1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale eSDHC controller driver.
4  *
5  * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
6  * Copyright (c) 2009 MontaVista Software, Inc.
7  *
8  * Authors: Xiaobo Xie <X.Xie@freescale.com>
9  *	    Anton Vorontsov <avorontsov@ru.mvista.com>
10  */
11 
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/delay.h>
17 #include <linux/module.h>
18 #include <linux/sys_soc.h>
19 #include <linux/clk.h>
20 #include <linux/ktime.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/mmc.h>
24 #include "sdhci-pltfm.h"
25 #include "sdhci-esdhc.h"
26 
27 #define VENDOR_V_22	0x12
28 #define VENDOR_V_23	0x13
29 
30 #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
31 
32 struct esdhc_clk_fixup {
33 	const unsigned int sd_dflt_max_clk;
34 	const unsigned int max_clk[MMC_TIMING_NUM];
35 };
36 
37 static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
38 	.sd_dflt_max_clk = 25000000,
39 	.max_clk[MMC_TIMING_MMC_HS] = 46500000,
40 	.max_clk[MMC_TIMING_SD_HS] = 46500000,
41 };
42 
43 static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
44 	.sd_dflt_max_clk = 25000000,
45 	.max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
46 	.max_clk[MMC_TIMING_MMC_HS200] = 167000000,
47 };
48 
49 static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
50 	.sd_dflt_max_clk = 25000000,
51 	.max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
52 	.max_clk[MMC_TIMING_MMC_HS200] = 125000000,
53 };
54 
55 static const struct esdhc_clk_fixup p1010_esdhc_clk = {
56 	.sd_dflt_max_clk = 20000000,
57 	.max_clk[MMC_TIMING_LEGACY] = 20000000,
58 	.max_clk[MMC_TIMING_MMC_HS] = 42000000,
59 	.max_clk[MMC_TIMING_SD_HS] = 40000000,
60 };
61 
62 static const struct of_device_id sdhci_esdhc_of_match[] = {
63 	{ .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
64 	{ .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
65 	{ .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
66 	{ .compatible = "fsl,p1010-esdhc",   .data = &p1010_esdhc_clk},
67 	{ .compatible = "fsl,mpc8379-esdhc" },
68 	{ .compatible = "fsl,mpc8536-esdhc" },
69 	{ .compatible = "fsl,esdhc" },
70 	{ }
71 };
72 MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
73 
74 struct sdhci_esdhc {
75 	u8 vendor_ver;
76 	u8 spec_ver;
77 	bool quirk_incorrect_hostver;
78 	bool quirk_limited_clk_division;
79 	bool quirk_unreliable_pulse_detection;
80 	bool quirk_tuning_erratum_type1;
81 	bool quirk_tuning_erratum_type2;
82 	bool quirk_ignore_data_inhibit;
83 	bool in_sw_tuning;
84 	unsigned int peripheral_clock;
85 	const struct esdhc_clk_fixup *clk_fixup;
86 	u32 div_ratio;
87 };
88 
89 /**
90  * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
91  *		       to make it compatible with SD spec.
92  *
93  * @host: pointer to sdhci_host
94  * @spec_reg: SD spec register address
95  * @value: 32bit eSDHC register value on spec_reg address
96  *
97  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
98  * registers are 32 bits. There are differences in register size, register
99  * address, register function, bit position and function between eSDHC spec
100  * and SD spec.
101  *
102  * Return a fixed up register value
103  */
104 static u32 esdhc_readl_fixup(struct sdhci_host *host,
105 				     int spec_reg, u32 value)
106 {
107 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
108 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
109 	u32 ret;
110 
111 	/*
112 	 * The bit of ADMA flag in eSDHC is not compatible with standard
113 	 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
114 	 * supported by eSDHC.
115 	 * And for many FSL eSDHC controller, the reset value of field
116 	 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
117 	 * only these vendor version is greater than 2.2/0x12 support ADMA.
118 	 */
119 	if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
120 		if (esdhc->vendor_ver > VENDOR_V_22) {
121 			ret = value | SDHCI_CAN_DO_ADMA2;
122 			return ret;
123 		}
124 	}
125 	/*
126 	 * The DAT[3:0] line signal levels and the CMD line signal level are
127 	 * not compatible with standard SDHC register. The line signal levels
128 	 * DAT[7:0] are at bits 31:24 and the command line signal level is at
129 	 * bit 23. All other bits are the same as in the standard SDHC
130 	 * register.
131 	 */
132 	if (spec_reg == SDHCI_PRESENT_STATE) {
133 		ret = value & 0x000fffff;
134 		ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
135 		ret |= (value << 1) & SDHCI_CMD_LVL;
136 		return ret;
137 	}
138 
139 	/*
140 	 * DTS properties of mmc host are used to enable each speed mode
141 	 * according to soc and board capability. So clean up
142 	 * SDR50/SDR104/DDR50 support bits here.
143 	 */
144 	if (spec_reg == SDHCI_CAPABILITIES_1) {
145 		ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
146 				SDHCI_SUPPORT_DDR50);
147 		return ret;
148 	}
149 
150 	/*
151 	 * Some controllers have unreliable Data Line Active
152 	 * bit for commands with busy signal. This affects
153 	 * Command Inhibit (data) bit. Just ignore it since
154 	 * MMC core driver has already polled card status
155 	 * with CMD13 after any command with busy siganl.
156 	 */
157 	if ((spec_reg == SDHCI_PRESENT_STATE) &&
158 	(esdhc->quirk_ignore_data_inhibit == true)) {
159 		ret = value & ~SDHCI_DATA_INHIBIT;
160 		return ret;
161 	}
162 
163 	ret = value;
164 	return ret;
165 }
166 
167 static u16 esdhc_readw_fixup(struct sdhci_host *host,
168 				     int spec_reg, u32 value)
169 {
170 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
171 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
172 	u16 ret;
173 	int shift = (spec_reg & 0x2) * 8;
174 
175 	if (spec_reg == SDHCI_HOST_VERSION)
176 		ret = value & 0xffff;
177 	else
178 		ret = (value >> shift) & 0xffff;
179 	/* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
180 	 * vendor version and spec version information.
181 	 */
182 	if ((spec_reg == SDHCI_HOST_VERSION) &&
183 	    (esdhc->quirk_incorrect_hostver))
184 		ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
185 	return ret;
186 }
187 
188 static u8 esdhc_readb_fixup(struct sdhci_host *host,
189 				     int spec_reg, u32 value)
190 {
191 	u8 ret;
192 	u8 dma_bits;
193 	int shift = (spec_reg & 0x3) * 8;
194 
195 	ret = (value >> shift) & 0xff;
196 
197 	/*
198 	 * "DMA select" locates at offset 0x28 in SD specification, but on
199 	 * P5020 or P3041, it locates at 0x29.
200 	 */
201 	if (spec_reg == SDHCI_HOST_CONTROL) {
202 		/* DMA select is 22,23 bits in Protocol Control Register */
203 		dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
204 		/* fixup the result */
205 		ret &= ~SDHCI_CTRL_DMA_MASK;
206 		ret |= dma_bits;
207 	}
208 	return ret;
209 }
210 
211 /**
212  * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
213  *			written into eSDHC register.
214  *
215  * @host: pointer to sdhci_host
216  * @spec_reg: SD spec register address
217  * @value: 8/16/32bit SD spec register value that would be written
218  * @old_value: 32bit eSDHC register value on spec_reg address
219  *
220  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
221  * registers are 32 bits. There are differences in register size, register
222  * address, register function, bit position and function between eSDHC spec
223  * and SD spec.
224  *
225  * Return a fixed up register value
226  */
227 static u32 esdhc_writel_fixup(struct sdhci_host *host,
228 				     int spec_reg, u32 value, u32 old_value)
229 {
230 	u32 ret;
231 
232 	/*
233 	 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
234 	 * when SYSCTL[RSTD] is set for some special operations.
235 	 * No any impact on other operation.
236 	 */
237 	if (spec_reg == SDHCI_INT_ENABLE)
238 		ret = value | SDHCI_INT_BLK_GAP;
239 	else
240 		ret = value;
241 
242 	return ret;
243 }
244 
245 static u32 esdhc_writew_fixup(struct sdhci_host *host,
246 				     int spec_reg, u16 value, u32 old_value)
247 {
248 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
249 	int shift = (spec_reg & 0x2) * 8;
250 	u32 ret;
251 
252 	switch (spec_reg) {
253 	case SDHCI_TRANSFER_MODE:
254 		/*
255 		 * Postpone this write, we must do it together with a
256 		 * command write that is down below. Return old value.
257 		 */
258 		pltfm_host->xfer_mode_shadow = value;
259 		return old_value;
260 	case SDHCI_COMMAND:
261 		ret = (value << 16) | pltfm_host->xfer_mode_shadow;
262 		return ret;
263 	}
264 
265 	ret = old_value & (~(0xffff << shift));
266 	ret |= (value << shift);
267 
268 	if (spec_reg == SDHCI_BLOCK_SIZE) {
269 		/*
270 		 * Two last DMA bits are reserved, and first one is used for
271 		 * non-standard blksz of 4096 bytes that we don't support
272 		 * yet. So clear the DMA boundary bits.
273 		 */
274 		ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
275 	}
276 	return ret;
277 }
278 
279 static u32 esdhc_writeb_fixup(struct sdhci_host *host,
280 				     int spec_reg, u8 value, u32 old_value)
281 {
282 	u32 ret;
283 	u32 dma_bits;
284 	u8 tmp;
285 	int shift = (spec_reg & 0x3) * 8;
286 
287 	/*
288 	 * eSDHC doesn't have a standard power control register, so we do
289 	 * nothing here to avoid incorrect operation.
290 	 */
291 	if (spec_reg == SDHCI_POWER_CONTROL)
292 		return old_value;
293 	/*
294 	 * "DMA select" location is offset 0x28 in SD specification, but on
295 	 * P5020 or P3041, it's located at 0x29.
296 	 */
297 	if (spec_reg == SDHCI_HOST_CONTROL) {
298 		/*
299 		 * If host control register is not standard, exit
300 		 * this function
301 		 */
302 		if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
303 			return old_value;
304 
305 		/* DMA select is 22,23 bits in Protocol Control Register */
306 		dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
307 		ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
308 		tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
309 		      (old_value & SDHCI_CTRL_DMA_MASK);
310 		ret = (ret & (~0xff)) | tmp;
311 
312 		/* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
313 		ret &= ~ESDHC_HOST_CONTROL_RES;
314 		return ret;
315 	}
316 
317 	ret = (old_value & (~(0xff << shift))) | (value << shift);
318 	return ret;
319 }
320 
321 static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
322 {
323 	u32 ret;
324 	u32 value;
325 
326 	if (reg == SDHCI_CAPABILITIES_1)
327 		value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
328 	else
329 		value = ioread32be(host->ioaddr + reg);
330 
331 	ret = esdhc_readl_fixup(host, reg, value);
332 
333 	return ret;
334 }
335 
336 static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
337 {
338 	u32 ret;
339 	u32 value;
340 
341 	if (reg == SDHCI_CAPABILITIES_1)
342 		value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
343 	else
344 		value = ioread32(host->ioaddr + reg);
345 
346 	ret = esdhc_readl_fixup(host, reg, value);
347 
348 	return ret;
349 }
350 
351 static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
352 {
353 	u16 ret;
354 	u32 value;
355 	int base = reg & ~0x3;
356 
357 	value = ioread32be(host->ioaddr + base);
358 	ret = esdhc_readw_fixup(host, reg, value);
359 	return ret;
360 }
361 
362 static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
363 {
364 	u16 ret;
365 	u32 value;
366 	int base = reg & ~0x3;
367 
368 	value = ioread32(host->ioaddr + base);
369 	ret = esdhc_readw_fixup(host, reg, value);
370 	return ret;
371 }
372 
373 static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
374 {
375 	u8 ret;
376 	u32 value;
377 	int base = reg & ~0x3;
378 
379 	value = ioread32be(host->ioaddr + base);
380 	ret = esdhc_readb_fixup(host, reg, value);
381 	return ret;
382 }
383 
384 static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
385 {
386 	u8 ret;
387 	u32 value;
388 	int base = reg & ~0x3;
389 
390 	value = ioread32(host->ioaddr + base);
391 	ret = esdhc_readb_fixup(host, reg, value);
392 	return ret;
393 }
394 
395 static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
396 {
397 	u32 value;
398 
399 	value = esdhc_writel_fixup(host, reg, val, 0);
400 	iowrite32be(value, host->ioaddr + reg);
401 }
402 
403 static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
404 {
405 	u32 value;
406 
407 	value = esdhc_writel_fixup(host, reg, val, 0);
408 	iowrite32(value, host->ioaddr + reg);
409 }
410 
411 static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
412 {
413 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
414 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
415 	int base = reg & ~0x3;
416 	u32 value;
417 	u32 ret;
418 
419 	value = ioread32be(host->ioaddr + base);
420 	ret = esdhc_writew_fixup(host, reg, val, value);
421 	if (reg != SDHCI_TRANSFER_MODE)
422 		iowrite32be(ret, host->ioaddr + base);
423 
424 	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
425 	 * 1us later after ESDHC_EXTN is set.
426 	 */
427 	if (base == ESDHC_SYSTEM_CONTROL_2) {
428 		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
429 		    esdhc->in_sw_tuning) {
430 			udelay(1);
431 			ret |= ESDHC_SMPCLKSEL;
432 			iowrite32be(ret, host->ioaddr + base);
433 		}
434 	}
435 }
436 
437 static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
438 {
439 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
440 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
441 	int base = reg & ~0x3;
442 	u32 value;
443 	u32 ret;
444 
445 	value = ioread32(host->ioaddr + base);
446 	ret = esdhc_writew_fixup(host, reg, val, value);
447 	if (reg != SDHCI_TRANSFER_MODE)
448 		iowrite32(ret, host->ioaddr + base);
449 
450 	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
451 	 * 1us later after ESDHC_EXTN is set.
452 	 */
453 	if (base == ESDHC_SYSTEM_CONTROL_2) {
454 		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
455 		    esdhc->in_sw_tuning) {
456 			udelay(1);
457 			ret |= ESDHC_SMPCLKSEL;
458 			iowrite32(ret, host->ioaddr + base);
459 		}
460 	}
461 }
462 
463 static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
464 {
465 	int base = reg & ~0x3;
466 	u32 value;
467 	u32 ret;
468 
469 	value = ioread32be(host->ioaddr + base);
470 	ret = esdhc_writeb_fixup(host, reg, val, value);
471 	iowrite32be(ret, host->ioaddr + base);
472 }
473 
474 static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
475 {
476 	int base = reg & ~0x3;
477 	u32 value;
478 	u32 ret;
479 
480 	value = ioread32(host->ioaddr + base);
481 	ret = esdhc_writeb_fixup(host, reg, val, value);
482 	iowrite32(ret, host->ioaddr + base);
483 }
484 
485 /*
486  * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
487  * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
488  * and Block Gap Event(IRQSTAT[BGE]) are also set.
489  * For Continue, apply soft reset for data(SYSCTL[RSTD]);
490  * and re-issue the entire read transaction from beginning.
491  */
492 static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
493 {
494 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
495 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
496 	bool applicable;
497 	dma_addr_t dmastart;
498 	dma_addr_t dmanow;
499 
500 	applicable = (intmask & SDHCI_INT_DATA_END) &&
501 		     (intmask & SDHCI_INT_BLK_GAP) &&
502 		     (esdhc->vendor_ver == VENDOR_V_23);
503 	if (!applicable)
504 		return;
505 
506 	host->data->error = 0;
507 	dmastart = sg_dma_address(host->data->sg);
508 	dmanow = dmastart + host->data->bytes_xfered;
509 	/*
510 	 * Force update to the next DMA block boundary.
511 	 */
512 	dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
513 		SDHCI_DEFAULT_BOUNDARY_SIZE;
514 	host->data->bytes_xfered = dmanow - dmastart;
515 	sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
516 }
517 
518 static int esdhc_of_enable_dma(struct sdhci_host *host)
519 {
520 	u32 value;
521 	struct device *dev = mmc_dev(host->mmc);
522 
523 	if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
524 	    of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc"))
525 		dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
526 
527 	value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
528 
529 	if (of_dma_is_coherent(dev->of_node))
530 		value |= ESDHC_DMA_SNOOP;
531 	else
532 		value &= ~ESDHC_DMA_SNOOP;
533 
534 	sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
535 	return 0;
536 }
537 
538 static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
539 {
540 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
541 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
542 
543 	if (esdhc->peripheral_clock)
544 		return esdhc->peripheral_clock;
545 	else
546 		return pltfm_host->clock;
547 }
548 
549 static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
550 {
551 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
552 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
553 	unsigned int clock;
554 
555 	if (esdhc->peripheral_clock)
556 		clock = esdhc->peripheral_clock;
557 	else
558 		clock = pltfm_host->clock;
559 	return clock / 256 / 16;
560 }
561 
562 static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
563 {
564 	u32 val;
565 	ktime_t timeout;
566 
567 	val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
568 
569 	if (enable)
570 		val |= ESDHC_CLOCK_SDCLKEN;
571 	else
572 		val &= ~ESDHC_CLOCK_SDCLKEN;
573 
574 	sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
575 
576 	/* Wait max 20 ms */
577 	timeout = ktime_add_ms(ktime_get(), 20);
578 	val = ESDHC_CLOCK_STABLE;
579 	while  (1) {
580 		bool timedout = ktime_after(ktime_get(), timeout);
581 
582 		if (sdhci_readl(host, ESDHC_PRSSTAT) & val)
583 			break;
584 		if (timedout) {
585 			pr_err("%s: Internal clock never stabilised.\n",
586 				mmc_hostname(host->mmc));
587 			break;
588 		}
589 		udelay(10);
590 	}
591 }
592 
593 static void esdhc_flush_async_fifo(struct sdhci_host *host)
594 {
595 	ktime_t timeout;
596 	u32 val;
597 
598 	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
599 	val |= ESDHC_FLUSH_ASYNC_FIFO;
600 	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
601 
602 	/* Wait max 20 ms */
603 	timeout = ktime_add_ms(ktime_get(), 20);
604 	while (1) {
605 		bool timedout = ktime_after(ktime_get(), timeout);
606 
607 		if (!(sdhci_readl(host, ESDHC_DMA_SYSCTL) &
608 		      ESDHC_FLUSH_ASYNC_FIFO))
609 			break;
610 		if (timedout) {
611 			pr_err("%s: flushing asynchronous FIFO timeout.\n",
612 				mmc_hostname(host->mmc));
613 			break;
614 		}
615 		usleep_range(10, 20);
616 	}
617 }
618 
619 static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
620 {
621 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
622 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
623 	int pre_div = 1;
624 	int div = 1;
625 	int division;
626 	ktime_t timeout;
627 	long fixup = 0;
628 	u32 temp;
629 
630 	host->mmc->actual_clock = 0;
631 
632 	if (clock == 0) {
633 		esdhc_clock_enable(host, false);
634 		return;
635 	}
636 
637 	/* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */
638 	if (esdhc->vendor_ver < VENDOR_V_23)
639 		pre_div = 2;
640 
641 	if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
642 		esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
643 		fixup = esdhc->clk_fixup->sd_dflt_max_clk;
644 	else if (esdhc->clk_fixup)
645 		fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
646 
647 	if (fixup && clock > fixup)
648 		clock = fixup;
649 
650 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
651 	temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
652 		  ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK);
653 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
654 
655 	while (host->max_clk / pre_div / 16 > clock && pre_div < 256)
656 		pre_div *= 2;
657 
658 	while (host->max_clk / pre_div / div > clock && div < 16)
659 		div++;
660 
661 	if (esdhc->quirk_limited_clk_division &&
662 	    clock == MMC_HS200_MAX_DTR &&
663 	    (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
664 	     host->flags & SDHCI_HS400_TUNING)) {
665 		division = pre_div * div;
666 		if (division <= 4) {
667 			pre_div = 4;
668 			div = 1;
669 		} else if (division <= 8) {
670 			pre_div = 4;
671 			div = 2;
672 		} else if (division <= 12) {
673 			pre_div = 4;
674 			div = 3;
675 		} else {
676 			pr_warn("%s: using unsupported clock division.\n",
677 				mmc_hostname(host->mmc));
678 		}
679 	}
680 
681 	dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
682 		clock, host->max_clk / pre_div / div);
683 	host->mmc->actual_clock = host->max_clk / pre_div / div;
684 	esdhc->div_ratio = pre_div * div;
685 	pre_div >>= 1;
686 	div--;
687 
688 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
689 	temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN
690 		| (div << ESDHC_DIVIDER_SHIFT)
691 		| (pre_div << ESDHC_PREDIV_SHIFT));
692 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
693 
694 	if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
695 	    clock == MMC_HS200_MAX_DTR) {
696 		temp = sdhci_readl(host, ESDHC_TBCTL);
697 		sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
698 		temp = sdhci_readl(host, ESDHC_SDCLKCTL);
699 		sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
700 		esdhc_clock_enable(host, true);
701 
702 		temp = sdhci_readl(host, ESDHC_DLLCFG0);
703 		temp |= ESDHC_DLL_ENABLE;
704 		if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
705 			temp |= ESDHC_DLL_FREQ_SEL;
706 		sdhci_writel(host, temp, ESDHC_DLLCFG0);
707 		temp = sdhci_readl(host, ESDHC_TBCTL);
708 		sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
709 
710 		esdhc_clock_enable(host, false);
711 		esdhc_flush_async_fifo(host);
712 	}
713 
714 	/* Wait max 20 ms */
715 	timeout = ktime_add_ms(ktime_get(), 20);
716 	while (1) {
717 		bool timedout = ktime_after(ktime_get(), timeout);
718 
719 		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
720 			break;
721 		if (timedout) {
722 			pr_err("%s: Internal clock never stabilised.\n",
723 				mmc_hostname(host->mmc));
724 			return;
725 		}
726 		udelay(10);
727 	}
728 
729 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
730 	temp |= ESDHC_CLOCK_SDCLKEN;
731 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
732 }
733 
734 static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
735 {
736 	u32 ctrl;
737 
738 	ctrl = sdhci_readl(host, ESDHC_PROCTL);
739 	ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
740 	switch (width) {
741 	case MMC_BUS_WIDTH_8:
742 		ctrl |= ESDHC_CTRL_8BITBUS;
743 		break;
744 
745 	case MMC_BUS_WIDTH_4:
746 		ctrl |= ESDHC_CTRL_4BITBUS;
747 		break;
748 
749 	default:
750 		break;
751 	}
752 
753 	sdhci_writel(host, ctrl, ESDHC_PROCTL);
754 }
755 
756 static void esdhc_reset(struct sdhci_host *host, u8 mask)
757 {
758 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
759 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
760 	u32 val;
761 
762 	sdhci_reset(host, mask);
763 
764 	sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
765 	sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
766 
767 	if (mask & SDHCI_RESET_ALL) {
768 		val = sdhci_readl(host, ESDHC_TBCTL);
769 		val &= ~ESDHC_TB_EN;
770 		sdhci_writel(host, val, ESDHC_TBCTL);
771 
772 		if (esdhc->quirk_unreliable_pulse_detection) {
773 			val = sdhci_readl(host, ESDHC_DLLCFG1);
774 			val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
775 			sdhci_writel(host, val, ESDHC_DLLCFG1);
776 		}
777 	}
778 }
779 
780 /* The SCFG, Supplemental Configuration Unit, provides SoC specific
781  * configuration and status registers for the device. There is a
782  * SDHC IO VSEL control register on SCFG for some platforms. It's
783  * used to support SDHC IO voltage switching.
784  */
785 static const struct of_device_id scfg_device_ids[] = {
786 	{ .compatible = "fsl,t1040-scfg", },
787 	{ .compatible = "fsl,ls1012a-scfg", },
788 	{ .compatible = "fsl,ls1046a-scfg", },
789 	{}
790 };
791 
792 /* SDHC IO VSEL control register definition */
793 #define SCFG_SDHCIOVSELCR	0x408
794 #define SDHCIOVSELCR_TGLEN	0x80000000
795 #define SDHCIOVSELCR_VSELVAL	0x60000000
796 #define SDHCIOVSELCR_SDHC_VS	0x00000001
797 
798 static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
799 				       struct mmc_ios *ios)
800 {
801 	struct sdhci_host *host = mmc_priv(mmc);
802 	struct device_node *scfg_node;
803 	void __iomem *scfg_base = NULL;
804 	u32 sdhciovselcr;
805 	u32 val;
806 
807 	/*
808 	 * Signal Voltage Switching is only applicable for Host Controllers
809 	 * v3.00 and above.
810 	 */
811 	if (host->version < SDHCI_SPEC_300)
812 		return 0;
813 
814 	val = sdhci_readl(host, ESDHC_PROCTL);
815 
816 	switch (ios->signal_voltage) {
817 	case MMC_SIGNAL_VOLTAGE_330:
818 		val &= ~ESDHC_VOLT_SEL;
819 		sdhci_writel(host, val, ESDHC_PROCTL);
820 		return 0;
821 	case MMC_SIGNAL_VOLTAGE_180:
822 		scfg_node = of_find_matching_node(NULL, scfg_device_ids);
823 		if (scfg_node)
824 			scfg_base = of_iomap(scfg_node, 0);
825 		if (scfg_base) {
826 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
827 				       SDHCIOVSELCR_VSELVAL;
828 			iowrite32be(sdhciovselcr,
829 				scfg_base + SCFG_SDHCIOVSELCR);
830 
831 			val |= ESDHC_VOLT_SEL;
832 			sdhci_writel(host, val, ESDHC_PROCTL);
833 			mdelay(5);
834 
835 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
836 				       SDHCIOVSELCR_SDHC_VS;
837 			iowrite32be(sdhciovselcr,
838 				scfg_base + SCFG_SDHCIOVSELCR);
839 			iounmap(scfg_base);
840 		} else {
841 			val |= ESDHC_VOLT_SEL;
842 			sdhci_writel(host, val, ESDHC_PROCTL);
843 		}
844 		return 0;
845 	default:
846 		return 0;
847 	}
848 }
849 
850 static struct soc_device_attribute soc_tuning_erratum_type1[] = {
851 	{ .family = "QorIQ T1023", .revision = "1.0", },
852 	{ .family = "QorIQ T1040", .revision = "1.0", },
853 	{ .family = "QorIQ T2080", .revision = "1.0", },
854 	{ .family = "QorIQ LS1021A", .revision = "1.0", },
855 	{ },
856 };
857 
858 static struct soc_device_attribute soc_tuning_erratum_type2[] = {
859 	{ .family = "QorIQ LS1012A", .revision = "1.0", },
860 	{ .family = "QorIQ LS1043A", .revision = "1.*", },
861 	{ .family = "QorIQ LS1046A", .revision = "1.0", },
862 	{ .family = "QorIQ LS1080A", .revision = "1.0", },
863 	{ .family = "QorIQ LS2080A", .revision = "1.0", },
864 	{ .family = "QorIQ LA1575A", .revision = "1.0", },
865 	{ },
866 };
867 
868 static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
869 {
870 	u32 val;
871 
872 	esdhc_clock_enable(host, false);
873 	esdhc_flush_async_fifo(host);
874 
875 	val = sdhci_readl(host, ESDHC_TBCTL);
876 	if (enable)
877 		val |= ESDHC_TB_EN;
878 	else
879 		val &= ~ESDHC_TB_EN;
880 	sdhci_writel(host, val, ESDHC_TBCTL);
881 
882 	esdhc_clock_enable(host, true);
883 }
884 
885 static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start,
886 				    u8 *window_end)
887 {
888 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
889 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
890 	u8 tbstat_15_8, tbstat_7_0;
891 	u32 val;
892 
893 	if (esdhc->quirk_tuning_erratum_type1) {
894 		*window_start = 5 * esdhc->div_ratio;
895 		*window_end = 3 * esdhc->div_ratio;
896 		return;
897 	}
898 
899 	/* Write TBCTL[11:8]=4'h8 */
900 	val = sdhci_readl(host, ESDHC_TBCTL);
901 	val &= ~(0xf << 8);
902 	val |= 8 << 8;
903 	sdhci_writel(host, val, ESDHC_TBCTL);
904 
905 	mdelay(1);
906 
907 	/* Read TBCTL[31:0] register and rewrite again */
908 	val = sdhci_readl(host, ESDHC_TBCTL);
909 	sdhci_writel(host, val, ESDHC_TBCTL);
910 
911 	mdelay(1);
912 
913 	/* Read the TBSTAT[31:0] register twice */
914 	val = sdhci_readl(host, ESDHC_TBSTAT);
915 	val = sdhci_readl(host, ESDHC_TBSTAT);
916 
917 	/* Reset data lines by setting ESDHCCTL[RSTD] */
918 	sdhci_reset(host, SDHCI_RESET_DATA);
919 	/* Write 32'hFFFF_FFFF to IRQSTAT register */
920 	sdhci_writel(host, 0xFFFFFFFF, SDHCI_INT_STATUS);
921 
922 	/* If TBSTAT[15:8]-TBSTAT[7:0] > 4 * div_ratio
923 	 * or TBSTAT[7:0]-TBSTAT[15:8] > 4 * div_ratio,
924 	 * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio
925 	 * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio.
926 	 */
927 	tbstat_7_0 = val & 0xff;
928 	tbstat_15_8 = (val >> 8) & 0xff;
929 
930 	if (abs(tbstat_15_8 - tbstat_7_0) > (4 * esdhc->div_ratio)) {
931 		*window_start = 8 * esdhc->div_ratio;
932 		*window_end = 4 * esdhc->div_ratio;
933 	} else {
934 		*window_start = 5 * esdhc->div_ratio;
935 		*window_end = 3 * esdhc->div_ratio;
936 	}
937 }
938 
939 static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode,
940 				   u8 window_start, u8 window_end)
941 {
942 	struct sdhci_host *host = mmc_priv(mmc);
943 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
944 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
945 	u32 val;
946 	int ret;
947 
948 	/* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */
949 	val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) &
950 	      ESDHC_WNDW_STRT_PTR_MASK;
951 	val |= window_end & ESDHC_WNDW_END_PTR_MASK;
952 	sdhci_writel(host, val, ESDHC_TBPTR);
953 
954 	/* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */
955 	val = sdhci_readl(host, ESDHC_TBCTL);
956 	val &= ~ESDHC_TB_MODE_MASK;
957 	val |= ESDHC_TB_MODE_SW;
958 	sdhci_writel(host, val, ESDHC_TBCTL);
959 
960 	esdhc->in_sw_tuning = true;
961 	ret = sdhci_execute_tuning(mmc, opcode);
962 	esdhc->in_sw_tuning = false;
963 	return ret;
964 }
965 
966 static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
967 {
968 	struct sdhci_host *host = mmc_priv(mmc);
969 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
970 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
971 	u8 window_start, window_end;
972 	int ret, retries = 1;
973 	bool hs400_tuning;
974 	unsigned int clk;
975 	u32 val;
976 
977 	/* For tuning mode, the sd clock divisor value
978 	 * must be larger than 3 according to reference manual.
979 	 */
980 	clk = esdhc->peripheral_clock / 3;
981 	if (host->clock > clk)
982 		esdhc_of_set_clock(host, clk);
983 
984 	esdhc_tuning_block_enable(host, true);
985 
986 	hs400_tuning = host->flags & SDHCI_HS400_TUNING;
987 
988 	do {
989 		if (esdhc->quirk_limited_clk_division &&
990 		    hs400_tuning)
991 			esdhc_of_set_clock(host, host->clock);
992 
993 		/* Do HW tuning */
994 		val = sdhci_readl(host, ESDHC_TBCTL);
995 		val &= ~ESDHC_TB_MODE_MASK;
996 		val |= ESDHC_TB_MODE_3;
997 		sdhci_writel(host, val, ESDHC_TBCTL);
998 
999 		ret = sdhci_execute_tuning(mmc, opcode);
1000 		if (ret)
1001 			break;
1002 
1003 		/* If HW tuning fails and triggers erratum,
1004 		 * try workaround.
1005 		 */
1006 		ret = host->tuning_err;
1007 		if (ret == -EAGAIN &&
1008 		    (esdhc->quirk_tuning_erratum_type1 ||
1009 		     esdhc->quirk_tuning_erratum_type2)) {
1010 			/* Recover HS400 tuning flag */
1011 			if (hs400_tuning)
1012 				host->flags |= SDHCI_HS400_TUNING;
1013 			pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n",
1014 				mmc_hostname(mmc));
1015 			/* Do SW tuning */
1016 			esdhc_prepare_sw_tuning(host, &window_start,
1017 						&window_end);
1018 			ret = esdhc_execute_sw_tuning(mmc, opcode,
1019 						      window_start,
1020 						      window_end);
1021 			if (ret)
1022 				break;
1023 
1024 			/* Retry both HW/SW tuning with reduced clock. */
1025 			ret = host->tuning_err;
1026 			if (ret == -EAGAIN && retries) {
1027 				/* Recover HS400 tuning flag */
1028 				if (hs400_tuning)
1029 					host->flags |= SDHCI_HS400_TUNING;
1030 
1031 				clk = host->max_clk / (esdhc->div_ratio + 1);
1032 				esdhc_of_set_clock(host, clk);
1033 				pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n",
1034 					mmc_hostname(mmc));
1035 			} else {
1036 				break;
1037 			}
1038 		} else {
1039 			break;
1040 		}
1041 	} while (retries--);
1042 
1043 	if (ret) {
1044 		esdhc_tuning_block_enable(host, false);
1045 	} else if (hs400_tuning) {
1046 		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1047 		val |= ESDHC_FLW_CTL_BG;
1048 		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1049 	}
1050 
1051 	return ret;
1052 }
1053 
1054 static void esdhc_set_uhs_signaling(struct sdhci_host *host,
1055 				   unsigned int timing)
1056 {
1057 	if (timing == MMC_TIMING_MMC_HS400)
1058 		esdhc_tuning_block_enable(host, true);
1059 	else
1060 		sdhci_set_uhs_signaling(host, timing);
1061 }
1062 
1063 static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
1064 {
1065 	u32 command;
1066 
1067 	if (of_find_compatible_node(NULL, NULL,
1068 				"fsl,p2020-esdhc")) {
1069 		command = SDHCI_GET_CMD(sdhci_readw(host,
1070 					SDHCI_COMMAND));
1071 		if (command == MMC_WRITE_MULTIPLE_BLOCK &&
1072 				sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
1073 				intmask & SDHCI_INT_DATA_END) {
1074 			intmask &= ~SDHCI_INT_DATA_END;
1075 			sdhci_writel(host, SDHCI_INT_DATA_END,
1076 					SDHCI_INT_STATUS);
1077 		}
1078 	}
1079 	return intmask;
1080 }
1081 
1082 #ifdef CONFIG_PM_SLEEP
1083 static u32 esdhc_proctl;
1084 static int esdhc_of_suspend(struct device *dev)
1085 {
1086 	struct sdhci_host *host = dev_get_drvdata(dev);
1087 
1088 	esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
1089 
1090 	if (host->tuning_mode != SDHCI_TUNING_MODE_3)
1091 		mmc_retune_needed(host->mmc);
1092 
1093 	return sdhci_suspend_host(host);
1094 }
1095 
1096 static int esdhc_of_resume(struct device *dev)
1097 {
1098 	struct sdhci_host *host = dev_get_drvdata(dev);
1099 	int ret = sdhci_resume_host(host);
1100 
1101 	if (ret == 0) {
1102 		/* Isn't this already done by sdhci_resume_host() ? --rmk */
1103 		esdhc_of_enable_dma(host);
1104 		sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
1105 	}
1106 	return ret;
1107 }
1108 #endif
1109 
1110 static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
1111 			esdhc_of_suspend,
1112 			esdhc_of_resume);
1113 
1114 static const struct sdhci_ops sdhci_esdhc_be_ops = {
1115 	.read_l = esdhc_be_readl,
1116 	.read_w = esdhc_be_readw,
1117 	.read_b = esdhc_be_readb,
1118 	.write_l = esdhc_be_writel,
1119 	.write_w = esdhc_be_writew,
1120 	.write_b = esdhc_be_writeb,
1121 	.set_clock = esdhc_of_set_clock,
1122 	.enable_dma = esdhc_of_enable_dma,
1123 	.get_max_clock = esdhc_of_get_max_clock,
1124 	.get_min_clock = esdhc_of_get_min_clock,
1125 	.adma_workaround = esdhc_of_adma_workaround,
1126 	.set_bus_width = esdhc_pltfm_set_bus_width,
1127 	.reset = esdhc_reset,
1128 	.set_uhs_signaling = esdhc_set_uhs_signaling,
1129 	.irq = esdhc_irq,
1130 };
1131 
1132 static const struct sdhci_ops sdhci_esdhc_le_ops = {
1133 	.read_l = esdhc_le_readl,
1134 	.read_w = esdhc_le_readw,
1135 	.read_b = esdhc_le_readb,
1136 	.write_l = esdhc_le_writel,
1137 	.write_w = esdhc_le_writew,
1138 	.write_b = esdhc_le_writeb,
1139 	.set_clock = esdhc_of_set_clock,
1140 	.enable_dma = esdhc_of_enable_dma,
1141 	.get_max_clock = esdhc_of_get_max_clock,
1142 	.get_min_clock = esdhc_of_get_min_clock,
1143 	.adma_workaround = esdhc_of_adma_workaround,
1144 	.set_bus_width = esdhc_pltfm_set_bus_width,
1145 	.reset = esdhc_reset,
1146 	.set_uhs_signaling = esdhc_set_uhs_signaling,
1147 	.irq = esdhc_irq,
1148 };
1149 
1150 static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
1151 	.quirks = ESDHC_DEFAULT_QUIRKS |
1152 #ifdef CONFIG_PPC
1153 		  SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1154 #endif
1155 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1156 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1157 	.ops = &sdhci_esdhc_be_ops,
1158 };
1159 
1160 static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
1161 	.quirks = ESDHC_DEFAULT_QUIRKS |
1162 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1163 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1164 	.ops = &sdhci_esdhc_le_ops,
1165 };
1166 
1167 static struct soc_device_attribute soc_incorrect_hostver[] = {
1168 	{ .family = "QorIQ T4240", .revision = "1.0", },
1169 	{ .family = "QorIQ T4240", .revision = "2.0", },
1170 	{ },
1171 };
1172 
1173 static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1174 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1175 	{ .family = "QorIQ LX2160A", .revision = "2.0", },
1176 	{ .family = "QorIQ LS1028A", .revision = "1.0", },
1177 	{ },
1178 };
1179 
1180 static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1181 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1182 	{ },
1183 };
1184 
1185 static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1186 {
1187 	const struct of_device_id *match;
1188 	struct sdhci_pltfm_host *pltfm_host;
1189 	struct sdhci_esdhc *esdhc;
1190 	struct device_node *np;
1191 	struct clk *clk;
1192 	u32 val;
1193 	u16 host_ver;
1194 
1195 	pltfm_host = sdhci_priv(host);
1196 	esdhc = sdhci_pltfm_priv(pltfm_host);
1197 
1198 	host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1199 	esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1200 			     SDHCI_VENDOR_VER_SHIFT;
1201 	esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1202 	if (soc_device_match(soc_incorrect_hostver))
1203 		esdhc->quirk_incorrect_hostver = true;
1204 	else
1205 		esdhc->quirk_incorrect_hostver = false;
1206 
1207 	if (soc_device_match(soc_fixup_sdhc_clkdivs))
1208 		esdhc->quirk_limited_clk_division = true;
1209 	else
1210 		esdhc->quirk_limited_clk_division = false;
1211 
1212 	if (soc_device_match(soc_unreliable_pulse_detection))
1213 		esdhc->quirk_unreliable_pulse_detection = true;
1214 	else
1215 		esdhc->quirk_unreliable_pulse_detection = false;
1216 
1217 	match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
1218 	if (match)
1219 		esdhc->clk_fixup = match->data;
1220 	np = pdev->dev.of_node;
1221 	clk = of_clk_get(np, 0);
1222 	if (!IS_ERR(clk)) {
1223 		/*
1224 		 * esdhc->peripheral_clock would be assigned with a value
1225 		 * which is eSDHC base clock when use periperal clock.
1226 		 * For some platforms, the clock value got by common clk
1227 		 * API is peripheral clock while the eSDHC base clock is
1228 		 * 1/2 peripheral clock.
1229 		 */
1230 		if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") ||
1231 		    of_device_is_compatible(np, "fsl,ls1028a-esdhc"))
1232 			esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1233 		else
1234 			esdhc->peripheral_clock = clk_get_rate(clk);
1235 
1236 		clk_put(clk);
1237 	}
1238 
1239 	if (esdhc->peripheral_clock) {
1240 		esdhc_clock_enable(host, false);
1241 		val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1242 		val |= ESDHC_PERIPHERAL_CLK_SEL;
1243 		sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1244 		esdhc_clock_enable(host, true);
1245 	}
1246 }
1247 
1248 static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1249 {
1250 	esdhc_tuning_block_enable(mmc_priv(mmc), false);
1251 	return 0;
1252 }
1253 
1254 static int sdhci_esdhc_probe(struct platform_device *pdev)
1255 {
1256 	struct sdhci_host *host;
1257 	struct device_node *np;
1258 	struct sdhci_pltfm_host *pltfm_host;
1259 	struct sdhci_esdhc *esdhc;
1260 	int ret;
1261 
1262 	np = pdev->dev.of_node;
1263 
1264 	if (of_property_read_bool(np, "little-endian"))
1265 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1266 					sizeof(struct sdhci_esdhc));
1267 	else
1268 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1269 					sizeof(struct sdhci_esdhc));
1270 
1271 	if (IS_ERR(host))
1272 		return PTR_ERR(host);
1273 
1274 	host->mmc_host_ops.start_signal_voltage_switch =
1275 		esdhc_signal_voltage_switch;
1276 	host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1277 	host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1278 	host->tuning_delay = 1;
1279 
1280 	esdhc_init(pdev, host);
1281 
1282 	sdhci_get_of_property(pdev);
1283 
1284 	pltfm_host = sdhci_priv(host);
1285 	esdhc = sdhci_pltfm_priv(pltfm_host);
1286 	if (soc_device_match(soc_tuning_erratum_type1))
1287 		esdhc->quirk_tuning_erratum_type1 = true;
1288 	else
1289 		esdhc->quirk_tuning_erratum_type1 = false;
1290 
1291 	if (soc_device_match(soc_tuning_erratum_type2))
1292 		esdhc->quirk_tuning_erratum_type2 = true;
1293 	else
1294 		esdhc->quirk_tuning_erratum_type2 = false;
1295 
1296 	if (esdhc->vendor_ver == VENDOR_V_22)
1297 		host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1298 
1299 	if (esdhc->vendor_ver > VENDOR_V_22)
1300 		host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1301 
1302 	if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) {
1303 		host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1304 		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1305 	}
1306 
1307 	if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1308 	    of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1309 	    of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1310 	    of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1311 	    of_device_is_compatible(np, "fsl,t1040-esdhc"))
1312 		host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1313 
1314 	if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1315 		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1316 
1317 	esdhc->quirk_ignore_data_inhibit = false;
1318 	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1319 		/*
1320 		 * Freescale messed up with P2020 as it has a non-standard
1321 		 * host control register
1322 		 */
1323 		host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1324 		esdhc->quirk_ignore_data_inhibit = true;
1325 	}
1326 
1327 	/* call to generic mmc_of_parse to support additional capabilities */
1328 	ret = mmc_of_parse(host->mmc);
1329 	if (ret)
1330 		goto err;
1331 
1332 	mmc_of_parse_voltage(np, &host->ocr_mask);
1333 
1334 	ret = sdhci_add_host(host);
1335 	if (ret)
1336 		goto err;
1337 
1338 	return 0;
1339  err:
1340 	sdhci_pltfm_free(pdev);
1341 	return ret;
1342 }
1343 
1344 static struct platform_driver sdhci_esdhc_driver = {
1345 	.driver = {
1346 		.name = "sdhci-esdhc",
1347 		.of_match_table = sdhci_esdhc_of_match,
1348 		.pm = &esdhc_of_dev_pm_ops,
1349 	},
1350 	.probe = sdhci_esdhc_probe,
1351 	.remove = sdhci_pltfm_unregister,
1352 };
1353 
1354 module_platform_driver(sdhci_esdhc_driver);
1355 
1356 MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1357 MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1358 	      "Anton Vorontsov <avorontsov@ru.mvista.com>");
1359 MODULE_LICENSE("GPL v2");
1360