197 	STATE_IOS,
198 };
199 
200 enum mmcif_wait_for {
201 	MMCIF_WAIT_FOR_REQUEST,
202 	MMCIF_WAIT_FOR_CMD,
203 	MMCIF_WAIT_FOR_MREAD,
204 	MMCIF_WAIT_FOR_MWRITE,
205 	MMCIF_WAIT_FOR_READ,
206 	MMCIF_WAIT_FOR_WRITE,
207 	MMCIF_WAIT_FOR_READ_END,
208 	MMCIF_WAIT_FOR_WRITE_END,
209 	MMCIF_WAIT_FOR_STOP,
210 };
211 
212 struct sh_mmcif_host {
213 	struct mmc_host *mmc;
214 	struct mmc_request *mrq;
215 	struct platform_device *pd;
216 	struct clk *hclk;
217 	unsigned int clk;
218 	int bus_width;
219 	bool sd_error;
220 	bool dying;
221 	long timeout;
222 	void __iomem *addr;
223 	u32 *pio_ptr;
224 	spinlock_t lock;		/* protect sh_mmcif_host::state */
225 	enum mmcif_state state;
226 	enum mmcif_wait_for wait_for;
227 	struct delayed_work timeout_work;
228 	size_t blocksize;
229 	int sg_idx;
230 	int sg_blkidx;
231 	bool power;
232 	bool card_present;
233 
234 	/* DMA support */
235 	struct dma_chan		*chan_rx;
236 	struct dma_chan		*chan_tx;
237 	struct completion	dma_complete;
238 	bool			dma_active;
239 };
240 
241 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
242 					unsigned int reg, u32 val)
243 {
244 	writel(val | readl(host->addr + reg), host->addr + reg);
245 }
246 
247 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
248 					unsigned int reg, u32 val)
249 {
250 	writel(~val & readl(host->addr + reg), host->addr + reg);
251 }
252 
253 static void mmcif_dma_complete(void *arg)
254 {
255 	struct sh_mmcif_host *host = arg;
256 	struct mmc_data *data = host->mrq->data;
257 
258 	dev_dbg(&host->pd->dev, "Command completed\n");
259 
260 	if (WARN(!data, "%s: NULL data in DMA completion!\n",
261 		 dev_name(&host->pd->dev)))
262 		return;
263 
264 	if (data->flags & MMC_DATA_READ)
265 		dma_unmap_sg(host->chan_rx->device->dev,
266 			     data->sg, data->sg_len,
267 			     DMA_FROM_DEVICE);
268 	else
269 		dma_unmap_sg(host->chan_tx->device->dev,
270 			     data->sg, data->sg_len,
271 			     DMA_TO_DEVICE);
272 
273 	complete(&host->dma_complete);
274 }
275 
276 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
277 {
278 	struct mmc_data *data = host->mrq->data;
279 	struct scatterlist *sg = data->sg;
280 	struct dma_async_tx_descriptor *desc = NULL;
281 	struct dma_chan *chan = host->chan_rx;
282 	dma_cookie_t cookie = -EINVAL;
283 	int ret;
284 
285 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
286 			 DMA_FROM_DEVICE);
287 	if (ret > 0) {
288 		host->dma_active = true;
289 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
290 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
291 	}
292 
293 	if (desc) {
294 		desc->callback = mmcif_dma_complete;
295 		desc->callback_param = host;
296 		cookie = dmaengine_submit(desc);
297 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
298 		dma_async_issue_pending(chan);
299 	}
300 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
301 		__func__, data->sg_len, ret, cookie);
302 
303 	if (!desc) {
304 		/* DMA failed, fall back to PIO */
305 		if (ret >= 0)
306 			ret = -EIO;
307 		host->chan_rx = NULL;
308 		host->dma_active = false;
309 		dma_release_channel(chan);
310 		/* Free the Tx channel too */
311 		chan = host->chan_tx;
312 		if (chan) {
313 			host->chan_tx = NULL;
314 			dma_release_channel(chan);
315 		}
316 		dev_warn(&host->pd->dev,
317 			 "DMA failed: %d, falling back to PIO\n", ret);
318 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
319 	}
320 
321 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
322 		desc, cookie, data->sg_len);
323 }
324 
325 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
326 {
327 	struct mmc_data *data = host->mrq->data;
328 	struct scatterlist *sg = data->sg;
329 	struct dma_async_tx_descriptor *desc = NULL;
330 	struct dma_chan *chan = host->chan_tx;
331 	dma_cookie_t cookie = -EINVAL;
332 	int ret;
333 
334 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
335 			 DMA_TO_DEVICE);
336 	if (ret > 0) {
337 		host->dma_active = true;
338 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
339 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
340 	}
341 
342 	if (desc) {
343 		desc->callback = mmcif_dma_complete;
344 		desc->callback_param = host;
345 		cookie = dmaengine_submit(desc);
346 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
347 		dma_async_issue_pending(chan);
348 	}
349 	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
350 		__func__, data->sg_len, ret, cookie);
351 
352 	if (!desc) {
353 		/* DMA failed, fall back to PIO */
354 		if (ret >= 0)
355 			ret = -EIO;
356 		host->chan_tx = NULL;
357 		host->dma_active = false;
358 		dma_release_channel(chan);
359 		/* Free the Rx channel too */
360 		chan = host->chan_rx;
361 		if (chan) {
362 			host->chan_rx = NULL;
363 			dma_release_channel(chan);
364 		}
365 		dev_warn(&host->pd->dev,
366 			 "DMA failed: %d, falling back to PIO\n", ret);
367 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
368 	}
369 
370 	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
371 		desc, cookie);
372 }
373 
374 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
375 				 struct sh_mmcif_plat_data *pdata)
376 {
377 	struct resource *res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
378 	struct dma_slave_config cfg;
379 	dma_cap_mask_t mask;
380 	int ret;
381 
382 	host->dma_active = false;
383 
384 	if (!pdata)
385 		return;
386 
387 	if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
388 		return;
389 
390 	/* We can only either use DMA for both Tx and Rx or not use it at all */
391 	dma_cap_zero(mask);
392 	dma_cap_set(DMA_SLAVE, mask);
393 
394 	host->chan_tx = dma_request_channel(mask, shdma_chan_filter,
395 					    (void *)pdata->slave_id_tx);
396 	dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
397 		host->chan_tx);
398 
399 	if (!host->chan_tx)
400 		return;
401 
402 	cfg.slave_id = pdata->slave_id_tx;
403 	cfg.direction = DMA_MEM_TO_DEV;
404 	cfg.dst_addr = res->start + MMCIF_CE_DATA;
405 	cfg.src_addr = 0;
406 	ret = dmaengine_slave_config(host->chan_tx, &cfg);
407 	if (ret < 0)
408 		goto ecfgtx;
409 
410 	host->chan_rx = dma_request_channel(mask, shdma_chan_filter,
411 					    (void *)pdata->slave_id_rx);
412 	dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
413 		host->chan_rx);
414 
415 	if (!host->chan_rx)
416 		goto erqrx;
417 
418 	cfg.slave_id = pdata->slave_id_rx;
419 	cfg.direction = DMA_DEV_TO_MEM;
420 	cfg.dst_addr = 0;
421 	cfg.src_addr = res->start + MMCIF_CE_DATA;
422 	ret = dmaengine_slave_config(host->chan_rx, &cfg);
423 	if (ret < 0)
424 		goto ecfgrx;
425 
426 	init_completion(&host->dma_complete);
427 
428 	return;
429 
430 ecfgrx:
431 	dma_release_channel(host->chan_rx);
432 	host->chan_rx = NULL;
433 erqrx:
434 ecfgtx:
435 	dma_release_channel(host->chan_tx);
436 	host->chan_tx = NULL;
437 }
438 
439 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
440 {
441 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
442 	/* Descriptors are freed automatically */
443 	if (host->chan_tx) {
444 		struct dma_chan *chan = host->chan_tx;
445 		host->chan_tx = NULL;
446 		dma_release_channel(chan);
447 	}
448 	if (host->chan_rx) {
449 		struct dma_chan *chan = host->chan_rx;
450 		host->chan_rx = NULL;
451 		dma_release_channel(chan);
452 	}
453 
454 	host->dma_active = false;
455 }
456 
457 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
458 {
459 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
460 	bool sup_pclk = p ? p->sup_pclk : false;
461 
462 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
463 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
464 
465 	if (!clk)
466 		return;
467 	if (sup_pclk && clk == host->clk)
468 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
469 	else
470 		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
471 				((fls(DIV_ROUND_UP(host->clk,
472 						   clk) - 1) - 1) << 16));
473 
474 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
475 }
476 
477 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
478 {
479 	u32 tmp;
480 
481 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
482 
483 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
484 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
485 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
486 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
487 	/* byte swap on */
488 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
489 }
490 
491 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
492 {
493 	u32 state1, state2;
494 	int ret, timeout;
495 
496 	host->sd_error = false;
497 
498 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
499 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
500 	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
501 	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
502 
503 	if (state1 & STS1_CMDSEQ) {
504 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
505 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
506 		for (timeout = 10000000; timeout; timeout--) {
507 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
508 			      & STS1_CMDSEQ))
509 				break;
510 			mdelay(1);
511 		}
512 		if (!timeout) {
513 			dev_err(&host->pd->dev,
514 				"Forced end of command sequence timeout err\n");
515 			return -EIO;
516 		}
517 		sh_mmcif_sync_reset(host);
518 		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
519 		return -EIO;
520 	}
521 
522 	if (state2 & STS2_CRC_ERR) {
523 		dev_dbg(&host->pd->dev, ": CRC error\n");
524 		ret = -EIO;
525 	} else if (state2 & STS2_TIMEOUT_ERR) {
526 		dev_dbg(&host->pd->dev, ": Timeout\n");
527 		ret = -ETIMEDOUT;
528 	} else {
529 		dev_dbg(&host->pd->dev, ": End/Index error\n");
530 		ret = -EIO;
531 	}
532 	return ret;
533 }
534 
535 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
536 {
537 	struct mmc_data *data = host->mrq->data;
538 
539 	host->sg_blkidx += host->blocksize;
540 
541 	/* data->sg->length must be a multiple of host->blocksize? */
542 	BUG_ON(host->sg_blkidx > data->sg->length);
543 
544 	if (host->sg_blkidx == data->sg->length) {
545 		host->sg_blkidx = 0;
546 		if (++host->sg_idx < data->sg_len)
547 			host->pio_ptr = sg_virt(++data->sg);
548 	} else {
549 		host->pio_ptr = p;
550 	}
551 
552 	if (host->sg_idx == data->sg_len)
553 		return false;
554 
555 	return true;
556 }
557 
558 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
559 				 struct mmc_request *mrq)
560 {
561 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
562 			   BLOCK_SIZE_MASK) + 3;
563 
564 	host->wait_for = MMCIF_WAIT_FOR_READ;
565 	schedule_delayed_work(&host->timeout_work, host->timeout);
566 
567 	/* buf read enable */
568 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
569 }
570 
571 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
572 {
573 	struct mmc_data *data = host->mrq->data;
574 	u32 *p = sg_virt(data->sg);
575 	int i;
576 
577 	if (host->sd_error) {
578 		data->error = sh_mmcif_error_manage(host);
579 		return false;
580 	}
581 
582 	for (i = 0; i < host->blocksize / 4; i++)
583 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
584 
585 	/* buffer read end */
586 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
587 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
588 
589 	return true;
590 }
591 
592 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
593 				struct mmc_request *mrq)
594 {
595 	struct mmc_data *data = mrq->data;
596 
597 	if (!data->sg_len || !data->sg->length)
598 		return;
599 
600 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
601 		BLOCK_SIZE_MASK;
602 
603 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
604 	host->sg_idx = 0;
605 	host->sg_blkidx = 0;
606 	host->pio_ptr = sg_virt(data->sg);
607 	schedule_delayed_work(&host->timeout_work, host->timeout);
608 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
609 }
610 
611 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
612 {
613 	struct mmc_data *data = host->mrq->data;
614 	u32 *p = host->pio_ptr;
615 	int i;
616 
617 	if (host->sd_error) {
618 		data->error = sh_mmcif_error_manage(host);
619 		return false;
620 	}
621 
622 	BUG_ON(!data->sg->length);
623 
624 	for (i = 0; i < host->blocksize / 4; i++)
625 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
626 
627 	if (!sh_mmcif_next_block(host, p))
628 		return false;
629 
630 	schedule_delayed_work(&host->timeout_work, host->timeout);
631 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
632 
633 	return true;
634 }
635 
636 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
637 					struct mmc_request *mrq)
638 {
639 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
640 			   BLOCK_SIZE_MASK) + 3;
641 
642 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
643 	schedule_delayed_work(&host->timeout_work, host->timeout);
644 
645 	/* buf write enable */
646 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
647 }
648 
649 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
650 {
651 	struct mmc_data *data = host->mrq->data;
652 	u32 *p = sg_virt(data->sg);
653 	int i;
654 
655 	if (host->sd_error) {
656 		data->error = sh_mmcif_error_manage(host);
657 		return false;
658 	}
659 
660 	for (i = 0; i < host->blocksize / 4; i++)
661 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
662 
663 	/* buffer write end */
664 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
665 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
666 
667 	return true;
668 }
669 
670 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
671 				struct mmc_request *mrq)
672 {
673 	struct mmc_data *data = mrq->data;
674 
675 	if (!data->sg_len || !data->sg->length)
676 		return;
677 
678 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
679 		BLOCK_SIZE_MASK;
680 
681 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
682 	host->sg_idx = 0;
683 	host->sg_blkidx = 0;
684 	host->pio_ptr = sg_virt(data->sg);
685 	schedule_delayed_work(&host->timeout_work, host->timeout);
686 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
687 }
688 
689 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
690 {
691 	struct mmc_data *data = host->mrq->data;
692 	u32 *p = host->pio_ptr;
693 	int i;
694 
695 	if (host->sd_error) {
696 		data->error = sh_mmcif_error_manage(host);
697 		return false;
698 	}
699 
700 	BUG_ON(!data->sg->length);
701 
702 	for (i = 0; i < host->blocksize / 4; i++)
703 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
704 
705 	if (!sh_mmcif_next_block(host, p))
706 		return false;
707 
708 	schedule_delayed_work(&host->timeout_work, host->timeout);
709 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
710 
711 	return true;
712 }
713 
714 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
715 						struct mmc_command *cmd)
716 {
717 	if (cmd->flags & MMC_RSP_136) {
718 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
719 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
720 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
721 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
722 	} else
723 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
724 }
725 
726 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
727 						struct mmc_command *cmd)
728 {
729 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
730 }
731 
732 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
733 			    struct mmc_request *mrq)
734 {
735 	struct mmc_data *data = mrq->data;
736 	struct mmc_command *cmd = mrq->cmd;
737 	u32 opc = cmd->opcode;
738 	u32 tmp = 0;
739 
740 	/* Response Type check */
741 	switch (mmc_resp_type(cmd)) {
742 	case MMC_RSP_NONE:
743 		tmp |= CMD_SET_RTYP_NO;
744 		break;
745 	case MMC_RSP_R1:
746 	case MMC_RSP_R1B:
747 	case MMC_RSP_R3:
748 		tmp |= CMD_SET_RTYP_6B;
749 		break;
750 	case MMC_RSP_R2:
751 		tmp |= CMD_SET_RTYP_17B;
752 		break;
753 	default:
754 		dev_err(&host->pd->dev, "Unsupported response type.\n");
755 		break;
756 	}
757 	switch (opc) {
758 	/* RBSY */
759 	case MMC_SWITCH:
760 	case MMC_STOP_TRANSMISSION:
761 	case MMC_SET_WRITE_PROT:
762 	case MMC_CLR_WRITE_PROT:
763 	case MMC_ERASE:
764 		tmp |= CMD_SET_RBSY;
765 		break;
766 	}
767 	/* WDAT / DATW */
768 	if (data) {
769 		tmp |= CMD_SET_WDAT;
770 		switch (host->bus_width) {
771 		case MMC_BUS_WIDTH_1:
772 			tmp |= CMD_SET_DATW_1;
773 			break;
774 		case MMC_BUS_WIDTH_4:
775 			tmp |= CMD_SET_DATW_4;
776 			break;
777 		case MMC_BUS_WIDTH_8:
778 			tmp |= CMD_SET_DATW_8;
779 			break;
780 		default:
781 			dev_err(&host->pd->dev, "Unsupported bus width.\n");
782 			break;
783 		}
784 	}
785 	/* DWEN */
786 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
787 		tmp |= CMD_SET_DWEN;
788 	/* CMLTE/CMD12EN */
789 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
790 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
791 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
792 				data->blocks << 16);
793 	}
794 	/* RIDXC[1:0] check bits */
795 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
796 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
797 		tmp |= CMD_SET_RIDXC_BITS;
798 	/* RCRC7C[1:0] check bits */
799 	if (opc == MMC_SEND_OP_COND)
800 		tmp |= CMD_SET_CRC7C_BITS;
801 	/* RCRC7C[1:0] internal CRC7 */
802 	if (opc == MMC_ALL_SEND_CID ||
803 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
804 		tmp |= CMD_SET_CRC7C_INTERNAL;
805 
806 	return (opc << 24) | tmp;
807 }
808 
809 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
810 			       struct mmc_request *mrq, u32 opc)
811 {
812 	switch (opc) {
813 	case MMC_READ_MULTIPLE_BLOCK:
814 		sh_mmcif_multi_read(host, mrq);
815 		return 0;
816 	case MMC_WRITE_MULTIPLE_BLOCK:
817 		sh_mmcif_multi_write(host, mrq);
818 		return 0;
819 	case MMC_WRITE_BLOCK:
820 		sh_mmcif_single_write(host, mrq);
821 		return 0;
822 	case MMC_READ_SINGLE_BLOCK:
823 	case MMC_SEND_EXT_CSD:
824 		sh_mmcif_single_read(host, mrq);
825 		return 0;
826 	default:
827 		dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
828 		return -EINVAL;
829 	}
830 }
831 
832 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
833 			       struct mmc_request *mrq)
834 {
835 	struct mmc_command *cmd = mrq->cmd;
836 	u32 opc = cmd->opcode;
837 	u32 mask;
838 
839 	switch (opc) {
840 	/* response busy check */
841 	case MMC_SWITCH:
842 	case MMC_STOP_TRANSMISSION:
843 	case MMC_SET_WRITE_PROT:
844 	case MMC_CLR_WRITE_PROT:
845 	case MMC_ERASE:
846 		mask = MASK_START_CMD | MASK_MRBSYE;
847 		break;
848 	default:
849 		mask = MASK_START_CMD | MASK_MCRSPE;
850 		break;
851 	}
852 
853 	if (mrq->data) {
854 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
855 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
856 				mrq->data->blksz);
857 	}
858 	opc = sh_mmcif_set_cmd(host, mrq);
859 
860 	sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
861 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
862 	/* set arg */
863 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
864 	/* set cmd */
865 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
866 
867 	host->wait_for = MMCIF_WAIT_FOR_CMD;
868 	schedule_delayed_work(&host->timeout_work, host->timeout);
869 }
870 
871 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
872 			      struct mmc_request *mrq)
873 {
874 	switch (mrq->cmd->opcode) {
875 	case MMC_READ_MULTIPLE_BLOCK:
876 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
877 		break;
878 	case MMC_WRITE_MULTIPLE_BLOCK:
879 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
880 		break;
881 	default:
882 		dev_err(&host->pd->dev, "unsupported stop cmd\n");
883 		mrq->stop->error = sh_mmcif_error_manage(host);
884 		return;
885 	}
886 
887 	host->wait_for = MMCIF_WAIT_FOR_STOP;
888 	schedule_delayed_work(&host->timeout_work, host->timeout);
889 }
890 
891 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
892 {
893 	struct sh_mmcif_host *host = mmc_priv(mmc);
894 	unsigned long flags;
895 
896 	spin_lock_irqsave(&host->lock, flags);
897 	if (host->state != STATE_IDLE) {
898 		spin_unlock_irqrestore(&host->lock, flags);
899 		mrq->cmd->error = -EAGAIN;
900 		mmc_request_done(mmc, mrq);
901 		return;
902 	}
903 
904 	host->state = STATE_REQUEST;
905 	spin_unlock_irqrestore(&host->lock, flags);
906 
907 	switch (mrq->cmd->opcode) {
908 	/* MMCIF does not support SD/SDIO command */
909 	case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
910 	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
911 		if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
912 			break;
913 	case MMC_APP_CMD:
914 		host->state = STATE_IDLE;
915 		mrq->cmd->error = -ETIMEDOUT;
916 		mmc_request_done(mmc, mrq);
917 		return;
918 	default:
919 		break;
920 	}
921 
922 	host->mrq = mrq;
923 
924 	sh_mmcif_start_cmd(host, mrq);
925 }
926 
927 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
928 {
929 	int ret = clk_enable(host->hclk);
930 
931 	if (!ret) {
932 		host->clk = clk_get_rate(host->hclk);
933 		host->mmc->f_max = host->clk / 2;
934 		host->mmc->f_min = host->clk / 512;
935 	}
936 
937 	return ret;
938 }
939 
940 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
941 {
942 	struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
943 	struct mmc_host *mmc = host->mmc;
944 
945 	if (pd && pd->set_pwr)
946 		pd->set_pwr(host->pd, ios->power_mode != MMC_POWER_OFF);
947 	if (!IS_ERR(mmc->supply.vmmc))
948 		/* Errors ignored... */
949 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
950 				      ios->power_mode ? ios->vdd : 0);
951 }
952 
953 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
954 {
955 	struct sh_mmcif_host *host = mmc_priv(mmc);
956 	unsigned long flags;
957 
958 	spin_lock_irqsave(&host->lock, flags);
959 	if (host->state != STATE_IDLE) {
960 		spin_unlock_irqrestore(&host->lock, flags);
961 		return;
962 	}
963 
964 	host->state = STATE_IOS;
965 	spin_unlock_irqrestore(&host->lock, flags);
966 
967 	if (ios->power_mode == MMC_POWER_UP) {
968 		if (!host->card_present) {
969 			/* See if we also get DMA */
970 			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
971 			host->card_present = true;
972 		}
973 		sh_mmcif_set_power(host, ios);
974 	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
975 		/* clock stop */
976 		sh_mmcif_clock_control(host, 0);
977 		if (ios->power_mode == MMC_POWER_OFF) {
978 			if (host->card_present) {
979 				sh_mmcif_release_dma(host);
980 				host->card_present = false;
981 			}
982 		}
983 		if (host->power) {
984 			pm_runtime_put(&host->pd->dev);
985 			clk_disable(host->hclk);
986 			host->power = false;
987 			if (ios->power_mode == MMC_POWER_OFF)
988 				sh_mmcif_set_power(host, ios);
989 		}
990 		host->state = STATE_IDLE;
991 		return;
992 	}
993 
994 	if (ios->clock) {
995 		if (!host->power) {
996 			sh_mmcif_clk_update(host);
997 			pm_runtime_get_sync(&host->pd->dev);
998 			host->power = true;
999 			sh_mmcif_sync_reset(host);
1000 		}
1001 		sh_mmcif_clock_control(host, ios->clock);
1002 	}
1003 
1004 	host->bus_width = ios->bus_width;
1005 	host->state = STATE_IDLE;
1006 }
1007 
1008 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1009 {
1010 	struct sh_mmcif_host *host = mmc_priv(mmc);
1011 	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1012 	int ret = mmc_gpio_get_cd(mmc);
1013 
1014 	if (ret >= 0)
1015 		return ret;
1016 
1017 	if (!p || !p->get_cd)
1018 		return -ENOSYS;
1019 	else
1020 		return p->get_cd(host->pd);
1021 }
1022 
1023 static struct mmc_host_ops sh_mmcif_ops = {
1024 	.request	= sh_mmcif_request,
1025 	.set_ios	= sh_mmcif_set_ios,
1026 	.get_cd		= sh_mmcif_get_cd,
1027 };
1028 
1029 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1030 {
1031 	struct mmc_command *cmd = host->mrq->cmd;
1032 	struct mmc_data *data = host->mrq->data;
1033 	long time;
1034 
1035 	if (host->sd_error) {
1036 		switch (cmd->opcode) {
1037 		case MMC_ALL_SEND_CID:
1038 		case MMC_SELECT_CARD:
1039 		case MMC_APP_CMD:
1040 			cmd->error = -ETIMEDOUT;
1041 			host->sd_error = false;
1042 			break;
1043 		default:
1044 			cmd->error = sh_mmcif_error_manage(host);
1045 			dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1046 				cmd->opcode, cmd->error);
1047 			break;
1048 		}
1049 		return false;
1050 	}
1051 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1052 		cmd->error = 0;
1053 		return false;
1054 	}
1055 
1056 	sh_mmcif_get_response(host, cmd);
1057 
1058 	if (!data)
1059 		return false;
1060 
1061 	if (data->flags & MMC_DATA_READ) {
1062 		if (host->chan_rx)
1063 			sh_mmcif_start_dma_rx(host);
1064 	} else {
1065 		if (host->chan_tx)
1066 			sh_mmcif_start_dma_tx(host);
1067 	}
1068 
1069 	if (!host->dma_active) {
1070 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1071 		if (!data->error)
1072 			return true;
1073 		return false;
1074 	}
1075 
1076 	/* Running in the IRQ thread, can sleep */
1077 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1078 							 host->timeout);
1079 	if (host->sd_error) {
1080 		dev_err(host->mmc->parent,
1081 			"Error IRQ while waiting for DMA completion!\n");
1082 		/* Woken up by an error IRQ: abort DMA */
1083 		if (data->flags & MMC_DATA_READ)
1084 			dmaengine_terminate_all(host->chan_rx);
1085 		else
1086 			dmaengine_terminate_all(host->chan_tx);
1087 		data->error = sh_mmcif_error_manage(host);
1088 	} else if (!time) {
1089 		data->error = -ETIMEDOUT;
1090 	} else if (time < 0) {
1091 		data->error = time;
1092 	}
1093 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1094 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1095 	host->dma_active = false;
1096 
1097 	if (data->error)
1098 		data->bytes_xfered = 0;
1099 
1100 	return false;
1101 }
1102 
1103 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1104 {
1105 	struct sh_mmcif_host *host = dev_id;
1106 	struct mmc_request *mrq = host->mrq;
1107 
1108 	cancel_delayed_work_sync(&host->timeout_work);
1109 
1110 	/*
1111 	 * All handlers return true, if processing continues, and false, if the
1112 	 * request has to be completed - successfully or not
1113 	 */
1114 	switch (host->wait_for) {
1115 	case MMCIF_WAIT_FOR_REQUEST:
1116 		/* We're too late, the timeout has already kicked in */
1117 		return IRQ_HANDLED;
1118 	case MMCIF_WAIT_FOR_CMD:
1119 		if (sh_mmcif_end_cmd(host))
1120 			/* Wait for data */
1121 			return IRQ_HANDLED;
1122 		break;
1123 	case MMCIF_WAIT_FOR_MREAD:
1124 		if (sh_mmcif_mread_block(host))
1125 			/* Wait for more data */
1126 			return IRQ_HANDLED;
1127 		break;
1128 	case MMCIF_WAIT_FOR_READ:
1129 		if (sh_mmcif_read_block(host))
1130 			/* Wait for data end */
1131 			return IRQ_HANDLED;
1132 		break;
1133 	case MMCIF_WAIT_FOR_MWRITE:
1134 		if (sh_mmcif_mwrite_block(host))
1135 			/* Wait data to write */
1136 			return IRQ_HANDLED;
1137 		break;
1138 	case MMCIF_WAIT_FOR_WRITE:
1139 		if (sh_mmcif_write_block(host))
1140 			/* Wait for data end */
1141 			return IRQ_HANDLED;
1142 		break;
1143 	case MMCIF_WAIT_FOR_STOP:
1144 		if (host->sd_error) {
1145 			mrq->stop->error = sh_mmcif_error_manage(host);
1146 			break;
1147 		}
1148 		sh_mmcif_get_cmd12response(host, mrq->stop);
1149 		mrq->stop->error = 0;
1150 		break;
1151 	case MMCIF_WAIT_FOR_READ_END:
1152 	case MMCIF_WAIT_FOR_WRITE_END:
1153 		if (host->sd_error)
1154 			mrq->data->error = sh_mmcif_error_manage(host);
1155 		break;
1156 	default:
1157 		BUG();
1158 	}
1159 
1160 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1161 		struct mmc_data *data = mrq->data;
1162 		if (!mrq->cmd->error && data && !data->error)
1163 			data->bytes_xfered =
1164 				data->blocks * data->blksz;
1165 
1166 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1167 			sh_mmcif_stop_cmd(host, mrq);
1168 			if (!mrq->stop->error)
1169 				return IRQ_HANDLED;
1170 		}
1171 	}
1172 
1173 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1174 	host->state = STATE_IDLE;
1175 	host->mrq = NULL;
1176 	mmc_request_done(host->mmc, mrq);
1177 
1178 	return IRQ_HANDLED;
1179 }
1180 
1181 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1182 {
1183 	struct sh_mmcif_host *host = dev_id;
1184 	u32 state;
1185 	int err = 0;
1186 
1187 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1188 
1189 	if (state & INT_ERR_STS) {
1190 		/* error interrupts - process first */
1191 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1192 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1193 		err = 1;
1194 	} else if (state & INT_RBSYE) {
1195 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1196 				~(INT_RBSYE | INT_CRSPE));
1197 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1198 	} else if (state & INT_CRSPE) {
1199 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1200 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1201 	} else if (state & INT_BUFREN) {
1202 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1203 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1204 	} else if (state & INT_BUFWEN) {
1205 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1206 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1207 	} else if (state & INT_CMD12DRE) {
1208 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1209 			~(INT_CMD12DRE | INT_CMD12RBE |
1210 			  INT_CMD12CRE | INT_BUFRE));
1211 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1212 	} else if (state & INT_BUFRE) {
1213 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1214 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1215 	} else if (state & INT_DTRANE) {
1216 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1217 			~(INT_CMD12DRE | INT_CMD12RBE |
1218 			  INT_CMD12CRE | INT_DTRANE));
1219 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1220 	} else if (state & INT_CMD12RBE) {
1221 		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1222 				~(INT_CMD12RBE | INT_CMD12CRE));
1223 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
1224 	} else {
1225 		dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1226 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1227 		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1228 		err = 1;
1229 	}
1230 	if (err) {
1231 		host->sd_error = true;
1232 		dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1233 	}
1234 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1235 		if (!host->dma_active)
1236 			return IRQ_WAKE_THREAD;
1237 		else if (host->sd_error)
1238 			mmcif_dma_complete(host);
1239 	} else {
1240 		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1241 	}
1242 
1243 	return IRQ_HANDLED;
1244 }
1245 
1246 static void mmcif_timeout_work(struct work_struct *work)
1247 {
1248 	struct delayed_work *d = container_of(work, struct delayed_work, work);
1249 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1250 	struct mmc_request *mrq = host->mrq;
1251 
1252 	if (host->dying)
1253 		/* Don't run after mmc_remove_host() */
1254 		return;
1255 
1256 	/*
1257 	 * Handle races with cancel_delayed_work(), unless
1258 	 * cancel_delayed_work_sync() is used
1259 	 */
1260 	switch (host->wait_for) {
1261 	case MMCIF_WAIT_FOR_CMD:
1262 		mrq->cmd->error = sh_mmcif_error_manage(host);
1263 		break;
1264 	case MMCIF_WAIT_FOR_STOP:
1265 		mrq->stop->error = sh_mmcif_error_manage(host);
1266 		break;
1267 	case MMCIF_WAIT_FOR_MREAD:
1268 	case MMCIF_WAIT_FOR_MWRITE:
1269 	case MMCIF_WAIT_FOR_READ:
1270 	case MMCIF_WAIT_FOR_WRITE:
1271 	case MMCIF_WAIT_FOR_READ_END:
1272 	case MMCIF_WAIT_FOR_WRITE_END:
1273 		mrq->data->error = sh_mmcif_error_manage(host);
1274 		break;
1275 	default:
1276 		BUG();
1277 	}
1278 
1279 	host->state = STATE_IDLE;
1280 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1281 	host->mrq = NULL;
1282 	mmc_request_done(host->mmc, mrq);
1283 }
1284 
1285 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1286 {
1287 	struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1288 	struct mmc_host *mmc = host->mmc;
1289 
1290 	mmc_regulator_get_supply(mmc);
1291 
1292 	if (!pd)
1293 		return;
1294 
1295 	if (!mmc->ocr_avail)
1296 		mmc->ocr_avail = pd->ocr;
1297 	else if (pd->ocr)
1298 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1299 }
1300 
1301 static int sh_mmcif_probe(struct platform_device *pdev)
1302 {
1303 	int ret = 0, irq[2];
1304 	struct mmc_host *mmc;
1305 	struct sh_mmcif_host *host;
1306 	struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1307 	struct resource *res;
1308 	void __iomem *reg;
1309 
1310 	irq[0] = platform_get_irq(pdev, 0);
1311 	irq[1] = platform_get_irq(pdev, 1);
1312 	if (irq[0] < 0 || irq[1] < 0) {
1313 		dev_err(&pdev->dev, "Get irq error\n");
1314 		return -ENXIO;
1315 	}
1316 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1317 	if (!res) {
1318 		dev_err(&pdev->dev, "platform_get_resource error.\n");
1319 		return -ENXIO;
1320 	}
1321 	reg = ioremap(res->start, resource_size(res));
1322 	if (!reg) {
1323 		dev_err(&pdev->dev, "ioremap error.\n");
1324 		return -ENOMEM;
1325 	}
1326 
1327 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1328 	if (!mmc) {
1329 		ret = -ENOMEM;
1330 		goto ealloch;
1331 	}
1332 	host		= mmc_priv(mmc);
1333 	host->mmc	= mmc;
1334 	host->addr	= reg;
1335 	host->timeout	= 1000;
1336 
1337 	host->pd = pdev;
1338 
1339 	spin_lock_init(&host->lock);
1340 
1341 	mmc->ops = &sh_mmcif_ops;
1342 	sh_mmcif_init_ocr(host);
1343 
1344 	mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1345 	if (pd && pd->caps)
1346 		mmc->caps |= pd->caps;
1347 	mmc->max_segs = 32;
1348 	mmc->max_blk_size = 512;
1349 	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1350 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1351 	mmc->max_seg_size = mmc->max_req_size;
1352 
1353 	platform_set_drvdata(pdev, host);
1354 
1355 	pm_runtime_enable(&pdev->dev);
1356 	host->power = false;
1357 
1358 	host->hclk = clk_get(&pdev->dev, NULL);
1359 	if (IS_ERR(host->hclk)) {
1360 		ret = PTR_ERR(host->hclk);
1361 		dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1362 		goto eclkget;
1363 	}
1364 	ret = sh_mmcif_clk_update(host);
1365 	if (ret < 0)
1366 		goto eclkupdate;
1367 
1368 	ret = pm_runtime_resume(&pdev->dev);
1369 	if (ret < 0)
1370 		goto eresume;
1371 
1372 	INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1373 
1374 	sh_mmcif_sync_reset(host);
1375 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1376 
1377 	ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
1378 	if (ret) {
1379 		dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1380 		goto ereqirq0;
1381 	}
1382 	ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1383 	if (ret) {
1384 		dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1385 		goto ereqirq1;
1386 	}
1387 
1388 	if (pd && pd->use_cd_gpio) {
1389 		ret = mmc_gpio_request_cd(mmc, pd->cd_gpio);
1390 		if (ret < 0)
1391 			goto erqcd;
1392 	}
1393 
1394 	clk_disable(host->hclk);
1395 	ret = mmc_add_host(mmc);
1396 	if (ret < 0)
1397 		goto emmcaddh;
1398 
1399 	dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1400 
1401 	dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1402 	dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1403 		sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1404 	return ret;
1405 
1406 emmcaddh:
1407 	if (pd && pd->use_cd_gpio)
1408 		mmc_gpio_free_cd(mmc);
1409 erqcd:
1410 	free_irq(irq[1], host);
1411 ereqirq1:
1412 	free_irq(irq[0], host);
1413 ereqirq0:
1414 	pm_runtime_suspend(&pdev->dev);
1415 eresume:
1416 	clk_disable(host->hclk);
1417 eclkupdate:
1418 	clk_put(host->hclk);
1419 eclkget:
1420 	pm_runtime_disable(&pdev->dev);
1421 	mmc_free_host(mmc);
1422 ealloch:
1423 	iounmap(reg);
1424 	return ret;
1425 }
1426 
1427 static int sh_mmcif_remove(struct platform_device *pdev)
1428 {
1429 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1430 	struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1431 	int irq[2];
1432 
1433 	host->dying = true;
1434 	clk_enable(host->hclk);
1435 	pm_runtime_get_sync(&pdev->dev);
1436 
1437 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1438 
1439 	if (pd && pd->use_cd_gpio)
1440 		mmc_gpio_free_cd(host->mmc);
1441 
1442 	mmc_remove_host(host->mmc);
1443 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1444 
1445 	/*
1446 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1447 	 * mmc_remove_host() call above. But swapping order doesn't help either
1448 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1449 	 */
1450 	cancel_delayed_work_sync(&host->timeout_work);
1451 
1452 	if (host->addr)
1453 		iounmap(host->addr);
1454 
1455 	irq[0] = platform_get_irq(pdev, 0);
1456 	irq[1] = platform_get_irq(pdev, 1);
1457 
1458 	free_irq(irq[0], host);
1459 	free_irq(irq[1], host);
1460 
1461 	platform_set_drvdata(pdev, NULL);
1462 
1463 	clk_disable(host->hclk);
1464 	mmc_free_host(host->mmc);
1465 	pm_runtime_put_sync(&pdev->dev);
1466 	pm_runtime_disable(&pdev->dev);
1467 
1468 	return 0;
1469 }
1470 
1471 #ifdef CONFIG_PM
1472 static int sh_mmcif_suspend(struct device *dev)
1473 {
1474 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1475 	int ret = mmc_suspend_host(host->mmc);
1476 
1477 	if (!ret)
1478 		sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1479 
1480 	return ret;
1481 }
1482 
1483 static int sh_mmcif_resume(struct device *dev)
1484 {
1485 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1486 
1487 	return mmc_resume_host(host->mmc);
1488 }
1489 #else
1490 #define sh_mmcif_suspend	NULL
1491 #define sh_mmcif_resume		NULL
1492 #endif	/* CONFIG_PM */
1493 
1494 static const struct of_device_id mmcif_of_match[] = {
1495 	{ .compatible = "renesas,sh-mmcif" },
1496 	{ }
1497 };
1498 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1499 
1500 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1501 	.suspend = sh_mmcif_suspend,
1502 	.resume = sh_mmcif_resume,
1503 };
1504 
1505 static struct platform_driver sh_mmcif_driver = {
1506 	.probe		= sh_mmcif_probe,
1507 	.remove		= sh_mmcif_remove,
1508 	.driver		= {
1509 		.name	= DRIVER_NAME,
1510 		.pm	= &sh_mmcif_dev_pm_ops,
1511 		.owner	= THIS_MODULE,
1512 		.of_match_table = mmcif_of_match,
1513 	},
1514 };
1515 
1516 module_platform_driver(sh_mmcif_driver);
1517 
1518 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1519 MODULE_LICENSE("GPL");
1520 MODULE_ALIAS("platform:" DRIVER_NAME);
1521 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1522