1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale eSDHC controller driver.
4  *
5  * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
6  * Copyright (c) 2009 MontaVista Software, Inc.
7  *
8  * Authors: Xiaobo Xie <X.Xie@freescale.com>
9  *	    Anton Vorontsov <avorontsov@ru.mvista.com>
10  */
11 
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/delay.h>
17 #include <linux/module.h>
18 #include <linux/sys_soc.h>
19 #include <linux/clk.h>
20 #include <linux/ktime.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/mmc.h>
24 #include "sdhci-pltfm.h"
25 #include "sdhci-esdhc.h"
26 
27 #define VENDOR_V_22	0x12
28 #define VENDOR_V_23	0x13
29 
30 #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
31 
32 struct esdhc_clk_fixup {
33 	const unsigned int sd_dflt_max_clk;
34 	const unsigned int max_clk[MMC_TIMING_NUM];
35 };
36 
37 static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
38 	.sd_dflt_max_clk = 25000000,
39 	.max_clk[MMC_TIMING_MMC_HS] = 46500000,
40 	.max_clk[MMC_TIMING_SD_HS] = 46500000,
41 };
42 
43 static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
44 	.sd_dflt_max_clk = 25000000,
45 	.max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
46 	.max_clk[MMC_TIMING_MMC_HS200] = 167000000,
47 };
48 
49 static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
50 	.sd_dflt_max_clk = 25000000,
51 	.max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
52 	.max_clk[MMC_TIMING_MMC_HS200] = 125000000,
53 };
54 
55 static const struct esdhc_clk_fixup p1010_esdhc_clk = {
56 	.sd_dflt_max_clk = 20000000,
57 	.max_clk[MMC_TIMING_LEGACY] = 20000000,
58 	.max_clk[MMC_TIMING_MMC_HS] = 42000000,
59 	.max_clk[MMC_TIMING_SD_HS] = 40000000,
60 };
61 
62 static const struct of_device_id sdhci_esdhc_of_match[] = {
63 	{ .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
64 	{ .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
65 	{ .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
66 	{ .compatible = "fsl,p1010-esdhc",   .data = &p1010_esdhc_clk},
67 	{ .compatible = "fsl,mpc8379-esdhc" },
68 	{ .compatible = "fsl,mpc8536-esdhc" },
69 	{ .compatible = "fsl,esdhc" },
70 	{ }
71 };
72 MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
73 
74 struct sdhci_esdhc {
75 	u8 vendor_ver;
76 	u8 spec_ver;
77 	bool quirk_incorrect_hostver;
78 	bool quirk_limited_clk_division;
79 	bool quirk_unreliable_pulse_detection;
80 	bool quirk_tuning_erratum_type1;
81 	bool quirk_tuning_erratum_type2;
82 	bool quirk_ignore_data_inhibit;
83 	bool quirk_delay_before_data_reset;
84 	bool in_sw_tuning;
85 	unsigned int peripheral_clock;
86 	const struct esdhc_clk_fixup *clk_fixup;
87 	u32 div_ratio;
88 };
89 
90 /**
91  * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
92  *		       to make it compatible with SD spec.
93  *
94  * @host: pointer to sdhci_host
95  * @spec_reg: SD spec register address
96  * @value: 32bit eSDHC register value on spec_reg address
97  *
98  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
99  * registers are 32 bits. There are differences in register size, register
100  * address, register function, bit position and function between eSDHC spec
101  * and SD spec.
102  *
103  * Return a fixed up register value
104  */
105 static u32 esdhc_readl_fixup(struct sdhci_host *host,
106 				     int spec_reg, u32 value)
107 {
108 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
109 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
110 	u32 ret;
111 
112 	/*
113 	 * The bit of ADMA flag in eSDHC is not compatible with standard
114 	 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
115 	 * supported by eSDHC.
116 	 * And for many FSL eSDHC controller, the reset value of field
117 	 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
118 	 * only these vendor version is greater than 2.2/0x12 support ADMA.
119 	 */
120 	if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
121 		if (esdhc->vendor_ver > VENDOR_V_22) {
122 			ret = value | SDHCI_CAN_DO_ADMA2;
123 			return ret;
124 		}
125 	}
126 	/*
127 	 * The DAT[3:0] line signal levels and the CMD line signal level are
128 	 * not compatible with standard SDHC register. The line signal levels
129 	 * DAT[7:0] are at bits 31:24 and the command line signal level is at
130 	 * bit 23. All other bits are the same as in the standard SDHC
131 	 * register.
132 	 */
133 	if (spec_reg == SDHCI_PRESENT_STATE) {
134 		ret = value & 0x000fffff;
135 		ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
136 		ret |= (value << 1) & SDHCI_CMD_LVL;
137 		return ret;
138 	}
139 
140 	/*
141 	 * DTS properties of mmc host are used to enable each speed mode
142 	 * according to soc and board capability. So clean up
143 	 * SDR50/SDR104/DDR50 support bits here.
144 	 */
145 	if (spec_reg == SDHCI_CAPABILITIES_1) {
146 		ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
147 				SDHCI_SUPPORT_DDR50);
148 		return ret;
149 	}
150 
151 	/*
152 	 * Some controllers have unreliable Data Line Active
153 	 * bit for commands with busy signal. This affects
154 	 * Command Inhibit (data) bit. Just ignore it since
155 	 * MMC core driver has already polled card status
156 	 * with CMD13 after any command with busy siganl.
157 	 */
158 	if ((spec_reg == SDHCI_PRESENT_STATE) &&
159 	(esdhc->quirk_ignore_data_inhibit == true)) {
160 		ret = value & ~SDHCI_DATA_INHIBIT;
161 		return ret;
162 	}
163 
164 	ret = value;
165 	return ret;
166 }
167 
168 static u16 esdhc_readw_fixup(struct sdhci_host *host,
169 				     int spec_reg, u32 value)
170 {
171 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
172 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
173 	u16 ret;
174 	int shift = (spec_reg & 0x2) * 8;
175 
176 	if (spec_reg == SDHCI_HOST_VERSION)
177 		ret = value & 0xffff;
178 	else
179 		ret = (value >> shift) & 0xffff;
180 	/* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
181 	 * vendor version and spec version information.
182 	 */
183 	if ((spec_reg == SDHCI_HOST_VERSION) &&
184 	    (esdhc->quirk_incorrect_hostver))
185 		ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
186 	return ret;
187 }
188 
189 static u8 esdhc_readb_fixup(struct sdhci_host *host,
190 				     int spec_reg, u32 value)
191 {
192 	u8 ret;
193 	u8 dma_bits;
194 	int shift = (spec_reg & 0x3) * 8;
195 
196 	ret = (value >> shift) & 0xff;
197 
198 	/*
199 	 * "DMA select" locates at offset 0x28 in SD specification, but on
200 	 * P5020 or P3041, it locates at 0x29.
201 	 */
202 	if (spec_reg == SDHCI_HOST_CONTROL) {
203 		/* DMA select is 22,23 bits in Protocol Control Register */
204 		dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
205 		/* fixup the result */
206 		ret &= ~SDHCI_CTRL_DMA_MASK;
207 		ret |= dma_bits;
208 	}
209 	return ret;
210 }
211 
212 /**
213  * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
214  *			written into eSDHC register.
215  *
216  * @host: pointer to sdhci_host
217  * @spec_reg: SD spec register address
218  * @value: 8/16/32bit SD spec register value that would be written
219  * @old_value: 32bit eSDHC register value on spec_reg address
220  *
221  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
222  * registers are 32 bits. There are differences in register size, register
223  * address, register function, bit position and function between eSDHC spec
224  * and SD spec.
225  *
226  * Return a fixed up register value
227  */
228 static u32 esdhc_writel_fixup(struct sdhci_host *host,
229 				     int spec_reg, u32 value, u32 old_value)
230 {
231 	u32 ret;
232 
233 	/*
234 	 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
235 	 * when SYSCTL[RSTD] is set for some special operations.
236 	 * No any impact on other operation.
237 	 */
238 	if (spec_reg == SDHCI_INT_ENABLE)
239 		ret = value | SDHCI_INT_BLK_GAP;
240 	else
241 		ret = value;
242 
243 	return ret;
244 }
245 
246 static u32 esdhc_writew_fixup(struct sdhci_host *host,
247 				     int spec_reg, u16 value, u32 old_value)
248 {
249 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
250 	int shift = (spec_reg & 0x2) * 8;
251 	u32 ret;
252 
253 	switch (spec_reg) {
254 	case SDHCI_TRANSFER_MODE:
255 		/*
256 		 * Postpone this write, we must do it together with a
257 		 * command write that is down below. Return old value.
258 		 */
259 		pltfm_host->xfer_mode_shadow = value;
260 		return old_value;
261 	case SDHCI_COMMAND:
262 		ret = (value << 16) | pltfm_host->xfer_mode_shadow;
263 		return ret;
264 	}
265 
266 	ret = old_value & (~(0xffff << shift));
267 	ret |= (value << shift);
268 
269 	if (spec_reg == SDHCI_BLOCK_SIZE) {
270 		/*
271 		 * Two last DMA bits are reserved, and first one is used for
272 		 * non-standard blksz of 4096 bytes that we don't support
273 		 * yet. So clear the DMA boundary bits.
274 		 */
275 		ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
276 	}
277 	return ret;
278 }
279 
280 static u32 esdhc_writeb_fixup(struct sdhci_host *host,
281 				     int spec_reg, u8 value, u32 old_value)
282 {
283 	u32 ret;
284 	u32 dma_bits;
285 	u8 tmp;
286 	int shift = (spec_reg & 0x3) * 8;
287 
288 	/*
289 	 * eSDHC doesn't have a standard power control register, so we do
290 	 * nothing here to avoid incorrect operation.
291 	 */
292 	if (spec_reg == SDHCI_POWER_CONTROL)
293 		return old_value;
294 	/*
295 	 * "DMA select" location is offset 0x28 in SD specification, but on
296 	 * P5020 or P3041, it's located at 0x29.
297 	 */
298 	if (spec_reg == SDHCI_HOST_CONTROL) {
299 		/*
300 		 * If host control register is not standard, exit
301 		 * this function
302 		 */
303 		if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
304 			return old_value;
305 
306 		/* DMA select is 22,23 bits in Protocol Control Register */
307 		dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
308 		ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
309 		tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
310 		      (old_value & SDHCI_CTRL_DMA_MASK);
311 		ret = (ret & (~0xff)) | tmp;
312 
313 		/* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
314 		ret &= ~ESDHC_HOST_CONTROL_RES;
315 		return ret;
316 	}
317 
318 	ret = (old_value & (~(0xff << shift))) | (value << shift);
319 	return ret;
320 }
321 
322 static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
323 {
324 	u32 ret;
325 	u32 value;
326 
327 	if (reg == SDHCI_CAPABILITIES_1)
328 		value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
329 	else
330 		value = ioread32be(host->ioaddr + reg);
331 
332 	ret = esdhc_readl_fixup(host, reg, value);
333 
334 	return ret;
335 }
336 
337 static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
338 {
339 	u32 ret;
340 	u32 value;
341 
342 	if (reg == SDHCI_CAPABILITIES_1)
343 		value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
344 	else
345 		value = ioread32(host->ioaddr + reg);
346 
347 	ret = esdhc_readl_fixup(host, reg, value);
348 
349 	return ret;
350 }
351 
352 static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
353 {
354 	u16 ret;
355 	u32 value;
356 	int base = reg & ~0x3;
357 
358 	value = ioread32be(host->ioaddr + base);
359 	ret = esdhc_readw_fixup(host, reg, value);
360 	return ret;
361 }
362 
363 static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
364 {
365 	u16 ret;
366 	u32 value;
367 	int base = reg & ~0x3;
368 
369 	value = ioread32(host->ioaddr + base);
370 	ret = esdhc_readw_fixup(host, reg, value);
371 	return ret;
372 }
373 
374 static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
375 {
376 	u8 ret;
377 	u32 value;
378 	int base = reg & ~0x3;
379 
380 	value = ioread32be(host->ioaddr + base);
381 	ret = esdhc_readb_fixup(host, reg, value);
382 	return ret;
383 }
384 
385 static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
386 {
387 	u8 ret;
388 	u32 value;
389 	int base = reg & ~0x3;
390 
391 	value = ioread32(host->ioaddr + base);
392 	ret = esdhc_readb_fixup(host, reg, value);
393 	return ret;
394 }
395 
396 static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
397 {
398 	u32 value;
399 
400 	value = esdhc_writel_fixup(host, reg, val, 0);
401 	iowrite32be(value, host->ioaddr + reg);
402 }
403 
404 static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
405 {
406 	u32 value;
407 
408 	value = esdhc_writel_fixup(host, reg, val, 0);
409 	iowrite32(value, host->ioaddr + reg);
410 }
411 
412 static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
413 {
414 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
415 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
416 	int base = reg & ~0x3;
417 	u32 value;
418 	u32 ret;
419 
420 	value = ioread32be(host->ioaddr + base);
421 	ret = esdhc_writew_fixup(host, reg, val, value);
422 	if (reg != SDHCI_TRANSFER_MODE)
423 		iowrite32be(ret, host->ioaddr + base);
424 
425 	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
426 	 * 1us later after ESDHC_EXTN is set.
427 	 */
428 	if (base == ESDHC_SYSTEM_CONTROL_2) {
429 		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
430 		    esdhc->in_sw_tuning) {
431 			udelay(1);
432 			ret |= ESDHC_SMPCLKSEL;
433 			iowrite32be(ret, host->ioaddr + base);
434 		}
435 	}
436 }
437 
438 static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
439 {
440 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
441 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
442 	int base = reg & ~0x3;
443 	u32 value;
444 	u32 ret;
445 
446 	value = ioread32(host->ioaddr + base);
447 	ret = esdhc_writew_fixup(host, reg, val, value);
448 	if (reg != SDHCI_TRANSFER_MODE)
449 		iowrite32(ret, host->ioaddr + base);
450 
451 	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
452 	 * 1us later after ESDHC_EXTN is set.
453 	 */
454 	if (base == ESDHC_SYSTEM_CONTROL_2) {
455 		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
456 		    esdhc->in_sw_tuning) {
457 			udelay(1);
458 			ret |= ESDHC_SMPCLKSEL;
459 			iowrite32(ret, host->ioaddr + base);
460 		}
461 	}
462 }
463 
464 static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
465 {
466 	int base = reg & ~0x3;
467 	u32 value;
468 	u32 ret;
469 
470 	value = ioread32be(host->ioaddr + base);
471 	ret = esdhc_writeb_fixup(host, reg, val, value);
472 	iowrite32be(ret, host->ioaddr + base);
473 }
474 
475 static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
476 {
477 	int base = reg & ~0x3;
478 	u32 value;
479 	u32 ret;
480 
481 	value = ioread32(host->ioaddr + base);
482 	ret = esdhc_writeb_fixup(host, reg, val, value);
483 	iowrite32(ret, host->ioaddr + base);
484 }
485 
486 /*
487  * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
488  * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
489  * and Block Gap Event(IRQSTAT[BGE]) are also set.
490  * For Continue, apply soft reset for data(SYSCTL[RSTD]);
491  * and re-issue the entire read transaction from beginning.
492  */
493 static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
494 {
495 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
496 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
497 	bool applicable;
498 	dma_addr_t dmastart;
499 	dma_addr_t dmanow;
500 
501 	applicable = (intmask & SDHCI_INT_DATA_END) &&
502 		     (intmask & SDHCI_INT_BLK_GAP) &&
503 		     (esdhc->vendor_ver == VENDOR_V_23);
504 	if (!applicable)
505 		return;
506 
507 	host->data->error = 0;
508 	dmastart = sg_dma_address(host->data->sg);
509 	dmanow = dmastart + host->data->bytes_xfered;
510 	/*
511 	 * Force update to the next DMA block boundary.
512 	 */
513 	dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
514 		SDHCI_DEFAULT_BOUNDARY_SIZE;
515 	host->data->bytes_xfered = dmanow - dmastart;
516 	sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
517 }
518 
519 static int esdhc_of_enable_dma(struct sdhci_host *host)
520 {
521 	u32 value;
522 	struct device *dev = mmc_dev(host->mmc);
523 
524 	if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
525 	    of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc"))
526 		dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
527 
528 	value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
529 
530 	if (of_dma_is_coherent(dev->of_node))
531 		value |= ESDHC_DMA_SNOOP;
532 	else
533 		value &= ~ESDHC_DMA_SNOOP;
534 
535 	sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
536 	return 0;
537 }
538 
539 static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
540 {
541 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
542 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
543 
544 	if (esdhc->peripheral_clock)
545 		return esdhc->peripheral_clock;
546 	else
547 		return pltfm_host->clock;
548 }
549 
550 static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
551 {
552 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
553 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
554 	unsigned int clock;
555 
556 	if (esdhc->peripheral_clock)
557 		clock = esdhc->peripheral_clock;
558 	else
559 		clock = pltfm_host->clock;
560 	return clock / 256 / 16;
561 }
562 
563 static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
564 {
565 	u32 val;
566 	ktime_t timeout;
567 
568 	val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
569 
570 	if (enable)
571 		val |= ESDHC_CLOCK_SDCLKEN;
572 	else
573 		val &= ~ESDHC_CLOCK_SDCLKEN;
574 
575 	sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
576 
577 	/* Wait max 20 ms */
578 	timeout = ktime_add_ms(ktime_get(), 20);
579 	val = ESDHC_CLOCK_STABLE;
580 	while  (1) {
581 		bool timedout = ktime_after(ktime_get(), timeout);
582 
583 		if (sdhci_readl(host, ESDHC_PRSSTAT) & val)
584 			break;
585 		if (timedout) {
586 			pr_err("%s: Internal clock never stabilised.\n",
587 				mmc_hostname(host->mmc));
588 			break;
589 		}
590 		udelay(10);
591 	}
592 }
593 
594 static void esdhc_flush_async_fifo(struct sdhci_host *host)
595 {
596 	ktime_t timeout;
597 	u32 val;
598 
599 	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
600 	val |= ESDHC_FLUSH_ASYNC_FIFO;
601 	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
602 
603 	/* Wait max 20 ms */
604 	timeout = ktime_add_ms(ktime_get(), 20);
605 	while (1) {
606 		bool timedout = ktime_after(ktime_get(), timeout);
607 
608 		if (!(sdhci_readl(host, ESDHC_DMA_SYSCTL) &
609 		      ESDHC_FLUSH_ASYNC_FIFO))
610 			break;
611 		if (timedout) {
612 			pr_err("%s: flushing asynchronous FIFO timeout.\n",
613 				mmc_hostname(host->mmc));
614 			break;
615 		}
616 		usleep_range(10, 20);
617 	}
618 }
619 
620 static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
621 {
622 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
623 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
624 	int pre_div = 1;
625 	int div = 1;
626 	int division;
627 	ktime_t timeout;
628 	long fixup = 0;
629 	u32 temp;
630 
631 	host->mmc->actual_clock = 0;
632 
633 	if (clock == 0) {
634 		esdhc_clock_enable(host, false);
635 		return;
636 	}
637 
638 	/* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */
639 	if (esdhc->vendor_ver < VENDOR_V_23)
640 		pre_div = 2;
641 
642 	if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
643 		esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
644 		fixup = esdhc->clk_fixup->sd_dflt_max_clk;
645 	else if (esdhc->clk_fixup)
646 		fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
647 
648 	if (fixup && clock > fixup)
649 		clock = fixup;
650 
651 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
652 	temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
653 		  ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK);
654 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
655 
656 	while (host->max_clk / pre_div / 16 > clock && pre_div < 256)
657 		pre_div *= 2;
658 
659 	while (host->max_clk / pre_div / div > clock && div < 16)
660 		div++;
661 
662 	if (esdhc->quirk_limited_clk_division &&
663 	    clock == MMC_HS200_MAX_DTR &&
664 	    (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
665 	     host->flags & SDHCI_HS400_TUNING)) {
666 		division = pre_div * div;
667 		if (division <= 4) {
668 			pre_div = 4;
669 			div = 1;
670 		} else if (division <= 8) {
671 			pre_div = 4;
672 			div = 2;
673 		} else if (division <= 12) {
674 			pre_div = 4;
675 			div = 3;
676 		} else {
677 			pr_warn("%s: using unsupported clock division.\n",
678 				mmc_hostname(host->mmc));
679 		}
680 	}
681 
682 	dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
683 		clock, host->max_clk / pre_div / div);
684 	host->mmc->actual_clock = host->max_clk / pre_div / div;
685 	esdhc->div_ratio = pre_div * div;
686 	pre_div >>= 1;
687 	div--;
688 
689 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
690 	temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN
691 		| (div << ESDHC_DIVIDER_SHIFT)
692 		| (pre_div << ESDHC_PREDIV_SHIFT));
693 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
694 
695 	if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
696 	    clock == MMC_HS200_MAX_DTR) {
697 		temp = sdhci_readl(host, ESDHC_TBCTL);
698 		sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
699 		temp = sdhci_readl(host, ESDHC_SDCLKCTL);
700 		sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
701 		esdhc_clock_enable(host, true);
702 
703 		temp = sdhci_readl(host, ESDHC_DLLCFG0);
704 		temp |= ESDHC_DLL_ENABLE;
705 		if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
706 			temp |= ESDHC_DLL_FREQ_SEL;
707 		sdhci_writel(host, temp, ESDHC_DLLCFG0);
708 		temp = sdhci_readl(host, ESDHC_TBCTL);
709 		sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
710 
711 		esdhc_clock_enable(host, false);
712 		esdhc_flush_async_fifo(host);
713 	}
714 
715 	/* Wait max 20 ms */
716 	timeout = ktime_add_ms(ktime_get(), 20);
717 	while (1) {
718 		bool timedout = ktime_after(ktime_get(), timeout);
719 
720 		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
721 			break;
722 		if (timedout) {
723 			pr_err("%s: Internal clock never stabilised.\n",
724 				mmc_hostname(host->mmc));
725 			return;
726 		}
727 		udelay(10);
728 	}
729 
730 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
731 	temp |= ESDHC_CLOCK_SDCLKEN;
732 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
733 }
734 
735 static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
736 {
737 	u32 ctrl;
738 
739 	ctrl = sdhci_readl(host, ESDHC_PROCTL);
740 	ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
741 	switch (width) {
742 	case MMC_BUS_WIDTH_8:
743 		ctrl |= ESDHC_CTRL_8BITBUS;
744 		break;
745 
746 	case MMC_BUS_WIDTH_4:
747 		ctrl |= ESDHC_CTRL_4BITBUS;
748 		break;
749 
750 	default:
751 		break;
752 	}
753 
754 	sdhci_writel(host, ctrl, ESDHC_PROCTL);
755 }
756 
757 static void esdhc_reset(struct sdhci_host *host, u8 mask)
758 {
759 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
760 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
761 	u32 val;
762 
763 	if (esdhc->quirk_delay_before_data_reset &&
764 	    (mask & SDHCI_RESET_DATA) &&
765 	    (host->flags & SDHCI_REQ_USE_DMA))
766 		mdelay(5);
767 
768 	sdhci_reset(host, mask);
769 
770 	sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
771 	sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
772 
773 	if (mask & SDHCI_RESET_ALL) {
774 		val = sdhci_readl(host, ESDHC_TBCTL);
775 		val &= ~ESDHC_TB_EN;
776 		sdhci_writel(host, val, ESDHC_TBCTL);
777 
778 		if (esdhc->quirk_unreliable_pulse_detection) {
779 			val = sdhci_readl(host, ESDHC_DLLCFG1);
780 			val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
781 			sdhci_writel(host, val, ESDHC_DLLCFG1);
782 		}
783 	}
784 }
785 
786 /* The SCFG, Supplemental Configuration Unit, provides SoC specific
787  * configuration and status registers for the device. There is a
788  * SDHC IO VSEL control register on SCFG for some platforms. It's
789  * used to support SDHC IO voltage switching.
790  */
791 static const struct of_device_id scfg_device_ids[] = {
792 	{ .compatible = "fsl,t1040-scfg", },
793 	{ .compatible = "fsl,ls1012a-scfg", },
794 	{ .compatible = "fsl,ls1046a-scfg", },
795 	{}
796 };
797 
798 /* SDHC IO VSEL control register definition */
799 #define SCFG_SDHCIOVSELCR	0x408
800 #define SDHCIOVSELCR_TGLEN	0x80000000
801 #define SDHCIOVSELCR_VSELVAL	0x60000000
802 #define SDHCIOVSELCR_SDHC_VS	0x00000001
803 
804 static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
805 				       struct mmc_ios *ios)
806 {
807 	struct sdhci_host *host = mmc_priv(mmc);
808 	struct device_node *scfg_node;
809 	void __iomem *scfg_base = NULL;
810 	u32 sdhciovselcr;
811 	u32 val;
812 
813 	/*
814 	 * Signal Voltage Switching is only applicable for Host Controllers
815 	 * v3.00 and above.
816 	 */
817 	if (host->version < SDHCI_SPEC_300)
818 		return 0;
819 
820 	val = sdhci_readl(host, ESDHC_PROCTL);
821 
822 	switch (ios->signal_voltage) {
823 	case MMC_SIGNAL_VOLTAGE_330:
824 		val &= ~ESDHC_VOLT_SEL;
825 		sdhci_writel(host, val, ESDHC_PROCTL);
826 		return 0;
827 	case MMC_SIGNAL_VOLTAGE_180:
828 		scfg_node = of_find_matching_node(NULL, scfg_device_ids);
829 		if (scfg_node)
830 			scfg_base = of_iomap(scfg_node, 0);
831 		if (scfg_base) {
832 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
833 				       SDHCIOVSELCR_VSELVAL;
834 			iowrite32be(sdhciovselcr,
835 				scfg_base + SCFG_SDHCIOVSELCR);
836 
837 			val |= ESDHC_VOLT_SEL;
838 			sdhci_writel(host, val, ESDHC_PROCTL);
839 			mdelay(5);
840 
841 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
842 				       SDHCIOVSELCR_SDHC_VS;
843 			iowrite32be(sdhciovselcr,
844 				scfg_base + SCFG_SDHCIOVSELCR);
845 			iounmap(scfg_base);
846 		} else {
847 			val |= ESDHC_VOLT_SEL;
848 			sdhci_writel(host, val, ESDHC_PROCTL);
849 		}
850 		return 0;
851 	default:
852 		return 0;
853 	}
854 }
855 
856 static struct soc_device_attribute soc_tuning_erratum_type1[] = {
857 	{ .family = "QorIQ T1023", .revision = "1.0", },
858 	{ .family = "QorIQ T1040", .revision = "1.0", },
859 	{ .family = "QorIQ T2080", .revision = "1.0", },
860 	{ .family = "QorIQ LS1021A", .revision = "1.0", },
861 	{ },
862 };
863 
864 static struct soc_device_attribute soc_tuning_erratum_type2[] = {
865 	{ .family = "QorIQ LS1012A", .revision = "1.0", },
866 	{ .family = "QorIQ LS1043A", .revision = "1.*", },
867 	{ .family = "QorIQ LS1046A", .revision = "1.0", },
868 	{ .family = "QorIQ LS1080A", .revision = "1.0", },
869 	{ .family = "QorIQ LS2080A", .revision = "1.0", },
870 	{ .family = "QorIQ LA1575A", .revision = "1.0", },
871 	{ },
872 };
873 
874 static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
875 {
876 	u32 val;
877 
878 	esdhc_clock_enable(host, false);
879 	esdhc_flush_async_fifo(host);
880 
881 	val = sdhci_readl(host, ESDHC_TBCTL);
882 	if (enable)
883 		val |= ESDHC_TB_EN;
884 	else
885 		val &= ~ESDHC_TB_EN;
886 	sdhci_writel(host, val, ESDHC_TBCTL);
887 
888 	esdhc_clock_enable(host, true);
889 }
890 
891 static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start,
892 				    u8 *window_end)
893 {
894 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
895 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
896 	u8 tbstat_15_8, tbstat_7_0;
897 	u32 val;
898 
899 	if (esdhc->quirk_tuning_erratum_type1) {
900 		*window_start = 5 * esdhc->div_ratio;
901 		*window_end = 3 * esdhc->div_ratio;
902 		return;
903 	}
904 
905 	/* Write TBCTL[11:8]=4'h8 */
906 	val = sdhci_readl(host, ESDHC_TBCTL);
907 	val &= ~(0xf << 8);
908 	val |= 8 << 8;
909 	sdhci_writel(host, val, ESDHC_TBCTL);
910 
911 	mdelay(1);
912 
913 	/* Read TBCTL[31:0] register and rewrite again */
914 	val = sdhci_readl(host, ESDHC_TBCTL);
915 	sdhci_writel(host, val, ESDHC_TBCTL);
916 
917 	mdelay(1);
918 
919 	/* Read the TBSTAT[31:0] register twice */
920 	val = sdhci_readl(host, ESDHC_TBSTAT);
921 	val = sdhci_readl(host, ESDHC_TBSTAT);
922 
923 	/* Reset data lines by setting ESDHCCTL[RSTD] */
924 	sdhci_reset(host, SDHCI_RESET_DATA);
925 	/* Write 32'hFFFF_FFFF to IRQSTAT register */
926 	sdhci_writel(host, 0xFFFFFFFF, SDHCI_INT_STATUS);
927 
928 	/* If TBSTAT[15:8]-TBSTAT[7:0] > 4 * div_ratio
929 	 * or TBSTAT[7:0]-TBSTAT[15:8] > 4 * div_ratio,
930 	 * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio
931 	 * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio.
932 	 */
933 	tbstat_7_0 = val & 0xff;
934 	tbstat_15_8 = (val >> 8) & 0xff;
935 
936 	if (abs(tbstat_15_8 - tbstat_7_0) > (4 * esdhc->div_ratio)) {
937 		*window_start = 8 * esdhc->div_ratio;
938 		*window_end = 4 * esdhc->div_ratio;
939 	} else {
940 		*window_start = 5 * esdhc->div_ratio;
941 		*window_end = 3 * esdhc->div_ratio;
942 	}
943 }
944 
945 static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode,
946 				   u8 window_start, u8 window_end)
947 {
948 	struct sdhci_host *host = mmc_priv(mmc);
949 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
950 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
951 	u32 val;
952 	int ret;
953 
954 	/* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */
955 	val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) &
956 	      ESDHC_WNDW_STRT_PTR_MASK;
957 	val |= window_end & ESDHC_WNDW_END_PTR_MASK;
958 	sdhci_writel(host, val, ESDHC_TBPTR);
959 
960 	/* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */
961 	val = sdhci_readl(host, ESDHC_TBCTL);
962 	val &= ~ESDHC_TB_MODE_MASK;
963 	val |= ESDHC_TB_MODE_SW;
964 	sdhci_writel(host, val, ESDHC_TBCTL);
965 
966 	esdhc->in_sw_tuning = true;
967 	ret = sdhci_execute_tuning(mmc, opcode);
968 	esdhc->in_sw_tuning = false;
969 	return ret;
970 }
971 
972 static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
973 {
974 	struct sdhci_host *host = mmc_priv(mmc);
975 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
976 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
977 	u8 window_start, window_end;
978 	int ret, retries = 1;
979 	bool hs400_tuning;
980 	unsigned int clk;
981 	u32 val;
982 
983 	/* For tuning mode, the sd clock divisor value
984 	 * must be larger than 3 according to reference manual.
985 	 */
986 	clk = esdhc->peripheral_clock / 3;
987 	if (host->clock > clk)
988 		esdhc_of_set_clock(host, clk);
989 
990 	esdhc_tuning_block_enable(host, true);
991 
992 	hs400_tuning = host->flags & SDHCI_HS400_TUNING;
993 
994 	do {
995 		if (esdhc->quirk_limited_clk_division &&
996 		    hs400_tuning)
997 			esdhc_of_set_clock(host, host->clock);
998 
999 		/* Do HW tuning */
1000 		val = sdhci_readl(host, ESDHC_TBCTL);
1001 		val &= ~ESDHC_TB_MODE_MASK;
1002 		val |= ESDHC_TB_MODE_3;
1003 		sdhci_writel(host, val, ESDHC_TBCTL);
1004 
1005 		ret = sdhci_execute_tuning(mmc, opcode);
1006 		if (ret)
1007 			break;
1008 
1009 		/* If HW tuning fails and triggers erratum,
1010 		 * try workaround.
1011 		 */
1012 		ret = host->tuning_err;
1013 		if (ret == -EAGAIN &&
1014 		    (esdhc->quirk_tuning_erratum_type1 ||
1015 		     esdhc->quirk_tuning_erratum_type2)) {
1016 			/* Recover HS400 tuning flag */
1017 			if (hs400_tuning)
1018 				host->flags |= SDHCI_HS400_TUNING;
1019 			pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n",
1020 				mmc_hostname(mmc));
1021 			/* Do SW tuning */
1022 			esdhc_prepare_sw_tuning(host, &window_start,
1023 						&window_end);
1024 			ret = esdhc_execute_sw_tuning(mmc, opcode,
1025 						      window_start,
1026 						      window_end);
1027 			if (ret)
1028 				break;
1029 
1030 			/* Retry both HW/SW tuning with reduced clock. */
1031 			ret = host->tuning_err;
1032 			if (ret == -EAGAIN && retries) {
1033 				/* Recover HS400 tuning flag */
1034 				if (hs400_tuning)
1035 					host->flags |= SDHCI_HS400_TUNING;
1036 
1037 				clk = host->max_clk / (esdhc->div_ratio + 1);
1038 				esdhc_of_set_clock(host, clk);
1039 				pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n",
1040 					mmc_hostname(mmc));
1041 			} else {
1042 				break;
1043 			}
1044 		} else {
1045 			break;
1046 		}
1047 	} while (retries--);
1048 
1049 	if (ret) {
1050 		esdhc_tuning_block_enable(host, false);
1051 	} else if (hs400_tuning) {
1052 		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1053 		val |= ESDHC_FLW_CTL_BG;
1054 		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1055 	}
1056 
1057 	return ret;
1058 }
1059 
1060 static void esdhc_set_uhs_signaling(struct sdhci_host *host,
1061 				   unsigned int timing)
1062 {
1063 	if (timing == MMC_TIMING_MMC_HS400)
1064 		esdhc_tuning_block_enable(host, true);
1065 	else
1066 		sdhci_set_uhs_signaling(host, timing);
1067 }
1068 
1069 static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
1070 {
1071 	u32 command;
1072 
1073 	if (of_find_compatible_node(NULL, NULL,
1074 				"fsl,p2020-esdhc")) {
1075 		command = SDHCI_GET_CMD(sdhci_readw(host,
1076 					SDHCI_COMMAND));
1077 		if (command == MMC_WRITE_MULTIPLE_BLOCK &&
1078 				sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
1079 				intmask & SDHCI_INT_DATA_END) {
1080 			intmask &= ~SDHCI_INT_DATA_END;
1081 			sdhci_writel(host, SDHCI_INT_DATA_END,
1082 					SDHCI_INT_STATUS);
1083 		}
1084 	}
1085 	return intmask;
1086 }
1087 
1088 #ifdef CONFIG_PM_SLEEP
1089 static u32 esdhc_proctl;
1090 static int esdhc_of_suspend(struct device *dev)
1091 {
1092 	struct sdhci_host *host = dev_get_drvdata(dev);
1093 
1094 	esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
1095 
1096 	if (host->tuning_mode != SDHCI_TUNING_MODE_3)
1097 		mmc_retune_needed(host->mmc);
1098 
1099 	return sdhci_suspend_host(host);
1100 }
1101 
1102 static int esdhc_of_resume(struct device *dev)
1103 {
1104 	struct sdhci_host *host = dev_get_drvdata(dev);
1105 	int ret = sdhci_resume_host(host);
1106 
1107 	if (ret == 0) {
1108 		/* Isn't this already done by sdhci_resume_host() ? --rmk */
1109 		esdhc_of_enable_dma(host);
1110 		sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
1111 	}
1112 	return ret;
1113 }
1114 #endif
1115 
1116 static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
1117 			esdhc_of_suspend,
1118 			esdhc_of_resume);
1119 
1120 static const struct sdhci_ops sdhci_esdhc_be_ops = {
1121 	.read_l = esdhc_be_readl,
1122 	.read_w = esdhc_be_readw,
1123 	.read_b = esdhc_be_readb,
1124 	.write_l = esdhc_be_writel,
1125 	.write_w = esdhc_be_writew,
1126 	.write_b = esdhc_be_writeb,
1127 	.set_clock = esdhc_of_set_clock,
1128 	.enable_dma = esdhc_of_enable_dma,
1129 	.get_max_clock = esdhc_of_get_max_clock,
1130 	.get_min_clock = esdhc_of_get_min_clock,
1131 	.adma_workaround = esdhc_of_adma_workaround,
1132 	.set_bus_width = esdhc_pltfm_set_bus_width,
1133 	.reset = esdhc_reset,
1134 	.set_uhs_signaling = esdhc_set_uhs_signaling,
1135 	.irq = esdhc_irq,
1136 };
1137 
1138 static const struct sdhci_ops sdhci_esdhc_le_ops = {
1139 	.read_l = esdhc_le_readl,
1140 	.read_w = esdhc_le_readw,
1141 	.read_b = esdhc_le_readb,
1142 	.write_l = esdhc_le_writel,
1143 	.write_w = esdhc_le_writew,
1144 	.write_b = esdhc_le_writeb,
1145 	.set_clock = esdhc_of_set_clock,
1146 	.enable_dma = esdhc_of_enable_dma,
1147 	.get_max_clock = esdhc_of_get_max_clock,
1148 	.get_min_clock = esdhc_of_get_min_clock,
1149 	.adma_workaround = esdhc_of_adma_workaround,
1150 	.set_bus_width = esdhc_pltfm_set_bus_width,
1151 	.reset = esdhc_reset,
1152 	.set_uhs_signaling = esdhc_set_uhs_signaling,
1153 	.irq = esdhc_irq,
1154 };
1155 
1156 static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
1157 	.quirks = ESDHC_DEFAULT_QUIRKS |
1158 #ifdef CONFIG_PPC
1159 		  SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1160 #endif
1161 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1162 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1163 	.ops = &sdhci_esdhc_be_ops,
1164 };
1165 
1166 static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
1167 	.quirks = ESDHC_DEFAULT_QUIRKS |
1168 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1169 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1170 	.ops = &sdhci_esdhc_le_ops,
1171 };
1172 
1173 static struct soc_device_attribute soc_incorrect_hostver[] = {
1174 	{ .family = "QorIQ T4240", .revision = "1.0", },
1175 	{ .family = "QorIQ T4240", .revision = "2.0", },
1176 	{ },
1177 };
1178 
1179 static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1180 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1181 	{ .family = "QorIQ LX2160A", .revision = "2.0", },
1182 	{ .family = "QorIQ LS1028A", .revision = "1.0", },
1183 	{ },
1184 };
1185 
1186 static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1187 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1188 	{ },
1189 };
1190 
1191 static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1192 {
1193 	const struct of_device_id *match;
1194 	struct sdhci_pltfm_host *pltfm_host;
1195 	struct sdhci_esdhc *esdhc;
1196 	struct device_node *np;
1197 	struct clk *clk;
1198 	u32 val;
1199 	u16 host_ver;
1200 
1201 	pltfm_host = sdhci_priv(host);
1202 	esdhc = sdhci_pltfm_priv(pltfm_host);
1203 
1204 	host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1205 	esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1206 			     SDHCI_VENDOR_VER_SHIFT;
1207 	esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1208 	if (soc_device_match(soc_incorrect_hostver))
1209 		esdhc->quirk_incorrect_hostver = true;
1210 	else
1211 		esdhc->quirk_incorrect_hostver = false;
1212 
1213 	if (soc_device_match(soc_fixup_sdhc_clkdivs))
1214 		esdhc->quirk_limited_clk_division = true;
1215 	else
1216 		esdhc->quirk_limited_clk_division = false;
1217 
1218 	if (soc_device_match(soc_unreliable_pulse_detection))
1219 		esdhc->quirk_unreliable_pulse_detection = true;
1220 	else
1221 		esdhc->quirk_unreliable_pulse_detection = false;
1222 
1223 	match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
1224 	if (match)
1225 		esdhc->clk_fixup = match->data;
1226 	np = pdev->dev.of_node;
1227 
1228 	if (of_device_is_compatible(np, "fsl,p2020-esdhc"))
1229 		esdhc->quirk_delay_before_data_reset = true;
1230 
1231 	clk = of_clk_get(np, 0);
1232 	if (!IS_ERR(clk)) {
1233 		/*
1234 		 * esdhc->peripheral_clock would be assigned with a value
1235 		 * which is eSDHC base clock when use periperal clock.
1236 		 * For some platforms, the clock value got by common clk
1237 		 * API is peripheral clock while the eSDHC base clock is
1238 		 * 1/2 peripheral clock.
1239 		 */
1240 		if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") ||
1241 		    of_device_is_compatible(np, "fsl,ls1028a-esdhc"))
1242 			esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1243 		else
1244 			esdhc->peripheral_clock = clk_get_rate(clk);
1245 
1246 		clk_put(clk);
1247 	}
1248 
1249 	if (esdhc->peripheral_clock) {
1250 		esdhc_clock_enable(host, false);
1251 		val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1252 		val |= ESDHC_PERIPHERAL_CLK_SEL;
1253 		sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1254 		esdhc_clock_enable(host, true);
1255 	}
1256 }
1257 
1258 static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1259 {
1260 	esdhc_tuning_block_enable(mmc_priv(mmc), false);
1261 	return 0;
1262 }
1263 
1264 static int sdhci_esdhc_probe(struct platform_device *pdev)
1265 {
1266 	struct sdhci_host *host;
1267 	struct device_node *np;
1268 	struct sdhci_pltfm_host *pltfm_host;
1269 	struct sdhci_esdhc *esdhc;
1270 	int ret;
1271 
1272 	np = pdev->dev.of_node;
1273 
1274 	if (of_property_read_bool(np, "little-endian"))
1275 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1276 					sizeof(struct sdhci_esdhc));
1277 	else
1278 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1279 					sizeof(struct sdhci_esdhc));
1280 
1281 	if (IS_ERR(host))
1282 		return PTR_ERR(host);
1283 
1284 	host->mmc_host_ops.start_signal_voltage_switch =
1285 		esdhc_signal_voltage_switch;
1286 	host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1287 	host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1288 	host->tuning_delay = 1;
1289 
1290 	esdhc_init(pdev, host);
1291 
1292 	sdhci_get_of_property(pdev);
1293 
1294 	pltfm_host = sdhci_priv(host);
1295 	esdhc = sdhci_pltfm_priv(pltfm_host);
1296 	if (soc_device_match(soc_tuning_erratum_type1))
1297 		esdhc->quirk_tuning_erratum_type1 = true;
1298 	else
1299 		esdhc->quirk_tuning_erratum_type1 = false;
1300 
1301 	if (soc_device_match(soc_tuning_erratum_type2))
1302 		esdhc->quirk_tuning_erratum_type2 = true;
1303 	else
1304 		esdhc->quirk_tuning_erratum_type2 = false;
1305 
1306 	if (esdhc->vendor_ver == VENDOR_V_22)
1307 		host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1308 
1309 	if (esdhc->vendor_ver > VENDOR_V_22)
1310 		host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1311 
1312 	if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) {
1313 		host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1314 		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1315 	}
1316 
1317 	if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1318 	    of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1319 	    of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1320 	    of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1321 	    of_device_is_compatible(np, "fsl,t1040-esdhc"))
1322 		host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1323 
1324 	if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1325 		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1326 
1327 	esdhc->quirk_ignore_data_inhibit = false;
1328 	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1329 		/*
1330 		 * Freescale messed up with P2020 as it has a non-standard
1331 		 * host control register
1332 		 */
1333 		host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1334 		esdhc->quirk_ignore_data_inhibit = true;
1335 	}
1336 
1337 	/* call to generic mmc_of_parse to support additional capabilities */
1338 	ret = mmc_of_parse(host->mmc);
1339 	if (ret)
1340 		goto err;
1341 
1342 	mmc_of_parse_voltage(np, &host->ocr_mask);
1343 
1344 	ret = sdhci_add_host(host);
1345 	if (ret)
1346 		goto err;
1347 
1348 	return 0;
1349  err:
1350 	sdhci_pltfm_free(pdev);
1351 	return ret;
1352 }
1353 
1354 static struct platform_driver sdhci_esdhc_driver = {
1355 	.driver = {
1356 		.name = "sdhci-esdhc",
1357 		.of_match_table = sdhci_esdhc_of_match,
1358 		.pm = &esdhc_of_dev_pm_ops,
1359 	},
1360 	.probe = sdhci_esdhc_probe,
1361 	.remove = sdhci_pltfm_unregister,
1362 };
1363 
1364 module_platform_driver(sdhci_esdhc_driver);
1365 
1366 MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1367 MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1368 	      "Anton Vorontsov <avorontsov@ru.mvista.com>");
1369 MODULE_LICENSE("GPL v2");
1370