1 /*
2  * Freescale eSDHC controller driver.
3  *
4  * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
5  * Copyright (c) 2009 MontaVista Software, Inc.
6  *
7  * Authors: Xiaobo Xie <X.Xie@freescale.com>
8  *	    Anton Vorontsov <avorontsov@ru.mvista.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or (at
13  * your option) any later version.
14  */
15 
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/delay.h>
21 #include <linux/module.h>
22 #include <linux/sys_soc.h>
23 #include <linux/clk.h>
24 #include <linux/ktime.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmc/host.h>
27 #include "sdhci-pltfm.h"
28 #include "sdhci-esdhc.h"
29 
30 #define VENDOR_V_22	0x12
31 #define VENDOR_V_23	0x13
32 
33 #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
34 
35 struct esdhc_clk_fixup {
36 	const unsigned int sd_dflt_max_clk;
37 	const unsigned int max_clk[MMC_TIMING_NUM];
38 };
39 
40 static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
41 	.sd_dflt_max_clk = 25000000,
42 	.max_clk[MMC_TIMING_MMC_HS] = 46500000,
43 	.max_clk[MMC_TIMING_SD_HS] = 46500000,
44 };
45 
46 static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
47 	.sd_dflt_max_clk = 25000000,
48 	.max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
49 	.max_clk[MMC_TIMING_MMC_HS200] = 167000000,
50 };
51 
52 static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
53 	.sd_dflt_max_clk = 25000000,
54 	.max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
55 	.max_clk[MMC_TIMING_MMC_HS200] = 125000000,
56 };
57 
58 static const struct esdhc_clk_fixup p1010_esdhc_clk = {
59 	.sd_dflt_max_clk = 20000000,
60 	.max_clk[MMC_TIMING_LEGACY] = 20000000,
61 	.max_clk[MMC_TIMING_MMC_HS] = 42000000,
62 	.max_clk[MMC_TIMING_SD_HS] = 40000000,
63 };
64 
65 static const struct of_device_id sdhci_esdhc_of_match[] = {
66 	{ .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
67 	{ .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
68 	{ .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
69 	{ .compatible = "fsl,p1010-esdhc",   .data = &p1010_esdhc_clk},
70 	{ .compatible = "fsl,mpc8379-esdhc" },
71 	{ .compatible = "fsl,mpc8536-esdhc" },
72 	{ .compatible = "fsl,esdhc" },
73 	{ }
74 };
75 MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
76 
77 struct sdhci_esdhc {
78 	u8 vendor_ver;
79 	u8 spec_ver;
80 	bool quirk_incorrect_hostver;
81 	bool quirk_limited_clk_division;
82 	bool quirk_unreliable_pulse_detection;
83 	bool quirk_fixup_tuning;
84 	unsigned int peripheral_clock;
85 	const struct esdhc_clk_fixup *clk_fixup;
86 	u32 div_ratio;
87 };
88 
89 /**
90  * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
91  *		       to make it compatible with SD spec.
92  *
93  * @host: pointer to sdhci_host
94  * @spec_reg: SD spec register address
95  * @value: 32bit eSDHC register value on spec_reg address
96  *
97  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
98  * registers are 32 bits. There are differences in register size, register
99  * address, register function, bit position and function between eSDHC spec
100  * and SD spec.
101  *
102  * Return a fixed up register value
103  */
104 static u32 esdhc_readl_fixup(struct sdhci_host *host,
105 				     int spec_reg, u32 value)
106 {
107 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
108 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
109 	u32 ret;
110 
111 	/*
112 	 * The bit of ADMA flag in eSDHC is not compatible with standard
113 	 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
114 	 * supported by eSDHC.
115 	 * And for many FSL eSDHC controller, the reset value of field
116 	 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
117 	 * only these vendor version is greater than 2.2/0x12 support ADMA.
118 	 */
119 	if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
120 		if (esdhc->vendor_ver > VENDOR_V_22) {
121 			ret = value | SDHCI_CAN_DO_ADMA2;
122 			return ret;
123 		}
124 	}
125 	/*
126 	 * The DAT[3:0] line signal levels and the CMD line signal level are
127 	 * not compatible with standard SDHC register. The line signal levels
128 	 * DAT[7:0] are at bits 31:24 and the command line signal level is at
129 	 * bit 23. All other bits are the same as in the standard SDHC
130 	 * register.
131 	 */
132 	if (spec_reg == SDHCI_PRESENT_STATE) {
133 		ret = value & 0x000fffff;
134 		ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
135 		ret |= (value << 1) & SDHCI_CMD_LVL;
136 		return ret;
137 	}
138 
139 	/*
140 	 * DTS properties of mmc host are used to enable each speed mode
141 	 * according to soc and board capability. So clean up
142 	 * SDR50/SDR104/DDR50 support bits here.
143 	 */
144 	if (spec_reg == SDHCI_CAPABILITIES_1) {
145 		ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
146 				SDHCI_SUPPORT_DDR50);
147 		return ret;
148 	}
149 
150 	ret = value;
151 	return ret;
152 }
153 
154 static u16 esdhc_readw_fixup(struct sdhci_host *host,
155 				     int spec_reg, u32 value)
156 {
157 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
158 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
159 	u16 ret;
160 	int shift = (spec_reg & 0x2) * 8;
161 
162 	if (spec_reg == SDHCI_HOST_VERSION)
163 		ret = value & 0xffff;
164 	else
165 		ret = (value >> shift) & 0xffff;
166 	/* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
167 	 * vendor version and spec version information.
168 	 */
169 	if ((spec_reg == SDHCI_HOST_VERSION) &&
170 	    (esdhc->quirk_incorrect_hostver))
171 		ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
172 	return ret;
173 }
174 
175 static u8 esdhc_readb_fixup(struct sdhci_host *host,
176 				     int spec_reg, u32 value)
177 {
178 	u8 ret;
179 	u8 dma_bits;
180 	int shift = (spec_reg & 0x3) * 8;
181 
182 	ret = (value >> shift) & 0xff;
183 
184 	/*
185 	 * "DMA select" locates at offset 0x28 in SD specification, but on
186 	 * P5020 or P3041, it locates at 0x29.
187 	 */
188 	if (spec_reg == SDHCI_HOST_CONTROL) {
189 		/* DMA select is 22,23 bits in Protocol Control Register */
190 		dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
191 		/* fixup the result */
192 		ret &= ~SDHCI_CTRL_DMA_MASK;
193 		ret |= dma_bits;
194 	}
195 	return ret;
196 }
197 
198 /**
199  * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
200  *			written into eSDHC register.
201  *
202  * @host: pointer to sdhci_host
203  * @spec_reg: SD spec register address
204  * @value: 8/16/32bit SD spec register value that would be written
205  * @old_value: 32bit eSDHC register value on spec_reg address
206  *
207  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
208  * registers are 32 bits. There are differences in register size, register
209  * address, register function, bit position and function between eSDHC spec
210  * and SD spec.
211  *
212  * Return a fixed up register value
213  */
214 static u32 esdhc_writel_fixup(struct sdhci_host *host,
215 				     int spec_reg, u32 value, u32 old_value)
216 {
217 	u32 ret;
218 
219 	/*
220 	 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
221 	 * when SYSCTL[RSTD] is set for some special operations.
222 	 * No any impact on other operation.
223 	 */
224 	if (spec_reg == SDHCI_INT_ENABLE)
225 		ret = value | SDHCI_INT_BLK_GAP;
226 	else
227 		ret = value;
228 
229 	return ret;
230 }
231 
232 static u32 esdhc_writew_fixup(struct sdhci_host *host,
233 				     int spec_reg, u16 value, u32 old_value)
234 {
235 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
236 	int shift = (spec_reg & 0x2) * 8;
237 	u32 ret;
238 
239 	switch (spec_reg) {
240 	case SDHCI_TRANSFER_MODE:
241 		/*
242 		 * Postpone this write, we must do it together with a
243 		 * command write that is down below. Return old value.
244 		 */
245 		pltfm_host->xfer_mode_shadow = value;
246 		return old_value;
247 	case SDHCI_COMMAND:
248 		ret = (value << 16) | pltfm_host->xfer_mode_shadow;
249 		return ret;
250 	}
251 
252 	ret = old_value & (~(0xffff << shift));
253 	ret |= (value << shift);
254 
255 	if (spec_reg == SDHCI_BLOCK_SIZE) {
256 		/*
257 		 * Two last DMA bits are reserved, and first one is used for
258 		 * non-standard blksz of 4096 bytes that we don't support
259 		 * yet. So clear the DMA boundary bits.
260 		 */
261 		ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
262 	}
263 	return ret;
264 }
265 
266 static u32 esdhc_writeb_fixup(struct sdhci_host *host,
267 				     int spec_reg, u8 value, u32 old_value)
268 {
269 	u32 ret;
270 	u32 dma_bits;
271 	u8 tmp;
272 	int shift = (spec_reg & 0x3) * 8;
273 
274 	/*
275 	 * eSDHC doesn't have a standard power control register, so we do
276 	 * nothing here to avoid incorrect operation.
277 	 */
278 	if (spec_reg == SDHCI_POWER_CONTROL)
279 		return old_value;
280 	/*
281 	 * "DMA select" location is offset 0x28 in SD specification, but on
282 	 * P5020 or P3041, it's located at 0x29.
283 	 */
284 	if (spec_reg == SDHCI_HOST_CONTROL) {
285 		/*
286 		 * If host control register is not standard, exit
287 		 * this function
288 		 */
289 		if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
290 			return old_value;
291 
292 		/* DMA select is 22,23 bits in Protocol Control Register */
293 		dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
294 		ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
295 		tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
296 		      (old_value & SDHCI_CTRL_DMA_MASK);
297 		ret = (ret & (~0xff)) | tmp;
298 
299 		/* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
300 		ret &= ~ESDHC_HOST_CONTROL_RES;
301 		return ret;
302 	}
303 
304 	ret = (old_value & (~(0xff << shift))) | (value << shift);
305 	return ret;
306 }
307 
308 static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
309 {
310 	u32 ret;
311 	u32 value;
312 
313 	if (reg == SDHCI_CAPABILITIES_1)
314 		value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
315 	else
316 		value = ioread32be(host->ioaddr + reg);
317 
318 	ret = esdhc_readl_fixup(host, reg, value);
319 
320 	return ret;
321 }
322 
323 static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
324 {
325 	u32 ret;
326 	u32 value;
327 
328 	if (reg == SDHCI_CAPABILITIES_1)
329 		value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
330 	else
331 		value = ioread32(host->ioaddr + reg);
332 
333 	ret = esdhc_readl_fixup(host, reg, value);
334 
335 	return ret;
336 }
337 
338 static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
339 {
340 	u16 ret;
341 	u32 value;
342 	int base = reg & ~0x3;
343 
344 	value = ioread32be(host->ioaddr + base);
345 	ret = esdhc_readw_fixup(host, reg, value);
346 	return ret;
347 }
348 
349 static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
350 {
351 	u16 ret;
352 	u32 value;
353 	int base = reg & ~0x3;
354 
355 	value = ioread32(host->ioaddr + base);
356 	ret = esdhc_readw_fixup(host, reg, value);
357 	return ret;
358 }
359 
360 static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
361 {
362 	u8 ret;
363 	u32 value;
364 	int base = reg & ~0x3;
365 
366 	value = ioread32be(host->ioaddr + base);
367 	ret = esdhc_readb_fixup(host, reg, value);
368 	return ret;
369 }
370 
371 static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
372 {
373 	u8 ret;
374 	u32 value;
375 	int base = reg & ~0x3;
376 
377 	value = ioread32(host->ioaddr + base);
378 	ret = esdhc_readb_fixup(host, reg, value);
379 	return ret;
380 }
381 
382 static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
383 {
384 	u32 value;
385 
386 	value = esdhc_writel_fixup(host, reg, val, 0);
387 	iowrite32be(value, host->ioaddr + reg);
388 }
389 
390 static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
391 {
392 	u32 value;
393 
394 	value = esdhc_writel_fixup(host, reg, val, 0);
395 	iowrite32(value, host->ioaddr + reg);
396 }
397 
398 static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
399 {
400 	int base = reg & ~0x3;
401 	u32 value;
402 	u32 ret;
403 
404 	value = ioread32be(host->ioaddr + base);
405 	ret = esdhc_writew_fixup(host, reg, val, value);
406 	if (reg != SDHCI_TRANSFER_MODE)
407 		iowrite32be(ret, host->ioaddr + base);
408 }
409 
410 static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
411 {
412 	int base = reg & ~0x3;
413 	u32 value;
414 	u32 ret;
415 
416 	value = ioread32(host->ioaddr + base);
417 	ret = esdhc_writew_fixup(host, reg, val, value);
418 	if (reg != SDHCI_TRANSFER_MODE)
419 		iowrite32(ret, host->ioaddr + base);
420 }
421 
422 static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
423 {
424 	int base = reg & ~0x3;
425 	u32 value;
426 	u32 ret;
427 
428 	value = ioread32be(host->ioaddr + base);
429 	ret = esdhc_writeb_fixup(host, reg, val, value);
430 	iowrite32be(ret, host->ioaddr + base);
431 }
432 
433 static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
434 {
435 	int base = reg & ~0x3;
436 	u32 value;
437 	u32 ret;
438 
439 	value = ioread32(host->ioaddr + base);
440 	ret = esdhc_writeb_fixup(host, reg, val, value);
441 	iowrite32(ret, host->ioaddr + base);
442 }
443 
444 /*
445  * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
446  * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
447  * and Block Gap Event(IRQSTAT[BGE]) are also set.
448  * For Continue, apply soft reset for data(SYSCTL[RSTD]);
449  * and re-issue the entire read transaction from beginning.
450  */
451 static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
452 {
453 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
454 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
455 	bool applicable;
456 	dma_addr_t dmastart;
457 	dma_addr_t dmanow;
458 
459 	applicable = (intmask & SDHCI_INT_DATA_END) &&
460 		     (intmask & SDHCI_INT_BLK_GAP) &&
461 		     (esdhc->vendor_ver == VENDOR_V_23);
462 	if (!applicable)
463 		return;
464 
465 	host->data->error = 0;
466 	dmastart = sg_dma_address(host->data->sg);
467 	dmanow = dmastart + host->data->bytes_xfered;
468 	/*
469 	 * Force update to the next DMA block boundary.
470 	 */
471 	dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
472 		SDHCI_DEFAULT_BOUNDARY_SIZE;
473 	host->data->bytes_xfered = dmanow - dmastart;
474 	sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
475 }
476 
477 static int esdhc_of_enable_dma(struct sdhci_host *host)
478 {
479 	u32 value;
480 	struct device *dev = mmc_dev(host->mmc);
481 
482 	if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
483 	    of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc"))
484 		dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
485 
486 	value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
487 	value |= ESDHC_DMA_SNOOP;
488 	sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
489 	return 0;
490 }
491 
492 static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
493 {
494 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
495 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
496 
497 	if (esdhc->peripheral_clock)
498 		return esdhc->peripheral_clock;
499 	else
500 		return pltfm_host->clock;
501 }
502 
503 static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
504 {
505 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
506 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
507 	unsigned int clock;
508 
509 	if (esdhc->peripheral_clock)
510 		clock = esdhc->peripheral_clock;
511 	else
512 		clock = pltfm_host->clock;
513 	return clock / 256 / 16;
514 }
515 
516 static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
517 {
518 	u32 val;
519 	ktime_t timeout;
520 
521 	val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
522 
523 	if (enable)
524 		val |= ESDHC_CLOCK_SDCLKEN;
525 	else
526 		val &= ~ESDHC_CLOCK_SDCLKEN;
527 
528 	sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
529 
530 	/* Wait max 20 ms */
531 	timeout = ktime_add_ms(ktime_get(), 20);
532 	val = ESDHC_CLOCK_STABLE;
533 	while (!(sdhci_readl(host, ESDHC_PRSSTAT) & val)) {
534 		if (ktime_after(ktime_get(), timeout)) {
535 			pr_err("%s: Internal clock never stabilised.\n",
536 				mmc_hostname(host->mmc));
537 			break;
538 		}
539 		udelay(10);
540 	}
541 }
542 
543 static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
544 {
545 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
546 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
547 	int pre_div = 1;
548 	int div = 1;
549 	int division;
550 	ktime_t timeout;
551 	long fixup = 0;
552 	u32 temp;
553 
554 	host->mmc->actual_clock = 0;
555 
556 	if (clock == 0) {
557 		esdhc_clock_enable(host, false);
558 		return;
559 	}
560 
561 	/* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */
562 	if (esdhc->vendor_ver < VENDOR_V_23)
563 		pre_div = 2;
564 
565 	if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
566 		esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
567 		fixup = esdhc->clk_fixup->sd_dflt_max_clk;
568 	else if (esdhc->clk_fixup)
569 		fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
570 
571 	if (fixup && clock > fixup)
572 		clock = fixup;
573 
574 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
575 	temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
576 		  ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK);
577 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
578 
579 	while (host->max_clk / pre_div / 16 > clock && pre_div < 256)
580 		pre_div *= 2;
581 
582 	while (host->max_clk / pre_div / div > clock && div < 16)
583 		div++;
584 
585 	if (esdhc->quirk_limited_clk_division &&
586 	    clock == MMC_HS200_MAX_DTR &&
587 	    (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
588 	     host->flags & SDHCI_HS400_TUNING)) {
589 		division = pre_div * div;
590 		if (division <= 4) {
591 			pre_div = 4;
592 			div = 1;
593 		} else if (division <= 8) {
594 			pre_div = 4;
595 			div = 2;
596 		} else if (division <= 12) {
597 			pre_div = 4;
598 			div = 3;
599 		} else {
600 			pr_warn("%s: using unsupported clock division.\n",
601 				mmc_hostname(host->mmc));
602 		}
603 	}
604 
605 	dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
606 		clock, host->max_clk / pre_div / div);
607 	host->mmc->actual_clock = host->max_clk / pre_div / div;
608 	esdhc->div_ratio = pre_div * div;
609 	pre_div >>= 1;
610 	div--;
611 
612 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
613 	temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN
614 		| (div << ESDHC_DIVIDER_SHIFT)
615 		| (pre_div << ESDHC_PREDIV_SHIFT));
616 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
617 
618 	if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
619 	    clock == MMC_HS200_MAX_DTR) {
620 		temp = sdhci_readl(host, ESDHC_TBCTL);
621 		sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
622 		temp = sdhci_readl(host, ESDHC_SDCLKCTL);
623 		sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
624 		esdhc_clock_enable(host, true);
625 
626 		temp = sdhci_readl(host, ESDHC_DLLCFG0);
627 		temp |= ESDHC_DLL_ENABLE;
628 		if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
629 			temp |= ESDHC_DLL_FREQ_SEL;
630 		sdhci_writel(host, temp, ESDHC_DLLCFG0);
631 		temp = sdhci_readl(host, ESDHC_TBCTL);
632 		sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
633 
634 		esdhc_clock_enable(host, false);
635 		temp = sdhci_readl(host, ESDHC_DMA_SYSCTL);
636 		temp |= ESDHC_FLUSH_ASYNC_FIFO;
637 		sdhci_writel(host, temp, ESDHC_DMA_SYSCTL);
638 	}
639 
640 	/* Wait max 20 ms */
641 	timeout = ktime_add_ms(ktime_get(), 20);
642 	while (!(sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)) {
643 		if (ktime_after(ktime_get(), timeout)) {
644 			pr_err("%s: Internal clock never stabilised.\n",
645 				mmc_hostname(host->mmc));
646 			return;
647 		}
648 		udelay(10);
649 	}
650 
651 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
652 	temp |= ESDHC_CLOCK_SDCLKEN;
653 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
654 }
655 
656 static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
657 {
658 	u32 ctrl;
659 
660 	ctrl = sdhci_readl(host, ESDHC_PROCTL);
661 	ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
662 	switch (width) {
663 	case MMC_BUS_WIDTH_8:
664 		ctrl |= ESDHC_CTRL_8BITBUS;
665 		break;
666 
667 	case MMC_BUS_WIDTH_4:
668 		ctrl |= ESDHC_CTRL_4BITBUS;
669 		break;
670 
671 	default:
672 		break;
673 	}
674 
675 	sdhci_writel(host, ctrl, ESDHC_PROCTL);
676 }
677 
678 static void esdhc_reset(struct sdhci_host *host, u8 mask)
679 {
680 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
681 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
682 	u32 val;
683 
684 	sdhci_reset(host, mask);
685 
686 	sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
687 	sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
688 
689 	if (mask & SDHCI_RESET_ALL) {
690 		val = sdhci_readl(host, ESDHC_TBCTL);
691 		val &= ~ESDHC_TB_EN;
692 		sdhci_writel(host, val, ESDHC_TBCTL);
693 
694 		if (esdhc->quirk_unreliable_pulse_detection) {
695 			val = sdhci_readl(host, ESDHC_DLLCFG1);
696 			val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
697 			sdhci_writel(host, val, ESDHC_DLLCFG1);
698 		}
699 	}
700 }
701 
702 /* The SCFG, Supplemental Configuration Unit, provides SoC specific
703  * configuration and status registers for the device. There is a
704  * SDHC IO VSEL control register on SCFG for some platforms. It's
705  * used to support SDHC IO voltage switching.
706  */
707 static const struct of_device_id scfg_device_ids[] = {
708 	{ .compatible = "fsl,t1040-scfg", },
709 	{ .compatible = "fsl,ls1012a-scfg", },
710 	{ .compatible = "fsl,ls1046a-scfg", },
711 	{}
712 };
713 
714 /* SDHC IO VSEL control register definition */
715 #define SCFG_SDHCIOVSELCR	0x408
716 #define SDHCIOVSELCR_TGLEN	0x80000000
717 #define SDHCIOVSELCR_VSELVAL	0x60000000
718 #define SDHCIOVSELCR_SDHC_VS	0x00000001
719 
720 static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
721 				       struct mmc_ios *ios)
722 {
723 	struct sdhci_host *host = mmc_priv(mmc);
724 	struct device_node *scfg_node;
725 	void __iomem *scfg_base = NULL;
726 	u32 sdhciovselcr;
727 	u32 val;
728 
729 	/*
730 	 * Signal Voltage Switching is only applicable for Host Controllers
731 	 * v3.00 and above.
732 	 */
733 	if (host->version < SDHCI_SPEC_300)
734 		return 0;
735 
736 	val = sdhci_readl(host, ESDHC_PROCTL);
737 
738 	switch (ios->signal_voltage) {
739 	case MMC_SIGNAL_VOLTAGE_330:
740 		val &= ~ESDHC_VOLT_SEL;
741 		sdhci_writel(host, val, ESDHC_PROCTL);
742 		return 0;
743 	case MMC_SIGNAL_VOLTAGE_180:
744 		scfg_node = of_find_matching_node(NULL, scfg_device_ids);
745 		if (scfg_node)
746 			scfg_base = of_iomap(scfg_node, 0);
747 		if (scfg_base) {
748 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
749 				       SDHCIOVSELCR_VSELVAL;
750 			iowrite32be(sdhciovselcr,
751 				scfg_base + SCFG_SDHCIOVSELCR);
752 
753 			val |= ESDHC_VOLT_SEL;
754 			sdhci_writel(host, val, ESDHC_PROCTL);
755 			mdelay(5);
756 
757 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
758 				       SDHCIOVSELCR_SDHC_VS;
759 			iowrite32be(sdhciovselcr,
760 				scfg_base + SCFG_SDHCIOVSELCR);
761 			iounmap(scfg_base);
762 		} else {
763 			val |= ESDHC_VOLT_SEL;
764 			sdhci_writel(host, val, ESDHC_PROCTL);
765 		}
766 		return 0;
767 	default:
768 		return 0;
769 	}
770 }
771 
772 static struct soc_device_attribute soc_fixup_tuning[] = {
773 	{ .family = "QorIQ T1040", .revision = "1.0", },
774 	{ .family = "QorIQ T2080", .revision = "1.0", },
775 	{ .family = "QorIQ T1023", .revision = "1.0", },
776 	{ .family = "QorIQ LS1021A", .revision = "1.0", },
777 	{ .family = "QorIQ LS1080A", .revision = "1.0", },
778 	{ .family = "QorIQ LS2080A", .revision = "1.0", },
779 	{ .family = "QorIQ LS1012A", .revision = "1.0", },
780 	{ .family = "QorIQ LS1043A", .revision = "1.*", },
781 	{ .family = "QorIQ LS1046A", .revision = "1.0", },
782 	{ },
783 };
784 
785 static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
786 {
787 	u32 val;
788 
789 	esdhc_clock_enable(host, false);
790 
791 	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
792 	val |= ESDHC_FLUSH_ASYNC_FIFO;
793 	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
794 
795 	val = sdhci_readl(host, ESDHC_TBCTL);
796 	if (enable)
797 		val |= ESDHC_TB_EN;
798 	else
799 		val &= ~ESDHC_TB_EN;
800 	sdhci_writel(host, val, ESDHC_TBCTL);
801 
802 	esdhc_clock_enable(host, true);
803 }
804 
805 static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
806 {
807 	struct sdhci_host *host = mmc_priv(mmc);
808 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
809 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
810 	bool hs400_tuning;
811 	u32 val;
812 	int ret;
813 
814 	if (esdhc->quirk_limited_clk_division &&
815 	    host->flags & SDHCI_HS400_TUNING)
816 		esdhc_of_set_clock(host, host->clock);
817 
818 	esdhc_tuning_block_enable(host, true);
819 
820 	hs400_tuning = host->flags & SDHCI_HS400_TUNING;
821 	ret = sdhci_execute_tuning(mmc, opcode);
822 
823 	if (hs400_tuning) {
824 		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
825 		val |= ESDHC_FLW_CTL_BG;
826 		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
827 	}
828 
829 	if (host->tuning_err == -EAGAIN && esdhc->quirk_fixup_tuning) {
830 
831 		/* program TBPTR[TB_WNDW_END_PTR] = 3*DIV_RATIO and
832 		 * program TBPTR[TB_WNDW_START_PTR] = 5*DIV_RATIO
833 		 */
834 		val = sdhci_readl(host, ESDHC_TBPTR);
835 		val = (val & ~((0x7f << 8) | 0x7f)) |
836 		(3 * esdhc->div_ratio) | ((5 * esdhc->div_ratio) << 8);
837 		sdhci_writel(host, val, ESDHC_TBPTR);
838 
839 		/* program the software tuning mode by setting
840 		 * TBCTL[TB_MODE]=2'h3
841 		 */
842 		val = sdhci_readl(host, ESDHC_TBCTL);
843 		val |= 0x3;
844 		sdhci_writel(host, val, ESDHC_TBCTL);
845 		sdhci_execute_tuning(mmc, opcode);
846 	}
847 	return ret;
848 }
849 
850 static void esdhc_set_uhs_signaling(struct sdhci_host *host,
851 				   unsigned int timing)
852 {
853 	if (timing == MMC_TIMING_MMC_HS400)
854 		esdhc_tuning_block_enable(host, true);
855 	else
856 		sdhci_set_uhs_signaling(host, timing);
857 }
858 
859 #ifdef CONFIG_PM_SLEEP
860 static u32 esdhc_proctl;
861 static int esdhc_of_suspend(struct device *dev)
862 {
863 	struct sdhci_host *host = dev_get_drvdata(dev);
864 
865 	esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
866 
867 	if (host->tuning_mode != SDHCI_TUNING_MODE_3)
868 		mmc_retune_needed(host->mmc);
869 
870 	return sdhci_suspend_host(host);
871 }
872 
873 static int esdhc_of_resume(struct device *dev)
874 {
875 	struct sdhci_host *host = dev_get_drvdata(dev);
876 	int ret = sdhci_resume_host(host);
877 
878 	if (ret == 0) {
879 		/* Isn't this already done by sdhci_resume_host() ? --rmk */
880 		esdhc_of_enable_dma(host);
881 		sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
882 	}
883 	return ret;
884 }
885 #endif
886 
887 static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
888 			esdhc_of_suspend,
889 			esdhc_of_resume);
890 
891 static const struct sdhci_ops sdhci_esdhc_be_ops = {
892 	.read_l = esdhc_be_readl,
893 	.read_w = esdhc_be_readw,
894 	.read_b = esdhc_be_readb,
895 	.write_l = esdhc_be_writel,
896 	.write_w = esdhc_be_writew,
897 	.write_b = esdhc_be_writeb,
898 	.set_clock = esdhc_of_set_clock,
899 	.enable_dma = esdhc_of_enable_dma,
900 	.get_max_clock = esdhc_of_get_max_clock,
901 	.get_min_clock = esdhc_of_get_min_clock,
902 	.adma_workaround = esdhc_of_adma_workaround,
903 	.set_bus_width = esdhc_pltfm_set_bus_width,
904 	.reset = esdhc_reset,
905 	.set_uhs_signaling = esdhc_set_uhs_signaling,
906 };
907 
908 static const struct sdhci_ops sdhci_esdhc_le_ops = {
909 	.read_l = esdhc_le_readl,
910 	.read_w = esdhc_le_readw,
911 	.read_b = esdhc_le_readb,
912 	.write_l = esdhc_le_writel,
913 	.write_w = esdhc_le_writew,
914 	.write_b = esdhc_le_writeb,
915 	.set_clock = esdhc_of_set_clock,
916 	.enable_dma = esdhc_of_enable_dma,
917 	.get_max_clock = esdhc_of_get_max_clock,
918 	.get_min_clock = esdhc_of_get_min_clock,
919 	.adma_workaround = esdhc_of_adma_workaround,
920 	.set_bus_width = esdhc_pltfm_set_bus_width,
921 	.reset = esdhc_reset,
922 	.set_uhs_signaling = esdhc_set_uhs_signaling,
923 };
924 
925 static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
926 	.quirks = ESDHC_DEFAULT_QUIRKS |
927 #ifdef CONFIG_PPC
928 		  SDHCI_QUIRK_BROKEN_CARD_DETECTION |
929 #endif
930 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
931 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
932 	.ops = &sdhci_esdhc_be_ops,
933 };
934 
935 static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
936 	.quirks = ESDHC_DEFAULT_QUIRKS |
937 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
938 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
939 	.ops = &sdhci_esdhc_le_ops,
940 };
941 
942 static struct soc_device_attribute soc_incorrect_hostver[] = {
943 	{ .family = "QorIQ T4240", .revision = "1.0", },
944 	{ .family = "QorIQ T4240", .revision = "2.0", },
945 	{ },
946 };
947 
948 static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
949 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
950 	{ },
951 };
952 
953 static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
954 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
955 	{ },
956 };
957 
958 static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
959 {
960 	const struct of_device_id *match;
961 	struct sdhci_pltfm_host *pltfm_host;
962 	struct sdhci_esdhc *esdhc;
963 	struct device_node *np;
964 	struct clk *clk;
965 	u32 val;
966 	u16 host_ver;
967 
968 	pltfm_host = sdhci_priv(host);
969 	esdhc = sdhci_pltfm_priv(pltfm_host);
970 
971 	host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
972 	esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
973 			     SDHCI_VENDOR_VER_SHIFT;
974 	esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
975 	if (soc_device_match(soc_incorrect_hostver))
976 		esdhc->quirk_incorrect_hostver = true;
977 	else
978 		esdhc->quirk_incorrect_hostver = false;
979 
980 	if (soc_device_match(soc_fixup_sdhc_clkdivs))
981 		esdhc->quirk_limited_clk_division = true;
982 	else
983 		esdhc->quirk_limited_clk_division = false;
984 
985 	if (soc_device_match(soc_unreliable_pulse_detection))
986 		esdhc->quirk_unreliable_pulse_detection = true;
987 	else
988 		esdhc->quirk_unreliable_pulse_detection = false;
989 
990 	match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
991 	if (match)
992 		esdhc->clk_fixup = match->data;
993 	np = pdev->dev.of_node;
994 	clk = of_clk_get(np, 0);
995 	if (!IS_ERR(clk)) {
996 		/*
997 		 * esdhc->peripheral_clock would be assigned with a value
998 		 * which is eSDHC base clock when use periperal clock.
999 		 * For ls1046a, the clock value got by common clk API is
1000 		 * peripheral clock while the eSDHC base clock is 1/2
1001 		 * peripheral clock.
1002 		 */
1003 		if (of_device_is_compatible(np, "fsl,ls1046a-esdhc"))
1004 			esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1005 		else
1006 			esdhc->peripheral_clock = clk_get_rate(clk);
1007 
1008 		clk_put(clk);
1009 	}
1010 
1011 	if (esdhc->peripheral_clock) {
1012 		esdhc_clock_enable(host, false);
1013 		val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1014 		val |= ESDHC_PERIPHERAL_CLK_SEL;
1015 		sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1016 		esdhc_clock_enable(host, true);
1017 	}
1018 }
1019 
1020 static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1021 {
1022 	esdhc_tuning_block_enable(mmc_priv(mmc), false);
1023 	return 0;
1024 }
1025 
1026 static int sdhci_esdhc_probe(struct platform_device *pdev)
1027 {
1028 	struct sdhci_host *host;
1029 	struct device_node *np;
1030 	struct sdhci_pltfm_host *pltfm_host;
1031 	struct sdhci_esdhc *esdhc;
1032 	int ret;
1033 
1034 	np = pdev->dev.of_node;
1035 
1036 	if (of_property_read_bool(np, "little-endian"))
1037 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1038 					sizeof(struct sdhci_esdhc));
1039 	else
1040 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1041 					sizeof(struct sdhci_esdhc));
1042 
1043 	if (IS_ERR(host))
1044 		return PTR_ERR(host);
1045 
1046 	host->mmc_host_ops.start_signal_voltage_switch =
1047 		esdhc_signal_voltage_switch;
1048 	host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1049 	host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1050 	host->tuning_delay = 1;
1051 
1052 	esdhc_init(pdev, host);
1053 
1054 	sdhci_get_of_property(pdev);
1055 
1056 	pltfm_host = sdhci_priv(host);
1057 	esdhc = sdhci_pltfm_priv(pltfm_host);
1058 	if (soc_device_match(soc_fixup_tuning))
1059 		esdhc->quirk_fixup_tuning = true;
1060 	else
1061 		esdhc->quirk_fixup_tuning = false;
1062 
1063 	if (esdhc->vendor_ver == VENDOR_V_22)
1064 		host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1065 
1066 	if (esdhc->vendor_ver > VENDOR_V_22)
1067 		host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1068 
1069 	if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1070 	    of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1071 	    of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1072 	    of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1073 	    of_device_is_compatible(np, "fsl,t1040-esdhc"))
1074 		host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1075 
1076 	if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1077 		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1078 
1079 	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1080 		/*
1081 		 * Freescale messed up with P2020 as it has a non-standard
1082 		 * host control register
1083 		 */
1084 		host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1085 	}
1086 
1087 	/* call to generic mmc_of_parse to support additional capabilities */
1088 	ret = mmc_of_parse(host->mmc);
1089 	if (ret)
1090 		goto err;
1091 
1092 	mmc_of_parse_voltage(np, &host->ocr_mask);
1093 
1094 	ret = sdhci_add_host(host);
1095 	if (ret)
1096 		goto err;
1097 
1098 	return 0;
1099  err:
1100 	sdhci_pltfm_free(pdev);
1101 	return ret;
1102 }
1103 
1104 static struct platform_driver sdhci_esdhc_driver = {
1105 	.driver = {
1106 		.name = "sdhci-esdhc",
1107 		.of_match_table = sdhci_esdhc_of_match,
1108 		.pm = &esdhc_of_dev_pm_ops,
1109 	},
1110 	.probe = sdhci_esdhc_probe,
1111 	.remove = sdhci_pltfm_unregister,
1112 };
1113 
1114 module_platform_driver(sdhci_esdhc_driver);
1115 
1116 MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1117 MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1118 	      "Anton Vorontsov <avorontsov@ru.mvista.com>");
1119 MODULE_LICENSE("GPL v2");
1120