1 /*
2  * Freescale eSDHC controller driver.
3  *
4  * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
5  * Copyright (c) 2009 MontaVista Software, Inc.
6  *
7  * Authors: Xiaobo Xie <X.Xie@freescale.com>
8  *	    Anton Vorontsov <avorontsov@ru.mvista.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or (at
13  * your option) any later version.
14  */
15 
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/delay.h>
21 #include <linux/module.h>
22 #include <linux/sys_soc.h>
23 #include <linux/clk.h>
24 #include <linux/ktime.h>
25 #include <linux/mmc/host.h>
26 #include "sdhci-pltfm.h"
27 #include "sdhci-esdhc.h"
28 
29 #define VENDOR_V_22	0x12
30 #define VENDOR_V_23	0x13
31 
32 struct sdhci_esdhc {
33 	u8 vendor_ver;
34 	u8 spec_ver;
35 	bool quirk_incorrect_hostver;
36 	unsigned int peripheral_clock;
37 };
38 
39 /**
40  * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
41  *		       to make it compatible with SD spec.
42  *
43  * @host: pointer to sdhci_host
44  * @spec_reg: SD spec register address
45  * @value: 32bit eSDHC register value on spec_reg address
46  *
47  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
48  * registers are 32 bits. There are differences in register size, register
49  * address, register function, bit position and function between eSDHC spec
50  * and SD spec.
51  *
52  * Return a fixed up register value
53  */
54 static u32 esdhc_readl_fixup(struct sdhci_host *host,
55 				     int spec_reg, u32 value)
56 {
57 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
58 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
59 	u32 ret;
60 
61 	/*
62 	 * The bit of ADMA flag in eSDHC is not compatible with standard
63 	 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
64 	 * supported by eSDHC.
65 	 * And for many FSL eSDHC controller, the reset value of field
66 	 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
67 	 * only these vendor version is greater than 2.2/0x12 support ADMA.
68 	 */
69 	if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
70 		if (esdhc->vendor_ver > VENDOR_V_22) {
71 			ret = value | SDHCI_CAN_DO_ADMA2;
72 			return ret;
73 		}
74 	}
75 	/*
76 	 * The DAT[3:0] line signal levels and the CMD line signal level are
77 	 * not compatible with standard SDHC register. The line signal levels
78 	 * DAT[7:0] are at bits 31:24 and the command line signal level is at
79 	 * bit 23. All other bits are the same as in the standard SDHC
80 	 * register.
81 	 */
82 	if (spec_reg == SDHCI_PRESENT_STATE) {
83 		ret = value & 0x000fffff;
84 		ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
85 		ret |= (value << 1) & SDHCI_CMD_LVL;
86 		return ret;
87 	}
88 
89 	/*
90 	 * DTS properties of mmc host are used to enable each speed mode
91 	 * according to soc and board capability. So clean up
92 	 * SDR50/SDR104/DDR50 support bits here.
93 	 */
94 	if (spec_reg == SDHCI_CAPABILITIES_1) {
95 		ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
96 				SDHCI_SUPPORT_DDR50);
97 		return ret;
98 	}
99 
100 	ret = value;
101 	return ret;
102 }
103 
104 static u16 esdhc_readw_fixup(struct sdhci_host *host,
105 				     int spec_reg, u32 value)
106 {
107 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
108 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
109 	u16 ret;
110 	int shift = (spec_reg & 0x2) * 8;
111 
112 	if (spec_reg == SDHCI_HOST_VERSION)
113 		ret = value & 0xffff;
114 	else
115 		ret = (value >> shift) & 0xffff;
116 	/* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
117 	 * vendor version and spec version information.
118 	 */
119 	if ((spec_reg == SDHCI_HOST_VERSION) &&
120 	    (esdhc->quirk_incorrect_hostver))
121 		ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
122 	return ret;
123 }
124 
125 static u8 esdhc_readb_fixup(struct sdhci_host *host,
126 				     int spec_reg, u32 value)
127 {
128 	u8 ret;
129 	u8 dma_bits;
130 	int shift = (spec_reg & 0x3) * 8;
131 
132 	ret = (value >> shift) & 0xff;
133 
134 	/*
135 	 * "DMA select" locates at offset 0x28 in SD specification, but on
136 	 * P5020 or P3041, it locates at 0x29.
137 	 */
138 	if (spec_reg == SDHCI_HOST_CONTROL) {
139 		/* DMA select is 22,23 bits in Protocol Control Register */
140 		dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
141 		/* fixup the result */
142 		ret &= ~SDHCI_CTRL_DMA_MASK;
143 		ret |= dma_bits;
144 	}
145 	return ret;
146 }
147 
148 /**
149  * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
150  *			written into eSDHC register.
151  *
152  * @host: pointer to sdhci_host
153  * @spec_reg: SD spec register address
154  * @value: 8/16/32bit SD spec register value that would be written
155  * @old_value: 32bit eSDHC register value on spec_reg address
156  *
157  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
158  * registers are 32 bits. There are differences in register size, register
159  * address, register function, bit position and function between eSDHC spec
160  * and SD spec.
161  *
162  * Return a fixed up register value
163  */
164 static u32 esdhc_writel_fixup(struct sdhci_host *host,
165 				     int spec_reg, u32 value, u32 old_value)
166 {
167 	u32 ret;
168 
169 	/*
170 	 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
171 	 * when SYSCTL[RSTD] is set for some special operations.
172 	 * No any impact on other operation.
173 	 */
174 	if (spec_reg == SDHCI_INT_ENABLE)
175 		ret = value | SDHCI_INT_BLK_GAP;
176 	else
177 		ret = value;
178 
179 	return ret;
180 }
181 
182 static u32 esdhc_writew_fixup(struct sdhci_host *host,
183 				     int spec_reg, u16 value, u32 old_value)
184 {
185 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
186 	int shift = (spec_reg & 0x2) * 8;
187 	u32 ret;
188 
189 	switch (spec_reg) {
190 	case SDHCI_TRANSFER_MODE:
191 		/*
192 		 * Postpone this write, we must do it together with a
193 		 * command write that is down below. Return old value.
194 		 */
195 		pltfm_host->xfer_mode_shadow = value;
196 		return old_value;
197 	case SDHCI_COMMAND:
198 		ret = (value << 16) | pltfm_host->xfer_mode_shadow;
199 		return ret;
200 	}
201 
202 	ret = old_value & (~(0xffff << shift));
203 	ret |= (value << shift);
204 
205 	if (spec_reg == SDHCI_BLOCK_SIZE) {
206 		/*
207 		 * Two last DMA bits are reserved, and first one is used for
208 		 * non-standard blksz of 4096 bytes that we don't support
209 		 * yet. So clear the DMA boundary bits.
210 		 */
211 		ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
212 	}
213 	return ret;
214 }
215 
216 static u32 esdhc_writeb_fixup(struct sdhci_host *host,
217 				     int spec_reg, u8 value, u32 old_value)
218 {
219 	u32 ret;
220 	u32 dma_bits;
221 	u8 tmp;
222 	int shift = (spec_reg & 0x3) * 8;
223 
224 	/*
225 	 * eSDHC doesn't have a standard power control register, so we do
226 	 * nothing here to avoid incorrect operation.
227 	 */
228 	if (spec_reg == SDHCI_POWER_CONTROL)
229 		return old_value;
230 	/*
231 	 * "DMA select" location is offset 0x28 in SD specification, but on
232 	 * P5020 or P3041, it's located at 0x29.
233 	 */
234 	if (spec_reg == SDHCI_HOST_CONTROL) {
235 		/*
236 		 * If host control register is not standard, exit
237 		 * this function
238 		 */
239 		if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
240 			return old_value;
241 
242 		/* DMA select is 22,23 bits in Protocol Control Register */
243 		dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
244 		ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
245 		tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
246 		      (old_value & SDHCI_CTRL_DMA_MASK);
247 		ret = (ret & (~0xff)) | tmp;
248 
249 		/* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
250 		ret &= ~ESDHC_HOST_CONTROL_RES;
251 		return ret;
252 	}
253 
254 	ret = (old_value & (~(0xff << shift))) | (value << shift);
255 	return ret;
256 }
257 
258 static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
259 {
260 	u32 ret;
261 	u32 value;
262 
263 	if (reg == SDHCI_CAPABILITIES_1)
264 		value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
265 	else
266 		value = ioread32be(host->ioaddr + reg);
267 
268 	ret = esdhc_readl_fixup(host, reg, value);
269 
270 	return ret;
271 }
272 
273 static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
274 {
275 	u32 ret;
276 	u32 value;
277 
278 	if (reg == SDHCI_CAPABILITIES_1)
279 		value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
280 	else
281 		value = ioread32(host->ioaddr + reg);
282 
283 	ret = esdhc_readl_fixup(host, reg, value);
284 
285 	return ret;
286 }
287 
288 static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
289 {
290 	u16 ret;
291 	u32 value;
292 	int base = reg & ~0x3;
293 
294 	value = ioread32be(host->ioaddr + base);
295 	ret = esdhc_readw_fixup(host, reg, value);
296 	return ret;
297 }
298 
299 static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
300 {
301 	u16 ret;
302 	u32 value;
303 	int base = reg & ~0x3;
304 
305 	value = ioread32(host->ioaddr + base);
306 	ret = esdhc_readw_fixup(host, reg, value);
307 	return ret;
308 }
309 
310 static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
311 {
312 	u8 ret;
313 	u32 value;
314 	int base = reg & ~0x3;
315 
316 	value = ioread32be(host->ioaddr + base);
317 	ret = esdhc_readb_fixup(host, reg, value);
318 	return ret;
319 }
320 
321 static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
322 {
323 	u8 ret;
324 	u32 value;
325 	int base = reg & ~0x3;
326 
327 	value = ioread32(host->ioaddr + base);
328 	ret = esdhc_readb_fixup(host, reg, value);
329 	return ret;
330 }
331 
332 static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
333 {
334 	u32 value;
335 
336 	value = esdhc_writel_fixup(host, reg, val, 0);
337 	iowrite32be(value, host->ioaddr + reg);
338 }
339 
340 static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
341 {
342 	u32 value;
343 
344 	value = esdhc_writel_fixup(host, reg, val, 0);
345 	iowrite32(value, host->ioaddr + reg);
346 }
347 
348 static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
349 {
350 	int base = reg & ~0x3;
351 	u32 value;
352 	u32 ret;
353 
354 	value = ioread32be(host->ioaddr + base);
355 	ret = esdhc_writew_fixup(host, reg, val, value);
356 	if (reg != SDHCI_TRANSFER_MODE)
357 		iowrite32be(ret, host->ioaddr + base);
358 }
359 
360 static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
361 {
362 	int base = reg & ~0x3;
363 	u32 value;
364 	u32 ret;
365 
366 	value = ioread32(host->ioaddr + base);
367 	ret = esdhc_writew_fixup(host, reg, val, value);
368 	if (reg != SDHCI_TRANSFER_MODE)
369 		iowrite32(ret, host->ioaddr + base);
370 }
371 
372 static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
373 {
374 	int base = reg & ~0x3;
375 	u32 value;
376 	u32 ret;
377 
378 	value = ioread32be(host->ioaddr + base);
379 	ret = esdhc_writeb_fixup(host, reg, val, value);
380 	iowrite32be(ret, host->ioaddr + base);
381 }
382 
383 static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
384 {
385 	int base = reg & ~0x3;
386 	u32 value;
387 	u32 ret;
388 
389 	value = ioread32(host->ioaddr + base);
390 	ret = esdhc_writeb_fixup(host, reg, val, value);
391 	iowrite32(ret, host->ioaddr + base);
392 }
393 
394 /*
395  * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
396  * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
397  * and Block Gap Event(IRQSTAT[BGE]) are also set.
398  * For Continue, apply soft reset for data(SYSCTL[RSTD]);
399  * and re-issue the entire read transaction from beginning.
400  */
401 static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
402 {
403 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
404 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
405 	bool applicable;
406 	dma_addr_t dmastart;
407 	dma_addr_t dmanow;
408 
409 	applicable = (intmask & SDHCI_INT_DATA_END) &&
410 		     (intmask & SDHCI_INT_BLK_GAP) &&
411 		     (esdhc->vendor_ver == VENDOR_V_23);
412 	if (!applicable)
413 		return;
414 
415 	host->data->error = 0;
416 	dmastart = sg_dma_address(host->data->sg);
417 	dmanow = dmastart + host->data->bytes_xfered;
418 	/*
419 	 * Force update to the next DMA block boundary.
420 	 */
421 	dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
422 		SDHCI_DEFAULT_BOUNDARY_SIZE;
423 	host->data->bytes_xfered = dmanow - dmastart;
424 	sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
425 }
426 
427 static int esdhc_of_enable_dma(struct sdhci_host *host)
428 {
429 	u32 value;
430 
431 	value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
432 	value |= ESDHC_DMA_SNOOP;
433 	sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
434 	return 0;
435 }
436 
437 static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
438 {
439 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
440 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
441 
442 	if (esdhc->peripheral_clock)
443 		return esdhc->peripheral_clock;
444 	else
445 		return pltfm_host->clock;
446 }
447 
448 static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
449 {
450 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
451 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
452 	unsigned int clock;
453 
454 	if (esdhc->peripheral_clock)
455 		clock = esdhc->peripheral_clock;
456 	else
457 		clock = pltfm_host->clock;
458 	return clock / 256 / 16;
459 }
460 
461 static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
462 {
463 	u32 val;
464 	ktime_t timeout;
465 
466 	val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
467 
468 	if (enable)
469 		val |= ESDHC_CLOCK_SDCLKEN;
470 	else
471 		val &= ~ESDHC_CLOCK_SDCLKEN;
472 
473 	sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
474 
475 	/* Wait max 20 ms */
476 	timeout = ktime_add_ms(ktime_get(), 20);
477 	val = ESDHC_CLOCK_STABLE;
478 	while (!(sdhci_readl(host, ESDHC_PRSSTAT) & val)) {
479 		if (ktime_after(ktime_get(), timeout)) {
480 			pr_err("%s: Internal clock never stabilised.\n",
481 				mmc_hostname(host->mmc));
482 			break;
483 		}
484 		udelay(10);
485 	}
486 }
487 
488 static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
489 {
490 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
491 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
492 	int pre_div = 1;
493 	int div = 1;
494 	ktime_t timeout;
495 	u32 temp;
496 
497 	host->mmc->actual_clock = 0;
498 
499 	if (clock == 0) {
500 		esdhc_clock_enable(host, false);
501 		return;
502 	}
503 
504 	/* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */
505 	if (esdhc->vendor_ver < VENDOR_V_23)
506 		pre_div = 2;
507 
508 	/*
509 	 * Limit SD clock to 167MHz for ls1046a according to its datasheet
510 	 */
511 	if (clock > 167000000 &&
512 	    of_find_compatible_node(NULL, NULL, "fsl,ls1046a-esdhc"))
513 		clock = 167000000;
514 
515 	/*
516 	 * Limit SD clock to 125MHz for ls1012a according to its datasheet
517 	 */
518 	if (clock > 125000000 &&
519 	    of_find_compatible_node(NULL, NULL, "fsl,ls1012a-esdhc"))
520 		clock = 125000000;
521 
522 	/* Workaround to reduce the clock frequency for p1010 esdhc */
523 	if (of_find_compatible_node(NULL, NULL, "fsl,p1010-esdhc")) {
524 		if (clock > 20000000)
525 			clock -= 5000000;
526 		if (clock > 40000000)
527 			clock -= 5000000;
528 	}
529 
530 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
531 	temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
532 		  ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK);
533 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
534 
535 	while (host->max_clk / pre_div / 16 > clock && pre_div < 256)
536 		pre_div *= 2;
537 
538 	while (host->max_clk / pre_div / div > clock && div < 16)
539 		div++;
540 
541 	dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
542 		clock, host->max_clk / pre_div / div);
543 	host->mmc->actual_clock = host->max_clk / pre_div / div;
544 	pre_div >>= 1;
545 	div--;
546 
547 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
548 	temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN
549 		| (div << ESDHC_DIVIDER_SHIFT)
550 		| (pre_div << ESDHC_PREDIV_SHIFT));
551 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
552 
553 	/* Wait max 20 ms */
554 	timeout = ktime_add_ms(ktime_get(), 20);
555 	while (!(sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)) {
556 		if (ktime_after(ktime_get(), timeout)) {
557 			pr_err("%s: Internal clock never stabilised.\n",
558 				mmc_hostname(host->mmc));
559 			return;
560 		}
561 		udelay(10);
562 	}
563 
564 	temp |= ESDHC_CLOCK_SDCLKEN;
565 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
566 }
567 
568 static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
569 {
570 	u32 ctrl;
571 
572 	ctrl = sdhci_readl(host, ESDHC_PROCTL);
573 	ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
574 	switch (width) {
575 	case MMC_BUS_WIDTH_8:
576 		ctrl |= ESDHC_CTRL_8BITBUS;
577 		break;
578 
579 	case MMC_BUS_WIDTH_4:
580 		ctrl |= ESDHC_CTRL_4BITBUS;
581 		break;
582 
583 	default:
584 		break;
585 	}
586 
587 	sdhci_writel(host, ctrl, ESDHC_PROCTL);
588 }
589 
590 static void esdhc_reset(struct sdhci_host *host, u8 mask)
591 {
592 	sdhci_reset(host, mask);
593 
594 	sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
595 	sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
596 }
597 
598 /* The SCFG, Supplemental Configuration Unit, provides SoC specific
599  * configuration and status registers for the device. There is a
600  * SDHC IO VSEL control register on SCFG for some platforms. It's
601  * used to support SDHC IO voltage switching.
602  */
603 static const struct of_device_id scfg_device_ids[] = {
604 	{ .compatible = "fsl,t1040-scfg", },
605 	{ .compatible = "fsl,ls1012a-scfg", },
606 	{ .compatible = "fsl,ls1046a-scfg", },
607 	{}
608 };
609 
610 /* SDHC IO VSEL control register definition */
611 #define SCFG_SDHCIOVSELCR	0x408
612 #define SDHCIOVSELCR_TGLEN	0x80000000
613 #define SDHCIOVSELCR_VSELVAL	0x60000000
614 #define SDHCIOVSELCR_SDHC_VS	0x00000001
615 
616 static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
617 				       struct mmc_ios *ios)
618 {
619 	struct sdhci_host *host = mmc_priv(mmc);
620 	struct device_node *scfg_node;
621 	void __iomem *scfg_base = NULL;
622 	u32 sdhciovselcr;
623 	u32 val;
624 
625 	/*
626 	 * Signal Voltage Switching is only applicable for Host Controllers
627 	 * v3.00 and above.
628 	 */
629 	if (host->version < SDHCI_SPEC_300)
630 		return 0;
631 
632 	val = sdhci_readl(host, ESDHC_PROCTL);
633 
634 	switch (ios->signal_voltage) {
635 	case MMC_SIGNAL_VOLTAGE_330:
636 		val &= ~ESDHC_VOLT_SEL;
637 		sdhci_writel(host, val, ESDHC_PROCTL);
638 		return 0;
639 	case MMC_SIGNAL_VOLTAGE_180:
640 		scfg_node = of_find_matching_node(NULL, scfg_device_ids);
641 		if (scfg_node)
642 			scfg_base = of_iomap(scfg_node, 0);
643 		if (scfg_base) {
644 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
645 				       SDHCIOVSELCR_VSELVAL;
646 			iowrite32be(sdhciovselcr,
647 				scfg_base + SCFG_SDHCIOVSELCR);
648 
649 			val |= ESDHC_VOLT_SEL;
650 			sdhci_writel(host, val, ESDHC_PROCTL);
651 			mdelay(5);
652 
653 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
654 				       SDHCIOVSELCR_SDHC_VS;
655 			iowrite32be(sdhciovselcr,
656 				scfg_base + SCFG_SDHCIOVSELCR);
657 			iounmap(scfg_base);
658 		} else {
659 			val |= ESDHC_VOLT_SEL;
660 			sdhci_writel(host, val, ESDHC_PROCTL);
661 		}
662 		return 0;
663 	default:
664 		return 0;
665 	}
666 }
667 
668 static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
669 {
670 	struct sdhci_host *host = mmc_priv(mmc);
671 	u32 val;
672 
673 	/* Use tuning block for tuning procedure */
674 	esdhc_clock_enable(host, false);
675 	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
676 	val |= ESDHC_FLUSH_ASYNC_FIFO;
677 	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
678 
679 	val = sdhci_readl(host, ESDHC_TBCTL);
680 	val |= ESDHC_TB_EN;
681 	sdhci_writel(host, val, ESDHC_TBCTL);
682 	esdhc_clock_enable(host, true);
683 
684 	return sdhci_execute_tuning(mmc, opcode);
685 }
686 
687 #ifdef CONFIG_PM_SLEEP
688 static u32 esdhc_proctl;
689 static int esdhc_of_suspend(struct device *dev)
690 {
691 	struct sdhci_host *host = dev_get_drvdata(dev);
692 
693 	esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
694 
695 	if (host->tuning_mode != SDHCI_TUNING_MODE_3)
696 		mmc_retune_needed(host->mmc);
697 
698 	return sdhci_suspend_host(host);
699 }
700 
701 static int esdhc_of_resume(struct device *dev)
702 {
703 	struct sdhci_host *host = dev_get_drvdata(dev);
704 	int ret = sdhci_resume_host(host);
705 
706 	if (ret == 0) {
707 		/* Isn't this already done by sdhci_resume_host() ? --rmk */
708 		esdhc_of_enable_dma(host);
709 		sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
710 	}
711 	return ret;
712 }
713 #endif
714 
715 static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
716 			esdhc_of_suspend,
717 			esdhc_of_resume);
718 
719 static const struct sdhci_ops sdhci_esdhc_be_ops = {
720 	.read_l = esdhc_be_readl,
721 	.read_w = esdhc_be_readw,
722 	.read_b = esdhc_be_readb,
723 	.write_l = esdhc_be_writel,
724 	.write_w = esdhc_be_writew,
725 	.write_b = esdhc_be_writeb,
726 	.set_clock = esdhc_of_set_clock,
727 	.enable_dma = esdhc_of_enable_dma,
728 	.get_max_clock = esdhc_of_get_max_clock,
729 	.get_min_clock = esdhc_of_get_min_clock,
730 	.adma_workaround = esdhc_of_adma_workaround,
731 	.set_bus_width = esdhc_pltfm_set_bus_width,
732 	.reset = esdhc_reset,
733 	.set_uhs_signaling = sdhci_set_uhs_signaling,
734 };
735 
736 static const struct sdhci_ops sdhci_esdhc_le_ops = {
737 	.read_l = esdhc_le_readl,
738 	.read_w = esdhc_le_readw,
739 	.read_b = esdhc_le_readb,
740 	.write_l = esdhc_le_writel,
741 	.write_w = esdhc_le_writew,
742 	.write_b = esdhc_le_writeb,
743 	.set_clock = esdhc_of_set_clock,
744 	.enable_dma = esdhc_of_enable_dma,
745 	.get_max_clock = esdhc_of_get_max_clock,
746 	.get_min_clock = esdhc_of_get_min_clock,
747 	.adma_workaround = esdhc_of_adma_workaround,
748 	.set_bus_width = esdhc_pltfm_set_bus_width,
749 	.reset = esdhc_reset,
750 	.set_uhs_signaling = sdhci_set_uhs_signaling,
751 };
752 
753 static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
754 	.quirks = ESDHC_DEFAULT_QUIRKS |
755 #ifdef CONFIG_PPC
756 		  SDHCI_QUIRK_BROKEN_CARD_DETECTION |
757 #endif
758 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
759 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
760 	.ops = &sdhci_esdhc_be_ops,
761 };
762 
763 static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
764 	.quirks = ESDHC_DEFAULT_QUIRKS |
765 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
766 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
767 	.ops = &sdhci_esdhc_le_ops,
768 };
769 
770 static struct soc_device_attribute soc_incorrect_hostver[] = {
771 	{ .family = "QorIQ T4240", .revision = "1.0", },
772 	{ .family = "QorIQ T4240", .revision = "2.0", },
773 	{ },
774 };
775 
776 static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
777 {
778 	struct sdhci_pltfm_host *pltfm_host;
779 	struct sdhci_esdhc *esdhc;
780 	struct device_node *np;
781 	struct clk *clk;
782 	u32 val;
783 	u16 host_ver;
784 
785 	pltfm_host = sdhci_priv(host);
786 	esdhc = sdhci_pltfm_priv(pltfm_host);
787 
788 	host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
789 	esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
790 			     SDHCI_VENDOR_VER_SHIFT;
791 	esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
792 	if (soc_device_match(soc_incorrect_hostver))
793 		esdhc->quirk_incorrect_hostver = true;
794 	else
795 		esdhc->quirk_incorrect_hostver = false;
796 
797 	np = pdev->dev.of_node;
798 	clk = of_clk_get(np, 0);
799 	if (!IS_ERR(clk)) {
800 		/*
801 		 * esdhc->peripheral_clock would be assigned with a value
802 		 * which is eSDHC base clock when use periperal clock.
803 		 * For ls1046a, the clock value got by common clk API is
804 		 * peripheral clock while the eSDHC base clock is 1/2
805 		 * peripheral clock.
806 		 */
807 		if (of_device_is_compatible(np, "fsl,ls1046a-esdhc"))
808 			esdhc->peripheral_clock = clk_get_rate(clk) / 2;
809 		else
810 			esdhc->peripheral_clock = clk_get_rate(clk);
811 
812 		clk_put(clk);
813 	}
814 
815 	if (esdhc->peripheral_clock) {
816 		esdhc_clock_enable(host, false);
817 		val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
818 		val |= ESDHC_PERIPHERAL_CLK_SEL;
819 		sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
820 		esdhc_clock_enable(host, true);
821 	}
822 }
823 
824 static int sdhci_esdhc_probe(struct platform_device *pdev)
825 {
826 	struct sdhci_host *host;
827 	struct device_node *np;
828 	struct sdhci_pltfm_host *pltfm_host;
829 	struct sdhci_esdhc *esdhc;
830 	int ret;
831 
832 	np = pdev->dev.of_node;
833 
834 	if (of_property_read_bool(np, "little-endian"))
835 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
836 					sizeof(struct sdhci_esdhc));
837 	else
838 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
839 					sizeof(struct sdhci_esdhc));
840 
841 	if (IS_ERR(host))
842 		return PTR_ERR(host);
843 
844 	host->mmc_host_ops.start_signal_voltage_switch =
845 		esdhc_signal_voltage_switch;
846 	host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
847 	host->tuning_delay = 1;
848 
849 	esdhc_init(pdev, host);
850 
851 	sdhci_get_of_property(pdev);
852 
853 	pltfm_host = sdhci_priv(host);
854 	esdhc = sdhci_pltfm_priv(pltfm_host);
855 	if (esdhc->vendor_ver == VENDOR_V_22)
856 		host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
857 
858 	if (esdhc->vendor_ver > VENDOR_V_22)
859 		host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
860 
861 	if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
862 	    of_device_is_compatible(np, "fsl,p5020-esdhc") ||
863 	    of_device_is_compatible(np, "fsl,p4080-esdhc") ||
864 	    of_device_is_compatible(np, "fsl,p1020-esdhc") ||
865 	    of_device_is_compatible(np, "fsl,t1040-esdhc"))
866 		host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
867 
868 	if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
869 		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
870 
871 	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
872 		/*
873 		 * Freescale messed up with P2020 as it has a non-standard
874 		 * host control register
875 		 */
876 		host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
877 	}
878 
879 	/* call to generic mmc_of_parse to support additional capabilities */
880 	ret = mmc_of_parse(host->mmc);
881 	if (ret)
882 		goto err;
883 
884 	mmc_of_parse_voltage(np, &host->ocr_mask);
885 
886 	ret = sdhci_add_host(host);
887 	if (ret)
888 		goto err;
889 
890 	return 0;
891  err:
892 	sdhci_pltfm_free(pdev);
893 	return ret;
894 }
895 
896 static const struct of_device_id sdhci_esdhc_of_match[] = {
897 	{ .compatible = "fsl,mpc8379-esdhc" },
898 	{ .compatible = "fsl,mpc8536-esdhc" },
899 	{ .compatible = "fsl,esdhc" },
900 	{ }
901 };
902 MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
903 
904 static struct platform_driver sdhci_esdhc_driver = {
905 	.driver = {
906 		.name = "sdhci-esdhc",
907 		.of_match_table = sdhci_esdhc_of_match,
908 		.pm = &esdhc_of_dev_pm_ops,
909 	},
910 	.probe = sdhci_esdhc_probe,
911 	.remove = sdhci_pltfm_unregister,
912 };
913 
914 module_platform_driver(sdhci_esdhc_driver);
915 
916 MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
917 MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
918 	      "Anton Vorontsov <avorontsov@ru.mvista.com>");
919 MODULE_LICENSE("GPL v2");
920