1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale eSDHC controller driver.
4  *
5  * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
6  * Copyright (c) 2009 MontaVista Software, Inc.
7  *
8  * Authors: Xiaobo Xie <X.Xie@freescale.com>
9  *	    Anton Vorontsov <avorontsov@ru.mvista.com>
10  */
11 
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/delay.h>
17 #include <linux/module.h>
18 #include <linux/sys_soc.h>
19 #include <linux/clk.h>
20 #include <linux/ktime.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/mmc.h>
24 #include "sdhci-pltfm.h"
25 #include "sdhci-esdhc.h"
26 
27 #define VENDOR_V_22	0x12
28 #define VENDOR_V_23	0x13
29 
30 #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
31 
32 struct esdhc_clk_fixup {
33 	const unsigned int sd_dflt_max_clk;
34 	const unsigned int max_clk[MMC_TIMING_NUM];
35 };
36 
37 static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
38 	.sd_dflt_max_clk = 25000000,
39 	.max_clk[MMC_TIMING_MMC_HS] = 46500000,
40 	.max_clk[MMC_TIMING_SD_HS] = 46500000,
41 };
42 
43 static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
44 	.sd_dflt_max_clk = 25000000,
45 	.max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
46 	.max_clk[MMC_TIMING_MMC_HS200] = 167000000,
47 };
48 
49 static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
50 	.sd_dflt_max_clk = 25000000,
51 	.max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
52 	.max_clk[MMC_TIMING_MMC_HS200] = 125000000,
53 };
54 
55 static const struct esdhc_clk_fixup p1010_esdhc_clk = {
56 	.sd_dflt_max_clk = 20000000,
57 	.max_clk[MMC_TIMING_LEGACY] = 20000000,
58 	.max_clk[MMC_TIMING_MMC_HS] = 42000000,
59 	.max_clk[MMC_TIMING_SD_HS] = 40000000,
60 };
61 
62 static const struct of_device_id sdhci_esdhc_of_match[] = {
63 	{ .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
64 	{ .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
65 	{ .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
66 	{ .compatible = "fsl,p1010-esdhc",   .data = &p1010_esdhc_clk},
67 	{ .compatible = "fsl,mpc8379-esdhc" },
68 	{ .compatible = "fsl,mpc8536-esdhc" },
69 	{ .compatible = "fsl,esdhc" },
70 	{ }
71 };
72 MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
73 
74 struct sdhci_esdhc {
75 	u8 vendor_ver;
76 	u8 spec_ver;
77 	bool quirk_incorrect_hostver;
78 	bool quirk_limited_clk_division;
79 	bool quirk_unreliable_pulse_detection;
80 	bool quirk_fixup_tuning;
81 	bool quirk_ignore_data_inhibit;
82 	unsigned int peripheral_clock;
83 	const struct esdhc_clk_fixup *clk_fixup;
84 	u32 div_ratio;
85 };
86 
87 /**
88  * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
89  *		       to make it compatible with SD spec.
90  *
91  * @host: pointer to sdhci_host
92  * @spec_reg: SD spec register address
93  * @value: 32bit eSDHC register value on spec_reg address
94  *
95  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
96  * registers are 32 bits. There are differences in register size, register
97  * address, register function, bit position and function between eSDHC spec
98  * and SD spec.
99  *
100  * Return a fixed up register value
101  */
102 static u32 esdhc_readl_fixup(struct sdhci_host *host,
103 				     int spec_reg, u32 value)
104 {
105 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
106 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
107 	u32 ret;
108 
109 	/*
110 	 * The bit of ADMA flag in eSDHC is not compatible with standard
111 	 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
112 	 * supported by eSDHC.
113 	 * And for many FSL eSDHC controller, the reset value of field
114 	 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
115 	 * only these vendor version is greater than 2.2/0x12 support ADMA.
116 	 */
117 	if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
118 		if (esdhc->vendor_ver > VENDOR_V_22) {
119 			ret = value | SDHCI_CAN_DO_ADMA2;
120 			return ret;
121 		}
122 	}
123 	/*
124 	 * The DAT[3:0] line signal levels and the CMD line signal level are
125 	 * not compatible with standard SDHC register. The line signal levels
126 	 * DAT[7:0] are at bits 31:24 and the command line signal level is at
127 	 * bit 23. All other bits are the same as in the standard SDHC
128 	 * register.
129 	 */
130 	if (spec_reg == SDHCI_PRESENT_STATE) {
131 		ret = value & 0x000fffff;
132 		ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
133 		ret |= (value << 1) & SDHCI_CMD_LVL;
134 		return ret;
135 	}
136 
137 	/*
138 	 * DTS properties of mmc host are used to enable each speed mode
139 	 * according to soc and board capability. So clean up
140 	 * SDR50/SDR104/DDR50 support bits here.
141 	 */
142 	if (spec_reg == SDHCI_CAPABILITIES_1) {
143 		ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
144 				SDHCI_SUPPORT_DDR50);
145 		return ret;
146 	}
147 
148 	/*
149 	 * Some controllers have unreliable Data Line Active
150 	 * bit for commands with busy signal. This affects
151 	 * Command Inhibit (data) bit. Just ignore it since
152 	 * MMC core driver has already polled card status
153 	 * with CMD13 after any command with busy siganl.
154 	 */
155 	if ((spec_reg == SDHCI_PRESENT_STATE) &&
156 	(esdhc->quirk_ignore_data_inhibit == true)) {
157 		ret = value & ~SDHCI_DATA_INHIBIT;
158 		return ret;
159 	}
160 
161 	ret = value;
162 	return ret;
163 }
164 
165 static u16 esdhc_readw_fixup(struct sdhci_host *host,
166 				     int spec_reg, u32 value)
167 {
168 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
169 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
170 	u16 ret;
171 	int shift = (spec_reg & 0x2) * 8;
172 
173 	if (spec_reg == SDHCI_HOST_VERSION)
174 		ret = value & 0xffff;
175 	else
176 		ret = (value >> shift) & 0xffff;
177 	/* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
178 	 * vendor version and spec version information.
179 	 */
180 	if ((spec_reg == SDHCI_HOST_VERSION) &&
181 	    (esdhc->quirk_incorrect_hostver))
182 		ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
183 	return ret;
184 }
185 
186 static u8 esdhc_readb_fixup(struct sdhci_host *host,
187 				     int spec_reg, u32 value)
188 {
189 	u8 ret;
190 	u8 dma_bits;
191 	int shift = (spec_reg & 0x3) * 8;
192 
193 	ret = (value >> shift) & 0xff;
194 
195 	/*
196 	 * "DMA select" locates at offset 0x28 in SD specification, but on
197 	 * P5020 or P3041, it locates at 0x29.
198 	 */
199 	if (spec_reg == SDHCI_HOST_CONTROL) {
200 		/* DMA select is 22,23 bits in Protocol Control Register */
201 		dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
202 		/* fixup the result */
203 		ret &= ~SDHCI_CTRL_DMA_MASK;
204 		ret |= dma_bits;
205 	}
206 	return ret;
207 }
208 
209 /**
210  * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
211  *			written into eSDHC register.
212  *
213  * @host: pointer to sdhci_host
214  * @spec_reg: SD spec register address
215  * @value: 8/16/32bit SD spec register value that would be written
216  * @old_value: 32bit eSDHC register value on spec_reg address
217  *
218  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
219  * registers are 32 bits. There are differences in register size, register
220  * address, register function, bit position and function between eSDHC spec
221  * and SD spec.
222  *
223  * Return a fixed up register value
224  */
225 static u32 esdhc_writel_fixup(struct sdhci_host *host,
226 				     int spec_reg, u32 value, u32 old_value)
227 {
228 	u32 ret;
229 
230 	/*
231 	 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
232 	 * when SYSCTL[RSTD] is set for some special operations.
233 	 * No any impact on other operation.
234 	 */
235 	if (spec_reg == SDHCI_INT_ENABLE)
236 		ret = value | SDHCI_INT_BLK_GAP;
237 	else
238 		ret = value;
239 
240 	return ret;
241 }
242 
243 static u32 esdhc_writew_fixup(struct sdhci_host *host,
244 				     int spec_reg, u16 value, u32 old_value)
245 {
246 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
247 	int shift = (spec_reg & 0x2) * 8;
248 	u32 ret;
249 
250 	switch (spec_reg) {
251 	case SDHCI_TRANSFER_MODE:
252 		/*
253 		 * Postpone this write, we must do it together with a
254 		 * command write that is down below. Return old value.
255 		 */
256 		pltfm_host->xfer_mode_shadow = value;
257 		return old_value;
258 	case SDHCI_COMMAND:
259 		ret = (value << 16) | pltfm_host->xfer_mode_shadow;
260 		return ret;
261 	}
262 
263 	ret = old_value & (~(0xffff << shift));
264 	ret |= (value << shift);
265 
266 	if (spec_reg == SDHCI_BLOCK_SIZE) {
267 		/*
268 		 * Two last DMA bits are reserved, and first one is used for
269 		 * non-standard blksz of 4096 bytes that we don't support
270 		 * yet. So clear the DMA boundary bits.
271 		 */
272 		ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
273 	}
274 	return ret;
275 }
276 
277 static u32 esdhc_writeb_fixup(struct sdhci_host *host,
278 				     int spec_reg, u8 value, u32 old_value)
279 {
280 	u32 ret;
281 	u32 dma_bits;
282 	u8 tmp;
283 	int shift = (spec_reg & 0x3) * 8;
284 
285 	/*
286 	 * eSDHC doesn't have a standard power control register, so we do
287 	 * nothing here to avoid incorrect operation.
288 	 */
289 	if (spec_reg == SDHCI_POWER_CONTROL)
290 		return old_value;
291 	/*
292 	 * "DMA select" location is offset 0x28 in SD specification, but on
293 	 * P5020 or P3041, it's located at 0x29.
294 	 */
295 	if (spec_reg == SDHCI_HOST_CONTROL) {
296 		/*
297 		 * If host control register is not standard, exit
298 		 * this function
299 		 */
300 		if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
301 			return old_value;
302 
303 		/* DMA select is 22,23 bits in Protocol Control Register */
304 		dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
305 		ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
306 		tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
307 		      (old_value & SDHCI_CTRL_DMA_MASK);
308 		ret = (ret & (~0xff)) | tmp;
309 
310 		/* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
311 		ret &= ~ESDHC_HOST_CONTROL_RES;
312 		return ret;
313 	}
314 
315 	ret = (old_value & (~(0xff << shift))) | (value << shift);
316 	return ret;
317 }
318 
319 static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
320 {
321 	u32 ret;
322 	u32 value;
323 
324 	if (reg == SDHCI_CAPABILITIES_1)
325 		value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
326 	else
327 		value = ioread32be(host->ioaddr + reg);
328 
329 	ret = esdhc_readl_fixup(host, reg, value);
330 
331 	return ret;
332 }
333 
334 static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
335 {
336 	u32 ret;
337 	u32 value;
338 
339 	if (reg == SDHCI_CAPABILITIES_1)
340 		value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
341 	else
342 		value = ioread32(host->ioaddr + reg);
343 
344 	ret = esdhc_readl_fixup(host, reg, value);
345 
346 	return ret;
347 }
348 
349 static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
350 {
351 	u16 ret;
352 	u32 value;
353 	int base = reg & ~0x3;
354 
355 	value = ioread32be(host->ioaddr + base);
356 	ret = esdhc_readw_fixup(host, reg, value);
357 	return ret;
358 }
359 
360 static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
361 {
362 	u16 ret;
363 	u32 value;
364 	int base = reg & ~0x3;
365 
366 	value = ioread32(host->ioaddr + base);
367 	ret = esdhc_readw_fixup(host, reg, value);
368 	return ret;
369 }
370 
371 static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
372 {
373 	u8 ret;
374 	u32 value;
375 	int base = reg & ~0x3;
376 
377 	value = ioread32be(host->ioaddr + base);
378 	ret = esdhc_readb_fixup(host, reg, value);
379 	return ret;
380 }
381 
382 static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
383 {
384 	u8 ret;
385 	u32 value;
386 	int base = reg & ~0x3;
387 
388 	value = ioread32(host->ioaddr + base);
389 	ret = esdhc_readb_fixup(host, reg, value);
390 	return ret;
391 }
392 
393 static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
394 {
395 	u32 value;
396 
397 	value = esdhc_writel_fixup(host, reg, val, 0);
398 	iowrite32be(value, host->ioaddr + reg);
399 }
400 
401 static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
402 {
403 	u32 value;
404 
405 	value = esdhc_writel_fixup(host, reg, val, 0);
406 	iowrite32(value, host->ioaddr + reg);
407 }
408 
409 static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
410 {
411 	int base = reg & ~0x3;
412 	u32 value;
413 	u32 ret;
414 
415 	value = ioread32be(host->ioaddr + base);
416 	ret = esdhc_writew_fixup(host, reg, val, value);
417 	if (reg != SDHCI_TRANSFER_MODE)
418 		iowrite32be(ret, host->ioaddr + base);
419 }
420 
421 static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
422 {
423 	int base = reg & ~0x3;
424 	u32 value;
425 	u32 ret;
426 
427 	value = ioread32(host->ioaddr + base);
428 	ret = esdhc_writew_fixup(host, reg, val, value);
429 	if (reg != SDHCI_TRANSFER_MODE)
430 		iowrite32(ret, host->ioaddr + base);
431 }
432 
433 static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
434 {
435 	int base = reg & ~0x3;
436 	u32 value;
437 	u32 ret;
438 
439 	value = ioread32be(host->ioaddr + base);
440 	ret = esdhc_writeb_fixup(host, reg, val, value);
441 	iowrite32be(ret, host->ioaddr + base);
442 }
443 
444 static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
445 {
446 	int base = reg & ~0x3;
447 	u32 value;
448 	u32 ret;
449 
450 	value = ioread32(host->ioaddr + base);
451 	ret = esdhc_writeb_fixup(host, reg, val, value);
452 	iowrite32(ret, host->ioaddr + base);
453 }
454 
455 /*
456  * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
457  * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
458  * and Block Gap Event(IRQSTAT[BGE]) are also set.
459  * For Continue, apply soft reset for data(SYSCTL[RSTD]);
460  * and re-issue the entire read transaction from beginning.
461  */
462 static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
463 {
464 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
465 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
466 	bool applicable;
467 	dma_addr_t dmastart;
468 	dma_addr_t dmanow;
469 
470 	applicable = (intmask & SDHCI_INT_DATA_END) &&
471 		     (intmask & SDHCI_INT_BLK_GAP) &&
472 		     (esdhc->vendor_ver == VENDOR_V_23);
473 	if (!applicable)
474 		return;
475 
476 	host->data->error = 0;
477 	dmastart = sg_dma_address(host->data->sg);
478 	dmanow = dmastart + host->data->bytes_xfered;
479 	/*
480 	 * Force update to the next DMA block boundary.
481 	 */
482 	dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
483 		SDHCI_DEFAULT_BOUNDARY_SIZE;
484 	host->data->bytes_xfered = dmanow - dmastart;
485 	sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
486 }
487 
488 static int esdhc_of_enable_dma(struct sdhci_host *host)
489 {
490 	u32 value;
491 	struct device *dev = mmc_dev(host->mmc);
492 
493 	if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
494 	    of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc"))
495 		dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
496 
497 	value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
498 	value |= ESDHC_DMA_SNOOP;
499 	sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
500 	return 0;
501 }
502 
503 static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
504 {
505 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
506 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
507 
508 	if (esdhc->peripheral_clock)
509 		return esdhc->peripheral_clock;
510 	else
511 		return pltfm_host->clock;
512 }
513 
514 static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
515 {
516 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
517 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
518 	unsigned int clock;
519 
520 	if (esdhc->peripheral_clock)
521 		clock = esdhc->peripheral_clock;
522 	else
523 		clock = pltfm_host->clock;
524 	return clock / 256 / 16;
525 }
526 
527 static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
528 {
529 	u32 val;
530 	ktime_t timeout;
531 
532 	val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
533 
534 	if (enable)
535 		val |= ESDHC_CLOCK_SDCLKEN;
536 	else
537 		val &= ~ESDHC_CLOCK_SDCLKEN;
538 
539 	sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
540 
541 	/* Wait max 20 ms */
542 	timeout = ktime_add_ms(ktime_get(), 20);
543 	val = ESDHC_CLOCK_STABLE;
544 	while  (1) {
545 		bool timedout = ktime_after(ktime_get(), timeout);
546 
547 		if (sdhci_readl(host, ESDHC_PRSSTAT) & val)
548 			break;
549 		if (timedout) {
550 			pr_err("%s: Internal clock never stabilised.\n",
551 				mmc_hostname(host->mmc));
552 			break;
553 		}
554 		udelay(10);
555 	}
556 }
557 
558 static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
559 {
560 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
561 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
562 	int pre_div = 1;
563 	int div = 1;
564 	int division;
565 	ktime_t timeout;
566 	long fixup = 0;
567 	u32 temp;
568 
569 	host->mmc->actual_clock = 0;
570 
571 	if (clock == 0) {
572 		esdhc_clock_enable(host, false);
573 		return;
574 	}
575 
576 	/* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */
577 	if (esdhc->vendor_ver < VENDOR_V_23)
578 		pre_div = 2;
579 
580 	if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
581 		esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
582 		fixup = esdhc->clk_fixup->sd_dflt_max_clk;
583 	else if (esdhc->clk_fixup)
584 		fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
585 
586 	if (fixup && clock > fixup)
587 		clock = fixup;
588 
589 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
590 	temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
591 		  ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK);
592 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
593 
594 	while (host->max_clk / pre_div / 16 > clock && pre_div < 256)
595 		pre_div *= 2;
596 
597 	while (host->max_clk / pre_div / div > clock && div < 16)
598 		div++;
599 
600 	if (esdhc->quirk_limited_clk_division &&
601 	    clock == MMC_HS200_MAX_DTR &&
602 	    (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
603 	     host->flags & SDHCI_HS400_TUNING)) {
604 		division = pre_div * div;
605 		if (division <= 4) {
606 			pre_div = 4;
607 			div = 1;
608 		} else if (division <= 8) {
609 			pre_div = 4;
610 			div = 2;
611 		} else if (division <= 12) {
612 			pre_div = 4;
613 			div = 3;
614 		} else {
615 			pr_warn("%s: using unsupported clock division.\n",
616 				mmc_hostname(host->mmc));
617 		}
618 	}
619 
620 	dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
621 		clock, host->max_clk / pre_div / div);
622 	host->mmc->actual_clock = host->max_clk / pre_div / div;
623 	esdhc->div_ratio = pre_div * div;
624 	pre_div >>= 1;
625 	div--;
626 
627 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
628 	temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN
629 		| (div << ESDHC_DIVIDER_SHIFT)
630 		| (pre_div << ESDHC_PREDIV_SHIFT));
631 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
632 
633 	if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
634 	    clock == MMC_HS200_MAX_DTR) {
635 		temp = sdhci_readl(host, ESDHC_TBCTL);
636 		sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
637 		temp = sdhci_readl(host, ESDHC_SDCLKCTL);
638 		sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
639 		esdhc_clock_enable(host, true);
640 
641 		temp = sdhci_readl(host, ESDHC_DLLCFG0);
642 		temp |= ESDHC_DLL_ENABLE;
643 		if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
644 			temp |= ESDHC_DLL_FREQ_SEL;
645 		sdhci_writel(host, temp, ESDHC_DLLCFG0);
646 		temp = sdhci_readl(host, ESDHC_TBCTL);
647 		sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
648 
649 		esdhc_clock_enable(host, false);
650 		temp = sdhci_readl(host, ESDHC_DMA_SYSCTL);
651 		temp |= ESDHC_FLUSH_ASYNC_FIFO;
652 		sdhci_writel(host, temp, ESDHC_DMA_SYSCTL);
653 	}
654 
655 	/* Wait max 20 ms */
656 	timeout = ktime_add_ms(ktime_get(), 20);
657 	while (1) {
658 		bool timedout = ktime_after(ktime_get(), timeout);
659 
660 		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
661 			break;
662 		if (timedout) {
663 			pr_err("%s: Internal clock never stabilised.\n",
664 				mmc_hostname(host->mmc));
665 			return;
666 		}
667 		udelay(10);
668 	}
669 
670 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
671 	temp |= ESDHC_CLOCK_SDCLKEN;
672 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
673 }
674 
675 static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
676 {
677 	u32 ctrl;
678 
679 	ctrl = sdhci_readl(host, ESDHC_PROCTL);
680 	ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
681 	switch (width) {
682 	case MMC_BUS_WIDTH_8:
683 		ctrl |= ESDHC_CTRL_8BITBUS;
684 		break;
685 
686 	case MMC_BUS_WIDTH_4:
687 		ctrl |= ESDHC_CTRL_4BITBUS;
688 		break;
689 
690 	default:
691 		break;
692 	}
693 
694 	sdhci_writel(host, ctrl, ESDHC_PROCTL);
695 }
696 
697 static void esdhc_reset(struct sdhci_host *host, u8 mask)
698 {
699 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
700 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
701 	u32 val;
702 
703 	sdhci_reset(host, mask);
704 
705 	sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
706 	sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
707 
708 	if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc"))
709 		mdelay(5);
710 
711 	if (mask & SDHCI_RESET_ALL) {
712 		val = sdhci_readl(host, ESDHC_TBCTL);
713 		val &= ~ESDHC_TB_EN;
714 		sdhci_writel(host, val, ESDHC_TBCTL);
715 
716 		if (esdhc->quirk_unreliable_pulse_detection) {
717 			val = sdhci_readl(host, ESDHC_DLLCFG1);
718 			val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
719 			sdhci_writel(host, val, ESDHC_DLLCFG1);
720 		}
721 	}
722 }
723 
724 /* The SCFG, Supplemental Configuration Unit, provides SoC specific
725  * configuration and status registers for the device. There is a
726  * SDHC IO VSEL control register on SCFG for some platforms. It's
727  * used to support SDHC IO voltage switching.
728  */
729 static const struct of_device_id scfg_device_ids[] = {
730 	{ .compatible = "fsl,t1040-scfg", },
731 	{ .compatible = "fsl,ls1012a-scfg", },
732 	{ .compatible = "fsl,ls1046a-scfg", },
733 	{}
734 };
735 
736 /* SDHC IO VSEL control register definition */
737 #define SCFG_SDHCIOVSELCR	0x408
738 #define SDHCIOVSELCR_TGLEN	0x80000000
739 #define SDHCIOVSELCR_VSELVAL	0x60000000
740 #define SDHCIOVSELCR_SDHC_VS	0x00000001
741 
742 static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
743 				       struct mmc_ios *ios)
744 {
745 	struct sdhci_host *host = mmc_priv(mmc);
746 	struct device_node *scfg_node;
747 	void __iomem *scfg_base = NULL;
748 	u32 sdhciovselcr;
749 	u32 val;
750 
751 	/*
752 	 * Signal Voltage Switching is only applicable for Host Controllers
753 	 * v3.00 and above.
754 	 */
755 	if (host->version < SDHCI_SPEC_300)
756 		return 0;
757 
758 	val = sdhci_readl(host, ESDHC_PROCTL);
759 
760 	switch (ios->signal_voltage) {
761 	case MMC_SIGNAL_VOLTAGE_330:
762 		val &= ~ESDHC_VOLT_SEL;
763 		sdhci_writel(host, val, ESDHC_PROCTL);
764 		return 0;
765 	case MMC_SIGNAL_VOLTAGE_180:
766 		scfg_node = of_find_matching_node(NULL, scfg_device_ids);
767 		if (scfg_node)
768 			scfg_base = of_iomap(scfg_node, 0);
769 		if (scfg_base) {
770 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
771 				       SDHCIOVSELCR_VSELVAL;
772 			iowrite32be(sdhciovselcr,
773 				scfg_base + SCFG_SDHCIOVSELCR);
774 
775 			val |= ESDHC_VOLT_SEL;
776 			sdhci_writel(host, val, ESDHC_PROCTL);
777 			mdelay(5);
778 
779 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
780 				       SDHCIOVSELCR_SDHC_VS;
781 			iowrite32be(sdhciovselcr,
782 				scfg_base + SCFG_SDHCIOVSELCR);
783 			iounmap(scfg_base);
784 		} else {
785 			val |= ESDHC_VOLT_SEL;
786 			sdhci_writel(host, val, ESDHC_PROCTL);
787 		}
788 		return 0;
789 	default:
790 		return 0;
791 	}
792 }
793 
794 static struct soc_device_attribute soc_fixup_tuning[] = {
795 	{ .family = "QorIQ T1040", .revision = "1.0", },
796 	{ .family = "QorIQ T2080", .revision = "1.0", },
797 	{ .family = "QorIQ T1023", .revision = "1.0", },
798 	{ .family = "QorIQ LS1021A", .revision = "1.0", },
799 	{ .family = "QorIQ LS1080A", .revision = "1.0", },
800 	{ .family = "QorIQ LS2080A", .revision = "1.0", },
801 	{ .family = "QorIQ LS1012A", .revision = "1.0", },
802 	{ .family = "QorIQ LS1043A", .revision = "1.*", },
803 	{ .family = "QorIQ LS1046A", .revision = "1.0", },
804 	{ },
805 };
806 
807 static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
808 {
809 	u32 val;
810 
811 	esdhc_clock_enable(host, false);
812 
813 	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
814 	val |= ESDHC_FLUSH_ASYNC_FIFO;
815 	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
816 
817 	val = sdhci_readl(host, ESDHC_TBCTL);
818 	if (enable)
819 		val |= ESDHC_TB_EN;
820 	else
821 		val &= ~ESDHC_TB_EN;
822 	sdhci_writel(host, val, ESDHC_TBCTL);
823 
824 	esdhc_clock_enable(host, true);
825 }
826 
827 static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
828 {
829 	struct sdhci_host *host = mmc_priv(mmc);
830 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
831 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
832 	bool hs400_tuning;
833 	unsigned int clk;
834 	u32 val;
835 	int ret;
836 
837 	/* For tuning mode, the sd clock divisor value
838 	 * must be larger than 3 according to reference manual.
839 	 */
840 	clk = esdhc->peripheral_clock / 3;
841 	if (host->clock > clk)
842 		esdhc_of_set_clock(host, clk);
843 
844 	if (esdhc->quirk_limited_clk_division &&
845 	    host->flags & SDHCI_HS400_TUNING)
846 		esdhc_of_set_clock(host, host->clock);
847 
848 	esdhc_tuning_block_enable(host, true);
849 
850 	hs400_tuning = host->flags & SDHCI_HS400_TUNING;
851 	ret = sdhci_execute_tuning(mmc, opcode);
852 
853 	if (hs400_tuning) {
854 		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
855 		val |= ESDHC_FLW_CTL_BG;
856 		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
857 	}
858 
859 	if (host->tuning_err == -EAGAIN && esdhc->quirk_fixup_tuning) {
860 
861 		/* program TBPTR[TB_WNDW_END_PTR] = 3*DIV_RATIO and
862 		 * program TBPTR[TB_WNDW_START_PTR] = 5*DIV_RATIO
863 		 */
864 		val = sdhci_readl(host, ESDHC_TBPTR);
865 		val = (val & ~((0x7f << 8) | 0x7f)) |
866 		(3 * esdhc->div_ratio) | ((5 * esdhc->div_ratio) << 8);
867 		sdhci_writel(host, val, ESDHC_TBPTR);
868 
869 		/* program the software tuning mode by setting
870 		 * TBCTL[TB_MODE]=2'h3
871 		 */
872 		val = sdhci_readl(host, ESDHC_TBCTL);
873 		val |= 0x3;
874 		sdhci_writel(host, val, ESDHC_TBCTL);
875 		sdhci_execute_tuning(mmc, opcode);
876 	}
877 	return ret;
878 }
879 
880 static void esdhc_set_uhs_signaling(struct sdhci_host *host,
881 				   unsigned int timing)
882 {
883 	if (timing == MMC_TIMING_MMC_HS400)
884 		esdhc_tuning_block_enable(host, true);
885 	else
886 		sdhci_set_uhs_signaling(host, timing);
887 }
888 
889 static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
890 {
891 	u32 command;
892 
893 	if (of_find_compatible_node(NULL, NULL,
894 				"fsl,p2020-esdhc")) {
895 		command = SDHCI_GET_CMD(sdhci_readw(host,
896 					SDHCI_COMMAND));
897 		if (command == MMC_WRITE_MULTIPLE_BLOCK &&
898 				sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
899 				intmask & SDHCI_INT_DATA_END) {
900 			intmask &= ~SDHCI_INT_DATA_END;
901 			sdhci_writel(host, SDHCI_INT_DATA_END,
902 					SDHCI_INT_STATUS);
903 		}
904 	}
905 	return intmask;
906 }
907 
908 #ifdef CONFIG_PM_SLEEP
909 static u32 esdhc_proctl;
910 static int esdhc_of_suspend(struct device *dev)
911 {
912 	struct sdhci_host *host = dev_get_drvdata(dev);
913 
914 	esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
915 
916 	if (host->tuning_mode != SDHCI_TUNING_MODE_3)
917 		mmc_retune_needed(host->mmc);
918 
919 	return sdhci_suspend_host(host);
920 }
921 
922 static int esdhc_of_resume(struct device *dev)
923 {
924 	struct sdhci_host *host = dev_get_drvdata(dev);
925 	int ret = sdhci_resume_host(host);
926 
927 	if (ret == 0) {
928 		/* Isn't this already done by sdhci_resume_host() ? --rmk */
929 		esdhc_of_enable_dma(host);
930 		sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
931 	}
932 	return ret;
933 }
934 #endif
935 
936 static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
937 			esdhc_of_suspend,
938 			esdhc_of_resume);
939 
940 static const struct sdhci_ops sdhci_esdhc_be_ops = {
941 	.read_l = esdhc_be_readl,
942 	.read_w = esdhc_be_readw,
943 	.read_b = esdhc_be_readb,
944 	.write_l = esdhc_be_writel,
945 	.write_w = esdhc_be_writew,
946 	.write_b = esdhc_be_writeb,
947 	.set_clock = esdhc_of_set_clock,
948 	.enable_dma = esdhc_of_enable_dma,
949 	.get_max_clock = esdhc_of_get_max_clock,
950 	.get_min_clock = esdhc_of_get_min_clock,
951 	.adma_workaround = esdhc_of_adma_workaround,
952 	.set_bus_width = esdhc_pltfm_set_bus_width,
953 	.reset = esdhc_reset,
954 	.set_uhs_signaling = esdhc_set_uhs_signaling,
955 	.irq = esdhc_irq,
956 };
957 
958 static const struct sdhci_ops sdhci_esdhc_le_ops = {
959 	.read_l = esdhc_le_readl,
960 	.read_w = esdhc_le_readw,
961 	.read_b = esdhc_le_readb,
962 	.write_l = esdhc_le_writel,
963 	.write_w = esdhc_le_writew,
964 	.write_b = esdhc_le_writeb,
965 	.set_clock = esdhc_of_set_clock,
966 	.enable_dma = esdhc_of_enable_dma,
967 	.get_max_clock = esdhc_of_get_max_clock,
968 	.get_min_clock = esdhc_of_get_min_clock,
969 	.adma_workaround = esdhc_of_adma_workaround,
970 	.set_bus_width = esdhc_pltfm_set_bus_width,
971 	.reset = esdhc_reset,
972 	.set_uhs_signaling = esdhc_set_uhs_signaling,
973 	.irq = esdhc_irq,
974 };
975 
976 static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
977 	.quirks = ESDHC_DEFAULT_QUIRKS |
978 #ifdef CONFIG_PPC
979 		  SDHCI_QUIRK_BROKEN_CARD_DETECTION |
980 #endif
981 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
982 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
983 	.ops = &sdhci_esdhc_be_ops,
984 };
985 
986 static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
987 	.quirks = ESDHC_DEFAULT_QUIRKS |
988 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
989 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
990 	.ops = &sdhci_esdhc_le_ops,
991 };
992 
993 static struct soc_device_attribute soc_incorrect_hostver[] = {
994 	{ .family = "QorIQ T4240", .revision = "1.0", },
995 	{ .family = "QorIQ T4240", .revision = "2.0", },
996 	{ },
997 };
998 
999 static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1000 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1001 	{ .family = "QorIQ LX2160A", .revision = "2.0", },
1002 	{ .family = "QorIQ LS1028A", .revision = "1.0", },
1003 	{ },
1004 };
1005 
1006 static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1007 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1008 	{ },
1009 };
1010 
1011 static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1012 {
1013 	const struct of_device_id *match;
1014 	struct sdhci_pltfm_host *pltfm_host;
1015 	struct sdhci_esdhc *esdhc;
1016 	struct device_node *np;
1017 	struct clk *clk;
1018 	u32 val;
1019 	u16 host_ver;
1020 
1021 	pltfm_host = sdhci_priv(host);
1022 	esdhc = sdhci_pltfm_priv(pltfm_host);
1023 
1024 	host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1025 	esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1026 			     SDHCI_VENDOR_VER_SHIFT;
1027 	esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1028 	if (soc_device_match(soc_incorrect_hostver))
1029 		esdhc->quirk_incorrect_hostver = true;
1030 	else
1031 		esdhc->quirk_incorrect_hostver = false;
1032 
1033 	if (soc_device_match(soc_fixup_sdhc_clkdivs))
1034 		esdhc->quirk_limited_clk_division = true;
1035 	else
1036 		esdhc->quirk_limited_clk_division = false;
1037 
1038 	if (soc_device_match(soc_unreliable_pulse_detection))
1039 		esdhc->quirk_unreliable_pulse_detection = true;
1040 	else
1041 		esdhc->quirk_unreliable_pulse_detection = false;
1042 
1043 	match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
1044 	if (match)
1045 		esdhc->clk_fixup = match->data;
1046 	np = pdev->dev.of_node;
1047 	clk = of_clk_get(np, 0);
1048 	if (!IS_ERR(clk)) {
1049 		/*
1050 		 * esdhc->peripheral_clock would be assigned with a value
1051 		 * which is eSDHC base clock when use periperal clock.
1052 		 * For some platforms, the clock value got by common clk
1053 		 * API is peripheral clock while the eSDHC base clock is
1054 		 * 1/2 peripheral clock.
1055 		 */
1056 		if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") ||
1057 		    of_device_is_compatible(np, "fsl,ls1028a-esdhc"))
1058 			esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1059 		else
1060 			esdhc->peripheral_clock = clk_get_rate(clk);
1061 
1062 		clk_put(clk);
1063 	}
1064 
1065 	if (esdhc->peripheral_clock) {
1066 		esdhc_clock_enable(host, false);
1067 		val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1068 		val |= ESDHC_PERIPHERAL_CLK_SEL;
1069 		sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1070 		esdhc_clock_enable(host, true);
1071 	}
1072 }
1073 
1074 static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1075 {
1076 	esdhc_tuning_block_enable(mmc_priv(mmc), false);
1077 	return 0;
1078 }
1079 
1080 static int sdhci_esdhc_probe(struct platform_device *pdev)
1081 {
1082 	struct sdhci_host *host;
1083 	struct device_node *np;
1084 	struct sdhci_pltfm_host *pltfm_host;
1085 	struct sdhci_esdhc *esdhc;
1086 	int ret;
1087 
1088 	np = pdev->dev.of_node;
1089 
1090 	if (of_property_read_bool(np, "little-endian"))
1091 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1092 					sizeof(struct sdhci_esdhc));
1093 	else
1094 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1095 					sizeof(struct sdhci_esdhc));
1096 
1097 	if (IS_ERR(host))
1098 		return PTR_ERR(host);
1099 
1100 	host->mmc_host_ops.start_signal_voltage_switch =
1101 		esdhc_signal_voltage_switch;
1102 	host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1103 	host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1104 	host->tuning_delay = 1;
1105 
1106 	esdhc_init(pdev, host);
1107 
1108 	sdhci_get_of_property(pdev);
1109 
1110 	pltfm_host = sdhci_priv(host);
1111 	esdhc = sdhci_pltfm_priv(pltfm_host);
1112 	if (soc_device_match(soc_fixup_tuning))
1113 		esdhc->quirk_fixup_tuning = true;
1114 	else
1115 		esdhc->quirk_fixup_tuning = false;
1116 
1117 	if (esdhc->vendor_ver == VENDOR_V_22)
1118 		host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1119 
1120 	if (esdhc->vendor_ver > VENDOR_V_22)
1121 		host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1122 
1123 	if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) {
1124 		host->quirks2 |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1125 		host->quirks2 |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1126 	}
1127 
1128 	if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1129 	    of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1130 	    of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1131 	    of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1132 	    of_device_is_compatible(np, "fsl,t1040-esdhc"))
1133 		host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1134 
1135 	if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1136 		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1137 
1138 	esdhc->quirk_ignore_data_inhibit = false;
1139 	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1140 		/*
1141 		 * Freescale messed up with P2020 as it has a non-standard
1142 		 * host control register
1143 		 */
1144 		host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1145 		esdhc->quirk_ignore_data_inhibit = true;
1146 	}
1147 
1148 	/* call to generic mmc_of_parse to support additional capabilities */
1149 	ret = mmc_of_parse(host->mmc);
1150 	if (ret)
1151 		goto err;
1152 
1153 	mmc_of_parse_voltage(np, &host->ocr_mask);
1154 
1155 	ret = sdhci_add_host(host);
1156 	if (ret)
1157 		goto err;
1158 
1159 	return 0;
1160  err:
1161 	sdhci_pltfm_free(pdev);
1162 	return ret;
1163 }
1164 
1165 static struct platform_driver sdhci_esdhc_driver = {
1166 	.driver = {
1167 		.name = "sdhci-esdhc",
1168 		.of_match_table = sdhci_esdhc_of_match,
1169 		.pm = &esdhc_of_dev_pm_ops,
1170 	},
1171 	.probe = sdhci_esdhc_probe,
1172 	.remove = sdhci_pltfm_unregister,
1173 };
1174 
1175 module_platform_driver(sdhci_esdhc_driver);
1176 
1177 MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1178 MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1179 	      "Anton Vorontsov <avorontsov@ru.mvista.com>");
1180 MODULE_LICENSE("GPL v2");
1181