1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Freescale eSDHC controller driver. 4 * 5 * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc. 6 * Copyright (c) 2009 MontaVista Software, Inc. 7 * Copyright 2020 NXP 8 * 9 * Authors: Xiaobo Xie <X.Xie@freescale.com> 10 * Anton Vorontsov <avorontsov@ru.mvista.com> 11 */ 12 13 #include <linux/err.h> 14 #include <linux/io.h> 15 #include <linux/of.h> 16 #include <linux/of_address.h> 17 #include <linux/delay.h> 18 #include <linux/module.h> 19 #include <linux/sys_soc.h> 20 #include <linux/clk.h> 21 #include <linux/ktime.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/iopoll.h> 24 #include <linux/mmc/host.h> 25 #include <linux/mmc/mmc.h> 26 #include "sdhci-pltfm.h" 27 #include "sdhci-esdhc.h" 28 29 #define VENDOR_V_22 0x12 30 #define VENDOR_V_23 0x13 31 32 #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1) 33 34 struct esdhc_clk_fixup { 35 const unsigned int sd_dflt_max_clk; 36 const unsigned int max_clk[MMC_TIMING_NUM]; 37 }; 38 39 static const struct esdhc_clk_fixup ls1021a_esdhc_clk = { 40 .sd_dflt_max_clk = 25000000, 41 .max_clk[MMC_TIMING_MMC_HS] = 46500000, 42 .max_clk[MMC_TIMING_SD_HS] = 46500000, 43 }; 44 45 static const struct esdhc_clk_fixup ls1046a_esdhc_clk = { 46 .sd_dflt_max_clk = 25000000, 47 .max_clk[MMC_TIMING_UHS_SDR104] = 167000000, 48 .max_clk[MMC_TIMING_MMC_HS200] = 167000000, 49 }; 50 51 static const struct esdhc_clk_fixup ls1012a_esdhc_clk = { 52 .sd_dflt_max_clk = 25000000, 53 .max_clk[MMC_TIMING_UHS_SDR104] = 125000000, 54 .max_clk[MMC_TIMING_MMC_HS200] = 125000000, 55 }; 56 57 static const struct esdhc_clk_fixup p1010_esdhc_clk = { 58 .sd_dflt_max_clk = 20000000, 59 .max_clk[MMC_TIMING_LEGACY] = 20000000, 60 .max_clk[MMC_TIMING_MMC_HS] = 42000000, 61 .max_clk[MMC_TIMING_SD_HS] = 40000000, 62 }; 63 64 static const struct of_device_id sdhci_esdhc_of_match[] = { 65 { .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk}, 66 { .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk}, 67 { .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk}, 68 { .compatible = "fsl,p1010-esdhc", .data = &p1010_esdhc_clk}, 69 { .compatible = "fsl,mpc8379-esdhc" }, 70 { .compatible = "fsl,mpc8536-esdhc" }, 71 { .compatible = "fsl,esdhc" }, 72 { } 73 }; 74 MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match); 75 76 struct sdhci_esdhc { 77 u8 vendor_ver; 78 u8 spec_ver; 79 bool quirk_incorrect_hostver; 80 bool quirk_limited_clk_division; 81 bool quirk_unreliable_pulse_detection; 82 bool quirk_tuning_erratum_type1; 83 bool quirk_tuning_erratum_type2; 84 bool quirk_ignore_data_inhibit; 85 bool quirk_delay_before_data_reset; 86 bool quirk_trans_complete_erratum; 87 bool in_sw_tuning; 88 unsigned int peripheral_clock; 89 const struct esdhc_clk_fixup *clk_fixup; 90 u32 div_ratio; 91 }; 92 93 /** 94 * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register 95 * to make it compatible with SD spec. 96 * 97 * @host: pointer to sdhci_host 98 * @spec_reg: SD spec register address 99 * @value: 32bit eSDHC register value on spec_reg address 100 * 101 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC 102 * registers are 32 bits. There are differences in register size, register 103 * address, register function, bit position and function between eSDHC spec 104 * and SD spec. 105 * 106 * Return a fixed up register value 107 */ 108 static u32 esdhc_readl_fixup(struct sdhci_host *host, 109 int spec_reg, u32 value) 110 { 111 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 112 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 113 u32 ret; 114 115 /* 116 * The bit of ADMA flag in eSDHC is not compatible with standard 117 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is 118 * supported by eSDHC. 119 * And for many FSL eSDHC controller, the reset value of field 120 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA, 121 * only these vendor version is greater than 2.2/0x12 support ADMA. 122 */ 123 if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) { 124 if (esdhc->vendor_ver > VENDOR_V_22) { 125 ret = value | SDHCI_CAN_DO_ADMA2; 126 return ret; 127 } 128 } 129 /* 130 * The DAT[3:0] line signal levels and the CMD line signal level are 131 * not compatible with standard SDHC register. The line signal levels 132 * DAT[7:0] are at bits 31:24 and the command line signal level is at 133 * bit 23. All other bits are the same as in the standard SDHC 134 * register. 135 */ 136 if (spec_reg == SDHCI_PRESENT_STATE) { 137 ret = value & 0x000fffff; 138 ret |= (value >> 4) & SDHCI_DATA_LVL_MASK; 139 ret |= (value << 1) & SDHCI_CMD_LVL; 140 return ret; 141 } 142 143 /* 144 * DTS properties of mmc host are used to enable each speed mode 145 * according to soc and board capability. So clean up 146 * SDR50/SDR104/DDR50 support bits here. 147 */ 148 if (spec_reg == SDHCI_CAPABILITIES_1) { 149 ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 | 150 SDHCI_SUPPORT_DDR50); 151 return ret; 152 } 153 154 /* 155 * Some controllers have unreliable Data Line Active 156 * bit for commands with busy signal. This affects 157 * Command Inhibit (data) bit. Just ignore it since 158 * MMC core driver has already polled card status 159 * with CMD13 after any command with busy siganl. 160 */ 161 if ((spec_reg == SDHCI_PRESENT_STATE) && 162 (esdhc->quirk_ignore_data_inhibit == true)) { 163 ret = value & ~SDHCI_DATA_INHIBIT; 164 return ret; 165 } 166 167 ret = value; 168 return ret; 169 } 170 171 static u16 esdhc_readw_fixup(struct sdhci_host *host, 172 int spec_reg, u32 value) 173 { 174 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 175 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 176 u16 ret; 177 int shift = (spec_reg & 0x2) * 8; 178 179 if (spec_reg == SDHCI_TRANSFER_MODE) 180 return pltfm_host->xfer_mode_shadow; 181 182 if (spec_reg == SDHCI_HOST_VERSION) 183 ret = value & 0xffff; 184 else 185 ret = (value >> shift) & 0xffff; 186 /* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect 187 * vendor version and spec version information. 188 */ 189 if ((spec_reg == SDHCI_HOST_VERSION) && 190 (esdhc->quirk_incorrect_hostver)) 191 ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200; 192 return ret; 193 } 194 195 static u8 esdhc_readb_fixup(struct sdhci_host *host, 196 int spec_reg, u32 value) 197 { 198 u8 ret; 199 u8 dma_bits; 200 int shift = (spec_reg & 0x3) * 8; 201 202 ret = (value >> shift) & 0xff; 203 204 /* 205 * "DMA select" locates at offset 0x28 in SD specification, but on 206 * P5020 or P3041, it locates at 0x29. 207 */ 208 if (spec_reg == SDHCI_HOST_CONTROL) { 209 /* DMA select is 22,23 bits in Protocol Control Register */ 210 dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK; 211 /* fixup the result */ 212 ret &= ~SDHCI_CTRL_DMA_MASK; 213 ret |= dma_bits; 214 } 215 return ret; 216 } 217 218 /** 219 * esdhc_write*_fixup - Fixup the SD spec register value so that it could be 220 * written into eSDHC register. 221 * 222 * @host: pointer to sdhci_host 223 * @spec_reg: SD spec register address 224 * @value: 8/16/32bit SD spec register value that would be written 225 * @old_value: 32bit eSDHC register value on spec_reg address 226 * 227 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC 228 * registers are 32 bits. There are differences in register size, register 229 * address, register function, bit position and function between eSDHC spec 230 * and SD spec. 231 * 232 * Return a fixed up register value 233 */ 234 static u32 esdhc_writel_fixup(struct sdhci_host *host, 235 int spec_reg, u32 value, u32 old_value) 236 { 237 u32 ret; 238 239 /* 240 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE] 241 * when SYSCTL[RSTD] is set for some special operations. 242 * No any impact on other operation. 243 */ 244 if (spec_reg == SDHCI_INT_ENABLE) 245 ret = value | SDHCI_INT_BLK_GAP; 246 else 247 ret = value; 248 249 return ret; 250 } 251 252 static u32 esdhc_writew_fixup(struct sdhci_host *host, 253 int spec_reg, u16 value, u32 old_value) 254 { 255 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 256 int shift = (spec_reg & 0x2) * 8; 257 u32 ret; 258 259 switch (spec_reg) { 260 case SDHCI_TRANSFER_MODE: 261 /* 262 * Postpone this write, we must do it together with a 263 * command write that is down below. Return old value. 264 */ 265 pltfm_host->xfer_mode_shadow = value; 266 return old_value; 267 case SDHCI_COMMAND: 268 ret = (value << 16) | pltfm_host->xfer_mode_shadow; 269 return ret; 270 } 271 272 ret = old_value & (~(0xffff << shift)); 273 ret |= (value << shift); 274 275 if (spec_reg == SDHCI_BLOCK_SIZE) { 276 /* 277 * Two last DMA bits are reserved, and first one is used for 278 * non-standard blksz of 4096 bytes that we don't support 279 * yet. So clear the DMA boundary bits. 280 */ 281 ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0)); 282 } 283 return ret; 284 } 285 286 static u32 esdhc_writeb_fixup(struct sdhci_host *host, 287 int spec_reg, u8 value, u32 old_value) 288 { 289 u32 ret; 290 u32 dma_bits; 291 u8 tmp; 292 int shift = (spec_reg & 0x3) * 8; 293 294 /* 295 * eSDHC doesn't have a standard power control register, so we do 296 * nothing here to avoid incorrect operation. 297 */ 298 if (spec_reg == SDHCI_POWER_CONTROL) 299 return old_value; 300 /* 301 * "DMA select" location is offset 0x28 in SD specification, but on 302 * P5020 or P3041, it's located at 0x29. 303 */ 304 if (spec_reg == SDHCI_HOST_CONTROL) { 305 /* 306 * If host control register is not standard, exit 307 * this function 308 */ 309 if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL) 310 return old_value; 311 312 /* DMA select is 22,23 bits in Protocol Control Register */ 313 dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5; 314 ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits; 315 tmp = (value & (~SDHCI_CTRL_DMA_MASK)) | 316 (old_value & SDHCI_CTRL_DMA_MASK); 317 ret = (ret & (~0xff)) | tmp; 318 319 /* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */ 320 ret &= ~ESDHC_HOST_CONTROL_RES; 321 return ret; 322 } 323 324 ret = (old_value & (~(0xff << shift))) | (value << shift); 325 return ret; 326 } 327 328 static u32 esdhc_be_readl(struct sdhci_host *host, int reg) 329 { 330 u32 ret; 331 u32 value; 332 333 if (reg == SDHCI_CAPABILITIES_1) 334 value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1); 335 else 336 value = ioread32be(host->ioaddr + reg); 337 338 ret = esdhc_readl_fixup(host, reg, value); 339 340 return ret; 341 } 342 343 static u32 esdhc_le_readl(struct sdhci_host *host, int reg) 344 { 345 u32 ret; 346 u32 value; 347 348 if (reg == SDHCI_CAPABILITIES_1) 349 value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1); 350 else 351 value = ioread32(host->ioaddr + reg); 352 353 ret = esdhc_readl_fixup(host, reg, value); 354 355 return ret; 356 } 357 358 static u16 esdhc_be_readw(struct sdhci_host *host, int reg) 359 { 360 u16 ret; 361 u32 value; 362 int base = reg & ~0x3; 363 364 value = ioread32be(host->ioaddr + base); 365 ret = esdhc_readw_fixup(host, reg, value); 366 return ret; 367 } 368 369 static u16 esdhc_le_readw(struct sdhci_host *host, int reg) 370 { 371 u16 ret; 372 u32 value; 373 int base = reg & ~0x3; 374 375 value = ioread32(host->ioaddr + base); 376 ret = esdhc_readw_fixup(host, reg, value); 377 return ret; 378 } 379 380 static u8 esdhc_be_readb(struct sdhci_host *host, int reg) 381 { 382 u8 ret; 383 u32 value; 384 int base = reg & ~0x3; 385 386 value = ioread32be(host->ioaddr + base); 387 ret = esdhc_readb_fixup(host, reg, value); 388 return ret; 389 } 390 391 static u8 esdhc_le_readb(struct sdhci_host *host, int reg) 392 { 393 u8 ret; 394 u32 value; 395 int base = reg & ~0x3; 396 397 value = ioread32(host->ioaddr + base); 398 ret = esdhc_readb_fixup(host, reg, value); 399 return ret; 400 } 401 402 static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg) 403 { 404 u32 value; 405 406 value = esdhc_writel_fixup(host, reg, val, 0); 407 iowrite32be(value, host->ioaddr + reg); 408 } 409 410 static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg) 411 { 412 u32 value; 413 414 value = esdhc_writel_fixup(host, reg, val, 0); 415 iowrite32(value, host->ioaddr + reg); 416 } 417 418 static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg) 419 { 420 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 421 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 422 int base = reg & ~0x3; 423 u32 value; 424 u32 ret; 425 426 value = ioread32be(host->ioaddr + base); 427 ret = esdhc_writew_fixup(host, reg, val, value); 428 if (reg != SDHCI_TRANSFER_MODE) 429 iowrite32be(ret, host->ioaddr + base); 430 431 /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set 432 * 1us later after ESDHC_EXTN is set. 433 */ 434 if (base == ESDHC_SYSTEM_CONTROL_2) { 435 if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) && 436 esdhc->in_sw_tuning) { 437 udelay(1); 438 ret |= ESDHC_SMPCLKSEL; 439 iowrite32be(ret, host->ioaddr + base); 440 } 441 } 442 } 443 444 static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg) 445 { 446 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 447 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 448 int base = reg & ~0x3; 449 u32 value; 450 u32 ret; 451 452 value = ioread32(host->ioaddr + base); 453 ret = esdhc_writew_fixup(host, reg, val, value); 454 if (reg != SDHCI_TRANSFER_MODE) 455 iowrite32(ret, host->ioaddr + base); 456 457 /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set 458 * 1us later after ESDHC_EXTN is set. 459 */ 460 if (base == ESDHC_SYSTEM_CONTROL_2) { 461 if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) && 462 esdhc->in_sw_tuning) { 463 udelay(1); 464 ret |= ESDHC_SMPCLKSEL; 465 iowrite32(ret, host->ioaddr + base); 466 } 467 } 468 } 469 470 static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg) 471 { 472 int base = reg & ~0x3; 473 u32 value; 474 u32 ret; 475 476 value = ioread32be(host->ioaddr + base); 477 ret = esdhc_writeb_fixup(host, reg, val, value); 478 iowrite32be(ret, host->ioaddr + base); 479 } 480 481 static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg) 482 { 483 int base = reg & ~0x3; 484 u32 value; 485 u32 ret; 486 487 value = ioread32(host->ioaddr + base); 488 ret = esdhc_writeb_fixup(host, reg, val, value); 489 iowrite32(ret, host->ioaddr + base); 490 } 491 492 /* 493 * For Abort or Suspend after Stop at Block Gap, ignore the ADMA 494 * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC]) 495 * and Block Gap Event(IRQSTAT[BGE]) are also set. 496 * For Continue, apply soft reset for data(SYSCTL[RSTD]); 497 * and re-issue the entire read transaction from beginning. 498 */ 499 static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask) 500 { 501 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 502 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 503 bool applicable; 504 dma_addr_t dmastart; 505 dma_addr_t dmanow; 506 507 applicable = (intmask & SDHCI_INT_DATA_END) && 508 (intmask & SDHCI_INT_BLK_GAP) && 509 (esdhc->vendor_ver == VENDOR_V_23); 510 if (!applicable) 511 return; 512 513 host->data->error = 0; 514 dmastart = sg_dma_address(host->data->sg); 515 dmanow = dmastart + host->data->bytes_xfered; 516 /* 517 * Force update to the next DMA block boundary. 518 */ 519 dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) + 520 SDHCI_DEFAULT_BOUNDARY_SIZE; 521 host->data->bytes_xfered = dmanow - dmastart; 522 sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS); 523 } 524 525 static int esdhc_of_enable_dma(struct sdhci_host *host) 526 { 527 u32 value; 528 struct device *dev = mmc_dev(host->mmc); 529 530 if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") || 531 of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc")) 532 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40)); 533 534 value = sdhci_readl(host, ESDHC_DMA_SYSCTL); 535 536 if (of_dma_is_coherent(dev->of_node)) 537 value |= ESDHC_DMA_SNOOP; 538 else 539 value &= ~ESDHC_DMA_SNOOP; 540 541 sdhci_writel(host, value, ESDHC_DMA_SYSCTL); 542 return 0; 543 } 544 545 static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host) 546 { 547 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 548 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 549 550 if (esdhc->peripheral_clock) 551 return esdhc->peripheral_clock; 552 else 553 return pltfm_host->clock; 554 } 555 556 static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host) 557 { 558 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 559 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 560 unsigned int clock; 561 562 if (esdhc->peripheral_clock) 563 clock = esdhc->peripheral_clock; 564 else 565 clock = pltfm_host->clock; 566 return clock / 256 / 16; 567 } 568 569 static void esdhc_clock_enable(struct sdhci_host *host, bool enable) 570 { 571 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 572 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 573 ktime_t timeout; 574 u32 val, clk_en; 575 576 clk_en = ESDHC_CLOCK_SDCLKEN; 577 578 /* 579 * IPGEN/HCKEN/PEREN bits exist on eSDHC whose vendor version 580 * is 2.2 or lower. 581 */ 582 if (esdhc->vendor_ver <= VENDOR_V_22) 583 clk_en |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | 584 ESDHC_CLOCK_PEREN); 585 586 val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); 587 588 if (enable) 589 val |= clk_en; 590 else 591 val &= ~clk_en; 592 593 sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL); 594 595 /* 596 * Wait max 20 ms. If vendor version is 2.2 or lower, do not 597 * wait clock stable bit which does not exist. 598 */ 599 timeout = ktime_add_ms(ktime_get(), 20); 600 while (esdhc->vendor_ver > VENDOR_V_22) { 601 bool timedout = ktime_after(ktime_get(), timeout); 602 603 if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE) 604 break; 605 if (timedout) { 606 pr_err("%s: Internal clock never stabilised.\n", 607 mmc_hostname(host->mmc)); 608 break; 609 } 610 usleep_range(10, 20); 611 } 612 } 613 614 static void esdhc_flush_async_fifo(struct sdhci_host *host) 615 { 616 ktime_t timeout; 617 u32 val; 618 619 val = sdhci_readl(host, ESDHC_DMA_SYSCTL); 620 val |= ESDHC_FLUSH_ASYNC_FIFO; 621 sdhci_writel(host, val, ESDHC_DMA_SYSCTL); 622 623 /* Wait max 20 ms */ 624 timeout = ktime_add_ms(ktime_get(), 20); 625 while (1) { 626 bool timedout = ktime_after(ktime_get(), timeout); 627 628 if (!(sdhci_readl(host, ESDHC_DMA_SYSCTL) & 629 ESDHC_FLUSH_ASYNC_FIFO)) 630 break; 631 if (timedout) { 632 pr_err("%s: flushing asynchronous FIFO timeout.\n", 633 mmc_hostname(host->mmc)); 634 break; 635 } 636 usleep_range(10, 20); 637 } 638 } 639 640 static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock) 641 { 642 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 643 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 644 unsigned int pre_div = 1, div = 1; 645 unsigned int clock_fixup = 0; 646 ktime_t timeout; 647 u32 temp; 648 649 if (clock == 0) { 650 host->mmc->actual_clock = 0; 651 esdhc_clock_enable(host, false); 652 return; 653 } 654 655 /* Start pre_div at 2 for vendor version < 2.3. */ 656 if (esdhc->vendor_ver < VENDOR_V_23) 657 pre_div = 2; 658 659 /* Fix clock value. */ 660 if (host->mmc->card && mmc_card_sd(host->mmc->card) && 661 esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY) 662 clock_fixup = esdhc->clk_fixup->sd_dflt_max_clk; 663 else if (esdhc->clk_fixup) 664 clock_fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing]; 665 666 if (clock_fixup == 0 || clock < clock_fixup) 667 clock_fixup = clock; 668 669 /* Calculate pre_div and div. */ 670 while (host->max_clk / pre_div / 16 > clock_fixup && pre_div < 256) 671 pre_div *= 2; 672 673 while (host->max_clk / pre_div / div > clock_fixup && div < 16) 674 div++; 675 676 esdhc->div_ratio = pre_div * div; 677 678 /* Limit clock division for HS400 200MHz clock for quirk. */ 679 if (esdhc->quirk_limited_clk_division && 680 clock == MMC_HS200_MAX_DTR && 681 (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 || 682 host->flags & SDHCI_HS400_TUNING)) { 683 if (esdhc->div_ratio <= 4) { 684 pre_div = 4; 685 div = 1; 686 } else if (esdhc->div_ratio <= 8) { 687 pre_div = 4; 688 div = 2; 689 } else if (esdhc->div_ratio <= 12) { 690 pre_div = 4; 691 div = 3; 692 } else { 693 pr_warn("%s: using unsupported clock division.\n", 694 mmc_hostname(host->mmc)); 695 } 696 esdhc->div_ratio = pre_div * div; 697 } 698 699 host->mmc->actual_clock = host->max_clk / esdhc->div_ratio; 700 701 dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n", 702 clock, host->mmc->actual_clock); 703 704 /* Set clock division into register. */ 705 pre_div >>= 1; 706 div--; 707 708 esdhc_clock_enable(host, false); 709 710 temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); 711 temp &= ~ESDHC_CLOCK_MASK; 712 temp |= ((div << ESDHC_DIVIDER_SHIFT) | 713 (pre_div << ESDHC_PREDIV_SHIFT)); 714 sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL); 715 716 /* 717 * Wait max 20 ms. If vendor version is 2.2 or lower, do not 718 * wait clock stable bit which does not exist. 719 */ 720 timeout = ktime_add_ms(ktime_get(), 20); 721 while (esdhc->vendor_ver > VENDOR_V_22) { 722 bool timedout = ktime_after(ktime_get(), timeout); 723 724 if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE) 725 break; 726 if (timedout) { 727 pr_err("%s: Internal clock never stabilised.\n", 728 mmc_hostname(host->mmc)); 729 break; 730 } 731 usleep_range(10, 20); 732 } 733 734 /* Additional setting for HS400. */ 735 if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 && 736 clock == MMC_HS200_MAX_DTR) { 737 temp = sdhci_readl(host, ESDHC_TBCTL); 738 sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL); 739 temp = sdhci_readl(host, ESDHC_SDCLKCTL); 740 sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL); 741 esdhc_clock_enable(host, true); 742 743 temp = sdhci_readl(host, ESDHC_DLLCFG0); 744 temp |= ESDHC_DLL_ENABLE; 745 if (host->mmc->actual_clock == MMC_HS200_MAX_DTR) 746 temp |= ESDHC_DLL_FREQ_SEL; 747 sdhci_writel(host, temp, ESDHC_DLLCFG0); 748 749 temp |= ESDHC_DLL_RESET; 750 sdhci_writel(host, temp, ESDHC_DLLCFG0); 751 udelay(1); 752 temp &= ~ESDHC_DLL_RESET; 753 sdhci_writel(host, temp, ESDHC_DLLCFG0); 754 755 /* Wait max 20 ms */ 756 if (read_poll_timeout(sdhci_readl, temp, 757 temp & ESDHC_DLL_STS_SLV_LOCK, 758 10, 20000, false, 759 host, ESDHC_DLLSTAT0)) 760 pr_err("%s: timeout for delay chain lock.\n", 761 mmc_hostname(host->mmc)); 762 763 temp = sdhci_readl(host, ESDHC_TBCTL); 764 sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL); 765 766 esdhc_clock_enable(host, false); 767 esdhc_flush_async_fifo(host); 768 } 769 esdhc_clock_enable(host, true); 770 } 771 772 static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width) 773 { 774 u32 ctrl; 775 776 ctrl = sdhci_readl(host, ESDHC_PROCTL); 777 ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK); 778 switch (width) { 779 case MMC_BUS_WIDTH_8: 780 ctrl |= ESDHC_CTRL_8BITBUS; 781 break; 782 783 case MMC_BUS_WIDTH_4: 784 ctrl |= ESDHC_CTRL_4BITBUS; 785 break; 786 787 default: 788 break; 789 } 790 791 sdhci_writel(host, ctrl, ESDHC_PROCTL); 792 } 793 794 static void esdhc_reset(struct sdhci_host *host, u8 mask) 795 { 796 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 797 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 798 u32 val, bus_width = 0; 799 800 /* 801 * Add delay to make sure all the DMA transfers are finished 802 * for quirk. 803 */ 804 if (esdhc->quirk_delay_before_data_reset && 805 (mask & SDHCI_RESET_DATA) && 806 (host->flags & SDHCI_REQ_USE_DMA)) 807 mdelay(5); 808 809 /* 810 * Save bus-width for eSDHC whose vendor version is 2.2 811 * or lower for data reset. 812 */ 813 if ((mask & SDHCI_RESET_DATA) && 814 (esdhc->vendor_ver <= VENDOR_V_22)) { 815 val = sdhci_readl(host, ESDHC_PROCTL); 816 bus_width = val & ESDHC_CTRL_BUSWIDTH_MASK; 817 } 818 819 sdhci_reset(host, mask); 820 821 /* 822 * Restore bus-width setting and interrupt registers for eSDHC 823 * whose vendor version is 2.2 or lower for data reset. 824 */ 825 if ((mask & SDHCI_RESET_DATA) && 826 (esdhc->vendor_ver <= VENDOR_V_22)) { 827 val = sdhci_readl(host, ESDHC_PROCTL); 828 val &= ~ESDHC_CTRL_BUSWIDTH_MASK; 829 val |= bus_width; 830 sdhci_writel(host, val, ESDHC_PROCTL); 831 832 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); 833 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); 834 } 835 836 /* 837 * Some bits have to be cleaned manually for eSDHC whose spec 838 * version is higher than 3.0 for all reset. 839 */ 840 if ((mask & SDHCI_RESET_ALL) && 841 (esdhc->spec_ver >= SDHCI_SPEC_300)) { 842 val = sdhci_readl(host, ESDHC_TBCTL); 843 val &= ~ESDHC_TB_EN; 844 sdhci_writel(host, val, ESDHC_TBCTL); 845 846 /* 847 * Initialize eSDHC_DLLCFG1[DLL_PD_PULSE_STRETCH_SEL] to 848 * 0 for quirk. 849 */ 850 if (esdhc->quirk_unreliable_pulse_detection) { 851 val = sdhci_readl(host, ESDHC_DLLCFG1); 852 val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL; 853 sdhci_writel(host, val, ESDHC_DLLCFG1); 854 } 855 } 856 } 857 858 /* The SCFG, Supplemental Configuration Unit, provides SoC specific 859 * configuration and status registers for the device. There is a 860 * SDHC IO VSEL control register on SCFG for some platforms. It's 861 * used to support SDHC IO voltage switching. 862 */ 863 static const struct of_device_id scfg_device_ids[] = { 864 { .compatible = "fsl,t1040-scfg", }, 865 { .compatible = "fsl,ls1012a-scfg", }, 866 { .compatible = "fsl,ls1046a-scfg", }, 867 {} 868 }; 869 870 /* SDHC IO VSEL control register definition */ 871 #define SCFG_SDHCIOVSELCR 0x408 872 #define SDHCIOVSELCR_TGLEN 0x80000000 873 #define SDHCIOVSELCR_VSELVAL 0x60000000 874 #define SDHCIOVSELCR_SDHC_VS 0x00000001 875 876 static int esdhc_signal_voltage_switch(struct mmc_host *mmc, 877 struct mmc_ios *ios) 878 { 879 struct sdhci_host *host = mmc_priv(mmc); 880 struct device_node *scfg_node; 881 void __iomem *scfg_base = NULL; 882 u32 sdhciovselcr; 883 u32 val; 884 885 /* 886 * Signal Voltage Switching is only applicable for Host Controllers 887 * v3.00 and above. 888 */ 889 if (host->version < SDHCI_SPEC_300) 890 return 0; 891 892 val = sdhci_readl(host, ESDHC_PROCTL); 893 894 switch (ios->signal_voltage) { 895 case MMC_SIGNAL_VOLTAGE_330: 896 val &= ~ESDHC_VOLT_SEL; 897 sdhci_writel(host, val, ESDHC_PROCTL); 898 return 0; 899 case MMC_SIGNAL_VOLTAGE_180: 900 scfg_node = of_find_matching_node(NULL, scfg_device_ids); 901 if (scfg_node) 902 scfg_base = of_iomap(scfg_node, 0); 903 if (scfg_base) { 904 sdhciovselcr = SDHCIOVSELCR_TGLEN | 905 SDHCIOVSELCR_VSELVAL; 906 iowrite32be(sdhciovselcr, 907 scfg_base + SCFG_SDHCIOVSELCR); 908 909 val |= ESDHC_VOLT_SEL; 910 sdhci_writel(host, val, ESDHC_PROCTL); 911 mdelay(5); 912 913 sdhciovselcr = SDHCIOVSELCR_TGLEN | 914 SDHCIOVSELCR_SDHC_VS; 915 iowrite32be(sdhciovselcr, 916 scfg_base + SCFG_SDHCIOVSELCR); 917 iounmap(scfg_base); 918 } else { 919 val |= ESDHC_VOLT_SEL; 920 sdhci_writel(host, val, ESDHC_PROCTL); 921 } 922 return 0; 923 default: 924 return 0; 925 } 926 } 927 928 static struct soc_device_attribute soc_tuning_erratum_type1[] = { 929 { .family = "QorIQ T1023", }, 930 { .family = "QorIQ T1040", }, 931 { .family = "QorIQ T2080", }, 932 { .family = "QorIQ LS1021A", }, 933 { }, 934 }; 935 936 static struct soc_device_attribute soc_tuning_erratum_type2[] = { 937 { .family = "QorIQ LS1012A", }, 938 { .family = "QorIQ LS1043A", }, 939 { .family = "QorIQ LS1046A", }, 940 { .family = "QorIQ LS1080A", }, 941 { .family = "QorIQ LS2080A", }, 942 { .family = "QorIQ LA1575A", }, 943 { }, 944 }; 945 946 static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable) 947 { 948 u32 val; 949 950 esdhc_clock_enable(host, false); 951 esdhc_flush_async_fifo(host); 952 953 val = sdhci_readl(host, ESDHC_TBCTL); 954 if (enable) 955 val |= ESDHC_TB_EN; 956 else 957 val &= ~ESDHC_TB_EN; 958 sdhci_writel(host, val, ESDHC_TBCTL); 959 960 esdhc_clock_enable(host, true); 961 } 962 963 static void esdhc_tuning_window_ptr(struct sdhci_host *host, u8 *window_start, 964 u8 *window_end) 965 { 966 u32 val; 967 968 /* Write TBCTL[11:8]=4'h8 */ 969 val = sdhci_readl(host, ESDHC_TBCTL); 970 val &= ~(0xf << 8); 971 val |= 8 << 8; 972 sdhci_writel(host, val, ESDHC_TBCTL); 973 974 mdelay(1); 975 976 /* Read TBCTL[31:0] register and rewrite again */ 977 val = sdhci_readl(host, ESDHC_TBCTL); 978 sdhci_writel(host, val, ESDHC_TBCTL); 979 980 mdelay(1); 981 982 /* Read the TBSTAT[31:0] register twice */ 983 val = sdhci_readl(host, ESDHC_TBSTAT); 984 val = sdhci_readl(host, ESDHC_TBSTAT); 985 986 *window_end = val & 0xff; 987 *window_start = (val >> 8) & 0xff; 988 } 989 990 static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start, 991 u8 *window_end) 992 { 993 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 994 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 995 u8 start_ptr, end_ptr; 996 997 if (esdhc->quirk_tuning_erratum_type1) { 998 *window_start = 5 * esdhc->div_ratio; 999 *window_end = 3 * esdhc->div_ratio; 1000 return; 1001 } 1002 1003 esdhc_tuning_window_ptr(host, &start_ptr, &end_ptr); 1004 1005 /* Reset data lines by setting ESDHCCTL[RSTD] */ 1006 sdhci_reset(host, SDHCI_RESET_DATA); 1007 /* Write 32'hFFFF_FFFF to IRQSTAT register */ 1008 sdhci_writel(host, 0xFFFFFFFF, SDHCI_INT_STATUS); 1009 1010 /* If TBSTAT[15:8]-TBSTAT[7:0] > (4 * div_ratio) + 2 1011 * or TBSTAT[7:0]-TBSTAT[15:8] > (4 * div_ratio) + 2, 1012 * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio 1013 * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio. 1014 */ 1015 1016 if (abs(start_ptr - end_ptr) > (4 * esdhc->div_ratio + 2)) { 1017 *window_start = 8 * esdhc->div_ratio; 1018 *window_end = 4 * esdhc->div_ratio; 1019 } else { 1020 *window_start = 5 * esdhc->div_ratio; 1021 *window_end = 3 * esdhc->div_ratio; 1022 } 1023 } 1024 1025 static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode, 1026 u8 window_start, u8 window_end) 1027 { 1028 struct sdhci_host *host = mmc_priv(mmc); 1029 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1030 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 1031 u32 val; 1032 int ret; 1033 1034 /* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */ 1035 val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) & 1036 ESDHC_WNDW_STRT_PTR_MASK; 1037 val |= window_end & ESDHC_WNDW_END_PTR_MASK; 1038 sdhci_writel(host, val, ESDHC_TBPTR); 1039 1040 /* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */ 1041 val = sdhci_readl(host, ESDHC_TBCTL); 1042 val &= ~ESDHC_TB_MODE_MASK; 1043 val |= ESDHC_TB_MODE_SW; 1044 sdhci_writel(host, val, ESDHC_TBCTL); 1045 1046 esdhc->in_sw_tuning = true; 1047 ret = sdhci_execute_tuning(mmc, opcode); 1048 esdhc->in_sw_tuning = false; 1049 return ret; 1050 } 1051 1052 static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode) 1053 { 1054 struct sdhci_host *host = mmc_priv(mmc); 1055 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1056 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 1057 u8 window_start, window_end; 1058 int ret, retries = 1; 1059 bool hs400_tuning; 1060 unsigned int clk; 1061 u32 val; 1062 1063 /* For tuning mode, the sd clock divisor value 1064 * must be larger than 3 according to reference manual. 1065 */ 1066 clk = esdhc->peripheral_clock / 3; 1067 if (host->clock > clk) 1068 esdhc_of_set_clock(host, clk); 1069 1070 esdhc_tuning_block_enable(host, true); 1071 1072 /* 1073 * The eSDHC controller takes the data timeout value into account 1074 * during tuning. If the SD card is too slow sending the response, the 1075 * timer will expire and a "Buffer Read Ready" interrupt without data 1076 * is triggered. This leads to tuning errors. 1077 * 1078 * Just set the timeout to the maximum value because the core will 1079 * already take care of it in sdhci_send_tuning(). 1080 */ 1081 sdhci_writeb(host, 0xe, SDHCI_TIMEOUT_CONTROL); 1082 1083 hs400_tuning = host->flags & SDHCI_HS400_TUNING; 1084 1085 do { 1086 if (esdhc->quirk_limited_clk_division && 1087 hs400_tuning) 1088 esdhc_of_set_clock(host, host->clock); 1089 1090 /* Do HW tuning */ 1091 val = sdhci_readl(host, ESDHC_TBCTL); 1092 val &= ~ESDHC_TB_MODE_MASK; 1093 val |= ESDHC_TB_MODE_3; 1094 sdhci_writel(host, val, ESDHC_TBCTL); 1095 1096 ret = sdhci_execute_tuning(mmc, opcode); 1097 if (ret) 1098 break; 1099 1100 /* For type2 affected platforms of the tuning erratum, 1101 * tuning may succeed although eSDHC might not have 1102 * tuned properly. Need to check tuning window. 1103 */ 1104 if (esdhc->quirk_tuning_erratum_type2 && 1105 !host->tuning_err) { 1106 esdhc_tuning_window_ptr(host, &window_start, 1107 &window_end); 1108 if (abs(window_start - window_end) > 1109 (4 * esdhc->div_ratio + 2)) 1110 host->tuning_err = -EAGAIN; 1111 } 1112 1113 /* If HW tuning fails and triggers erratum, 1114 * try workaround. 1115 */ 1116 ret = host->tuning_err; 1117 if (ret == -EAGAIN && 1118 (esdhc->quirk_tuning_erratum_type1 || 1119 esdhc->quirk_tuning_erratum_type2)) { 1120 /* Recover HS400 tuning flag */ 1121 if (hs400_tuning) 1122 host->flags |= SDHCI_HS400_TUNING; 1123 pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n", 1124 mmc_hostname(mmc)); 1125 /* Do SW tuning */ 1126 esdhc_prepare_sw_tuning(host, &window_start, 1127 &window_end); 1128 ret = esdhc_execute_sw_tuning(mmc, opcode, 1129 window_start, 1130 window_end); 1131 if (ret) 1132 break; 1133 1134 /* Retry both HW/SW tuning with reduced clock. */ 1135 ret = host->tuning_err; 1136 if (ret == -EAGAIN && retries) { 1137 /* Recover HS400 tuning flag */ 1138 if (hs400_tuning) 1139 host->flags |= SDHCI_HS400_TUNING; 1140 1141 clk = host->max_clk / (esdhc->div_ratio + 1); 1142 esdhc_of_set_clock(host, clk); 1143 pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n", 1144 mmc_hostname(mmc)); 1145 } else { 1146 break; 1147 } 1148 } else { 1149 break; 1150 } 1151 } while (retries--); 1152 1153 if (ret) { 1154 esdhc_tuning_block_enable(host, false); 1155 } else if (hs400_tuning) { 1156 val = sdhci_readl(host, ESDHC_SDTIMNGCTL); 1157 val |= ESDHC_FLW_CTL_BG; 1158 sdhci_writel(host, val, ESDHC_SDTIMNGCTL); 1159 } 1160 1161 return ret; 1162 } 1163 1164 static void esdhc_set_uhs_signaling(struct sdhci_host *host, 1165 unsigned int timing) 1166 { 1167 u32 val; 1168 1169 /* 1170 * There are specific registers setting for HS400 mode. 1171 * Clean all of them if controller is in HS400 mode to 1172 * exit HS400 mode before re-setting any speed mode. 1173 */ 1174 val = sdhci_readl(host, ESDHC_TBCTL); 1175 if (val & ESDHC_HS400_MODE) { 1176 val = sdhci_readl(host, ESDHC_SDTIMNGCTL); 1177 val &= ~ESDHC_FLW_CTL_BG; 1178 sdhci_writel(host, val, ESDHC_SDTIMNGCTL); 1179 1180 val = sdhci_readl(host, ESDHC_SDCLKCTL); 1181 val &= ~ESDHC_CMD_CLK_CTL; 1182 sdhci_writel(host, val, ESDHC_SDCLKCTL); 1183 1184 esdhc_clock_enable(host, false); 1185 val = sdhci_readl(host, ESDHC_TBCTL); 1186 val &= ~ESDHC_HS400_MODE; 1187 sdhci_writel(host, val, ESDHC_TBCTL); 1188 esdhc_clock_enable(host, true); 1189 1190 val = sdhci_readl(host, ESDHC_DLLCFG0); 1191 val &= ~(ESDHC_DLL_ENABLE | ESDHC_DLL_FREQ_SEL); 1192 sdhci_writel(host, val, ESDHC_DLLCFG0); 1193 1194 val = sdhci_readl(host, ESDHC_TBCTL); 1195 val &= ~ESDHC_HS400_WNDW_ADJUST; 1196 sdhci_writel(host, val, ESDHC_TBCTL); 1197 1198 esdhc_tuning_block_enable(host, false); 1199 } 1200 1201 if (timing == MMC_TIMING_MMC_HS400) 1202 esdhc_tuning_block_enable(host, true); 1203 else 1204 sdhci_set_uhs_signaling(host, timing); 1205 } 1206 1207 static u32 esdhc_irq(struct sdhci_host *host, u32 intmask) 1208 { 1209 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1210 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 1211 u32 command; 1212 1213 if (esdhc->quirk_trans_complete_erratum) { 1214 command = SDHCI_GET_CMD(sdhci_readw(host, 1215 SDHCI_COMMAND)); 1216 if (command == MMC_WRITE_MULTIPLE_BLOCK && 1217 sdhci_readw(host, SDHCI_BLOCK_COUNT) && 1218 intmask & SDHCI_INT_DATA_END) { 1219 intmask &= ~SDHCI_INT_DATA_END; 1220 sdhci_writel(host, SDHCI_INT_DATA_END, 1221 SDHCI_INT_STATUS); 1222 } 1223 } 1224 return intmask; 1225 } 1226 1227 #ifdef CONFIG_PM_SLEEP 1228 static u32 esdhc_proctl; 1229 static int esdhc_of_suspend(struct device *dev) 1230 { 1231 struct sdhci_host *host = dev_get_drvdata(dev); 1232 1233 esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL); 1234 1235 if (host->tuning_mode != SDHCI_TUNING_MODE_3) 1236 mmc_retune_needed(host->mmc); 1237 1238 return sdhci_suspend_host(host); 1239 } 1240 1241 static int esdhc_of_resume(struct device *dev) 1242 { 1243 struct sdhci_host *host = dev_get_drvdata(dev); 1244 int ret = sdhci_resume_host(host); 1245 1246 if (ret == 0) { 1247 /* Isn't this already done by sdhci_resume_host() ? --rmk */ 1248 esdhc_of_enable_dma(host); 1249 sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL); 1250 } 1251 return ret; 1252 } 1253 #endif 1254 1255 static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops, 1256 esdhc_of_suspend, 1257 esdhc_of_resume); 1258 1259 static const struct sdhci_ops sdhci_esdhc_be_ops = { 1260 .read_l = esdhc_be_readl, 1261 .read_w = esdhc_be_readw, 1262 .read_b = esdhc_be_readb, 1263 .write_l = esdhc_be_writel, 1264 .write_w = esdhc_be_writew, 1265 .write_b = esdhc_be_writeb, 1266 .set_clock = esdhc_of_set_clock, 1267 .enable_dma = esdhc_of_enable_dma, 1268 .get_max_clock = esdhc_of_get_max_clock, 1269 .get_min_clock = esdhc_of_get_min_clock, 1270 .adma_workaround = esdhc_of_adma_workaround, 1271 .set_bus_width = esdhc_pltfm_set_bus_width, 1272 .reset = esdhc_reset, 1273 .set_uhs_signaling = esdhc_set_uhs_signaling, 1274 .irq = esdhc_irq, 1275 }; 1276 1277 static const struct sdhci_ops sdhci_esdhc_le_ops = { 1278 .read_l = esdhc_le_readl, 1279 .read_w = esdhc_le_readw, 1280 .read_b = esdhc_le_readb, 1281 .write_l = esdhc_le_writel, 1282 .write_w = esdhc_le_writew, 1283 .write_b = esdhc_le_writeb, 1284 .set_clock = esdhc_of_set_clock, 1285 .enable_dma = esdhc_of_enable_dma, 1286 .get_max_clock = esdhc_of_get_max_clock, 1287 .get_min_clock = esdhc_of_get_min_clock, 1288 .adma_workaround = esdhc_of_adma_workaround, 1289 .set_bus_width = esdhc_pltfm_set_bus_width, 1290 .reset = esdhc_reset, 1291 .set_uhs_signaling = esdhc_set_uhs_signaling, 1292 .irq = esdhc_irq, 1293 }; 1294 1295 static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = { 1296 .quirks = ESDHC_DEFAULT_QUIRKS | 1297 #ifdef CONFIG_PPC 1298 SDHCI_QUIRK_BROKEN_CARD_DETECTION | 1299 #endif 1300 SDHCI_QUIRK_NO_CARD_NO_RESET | 1301 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, 1302 .ops = &sdhci_esdhc_be_ops, 1303 }; 1304 1305 static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = { 1306 .quirks = ESDHC_DEFAULT_QUIRKS | 1307 SDHCI_QUIRK_NO_CARD_NO_RESET | 1308 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, 1309 .ops = &sdhci_esdhc_le_ops, 1310 }; 1311 1312 static struct soc_device_attribute soc_incorrect_hostver[] = { 1313 { .family = "QorIQ T4240", .revision = "1.0", }, 1314 { .family = "QorIQ T4240", .revision = "2.0", }, 1315 { }, 1316 }; 1317 1318 static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = { 1319 { .family = "QorIQ LX2160A", .revision = "1.0", }, 1320 { .family = "QorIQ LX2160A", .revision = "2.0", }, 1321 { .family = "QorIQ LS1028A", .revision = "1.0", }, 1322 { }, 1323 }; 1324 1325 static struct soc_device_attribute soc_unreliable_pulse_detection[] = { 1326 { .family = "QorIQ LX2160A", .revision = "1.0", }, 1327 { .family = "QorIQ LX2160A", .revision = "2.0", }, 1328 { .family = "QorIQ LS1028A", .revision = "1.0", }, 1329 { }, 1330 }; 1331 1332 static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host) 1333 { 1334 const struct of_device_id *match; 1335 struct sdhci_pltfm_host *pltfm_host; 1336 struct sdhci_esdhc *esdhc; 1337 struct device_node *np; 1338 struct clk *clk; 1339 u32 val; 1340 u16 host_ver; 1341 1342 pltfm_host = sdhci_priv(host); 1343 esdhc = sdhci_pltfm_priv(pltfm_host); 1344 1345 host_ver = sdhci_readw(host, SDHCI_HOST_VERSION); 1346 esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >> 1347 SDHCI_VENDOR_VER_SHIFT; 1348 esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK; 1349 if (soc_device_match(soc_incorrect_hostver)) 1350 esdhc->quirk_incorrect_hostver = true; 1351 else 1352 esdhc->quirk_incorrect_hostver = false; 1353 1354 if (soc_device_match(soc_fixup_sdhc_clkdivs)) 1355 esdhc->quirk_limited_clk_division = true; 1356 else 1357 esdhc->quirk_limited_clk_division = false; 1358 1359 if (soc_device_match(soc_unreliable_pulse_detection)) 1360 esdhc->quirk_unreliable_pulse_detection = true; 1361 else 1362 esdhc->quirk_unreliable_pulse_detection = false; 1363 1364 match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node); 1365 if (match) 1366 esdhc->clk_fixup = match->data; 1367 np = pdev->dev.of_node; 1368 1369 if (of_device_is_compatible(np, "fsl,p2020-esdhc")) { 1370 esdhc->quirk_delay_before_data_reset = true; 1371 esdhc->quirk_trans_complete_erratum = true; 1372 } 1373 1374 clk = of_clk_get(np, 0); 1375 if (!IS_ERR(clk)) { 1376 /* 1377 * esdhc->peripheral_clock would be assigned with a value 1378 * which is eSDHC base clock when use periperal clock. 1379 * For some platforms, the clock value got by common clk 1380 * API is peripheral clock while the eSDHC base clock is 1381 * 1/2 peripheral clock. 1382 */ 1383 if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") || 1384 of_device_is_compatible(np, "fsl,ls1028a-esdhc") || 1385 of_device_is_compatible(np, "fsl,ls1088a-esdhc")) 1386 esdhc->peripheral_clock = clk_get_rate(clk) / 2; 1387 else 1388 esdhc->peripheral_clock = clk_get_rate(clk); 1389 1390 clk_put(clk); 1391 } 1392 1393 esdhc_clock_enable(host, false); 1394 val = sdhci_readl(host, ESDHC_DMA_SYSCTL); 1395 /* 1396 * This bit is not able to be reset by SDHCI_RESET_ALL. Need to 1397 * initialize it as 1 or 0 once, to override the different value 1398 * which may be configured in bootloader. 1399 */ 1400 if (esdhc->peripheral_clock) 1401 val |= ESDHC_PERIPHERAL_CLK_SEL; 1402 else 1403 val &= ~ESDHC_PERIPHERAL_CLK_SEL; 1404 sdhci_writel(host, val, ESDHC_DMA_SYSCTL); 1405 esdhc_clock_enable(host, true); 1406 } 1407 1408 static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc) 1409 { 1410 esdhc_tuning_block_enable(mmc_priv(mmc), false); 1411 return 0; 1412 } 1413 1414 static int sdhci_esdhc_probe(struct platform_device *pdev) 1415 { 1416 struct sdhci_host *host; 1417 struct device_node *np; 1418 struct sdhci_pltfm_host *pltfm_host; 1419 struct sdhci_esdhc *esdhc; 1420 int ret; 1421 1422 np = pdev->dev.of_node; 1423 1424 if (of_property_read_bool(np, "little-endian")) 1425 host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata, 1426 sizeof(struct sdhci_esdhc)); 1427 else 1428 host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata, 1429 sizeof(struct sdhci_esdhc)); 1430 1431 if (IS_ERR(host)) 1432 return PTR_ERR(host); 1433 1434 host->mmc_host_ops.start_signal_voltage_switch = 1435 esdhc_signal_voltage_switch; 1436 host->mmc_host_ops.execute_tuning = esdhc_execute_tuning; 1437 host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr; 1438 host->tuning_delay = 1; 1439 1440 esdhc_init(pdev, host); 1441 1442 sdhci_get_of_property(pdev); 1443 1444 pltfm_host = sdhci_priv(host); 1445 esdhc = sdhci_pltfm_priv(pltfm_host); 1446 if (soc_device_match(soc_tuning_erratum_type1)) 1447 esdhc->quirk_tuning_erratum_type1 = true; 1448 else 1449 esdhc->quirk_tuning_erratum_type1 = false; 1450 1451 if (soc_device_match(soc_tuning_erratum_type2)) 1452 esdhc->quirk_tuning_erratum_type2 = true; 1453 else 1454 esdhc->quirk_tuning_erratum_type2 = false; 1455 1456 if (esdhc->vendor_ver == VENDOR_V_22) 1457 host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23; 1458 1459 if (esdhc->vendor_ver > VENDOR_V_22) 1460 host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ; 1461 1462 if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) { 1463 host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST; 1464 host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; 1465 } 1466 1467 if (of_device_is_compatible(np, "fsl,p5040-esdhc") || 1468 of_device_is_compatible(np, "fsl,p5020-esdhc") || 1469 of_device_is_compatible(np, "fsl,p4080-esdhc") || 1470 of_device_is_compatible(np, "fsl,p1020-esdhc") || 1471 of_device_is_compatible(np, "fsl,t1040-esdhc")) 1472 host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION; 1473 1474 if (of_device_is_compatible(np, "fsl,ls1021a-esdhc")) 1475 host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; 1476 1477 esdhc->quirk_ignore_data_inhibit = false; 1478 if (of_device_is_compatible(np, "fsl,p2020-esdhc")) { 1479 /* 1480 * Freescale messed up with P2020 as it has a non-standard 1481 * host control register 1482 */ 1483 host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL; 1484 esdhc->quirk_ignore_data_inhibit = true; 1485 } 1486 1487 /* call to generic mmc_of_parse to support additional capabilities */ 1488 ret = mmc_of_parse(host->mmc); 1489 if (ret) 1490 goto err; 1491 1492 mmc_of_parse_voltage(np, &host->ocr_mask); 1493 1494 ret = sdhci_add_host(host); 1495 if (ret) 1496 goto err; 1497 1498 return 0; 1499 err: 1500 sdhci_pltfm_free(pdev); 1501 return ret; 1502 } 1503 1504 static struct platform_driver sdhci_esdhc_driver = { 1505 .driver = { 1506 .name = "sdhci-esdhc", 1507 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 1508 .of_match_table = sdhci_esdhc_of_match, 1509 .pm = &esdhc_of_dev_pm_ops, 1510 }, 1511 .probe = sdhci_esdhc_probe, 1512 .remove = sdhci_pltfm_unregister, 1513 }; 1514 1515 module_platform_driver(sdhci_esdhc_driver); 1516 1517 MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC"); 1518 MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, " 1519 "Anton Vorontsov <avorontsov@ru.mvista.com>"); 1520 MODULE_LICENSE("GPL v2"); 1521