1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale eSDHC controller driver.
4  *
5  * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
6  * Copyright (c) 2009 MontaVista Software, Inc.
7  *
8  * Authors: Xiaobo Xie <X.Xie@freescale.com>
9  *	    Anton Vorontsov <avorontsov@ru.mvista.com>
10  */
11 
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/delay.h>
17 #include <linux/module.h>
18 #include <linux/sys_soc.h>
19 #include <linux/clk.h>
20 #include <linux/ktime.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/mmc.h>
24 #include "sdhci-pltfm.h"
25 #include "sdhci-esdhc.h"
26 
27 #define VENDOR_V_22	0x12
28 #define VENDOR_V_23	0x13
29 
30 #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
31 
32 struct esdhc_clk_fixup {
33 	const unsigned int sd_dflt_max_clk;
34 	const unsigned int max_clk[MMC_TIMING_NUM];
35 };
36 
37 static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
38 	.sd_dflt_max_clk = 25000000,
39 	.max_clk[MMC_TIMING_MMC_HS] = 46500000,
40 	.max_clk[MMC_TIMING_SD_HS] = 46500000,
41 };
42 
43 static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
44 	.sd_dflt_max_clk = 25000000,
45 	.max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
46 	.max_clk[MMC_TIMING_MMC_HS200] = 167000000,
47 };
48 
49 static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
50 	.sd_dflt_max_clk = 25000000,
51 	.max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
52 	.max_clk[MMC_TIMING_MMC_HS200] = 125000000,
53 };
54 
55 static const struct esdhc_clk_fixup p1010_esdhc_clk = {
56 	.sd_dflt_max_clk = 20000000,
57 	.max_clk[MMC_TIMING_LEGACY] = 20000000,
58 	.max_clk[MMC_TIMING_MMC_HS] = 42000000,
59 	.max_clk[MMC_TIMING_SD_HS] = 40000000,
60 };
61 
62 static const struct of_device_id sdhci_esdhc_of_match[] = {
63 	{ .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
64 	{ .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
65 	{ .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
66 	{ .compatible = "fsl,p1010-esdhc",   .data = &p1010_esdhc_clk},
67 	{ .compatible = "fsl,mpc8379-esdhc" },
68 	{ .compatible = "fsl,mpc8536-esdhc" },
69 	{ .compatible = "fsl,esdhc" },
70 	{ }
71 };
72 MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
73 
74 struct sdhci_esdhc {
75 	u8 vendor_ver;
76 	u8 spec_ver;
77 	bool quirk_incorrect_hostver;
78 	bool quirk_limited_clk_division;
79 	bool quirk_unreliable_pulse_detection;
80 	bool quirk_fixup_tuning;
81 	bool quirk_ignore_data_inhibit;
82 	unsigned int peripheral_clock;
83 	const struct esdhc_clk_fixup *clk_fixup;
84 	u32 div_ratio;
85 };
86 
87 /**
88  * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
89  *		       to make it compatible with SD spec.
90  *
91  * @host: pointer to sdhci_host
92  * @spec_reg: SD spec register address
93  * @value: 32bit eSDHC register value on spec_reg address
94  *
95  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
96  * registers are 32 bits. There are differences in register size, register
97  * address, register function, bit position and function between eSDHC spec
98  * and SD spec.
99  *
100  * Return a fixed up register value
101  */
102 static u32 esdhc_readl_fixup(struct sdhci_host *host,
103 				     int spec_reg, u32 value)
104 {
105 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
106 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
107 	u32 ret;
108 
109 	/*
110 	 * The bit of ADMA flag in eSDHC is not compatible with standard
111 	 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
112 	 * supported by eSDHC.
113 	 * And for many FSL eSDHC controller, the reset value of field
114 	 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
115 	 * only these vendor version is greater than 2.2/0x12 support ADMA.
116 	 */
117 	if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
118 		if (esdhc->vendor_ver > VENDOR_V_22) {
119 			ret = value | SDHCI_CAN_DO_ADMA2;
120 			return ret;
121 		}
122 	}
123 	/*
124 	 * The DAT[3:0] line signal levels and the CMD line signal level are
125 	 * not compatible with standard SDHC register. The line signal levels
126 	 * DAT[7:0] are at bits 31:24 and the command line signal level is at
127 	 * bit 23. All other bits are the same as in the standard SDHC
128 	 * register.
129 	 */
130 	if (spec_reg == SDHCI_PRESENT_STATE) {
131 		ret = value & 0x000fffff;
132 		ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
133 		ret |= (value << 1) & SDHCI_CMD_LVL;
134 		return ret;
135 	}
136 
137 	/*
138 	 * DTS properties of mmc host are used to enable each speed mode
139 	 * according to soc and board capability. So clean up
140 	 * SDR50/SDR104/DDR50 support bits here.
141 	 */
142 	if (spec_reg == SDHCI_CAPABILITIES_1) {
143 		ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
144 				SDHCI_SUPPORT_DDR50);
145 		return ret;
146 	}
147 
148 	/*
149 	 * Some controllers have unreliable Data Line Active
150 	 * bit for commands with busy signal. This affects
151 	 * Command Inhibit (data) bit. Just ignore it since
152 	 * MMC core driver has already polled card status
153 	 * with CMD13 after any command with busy siganl.
154 	 */
155 	if ((spec_reg == SDHCI_PRESENT_STATE) &&
156 	(esdhc->quirk_ignore_data_inhibit == true)) {
157 		ret = value & ~SDHCI_DATA_INHIBIT;
158 		return ret;
159 	}
160 
161 	ret = value;
162 	return ret;
163 }
164 
165 static u16 esdhc_readw_fixup(struct sdhci_host *host,
166 				     int spec_reg, u32 value)
167 {
168 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
169 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
170 	u16 ret;
171 	int shift = (spec_reg & 0x2) * 8;
172 
173 	if (spec_reg == SDHCI_HOST_VERSION)
174 		ret = value & 0xffff;
175 	else
176 		ret = (value >> shift) & 0xffff;
177 	/* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
178 	 * vendor version and spec version information.
179 	 */
180 	if ((spec_reg == SDHCI_HOST_VERSION) &&
181 	    (esdhc->quirk_incorrect_hostver))
182 		ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
183 	return ret;
184 }
185 
186 static u8 esdhc_readb_fixup(struct sdhci_host *host,
187 				     int spec_reg, u32 value)
188 {
189 	u8 ret;
190 	u8 dma_bits;
191 	int shift = (spec_reg & 0x3) * 8;
192 
193 	ret = (value >> shift) & 0xff;
194 
195 	/*
196 	 * "DMA select" locates at offset 0x28 in SD specification, but on
197 	 * P5020 or P3041, it locates at 0x29.
198 	 */
199 	if (spec_reg == SDHCI_HOST_CONTROL) {
200 		/* DMA select is 22,23 bits in Protocol Control Register */
201 		dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
202 		/* fixup the result */
203 		ret &= ~SDHCI_CTRL_DMA_MASK;
204 		ret |= dma_bits;
205 	}
206 	return ret;
207 }
208 
209 /**
210  * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
211  *			written into eSDHC register.
212  *
213  * @host: pointer to sdhci_host
214  * @spec_reg: SD spec register address
215  * @value: 8/16/32bit SD spec register value that would be written
216  * @old_value: 32bit eSDHC register value on spec_reg address
217  *
218  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
219  * registers are 32 bits. There are differences in register size, register
220  * address, register function, bit position and function between eSDHC spec
221  * and SD spec.
222  *
223  * Return a fixed up register value
224  */
225 static u32 esdhc_writel_fixup(struct sdhci_host *host,
226 				     int spec_reg, u32 value, u32 old_value)
227 {
228 	u32 ret;
229 
230 	/*
231 	 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
232 	 * when SYSCTL[RSTD] is set for some special operations.
233 	 * No any impact on other operation.
234 	 */
235 	if (spec_reg == SDHCI_INT_ENABLE)
236 		ret = value | SDHCI_INT_BLK_GAP;
237 	else
238 		ret = value;
239 
240 	return ret;
241 }
242 
243 static u32 esdhc_writew_fixup(struct sdhci_host *host,
244 				     int spec_reg, u16 value, u32 old_value)
245 {
246 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
247 	int shift = (spec_reg & 0x2) * 8;
248 	u32 ret;
249 
250 	switch (spec_reg) {
251 	case SDHCI_TRANSFER_MODE:
252 		/*
253 		 * Postpone this write, we must do it together with a
254 		 * command write that is down below. Return old value.
255 		 */
256 		pltfm_host->xfer_mode_shadow = value;
257 		return old_value;
258 	case SDHCI_COMMAND:
259 		ret = (value << 16) | pltfm_host->xfer_mode_shadow;
260 		return ret;
261 	}
262 
263 	ret = old_value & (~(0xffff << shift));
264 	ret |= (value << shift);
265 
266 	if (spec_reg == SDHCI_BLOCK_SIZE) {
267 		/*
268 		 * Two last DMA bits are reserved, and first one is used for
269 		 * non-standard blksz of 4096 bytes that we don't support
270 		 * yet. So clear the DMA boundary bits.
271 		 */
272 		ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
273 	}
274 	return ret;
275 }
276 
277 static u32 esdhc_writeb_fixup(struct sdhci_host *host,
278 				     int spec_reg, u8 value, u32 old_value)
279 {
280 	u32 ret;
281 	u32 dma_bits;
282 	u8 tmp;
283 	int shift = (spec_reg & 0x3) * 8;
284 
285 	/*
286 	 * eSDHC doesn't have a standard power control register, so we do
287 	 * nothing here to avoid incorrect operation.
288 	 */
289 	if (spec_reg == SDHCI_POWER_CONTROL)
290 		return old_value;
291 	/*
292 	 * "DMA select" location is offset 0x28 in SD specification, but on
293 	 * P5020 or P3041, it's located at 0x29.
294 	 */
295 	if (spec_reg == SDHCI_HOST_CONTROL) {
296 		/*
297 		 * If host control register is not standard, exit
298 		 * this function
299 		 */
300 		if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
301 			return old_value;
302 
303 		/* DMA select is 22,23 bits in Protocol Control Register */
304 		dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
305 		ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
306 		tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
307 		      (old_value & SDHCI_CTRL_DMA_MASK);
308 		ret = (ret & (~0xff)) | tmp;
309 
310 		/* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
311 		ret &= ~ESDHC_HOST_CONTROL_RES;
312 		return ret;
313 	}
314 
315 	ret = (old_value & (~(0xff << shift))) | (value << shift);
316 	return ret;
317 }
318 
319 static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
320 {
321 	u32 ret;
322 	u32 value;
323 
324 	if (reg == SDHCI_CAPABILITIES_1)
325 		value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
326 	else
327 		value = ioread32be(host->ioaddr + reg);
328 
329 	ret = esdhc_readl_fixup(host, reg, value);
330 
331 	return ret;
332 }
333 
334 static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
335 {
336 	u32 ret;
337 	u32 value;
338 
339 	if (reg == SDHCI_CAPABILITIES_1)
340 		value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
341 	else
342 		value = ioread32(host->ioaddr + reg);
343 
344 	ret = esdhc_readl_fixup(host, reg, value);
345 
346 	return ret;
347 }
348 
349 static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
350 {
351 	u16 ret;
352 	u32 value;
353 	int base = reg & ~0x3;
354 
355 	value = ioread32be(host->ioaddr + base);
356 	ret = esdhc_readw_fixup(host, reg, value);
357 	return ret;
358 }
359 
360 static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
361 {
362 	u16 ret;
363 	u32 value;
364 	int base = reg & ~0x3;
365 
366 	value = ioread32(host->ioaddr + base);
367 	ret = esdhc_readw_fixup(host, reg, value);
368 	return ret;
369 }
370 
371 static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
372 {
373 	u8 ret;
374 	u32 value;
375 	int base = reg & ~0x3;
376 
377 	value = ioread32be(host->ioaddr + base);
378 	ret = esdhc_readb_fixup(host, reg, value);
379 	return ret;
380 }
381 
382 static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
383 {
384 	u8 ret;
385 	u32 value;
386 	int base = reg & ~0x3;
387 
388 	value = ioread32(host->ioaddr + base);
389 	ret = esdhc_readb_fixup(host, reg, value);
390 	return ret;
391 }
392 
393 static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
394 {
395 	u32 value;
396 
397 	value = esdhc_writel_fixup(host, reg, val, 0);
398 	iowrite32be(value, host->ioaddr + reg);
399 }
400 
401 static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
402 {
403 	u32 value;
404 
405 	value = esdhc_writel_fixup(host, reg, val, 0);
406 	iowrite32(value, host->ioaddr + reg);
407 }
408 
409 static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
410 {
411 	int base = reg & ~0x3;
412 	u32 value;
413 	u32 ret;
414 
415 	value = ioread32be(host->ioaddr + base);
416 	ret = esdhc_writew_fixup(host, reg, val, value);
417 	if (reg != SDHCI_TRANSFER_MODE)
418 		iowrite32be(ret, host->ioaddr + base);
419 }
420 
421 static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
422 {
423 	int base = reg & ~0x3;
424 	u32 value;
425 	u32 ret;
426 
427 	value = ioread32(host->ioaddr + base);
428 	ret = esdhc_writew_fixup(host, reg, val, value);
429 	if (reg != SDHCI_TRANSFER_MODE)
430 		iowrite32(ret, host->ioaddr + base);
431 }
432 
433 static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
434 {
435 	int base = reg & ~0x3;
436 	u32 value;
437 	u32 ret;
438 
439 	value = ioread32be(host->ioaddr + base);
440 	ret = esdhc_writeb_fixup(host, reg, val, value);
441 	iowrite32be(ret, host->ioaddr + base);
442 }
443 
444 static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
445 {
446 	int base = reg & ~0x3;
447 	u32 value;
448 	u32 ret;
449 
450 	value = ioread32(host->ioaddr + base);
451 	ret = esdhc_writeb_fixup(host, reg, val, value);
452 	iowrite32(ret, host->ioaddr + base);
453 }
454 
455 /*
456  * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
457  * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
458  * and Block Gap Event(IRQSTAT[BGE]) are also set.
459  * For Continue, apply soft reset for data(SYSCTL[RSTD]);
460  * and re-issue the entire read transaction from beginning.
461  */
462 static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
463 {
464 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
465 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
466 	bool applicable;
467 	dma_addr_t dmastart;
468 	dma_addr_t dmanow;
469 
470 	applicable = (intmask & SDHCI_INT_DATA_END) &&
471 		     (intmask & SDHCI_INT_BLK_GAP) &&
472 		     (esdhc->vendor_ver == VENDOR_V_23);
473 	if (!applicable)
474 		return;
475 
476 	host->data->error = 0;
477 	dmastart = sg_dma_address(host->data->sg);
478 	dmanow = dmastart + host->data->bytes_xfered;
479 	/*
480 	 * Force update to the next DMA block boundary.
481 	 */
482 	dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
483 		SDHCI_DEFAULT_BOUNDARY_SIZE;
484 	host->data->bytes_xfered = dmanow - dmastart;
485 	sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
486 }
487 
488 static int esdhc_of_enable_dma(struct sdhci_host *host)
489 {
490 	u32 value;
491 	struct device *dev = mmc_dev(host->mmc);
492 
493 	if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
494 	    of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc"))
495 		dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
496 
497 	value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
498 
499 	if (of_dma_is_coherent(dev->of_node))
500 		value |= ESDHC_DMA_SNOOP;
501 	else
502 		value &= ~ESDHC_DMA_SNOOP;
503 
504 	sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
505 	return 0;
506 }
507 
508 static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
509 {
510 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
511 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
512 
513 	if (esdhc->peripheral_clock)
514 		return esdhc->peripheral_clock;
515 	else
516 		return pltfm_host->clock;
517 }
518 
519 static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
520 {
521 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
522 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
523 	unsigned int clock;
524 
525 	if (esdhc->peripheral_clock)
526 		clock = esdhc->peripheral_clock;
527 	else
528 		clock = pltfm_host->clock;
529 	return clock / 256 / 16;
530 }
531 
532 static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
533 {
534 	u32 val;
535 	ktime_t timeout;
536 
537 	val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
538 
539 	if (enable)
540 		val |= ESDHC_CLOCK_SDCLKEN;
541 	else
542 		val &= ~ESDHC_CLOCK_SDCLKEN;
543 
544 	sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
545 
546 	/* Wait max 20 ms */
547 	timeout = ktime_add_ms(ktime_get(), 20);
548 	val = ESDHC_CLOCK_STABLE;
549 	while  (1) {
550 		bool timedout = ktime_after(ktime_get(), timeout);
551 
552 		if (sdhci_readl(host, ESDHC_PRSSTAT) & val)
553 			break;
554 		if (timedout) {
555 			pr_err("%s: Internal clock never stabilised.\n",
556 				mmc_hostname(host->mmc));
557 			break;
558 		}
559 		udelay(10);
560 	}
561 }
562 
563 static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
564 {
565 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
566 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
567 	int pre_div = 1;
568 	int div = 1;
569 	int division;
570 	ktime_t timeout;
571 	long fixup = 0;
572 	u32 temp;
573 
574 	host->mmc->actual_clock = 0;
575 
576 	if (clock == 0) {
577 		esdhc_clock_enable(host, false);
578 		return;
579 	}
580 
581 	/* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */
582 	if (esdhc->vendor_ver < VENDOR_V_23)
583 		pre_div = 2;
584 
585 	if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
586 		esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
587 		fixup = esdhc->clk_fixup->sd_dflt_max_clk;
588 	else if (esdhc->clk_fixup)
589 		fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
590 
591 	if (fixup && clock > fixup)
592 		clock = fixup;
593 
594 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
595 	temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
596 		  ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK);
597 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
598 
599 	while (host->max_clk / pre_div / 16 > clock && pre_div < 256)
600 		pre_div *= 2;
601 
602 	while (host->max_clk / pre_div / div > clock && div < 16)
603 		div++;
604 
605 	if (esdhc->quirk_limited_clk_division &&
606 	    clock == MMC_HS200_MAX_DTR &&
607 	    (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
608 	     host->flags & SDHCI_HS400_TUNING)) {
609 		division = pre_div * div;
610 		if (division <= 4) {
611 			pre_div = 4;
612 			div = 1;
613 		} else if (division <= 8) {
614 			pre_div = 4;
615 			div = 2;
616 		} else if (division <= 12) {
617 			pre_div = 4;
618 			div = 3;
619 		} else {
620 			pr_warn("%s: using unsupported clock division.\n",
621 				mmc_hostname(host->mmc));
622 		}
623 	}
624 
625 	dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
626 		clock, host->max_clk / pre_div / div);
627 	host->mmc->actual_clock = host->max_clk / pre_div / div;
628 	esdhc->div_ratio = pre_div * div;
629 	pre_div >>= 1;
630 	div--;
631 
632 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
633 	temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN
634 		| (div << ESDHC_DIVIDER_SHIFT)
635 		| (pre_div << ESDHC_PREDIV_SHIFT));
636 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
637 
638 	if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
639 	    clock == MMC_HS200_MAX_DTR) {
640 		temp = sdhci_readl(host, ESDHC_TBCTL);
641 		sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
642 		temp = sdhci_readl(host, ESDHC_SDCLKCTL);
643 		sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
644 		esdhc_clock_enable(host, true);
645 
646 		temp = sdhci_readl(host, ESDHC_DLLCFG0);
647 		temp |= ESDHC_DLL_ENABLE;
648 		if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
649 			temp |= ESDHC_DLL_FREQ_SEL;
650 		sdhci_writel(host, temp, ESDHC_DLLCFG0);
651 		temp = sdhci_readl(host, ESDHC_TBCTL);
652 		sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
653 
654 		esdhc_clock_enable(host, false);
655 		temp = sdhci_readl(host, ESDHC_DMA_SYSCTL);
656 		temp |= ESDHC_FLUSH_ASYNC_FIFO;
657 		sdhci_writel(host, temp, ESDHC_DMA_SYSCTL);
658 	}
659 
660 	/* Wait max 20 ms */
661 	timeout = ktime_add_ms(ktime_get(), 20);
662 	while (1) {
663 		bool timedout = ktime_after(ktime_get(), timeout);
664 
665 		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
666 			break;
667 		if (timedout) {
668 			pr_err("%s: Internal clock never stabilised.\n",
669 				mmc_hostname(host->mmc));
670 			return;
671 		}
672 		udelay(10);
673 	}
674 
675 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
676 	temp |= ESDHC_CLOCK_SDCLKEN;
677 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
678 }
679 
680 static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
681 {
682 	u32 ctrl;
683 
684 	ctrl = sdhci_readl(host, ESDHC_PROCTL);
685 	ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
686 	switch (width) {
687 	case MMC_BUS_WIDTH_8:
688 		ctrl |= ESDHC_CTRL_8BITBUS;
689 		break;
690 
691 	case MMC_BUS_WIDTH_4:
692 		ctrl |= ESDHC_CTRL_4BITBUS;
693 		break;
694 
695 	default:
696 		break;
697 	}
698 
699 	sdhci_writel(host, ctrl, ESDHC_PROCTL);
700 }
701 
702 static void esdhc_reset(struct sdhci_host *host, u8 mask)
703 {
704 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
705 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
706 	u32 val;
707 
708 	sdhci_reset(host, mask);
709 
710 	sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
711 	sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
712 
713 	if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc"))
714 		mdelay(5);
715 
716 	if (mask & SDHCI_RESET_ALL) {
717 		val = sdhci_readl(host, ESDHC_TBCTL);
718 		val &= ~ESDHC_TB_EN;
719 		sdhci_writel(host, val, ESDHC_TBCTL);
720 
721 		if (esdhc->quirk_unreliable_pulse_detection) {
722 			val = sdhci_readl(host, ESDHC_DLLCFG1);
723 			val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
724 			sdhci_writel(host, val, ESDHC_DLLCFG1);
725 		}
726 	}
727 }
728 
729 /* The SCFG, Supplemental Configuration Unit, provides SoC specific
730  * configuration and status registers for the device. There is a
731  * SDHC IO VSEL control register on SCFG for some platforms. It's
732  * used to support SDHC IO voltage switching.
733  */
734 static const struct of_device_id scfg_device_ids[] = {
735 	{ .compatible = "fsl,t1040-scfg", },
736 	{ .compatible = "fsl,ls1012a-scfg", },
737 	{ .compatible = "fsl,ls1046a-scfg", },
738 	{}
739 };
740 
741 /* SDHC IO VSEL control register definition */
742 #define SCFG_SDHCIOVSELCR	0x408
743 #define SDHCIOVSELCR_TGLEN	0x80000000
744 #define SDHCIOVSELCR_VSELVAL	0x60000000
745 #define SDHCIOVSELCR_SDHC_VS	0x00000001
746 
747 static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
748 				       struct mmc_ios *ios)
749 {
750 	struct sdhci_host *host = mmc_priv(mmc);
751 	struct device_node *scfg_node;
752 	void __iomem *scfg_base = NULL;
753 	u32 sdhciovselcr;
754 	u32 val;
755 
756 	/*
757 	 * Signal Voltage Switching is only applicable for Host Controllers
758 	 * v3.00 and above.
759 	 */
760 	if (host->version < SDHCI_SPEC_300)
761 		return 0;
762 
763 	val = sdhci_readl(host, ESDHC_PROCTL);
764 
765 	switch (ios->signal_voltage) {
766 	case MMC_SIGNAL_VOLTAGE_330:
767 		val &= ~ESDHC_VOLT_SEL;
768 		sdhci_writel(host, val, ESDHC_PROCTL);
769 		return 0;
770 	case MMC_SIGNAL_VOLTAGE_180:
771 		scfg_node = of_find_matching_node(NULL, scfg_device_ids);
772 		if (scfg_node)
773 			scfg_base = of_iomap(scfg_node, 0);
774 		if (scfg_base) {
775 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
776 				       SDHCIOVSELCR_VSELVAL;
777 			iowrite32be(sdhciovselcr,
778 				scfg_base + SCFG_SDHCIOVSELCR);
779 
780 			val |= ESDHC_VOLT_SEL;
781 			sdhci_writel(host, val, ESDHC_PROCTL);
782 			mdelay(5);
783 
784 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
785 				       SDHCIOVSELCR_SDHC_VS;
786 			iowrite32be(sdhciovselcr,
787 				scfg_base + SCFG_SDHCIOVSELCR);
788 			iounmap(scfg_base);
789 		} else {
790 			val |= ESDHC_VOLT_SEL;
791 			sdhci_writel(host, val, ESDHC_PROCTL);
792 		}
793 		return 0;
794 	default:
795 		return 0;
796 	}
797 }
798 
799 static struct soc_device_attribute soc_fixup_tuning[] = {
800 	{ .family = "QorIQ T1040", .revision = "1.0", },
801 	{ .family = "QorIQ T2080", .revision = "1.0", },
802 	{ .family = "QorIQ T1023", .revision = "1.0", },
803 	{ .family = "QorIQ LS1021A", .revision = "1.0", },
804 	{ .family = "QorIQ LS1080A", .revision = "1.0", },
805 	{ .family = "QorIQ LS2080A", .revision = "1.0", },
806 	{ .family = "QorIQ LS1012A", .revision = "1.0", },
807 	{ .family = "QorIQ LS1043A", .revision = "1.*", },
808 	{ .family = "QorIQ LS1046A", .revision = "1.0", },
809 	{ },
810 };
811 
812 static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
813 {
814 	u32 val;
815 
816 	esdhc_clock_enable(host, false);
817 
818 	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
819 	val |= ESDHC_FLUSH_ASYNC_FIFO;
820 	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
821 
822 	val = sdhci_readl(host, ESDHC_TBCTL);
823 	if (enable)
824 		val |= ESDHC_TB_EN;
825 	else
826 		val &= ~ESDHC_TB_EN;
827 	sdhci_writel(host, val, ESDHC_TBCTL);
828 
829 	esdhc_clock_enable(host, true);
830 }
831 
832 static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
833 {
834 	struct sdhci_host *host = mmc_priv(mmc);
835 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
836 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
837 	bool hs400_tuning;
838 	unsigned int clk;
839 	u32 val;
840 	int ret;
841 
842 	/* For tuning mode, the sd clock divisor value
843 	 * must be larger than 3 according to reference manual.
844 	 */
845 	clk = esdhc->peripheral_clock / 3;
846 	if (host->clock > clk)
847 		esdhc_of_set_clock(host, clk);
848 
849 	if (esdhc->quirk_limited_clk_division &&
850 	    host->flags & SDHCI_HS400_TUNING)
851 		esdhc_of_set_clock(host, host->clock);
852 
853 	esdhc_tuning_block_enable(host, true);
854 
855 	hs400_tuning = host->flags & SDHCI_HS400_TUNING;
856 	ret = sdhci_execute_tuning(mmc, opcode);
857 
858 	if (hs400_tuning) {
859 		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
860 		val |= ESDHC_FLW_CTL_BG;
861 		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
862 	}
863 
864 	if (host->tuning_err == -EAGAIN && esdhc->quirk_fixup_tuning) {
865 
866 		/* program TBPTR[TB_WNDW_END_PTR] = 3*DIV_RATIO and
867 		 * program TBPTR[TB_WNDW_START_PTR] = 5*DIV_RATIO
868 		 */
869 		val = sdhci_readl(host, ESDHC_TBPTR);
870 		val = (val & ~((0x7f << 8) | 0x7f)) |
871 		(3 * esdhc->div_ratio) | ((5 * esdhc->div_ratio) << 8);
872 		sdhci_writel(host, val, ESDHC_TBPTR);
873 
874 		/* program the software tuning mode by setting
875 		 * TBCTL[TB_MODE]=2'h3
876 		 */
877 		val = sdhci_readl(host, ESDHC_TBCTL);
878 		val |= 0x3;
879 		sdhci_writel(host, val, ESDHC_TBCTL);
880 		sdhci_execute_tuning(mmc, opcode);
881 	}
882 	return ret;
883 }
884 
885 static void esdhc_set_uhs_signaling(struct sdhci_host *host,
886 				   unsigned int timing)
887 {
888 	if (timing == MMC_TIMING_MMC_HS400)
889 		esdhc_tuning_block_enable(host, true);
890 	else
891 		sdhci_set_uhs_signaling(host, timing);
892 }
893 
894 static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
895 {
896 	u32 command;
897 
898 	if (of_find_compatible_node(NULL, NULL,
899 				"fsl,p2020-esdhc")) {
900 		command = SDHCI_GET_CMD(sdhci_readw(host,
901 					SDHCI_COMMAND));
902 		if (command == MMC_WRITE_MULTIPLE_BLOCK &&
903 				sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
904 				intmask & SDHCI_INT_DATA_END) {
905 			intmask &= ~SDHCI_INT_DATA_END;
906 			sdhci_writel(host, SDHCI_INT_DATA_END,
907 					SDHCI_INT_STATUS);
908 		}
909 	}
910 	return intmask;
911 }
912 
913 #ifdef CONFIG_PM_SLEEP
914 static u32 esdhc_proctl;
915 static int esdhc_of_suspend(struct device *dev)
916 {
917 	struct sdhci_host *host = dev_get_drvdata(dev);
918 
919 	esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
920 
921 	if (host->tuning_mode != SDHCI_TUNING_MODE_3)
922 		mmc_retune_needed(host->mmc);
923 
924 	return sdhci_suspend_host(host);
925 }
926 
927 static int esdhc_of_resume(struct device *dev)
928 {
929 	struct sdhci_host *host = dev_get_drvdata(dev);
930 	int ret = sdhci_resume_host(host);
931 
932 	if (ret == 0) {
933 		/* Isn't this already done by sdhci_resume_host() ? --rmk */
934 		esdhc_of_enable_dma(host);
935 		sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
936 	}
937 	return ret;
938 }
939 #endif
940 
941 static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
942 			esdhc_of_suspend,
943 			esdhc_of_resume);
944 
945 static const struct sdhci_ops sdhci_esdhc_be_ops = {
946 	.read_l = esdhc_be_readl,
947 	.read_w = esdhc_be_readw,
948 	.read_b = esdhc_be_readb,
949 	.write_l = esdhc_be_writel,
950 	.write_w = esdhc_be_writew,
951 	.write_b = esdhc_be_writeb,
952 	.set_clock = esdhc_of_set_clock,
953 	.enable_dma = esdhc_of_enable_dma,
954 	.get_max_clock = esdhc_of_get_max_clock,
955 	.get_min_clock = esdhc_of_get_min_clock,
956 	.adma_workaround = esdhc_of_adma_workaround,
957 	.set_bus_width = esdhc_pltfm_set_bus_width,
958 	.reset = esdhc_reset,
959 	.set_uhs_signaling = esdhc_set_uhs_signaling,
960 	.irq = esdhc_irq,
961 };
962 
963 static const struct sdhci_ops sdhci_esdhc_le_ops = {
964 	.read_l = esdhc_le_readl,
965 	.read_w = esdhc_le_readw,
966 	.read_b = esdhc_le_readb,
967 	.write_l = esdhc_le_writel,
968 	.write_w = esdhc_le_writew,
969 	.write_b = esdhc_le_writeb,
970 	.set_clock = esdhc_of_set_clock,
971 	.enable_dma = esdhc_of_enable_dma,
972 	.get_max_clock = esdhc_of_get_max_clock,
973 	.get_min_clock = esdhc_of_get_min_clock,
974 	.adma_workaround = esdhc_of_adma_workaround,
975 	.set_bus_width = esdhc_pltfm_set_bus_width,
976 	.reset = esdhc_reset,
977 	.set_uhs_signaling = esdhc_set_uhs_signaling,
978 	.irq = esdhc_irq,
979 };
980 
981 static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
982 	.quirks = ESDHC_DEFAULT_QUIRKS |
983 #ifdef CONFIG_PPC
984 		  SDHCI_QUIRK_BROKEN_CARD_DETECTION |
985 #endif
986 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
987 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
988 	.ops = &sdhci_esdhc_be_ops,
989 };
990 
991 static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
992 	.quirks = ESDHC_DEFAULT_QUIRKS |
993 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
994 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
995 	.ops = &sdhci_esdhc_le_ops,
996 };
997 
998 static struct soc_device_attribute soc_incorrect_hostver[] = {
999 	{ .family = "QorIQ T4240", .revision = "1.0", },
1000 	{ .family = "QorIQ T4240", .revision = "2.0", },
1001 	{ },
1002 };
1003 
1004 static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1005 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1006 	{ .family = "QorIQ LX2160A", .revision = "2.0", },
1007 	{ .family = "QorIQ LS1028A", .revision = "1.0", },
1008 	{ },
1009 };
1010 
1011 static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1012 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1013 	{ },
1014 };
1015 
1016 static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1017 {
1018 	const struct of_device_id *match;
1019 	struct sdhci_pltfm_host *pltfm_host;
1020 	struct sdhci_esdhc *esdhc;
1021 	struct device_node *np;
1022 	struct clk *clk;
1023 	u32 val;
1024 	u16 host_ver;
1025 
1026 	pltfm_host = sdhci_priv(host);
1027 	esdhc = sdhci_pltfm_priv(pltfm_host);
1028 
1029 	host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1030 	esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1031 			     SDHCI_VENDOR_VER_SHIFT;
1032 	esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1033 	if (soc_device_match(soc_incorrect_hostver))
1034 		esdhc->quirk_incorrect_hostver = true;
1035 	else
1036 		esdhc->quirk_incorrect_hostver = false;
1037 
1038 	if (soc_device_match(soc_fixup_sdhc_clkdivs))
1039 		esdhc->quirk_limited_clk_division = true;
1040 	else
1041 		esdhc->quirk_limited_clk_division = false;
1042 
1043 	if (soc_device_match(soc_unreliable_pulse_detection))
1044 		esdhc->quirk_unreliable_pulse_detection = true;
1045 	else
1046 		esdhc->quirk_unreliable_pulse_detection = false;
1047 
1048 	match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
1049 	if (match)
1050 		esdhc->clk_fixup = match->data;
1051 	np = pdev->dev.of_node;
1052 	clk = of_clk_get(np, 0);
1053 	if (!IS_ERR(clk)) {
1054 		/*
1055 		 * esdhc->peripheral_clock would be assigned with a value
1056 		 * which is eSDHC base clock when use periperal clock.
1057 		 * For some platforms, the clock value got by common clk
1058 		 * API is peripheral clock while the eSDHC base clock is
1059 		 * 1/2 peripheral clock.
1060 		 */
1061 		if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") ||
1062 		    of_device_is_compatible(np, "fsl,ls1028a-esdhc"))
1063 			esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1064 		else
1065 			esdhc->peripheral_clock = clk_get_rate(clk);
1066 
1067 		clk_put(clk);
1068 	}
1069 
1070 	if (esdhc->peripheral_clock) {
1071 		esdhc_clock_enable(host, false);
1072 		val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1073 		val |= ESDHC_PERIPHERAL_CLK_SEL;
1074 		sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1075 		esdhc_clock_enable(host, true);
1076 	}
1077 }
1078 
1079 static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1080 {
1081 	esdhc_tuning_block_enable(mmc_priv(mmc), false);
1082 	return 0;
1083 }
1084 
1085 static int sdhci_esdhc_probe(struct platform_device *pdev)
1086 {
1087 	struct sdhci_host *host;
1088 	struct device_node *np;
1089 	struct sdhci_pltfm_host *pltfm_host;
1090 	struct sdhci_esdhc *esdhc;
1091 	int ret;
1092 
1093 	np = pdev->dev.of_node;
1094 
1095 	if (of_property_read_bool(np, "little-endian"))
1096 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1097 					sizeof(struct sdhci_esdhc));
1098 	else
1099 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1100 					sizeof(struct sdhci_esdhc));
1101 
1102 	if (IS_ERR(host))
1103 		return PTR_ERR(host);
1104 
1105 	host->mmc_host_ops.start_signal_voltage_switch =
1106 		esdhc_signal_voltage_switch;
1107 	host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1108 	host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1109 	host->tuning_delay = 1;
1110 
1111 	esdhc_init(pdev, host);
1112 
1113 	sdhci_get_of_property(pdev);
1114 
1115 	pltfm_host = sdhci_priv(host);
1116 	esdhc = sdhci_pltfm_priv(pltfm_host);
1117 	if (soc_device_match(soc_fixup_tuning))
1118 		esdhc->quirk_fixup_tuning = true;
1119 	else
1120 		esdhc->quirk_fixup_tuning = false;
1121 
1122 	if (esdhc->vendor_ver == VENDOR_V_22)
1123 		host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1124 
1125 	if (esdhc->vendor_ver > VENDOR_V_22)
1126 		host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1127 
1128 	if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) {
1129 		host->quirks2 |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1130 		host->quirks2 |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1131 	}
1132 
1133 	if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1134 	    of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1135 	    of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1136 	    of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1137 	    of_device_is_compatible(np, "fsl,t1040-esdhc"))
1138 		host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1139 
1140 	if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1141 		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1142 
1143 	esdhc->quirk_ignore_data_inhibit = false;
1144 	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1145 		/*
1146 		 * Freescale messed up with P2020 as it has a non-standard
1147 		 * host control register
1148 		 */
1149 		host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1150 		esdhc->quirk_ignore_data_inhibit = true;
1151 	}
1152 
1153 	/* call to generic mmc_of_parse to support additional capabilities */
1154 	ret = mmc_of_parse(host->mmc);
1155 	if (ret)
1156 		goto err;
1157 
1158 	mmc_of_parse_voltage(np, &host->ocr_mask);
1159 
1160 	ret = sdhci_add_host(host);
1161 	if (ret)
1162 		goto err;
1163 
1164 	return 0;
1165  err:
1166 	sdhci_pltfm_free(pdev);
1167 	return ret;
1168 }
1169 
1170 static struct platform_driver sdhci_esdhc_driver = {
1171 	.driver = {
1172 		.name = "sdhci-esdhc",
1173 		.of_match_table = sdhci_esdhc_of_match,
1174 		.pm = &esdhc_of_dev_pm_ops,
1175 	},
1176 	.probe = sdhci_esdhc_probe,
1177 	.remove = sdhci_pltfm_unregister,
1178 };
1179 
1180 module_platform_driver(sdhci_esdhc_driver);
1181 
1182 MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1183 MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1184 	      "Anton Vorontsov <avorontsov@ru.mvista.com>");
1185 MODULE_LICENSE("GPL v2");
1186