xref: /openbmc/linux/drivers/mmc/host/sdhci-of-esdhc.c (revision 5ed132db5ad4f58156ae9d28219396b6f764a9cb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale eSDHC controller driver.
4  *
5  * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
6  * Copyright (c) 2009 MontaVista Software, Inc.
7  *
8  * Authors: Xiaobo Xie <X.Xie@freescale.com>
9  *	    Anton Vorontsov <avorontsov@ru.mvista.com>
10  */
11 
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/delay.h>
17 #include <linux/module.h>
18 #include <linux/sys_soc.h>
19 #include <linux/clk.h>
20 #include <linux/ktime.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/mmc.h>
24 #include "sdhci-pltfm.h"
25 #include "sdhci-esdhc.h"
26 
27 #define VENDOR_V_22	0x12
28 #define VENDOR_V_23	0x13
29 
30 #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
31 
32 struct esdhc_clk_fixup {
33 	const unsigned int sd_dflt_max_clk;
34 	const unsigned int max_clk[MMC_TIMING_NUM];
35 };
36 
37 static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
38 	.sd_dflt_max_clk = 25000000,
39 	.max_clk[MMC_TIMING_MMC_HS] = 46500000,
40 	.max_clk[MMC_TIMING_SD_HS] = 46500000,
41 };
42 
43 static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
44 	.sd_dflt_max_clk = 25000000,
45 	.max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
46 	.max_clk[MMC_TIMING_MMC_HS200] = 167000000,
47 };
48 
49 static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
50 	.sd_dflt_max_clk = 25000000,
51 	.max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
52 	.max_clk[MMC_TIMING_MMC_HS200] = 125000000,
53 };
54 
55 static const struct esdhc_clk_fixup p1010_esdhc_clk = {
56 	.sd_dflt_max_clk = 20000000,
57 	.max_clk[MMC_TIMING_LEGACY] = 20000000,
58 	.max_clk[MMC_TIMING_MMC_HS] = 42000000,
59 	.max_clk[MMC_TIMING_SD_HS] = 40000000,
60 };
61 
62 static const struct of_device_id sdhci_esdhc_of_match[] = {
63 	{ .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
64 	{ .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
65 	{ .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
66 	{ .compatible = "fsl,p1010-esdhc",   .data = &p1010_esdhc_clk},
67 	{ .compatible = "fsl,mpc8379-esdhc" },
68 	{ .compatible = "fsl,mpc8536-esdhc" },
69 	{ .compatible = "fsl,esdhc" },
70 	{ }
71 };
72 MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
73 
74 struct sdhci_esdhc {
75 	u8 vendor_ver;
76 	u8 spec_ver;
77 	bool quirk_incorrect_hostver;
78 	bool quirk_limited_clk_division;
79 	bool quirk_unreliable_pulse_detection;
80 	bool quirk_tuning_erratum_type1;
81 	bool quirk_tuning_erratum_type2;
82 	bool quirk_ignore_data_inhibit;
83 	bool quirk_delay_before_data_reset;
84 	bool quirk_trans_complete_erratum;
85 	bool in_sw_tuning;
86 	unsigned int peripheral_clock;
87 	const struct esdhc_clk_fixup *clk_fixup;
88 	u32 div_ratio;
89 };
90 
91 /**
92  * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
93  *		       to make it compatible with SD spec.
94  *
95  * @host: pointer to sdhci_host
96  * @spec_reg: SD spec register address
97  * @value: 32bit eSDHC register value on spec_reg address
98  *
99  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
100  * registers are 32 bits. There are differences in register size, register
101  * address, register function, bit position and function between eSDHC spec
102  * and SD spec.
103  *
104  * Return a fixed up register value
105  */
106 static u32 esdhc_readl_fixup(struct sdhci_host *host,
107 				     int spec_reg, u32 value)
108 {
109 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
110 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
111 	u32 ret;
112 
113 	/*
114 	 * The bit of ADMA flag in eSDHC is not compatible with standard
115 	 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
116 	 * supported by eSDHC.
117 	 * And for many FSL eSDHC controller, the reset value of field
118 	 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
119 	 * only these vendor version is greater than 2.2/0x12 support ADMA.
120 	 */
121 	if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
122 		if (esdhc->vendor_ver > VENDOR_V_22) {
123 			ret = value | SDHCI_CAN_DO_ADMA2;
124 			return ret;
125 		}
126 	}
127 	/*
128 	 * The DAT[3:0] line signal levels and the CMD line signal level are
129 	 * not compatible with standard SDHC register. The line signal levels
130 	 * DAT[7:0] are at bits 31:24 and the command line signal level is at
131 	 * bit 23. All other bits are the same as in the standard SDHC
132 	 * register.
133 	 */
134 	if (spec_reg == SDHCI_PRESENT_STATE) {
135 		ret = value & 0x000fffff;
136 		ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
137 		ret |= (value << 1) & SDHCI_CMD_LVL;
138 		return ret;
139 	}
140 
141 	/*
142 	 * DTS properties of mmc host are used to enable each speed mode
143 	 * according to soc and board capability. So clean up
144 	 * SDR50/SDR104/DDR50 support bits here.
145 	 */
146 	if (spec_reg == SDHCI_CAPABILITIES_1) {
147 		ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
148 				SDHCI_SUPPORT_DDR50);
149 		return ret;
150 	}
151 
152 	/*
153 	 * Some controllers have unreliable Data Line Active
154 	 * bit for commands with busy signal. This affects
155 	 * Command Inhibit (data) bit. Just ignore it since
156 	 * MMC core driver has already polled card status
157 	 * with CMD13 after any command with busy siganl.
158 	 */
159 	if ((spec_reg == SDHCI_PRESENT_STATE) &&
160 	(esdhc->quirk_ignore_data_inhibit == true)) {
161 		ret = value & ~SDHCI_DATA_INHIBIT;
162 		return ret;
163 	}
164 
165 	ret = value;
166 	return ret;
167 }
168 
169 static u16 esdhc_readw_fixup(struct sdhci_host *host,
170 				     int spec_reg, u32 value)
171 {
172 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
173 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
174 	u16 ret;
175 	int shift = (spec_reg & 0x2) * 8;
176 
177 	if (spec_reg == SDHCI_TRANSFER_MODE)
178 		return pltfm_host->xfer_mode_shadow;
179 
180 	if (spec_reg == SDHCI_HOST_VERSION)
181 		ret = value & 0xffff;
182 	else
183 		ret = (value >> shift) & 0xffff;
184 	/* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
185 	 * vendor version and spec version information.
186 	 */
187 	if ((spec_reg == SDHCI_HOST_VERSION) &&
188 	    (esdhc->quirk_incorrect_hostver))
189 		ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
190 	return ret;
191 }
192 
193 static u8 esdhc_readb_fixup(struct sdhci_host *host,
194 				     int spec_reg, u32 value)
195 {
196 	u8 ret;
197 	u8 dma_bits;
198 	int shift = (spec_reg & 0x3) * 8;
199 
200 	ret = (value >> shift) & 0xff;
201 
202 	/*
203 	 * "DMA select" locates at offset 0x28 in SD specification, but on
204 	 * P5020 or P3041, it locates at 0x29.
205 	 */
206 	if (spec_reg == SDHCI_HOST_CONTROL) {
207 		/* DMA select is 22,23 bits in Protocol Control Register */
208 		dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
209 		/* fixup the result */
210 		ret &= ~SDHCI_CTRL_DMA_MASK;
211 		ret |= dma_bits;
212 	}
213 	return ret;
214 }
215 
216 /**
217  * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
218  *			written into eSDHC register.
219  *
220  * @host: pointer to sdhci_host
221  * @spec_reg: SD spec register address
222  * @value: 8/16/32bit SD spec register value that would be written
223  * @old_value: 32bit eSDHC register value on spec_reg address
224  *
225  * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
226  * registers are 32 bits. There are differences in register size, register
227  * address, register function, bit position and function between eSDHC spec
228  * and SD spec.
229  *
230  * Return a fixed up register value
231  */
232 static u32 esdhc_writel_fixup(struct sdhci_host *host,
233 				     int spec_reg, u32 value, u32 old_value)
234 {
235 	u32 ret;
236 
237 	/*
238 	 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
239 	 * when SYSCTL[RSTD] is set for some special operations.
240 	 * No any impact on other operation.
241 	 */
242 	if (spec_reg == SDHCI_INT_ENABLE)
243 		ret = value | SDHCI_INT_BLK_GAP;
244 	else
245 		ret = value;
246 
247 	return ret;
248 }
249 
250 static u32 esdhc_writew_fixup(struct sdhci_host *host,
251 				     int spec_reg, u16 value, u32 old_value)
252 {
253 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
254 	int shift = (spec_reg & 0x2) * 8;
255 	u32 ret;
256 
257 	switch (spec_reg) {
258 	case SDHCI_TRANSFER_MODE:
259 		/*
260 		 * Postpone this write, we must do it together with a
261 		 * command write that is down below. Return old value.
262 		 */
263 		pltfm_host->xfer_mode_shadow = value;
264 		return old_value;
265 	case SDHCI_COMMAND:
266 		ret = (value << 16) | pltfm_host->xfer_mode_shadow;
267 		return ret;
268 	}
269 
270 	ret = old_value & (~(0xffff << shift));
271 	ret |= (value << shift);
272 
273 	if (spec_reg == SDHCI_BLOCK_SIZE) {
274 		/*
275 		 * Two last DMA bits are reserved, and first one is used for
276 		 * non-standard blksz of 4096 bytes that we don't support
277 		 * yet. So clear the DMA boundary bits.
278 		 */
279 		ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
280 	}
281 	return ret;
282 }
283 
284 static u32 esdhc_writeb_fixup(struct sdhci_host *host,
285 				     int spec_reg, u8 value, u32 old_value)
286 {
287 	u32 ret;
288 	u32 dma_bits;
289 	u8 tmp;
290 	int shift = (spec_reg & 0x3) * 8;
291 
292 	/*
293 	 * eSDHC doesn't have a standard power control register, so we do
294 	 * nothing here to avoid incorrect operation.
295 	 */
296 	if (spec_reg == SDHCI_POWER_CONTROL)
297 		return old_value;
298 	/*
299 	 * "DMA select" location is offset 0x28 in SD specification, but on
300 	 * P5020 or P3041, it's located at 0x29.
301 	 */
302 	if (spec_reg == SDHCI_HOST_CONTROL) {
303 		/*
304 		 * If host control register is not standard, exit
305 		 * this function
306 		 */
307 		if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
308 			return old_value;
309 
310 		/* DMA select is 22,23 bits in Protocol Control Register */
311 		dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
312 		ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
313 		tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
314 		      (old_value & SDHCI_CTRL_DMA_MASK);
315 		ret = (ret & (~0xff)) | tmp;
316 
317 		/* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
318 		ret &= ~ESDHC_HOST_CONTROL_RES;
319 		return ret;
320 	}
321 
322 	ret = (old_value & (~(0xff << shift))) | (value << shift);
323 	return ret;
324 }
325 
326 static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
327 {
328 	u32 ret;
329 	u32 value;
330 
331 	if (reg == SDHCI_CAPABILITIES_1)
332 		value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
333 	else
334 		value = ioread32be(host->ioaddr + reg);
335 
336 	ret = esdhc_readl_fixup(host, reg, value);
337 
338 	return ret;
339 }
340 
341 static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
342 {
343 	u32 ret;
344 	u32 value;
345 
346 	if (reg == SDHCI_CAPABILITIES_1)
347 		value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
348 	else
349 		value = ioread32(host->ioaddr + reg);
350 
351 	ret = esdhc_readl_fixup(host, reg, value);
352 
353 	return ret;
354 }
355 
356 static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
357 {
358 	u16 ret;
359 	u32 value;
360 	int base = reg & ~0x3;
361 
362 	value = ioread32be(host->ioaddr + base);
363 	ret = esdhc_readw_fixup(host, reg, value);
364 	return ret;
365 }
366 
367 static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
368 {
369 	u16 ret;
370 	u32 value;
371 	int base = reg & ~0x3;
372 
373 	value = ioread32(host->ioaddr + base);
374 	ret = esdhc_readw_fixup(host, reg, value);
375 	return ret;
376 }
377 
378 static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
379 {
380 	u8 ret;
381 	u32 value;
382 	int base = reg & ~0x3;
383 
384 	value = ioread32be(host->ioaddr + base);
385 	ret = esdhc_readb_fixup(host, reg, value);
386 	return ret;
387 }
388 
389 static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
390 {
391 	u8 ret;
392 	u32 value;
393 	int base = reg & ~0x3;
394 
395 	value = ioread32(host->ioaddr + base);
396 	ret = esdhc_readb_fixup(host, reg, value);
397 	return ret;
398 }
399 
400 static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
401 {
402 	u32 value;
403 
404 	value = esdhc_writel_fixup(host, reg, val, 0);
405 	iowrite32be(value, host->ioaddr + reg);
406 }
407 
408 static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
409 {
410 	u32 value;
411 
412 	value = esdhc_writel_fixup(host, reg, val, 0);
413 	iowrite32(value, host->ioaddr + reg);
414 }
415 
416 static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
417 {
418 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
419 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
420 	int base = reg & ~0x3;
421 	u32 value;
422 	u32 ret;
423 
424 	value = ioread32be(host->ioaddr + base);
425 	ret = esdhc_writew_fixup(host, reg, val, value);
426 	if (reg != SDHCI_TRANSFER_MODE)
427 		iowrite32be(ret, host->ioaddr + base);
428 
429 	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
430 	 * 1us later after ESDHC_EXTN is set.
431 	 */
432 	if (base == ESDHC_SYSTEM_CONTROL_2) {
433 		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
434 		    esdhc->in_sw_tuning) {
435 			udelay(1);
436 			ret |= ESDHC_SMPCLKSEL;
437 			iowrite32be(ret, host->ioaddr + base);
438 		}
439 	}
440 }
441 
442 static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
443 {
444 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
445 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
446 	int base = reg & ~0x3;
447 	u32 value;
448 	u32 ret;
449 
450 	value = ioread32(host->ioaddr + base);
451 	ret = esdhc_writew_fixup(host, reg, val, value);
452 	if (reg != SDHCI_TRANSFER_MODE)
453 		iowrite32(ret, host->ioaddr + base);
454 
455 	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
456 	 * 1us later after ESDHC_EXTN is set.
457 	 */
458 	if (base == ESDHC_SYSTEM_CONTROL_2) {
459 		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
460 		    esdhc->in_sw_tuning) {
461 			udelay(1);
462 			ret |= ESDHC_SMPCLKSEL;
463 			iowrite32(ret, host->ioaddr + base);
464 		}
465 	}
466 }
467 
468 static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
469 {
470 	int base = reg & ~0x3;
471 	u32 value;
472 	u32 ret;
473 
474 	value = ioread32be(host->ioaddr + base);
475 	ret = esdhc_writeb_fixup(host, reg, val, value);
476 	iowrite32be(ret, host->ioaddr + base);
477 }
478 
479 static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
480 {
481 	int base = reg & ~0x3;
482 	u32 value;
483 	u32 ret;
484 
485 	value = ioread32(host->ioaddr + base);
486 	ret = esdhc_writeb_fixup(host, reg, val, value);
487 	iowrite32(ret, host->ioaddr + base);
488 }
489 
490 /*
491  * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
492  * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
493  * and Block Gap Event(IRQSTAT[BGE]) are also set.
494  * For Continue, apply soft reset for data(SYSCTL[RSTD]);
495  * and re-issue the entire read transaction from beginning.
496  */
497 static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
498 {
499 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
500 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
501 	bool applicable;
502 	dma_addr_t dmastart;
503 	dma_addr_t dmanow;
504 
505 	applicable = (intmask & SDHCI_INT_DATA_END) &&
506 		     (intmask & SDHCI_INT_BLK_GAP) &&
507 		     (esdhc->vendor_ver == VENDOR_V_23);
508 	if (!applicable)
509 		return;
510 
511 	host->data->error = 0;
512 	dmastart = sg_dma_address(host->data->sg);
513 	dmanow = dmastart + host->data->bytes_xfered;
514 	/*
515 	 * Force update to the next DMA block boundary.
516 	 */
517 	dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
518 		SDHCI_DEFAULT_BOUNDARY_SIZE;
519 	host->data->bytes_xfered = dmanow - dmastart;
520 	sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
521 }
522 
523 static int esdhc_of_enable_dma(struct sdhci_host *host)
524 {
525 	u32 value;
526 	struct device *dev = mmc_dev(host->mmc);
527 
528 	if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
529 	    of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc"))
530 		dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
531 
532 	value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
533 
534 	if (of_dma_is_coherent(dev->of_node))
535 		value |= ESDHC_DMA_SNOOP;
536 	else
537 		value &= ~ESDHC_DMA_SNOOP;
538 
539 	sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
540 	return 0;
541 }
542 
543 static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
544 {
545 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
546 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
547 
548 	if (esdhc->peripheral_clock)
549 		return esdhc->peripheral_clock;
550 	else
551 		return pltfm_host->clock;
552 }
553 
554 static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
555 {
556 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
557 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
558 	unsigned int clock;
559 
560 	if (esdhc->peripheral_clock)
561 		clock = esdhc->peripheral_clock;
562 	else
563 		clock = pltfm_host->clock;
564 	return clock / 256 / 16;
565 }
566 
567 static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
568 {
569 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
570 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
571 	ktime_t timeout;
572 	u32 val, clk_en;
573 
574 	clk_en = ESDHC_CLOCK_SDCLKEN;
575 
576 	/*
577 	 * IPGEN/HCKEN/PEREN bits exist on eSDHC whose vendor version
578 	 * is 2.2 or lower.
579 	 */
580 	if (esdhc->vendor_ver <= VENDOR_V_22)
581 		clk_en |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
582 			   ESDHC_CLOCK_PEREN);
583 
584 	val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
585 
586 	if (enable)
587 		val |= clk_en;
588 	else
589 		val &= ~clk_en;
590 
591 	sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
592 
593 	/*
594 	 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
595 	 * wait clock stable bit which does not exist.
596 	 */
597 	timeout = ktime_add_ms(ktime_get(), 20);
598 	while (esdhc->vendor_ver > VENDOR_V_22) {
599 		bool timedout = ktime_after(ktime_get(), timeout);
600 
601 		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
602 			break;
603 		if (timedout) {
604 			pr_err("%s: Internal clock never stabilised.\n",
605 				mmc_hostname(host->mmc));
606 			break;
607 		}
608 		usleep_range(10, 20);
609 	}
610 }
611 
612 static void esdhc_flush_async_fifo(struct sdhci_host *host)
613 {
614 	ktime_t timeout;
615 	u32 val;
616 
617 	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
618 	val |= ESDHC_FLUSH_ASYNC_FIFO;
619 	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
620 
621 	/* Wait max 20 ms */
622 	timeout = ktime_add_ms(ktime_get(), 20);
623 	while (1) {
624 		bool timedout = ktime_after(ktime_get(), timeout);
625 
626 		if (!(sdhci_readl(host, ESDHC_DMA_SYSCTL) &
627 		      ESDHC_FLUSH_ASYNC_FIFO))
628 			break;
629 		if (timedout) {
630 			pr_err("%s: flushing asynchronous FIFO timeout.\n",
631 				mmc_hostname(host->mmc));
632 			break;
633 		}
634 		usleep_range(10, 20);
635 	}
636 }
637 
638 static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
639 {
640 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
641 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
642 	unsigned int pre_div = 1, div = 1;
643 	unsigned int clock_fixup = 0;
644 	ktime_t timeout;
645 	u32 temp;
646 
647 	if (clock == 0) {
648 		host->mmc->actual_clock = 0;
649 		esdhc_clock_enable(host, false);
650 		return;
651 	}
652 
653 	/* Start pre_div at 2 for vendor version < 2.3. */
654 	if (esdhc->vendor_ver < VENDOR_V_23)
655 		pre_div = 2;
656 
657 	/* Fix clock value. */
658 	if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
659 	    esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
660 		clock_fixup = esdhc->clk_fixup->sd_dflt_max_clk;
661 	else if (esdhc->clk_fixup)
662 		clock_fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
663 
664 	if (clock_fixup == 0 || clock < clock_fixup)
665 		clock_fixup = clock;
666 
667 	/* Calculate pre_div and div. */
668 	while (host->max_clk / pre_div / 16 > clock_fixup && pre_div < 256)
669 		pre_div *= 2;
670 
671 	while (host->max_clk / pre_div / div > clock_fixup && div < 16)
672 		div++;
673 
674 	esdhc->div_ratio = pre_div * div;
675 
676 	/* Limit clock division for HS400 200MHz clock for quirk. */
677 	if (esdhc->quirk_limited_clk_division &&
678 	    clock == MMC_HS200_MAX_DTR &&
679 	    (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
680 	     host->flags & SDHCI_HS400_TUNING)) {
681 		if (esdhc->div_ratio <= 4) {
682 			pre_div = 4;
683 			div = 1;
684 		} else if (esdhc->div_ratio <= 8) {
685 			pre_div = 4;
686 			div = 2;
687 		} else if (esdhc->div_ratio <= 12) {
688 			pre_div = 4;
689 			div = 3;
690 		} else {
691 			pr_warn("%s: using unsupported clock division.\n",
692 				mmc_hostname(host->mmc));
693 		}
694 		esdhc->div_ratio = pre_div * div;
695 	}
696 
697 	host->mmc->actual_clock = host->max_clk / esdhc->div_ratio;
698 
699 	dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
700 		clock, host->mmc->actual_clock);
701 
702 	/* Set clock division into register. */
703 	pre_div >>= 1;
704 	div--;
705 
706 	esdhc_clock_enable(host, false);
707 
708 	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
709 	temp &= ~ESDHC_CLOCK_MASK;
710 	temp |= ((div << ESDHC_DIVIDER_SHIFT) |
711 		(pre_div << ESDHC_PREDIV_SHIFT));
712 	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
713 
714 	/*
715 	 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
716 	 * wait clock stable bit which does not exist.
717 	 */
718 	timeout = ktime_add_ms(ktime_get(), 20);
719 	while (esdhc->vendor_ver > VENDOR_V_22) {
720 		bool timedout = ktime_after(ktime_get(), timeout);
721 
722 		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
723 			break;
724 		if (timedout) {
725 			pr_err("%s: Internal clock never stabilised.\n",
726 				mmc_hostname(host->mmc));
727 			break;
728 		}
729 		usleep_range(10, 20);
730 	}
731 
732 	/* Additional setting for HS400. */
733 	if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
734 	    clock == MMC_HS200_MAX_DTR) {
735 		temp = sdhci_readl(host, ESDHC_TBCTL);
736 		sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
737 		temp = sdhci_readl(host, ESDHC_SDCLKCTL);
738 		sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
739 		esdhc_clock_enable(host, true);
740 
741 		temp = sdhci_readl(host, ESDHC_DLLCFG0);
742 		temp |= ESDHC_DLL_ENABLE;
743 		if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
744 			temp |= ESDHC_DLL_FREQ_SEL;
745 		sdhci_writel(host, temp, ESDHC_DLLCFG0);
746 		temp = sdhci_readl(host, ESDHC_TBCTL);
747 		sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
748 
749 		esdhc_clock_enable(host, false);
750 		esdhc_flush_async_fifo(host);
751 	}
752 	esdhc_clock_enable(host, true);
753 }
754 
755 static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
756 {
757 	u32 ctrl;
758 
759 	ctrl = sdhci_readl(host, ESDHC_PROCTL);
760 	ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
761 	switch (width) {
762 	case MMC_BUS_WIDTH_8:
763 		ctrl |= ESDHC_CTRL_8BITBUS;
764 		break;
765 
766 	case MMC_BUS_WIDTH_4:
767 		ctrl |= ESDHC_CTRL_4BITBUS;
768 		break;
769 
770 	default:
771 		break;
772 	}
773 
774 	sdhci_writel(host, ctrl, ESDHC_PROCTL);
775 }
776 
777 static void esdhc_reset(struct sdhci_host *host, u8 mask)
778 {
779 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
780 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
781 	u32 val, bus_width = 0;
782 
783 	/*
784 	 * Add delay to make sure all the DMA transfers are finished
785 	 * for quirk.
786 	 */
787 	if (esdhc->quirk_delay_before_data_reset &&
788 	    (mask & SDHCI_RESET_DATA) &&
789 	    (host->flags & SDHCI_REQ_USE_DMA))
790 		mdelay(5);
791 
792 	/*
793 	 * Save bus-width for eSDHC whose vendor version is 2.2
794 	 * or lower for data reset.
795 	 */
796 	if ((mask & SDHCI_RESET_DATA) &&
797 	    (esdhc->vendor_ver <= VENDOR_V_22)) {
798 		val = sdhci_readl(host, ESDHC_PROCTL);
799 		bus_width = val & ESDHC_CTRL_BUSWIDTH_MASK;
800 	}
801 
802 	sdhci_reset(host, mask);
803 
804 	/*
805 	 * Restore bus-width setting and interrupt registers for eSDHC
806 	 * whose vendor version is 2.2 or lower for data reset.
807 	 */
808 	if ((mask & SDHCI_RESET_DATA) &&
809 	    (esdhc->vendor_ver <= VENDOR_V_22)) {
810 		val = sdhci_readl(host, ESDHC_PROCTL);
811 		val &= ~ESDHC_CTRL_BUSWIDTH_MASK;
812 		val |= bus_width;
813 		sdhci_writel(host, val, ESDHC_PROCTL);
814 
815 		sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
816 		sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
817 	}
818 
819 	/*
820 	 * Some bits have to be cleaned manually for eSDHC whose spec
821 	 * version is higher than 3.0 for all reset.
822 	 */
823 	if ((mask & SDHCI_RESET_ALL) &&
824 	    (esdhc->spec_ver >= SDHCI_SPEC_300)) {
825 		val = sdhci_readl(host, ESDHC_TBCTL);
826 		val &= ~ESDHC_TB_EN;
827 		sdhci_writel(host, val, ESDHC_TBCTL);
828 
829 		/*
830 		 * Initialize eSDHC_DLLCFG1[DLL_PD_PULSE_STRETCH_SEL] to
831 		 * 0 for quirk.
832 		 */
833 		if (esdhc->quirk_unreliable_pulse_detection) {
834 			val = sdhci_readl(host, ESDHC_DLLCFG1);
835 			val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
836 			sdhci_writel(host, val, ESDHC_DLLCFG1);
837 		}
838 	}
839 }
840 
841 /* The SCFG, Supplemental Configuration Unit, provides SoC specific
842  * configuration and status registers for the device. There is a
843  * SDHC IO VSEL control register on SCFG for some platforms. It's
844  * used to support SDHC IO voltage switching.
845  */
846 static const struct of_device_id scfg_device_ids[] = {
847 	{ .compatible = "fsl,t1040-scfg", },
848 	{ .compatible = "fsl,ls1012a-scfg", },
849 	{ .compatible = "fsl,ls1046a-scfg", },
850 	{}
851 };
852 
853 /* SDHC IO VSEL control register definition */
854 #define SCFG_SDHCIOVSELCR	0x408
855 #define SDHCIOVSELCR_TGLEN	0x80000000
856 #define SDHCIOVSELCR_VSELVAL	0x60000000
857 #define SDHCIOVSELCR_SDHC_VS	0x00000001
858 
859 static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
860 				       struct mmc_ios *ios)
861 {
862 	struct sdhci_host *host = mmc_priv(mmc);
863 	struct device_node *scfg_node;
864 	void __iomem *scfg_base = NULL;
865 	u32 sdhciovselcr;
866 	u32 val;
867 
868 	/*
869 	 * Signal Voltage Switching is only applicable for Host Controllers
870 	 * v3.00 and above.
871 	 */
872 	if (host->version < SDHCI_SPEC_300)
873 		return 0;
874 
875 	val = sdhci_readl(host, ESDHC_PROCTL);
876 
877 	switch (ios->signal_voltage) {
878 	case MMC_SIGNAL_VOLTAGE_330:
879 		val &= ~ESDHC_VOLT_SEL;
880 		sdhci_writel(host, val, ESDHC_PROCTL);
881 		return 0;
882 	case MMC_SIGNAL_VOLTAGE_180:
883 		scfg_node = of_find_matching_node(NULL, scfg_device_ids);
884 		if (scfg_node)
885 			scfg_base = of_iomap(scfg_node, 0);
886 		if (scfg_base) {
887 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
888 				       SDHCIOVSELCR_VSELVAL;
889 			iowrite32be(sdhciovselcr,
890 				scfg_base + SCFG_SDHCIOVSELCR);
891 
892 			val |= ESDHC_VOLT_SEL;
893 			sdhci_writel(host, val, ESDHC_PROCTL);
894 			mdelay(5);
895 
896 			sdhciovselcr = SDHCIOVSELCR_TGLEN |
897 				       SDHCIOVSELCR_SDHC_VS;
898 			iowrite32be(sdhciovselcr,
899 				scfg_base + SCFG_SDHCIOVSELCR);
900 			iounmap(scfg_base);
901 		} else {
902 			val |= ESDHC_VOLT_SEL;
903 			sdhci_writel(host, val, ESDHC_PROCTL);
904 		}
905 		return 0;
906 	default:
907 		return 0;
908 	}
909 }
910 
911 static struct soc_device_attribute soc_tuning_erratum_type1[] = {
912 	{ .family = "QorIQ T1023", },
913 	{ .family = "QorIQ T1040", },
914 	{ .family = "QorIQ T2080", },
915 	{ .family = "QorIQ LS1021A", },
916 	{ },
917 };
918 
919 static struct soc_device_attribute soc_tuning_erratum_type2[] = {
920 	{ .family = "QorIQ LS1012A", },
921 	{ .family = "QorIQ LS1043A", },
922 	{ .family = "QorIQ LS1046A", },
923 	{ .family = "QorIQ LS1080A", },
924 	{ .family = "QorIQ LS2080A", },
925 	{ .family = "QorIQ LA1575A", },
926 	{ },
927 };
928 
929 static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
930 {
931 	u32 val;
932 
933 	esdhc_clock_enable(host, false);
934 	esdhc_flush_async_fifo(host);
935 
936 	val = sdhci_readl(host, ESDHC_TBCTL);
937 	if (enable)
938 		val |= ESDHC_TB_EN;
939 	else
940 		val &= ~ESDHC_TB_EN;
941 	sdhci_writel(host, val, ESDHC_TBCTL);
942 
943 	esdhc_clock_enable(host, true);
944 }
945 
946 static void esdhc_tuning_window_ptr(struct sdhci_host *host, u8 *window_start,
947 				    u8 *window_end)
948 {
949 	u32 val;
950 
951 	/* Write TBCTL[11:8]=4'h8 */
952 	val = sdhci_readl(host, ESDHC_TBCTL);
953 	val &= ~(0xf << 8);
954 	val |= 8 << 8;
955 	sdhci_writel(host, val, ESDHC_TBCTL);
956 
957 	mdelay(1);
958 
959 	/* Read TBCTL[31:0] register and rewrite again */
960 	val = sdhci_readl(host, ESDHC_TBCTL);
961 	sdhci_writel(host, val, ESDHC_TBCTL);
962 
963 	mdelay(1);
964 
965 	/* Read the TBSTAT[31:0] register twice */
966 	val = sdhci_readl(host, ESDHC_TBSTAT);
967 	val = sdhci_readl(host, ESDHC_TBSTAT);
968 
969 	*window_end = val & 0xff;
970 	*window_start = (val >> 8) & 0xff;
971 }
972 
973 static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start,
974 				    u8 *window_end)
975 {
976 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
977 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
978 	u8 start_ptr, end_ptr;
979 
980 	if (esdhc->quirk_tuning_erratum_type1) {
981 		*window_start = 5 * esdhc->div_ratio;
982 		*window_end = 3 * esdhc->div_ratio;
983 		return;
984 	}
985 
986 	esdhc_tuning_window_ptr(host, &start_ptr, &end_ptr);
987 
988 	/* Reset data lines by setting ESDHCCTL[RSTD] */
989 	sdhci_reset(host, SDHCI_RESET_DATA);
990 	/* Write 32'hFFFF_FFFF to IRQSTAT register */
991 	sdhci_writel(host, 0xFFFFFFFF, SDHCI_INT_STATUS);
992 
993 	/* If TBSTAT[15:8]-TBSTAT[7:0] > (4 * div_ratio) + 2
994 	 * or TBSTAT[7:0]-TBSTAT[15:8] > (4 * div_ratio) + 2,
995 	 * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio
996 	 * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio.
997 	 */
998 
999 	if (abs(start_ptr - end_ptr) > (4 * esdhc->div_ratio + 2)) {
1000 		*window_start = 8 * esdhc->div_ratio;
1001 		*window_end = 4 * esdhc->div_ratio;
1002 	} else {
1003 		*window_start = 5 * esdhc->div_ratio;
1004 		*window_end = 3 * esdhc->div_ratio;
1005 	}
1006 }
1007 
1008 static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode,
1009 				   u8 window_start, u8 window_end)
1010 {
1011 	struct sdhci_host *host = mmc_priv(mmc);
1012 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1013 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1014 	u32 val;
1015 	int ret;
1016 
1017 	/* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */
1018 	val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) &
1019 	      ESDHC_WNDW_STRT_PTR_MASK;
1020 	val |= window_end & ESDHC_WNDW_END_PTR_MASK;
1021 	sdhci_writel(host, val, ESDHC_TBPTR);
1022 
1023 	/* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */
1024 	val = sdhci_readl(host, ESDHC_TBCTL);
1025 	val &= ~ESDHC_TB_MODE_MASK;
1026 	val |= ESDHC_TB_MODE_SW;
1027 	sdhci_writel(host, val, ESDHC_TBCTL);
1028 
1029 	esdhc->in_sw_tuning = true;
1030 	ret = sdhci_execute_tuning(mmc, opcode);
1031 	esdhc->in_sw_tuning = false;
1032 	return ret;
1033 }
1034 
1035 static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
1036 {
1037 	struct sdhci_host *host = mmc_priv(mmc);
1038 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1039 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1040 	u8 window_start, window_end;
1041 	int ret, retries = 1;
1042 	bool hs400_tuning;
1043 	unsigned int clk;
1044 	u32 val;
1045 
1046 	/* For tuning mode, the sd clock divisor value
1047 	 * must be larger than 3 according to reference manual.
1048 	 */
1049 	clk = esdhc->peripheral_clock / 3;
1050 	if (host->clock > clk)
1051 		esdhc_of_set_clock(host, clk);
1052 
1053 	esdhc_tuning_block_enable(host, true);
1054 
1055 	hs400_tuning = host->flags & SDHCI_HS400_TUNING;
1056 
1057 	do {
1058 		if (esdhc->quirk_limited_clk_division &&
1059 		    hs400_tuning)
1060 			esdhc_of_set_clock(host, host->clock);
1061 
1062 		/* Do HW tuning */
1063 		val = sdhci_readl(host, ESDHC_TBCTL);
1064 		val &= ~ESDHC_TB_MODE_MASK;
1065 		val |= ESDHC_TB_MODE_3;
1066 		sdhci_writel(host, val, ESDHC_TBCTL);
1067 
1068 		ret = sdhci_execute_tuning(mmc, opcode);
1069 		if (ret)
1070 			break;
1071 
1072 		/* For type2 affected platforms of the tuning erratum,
1073 		 * tuning may succeed although eSDHC might not have
1074 		 * tuned properly. Need to check tuning window.
1075 		 */
1076 		if (esdhc->quirk_tuning_erratum_type2 &&
1077 		    !host->tuning_err) {
1078 			esdhc_tuning_window_ptr(host, &window_start,
1079 						&window_end);
1080 			if (abs(window_start - window_end) >
1081 			    (4 * esdhc->div_ratio + 2))
1082 				host->tuning_err = -EAGAIN;
1083 		}
1084 
1085 		/* If HW tuning fails and triggers erratum,
1086 		 * try workaround.
1087 		 */
1088 		ret = host->tuning_err;
1089 		if (ret == -EAGAIN &&
1090 		    (esdhc->quirk_tuning_erratum_type1 ||
1091 		     esdhc->quirk_tuning_erratum_type2)) {
1092 			/* Recover HS400 tuning flag */
1093 			if (hs400_tuning)
1094 				host->flags |= SDHCI_HS400_TUNING;
1095 			pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n",
1096 				mmc_hostname(mmc));
1097 			/* Do SW tuning */
1098 			esdhc_prepare_sw_tuning(host, &window_start,
1099 						&window_end);
1100 			ret = esdhc_execute_sw_tuning(mmc, opcode,
1101 						      window_start,
1102 						      window_end);
1103 			if (ret)
1104 				break;
1105 
1106 			/* Retry both HW/SW tuning with reduced clock. */
1107 			ret = host->tuning_err;
1108 			if (ret == -EAGAIN && retries) {
1109 				/* Recover HS400 tuning flag */
1110 				if (hs400_tuning)
1111 					host->flags |= SDHCI_HS400_TUNING;
1112 
1113 				clk = host->max_clk / (esdhc->div_ratio + 1);
1114 				esdhc_of_set_clock(host, clk);
1115 				pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n",
1116 					mmc_hostname(mmc));
1117 			} else {
1118 				break;
1119 			}
1120 		} else {
1121 			break;
1122 		}
1123 	} while (retries--);
1124 
1125 	if (ret) {
1126 		esdhc_tuning_block_enable(host, false);
1127 	} else if (hs400_tuning) {
1128 		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1129 		val |= ESDHC_FLW_CTL_BG;
1130 		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1131 	}
1132 
1133 	return ret;
1134 }
1135 
1136 static void esdhc_set_uhs_signaling(struct sdhci_host *host,
1137 				   unsigned int timing)
1138 {
1139 	u32 val;
1140 
1141 	/*
1142 	 * There are specific registers setting for HS400 mode.
1143 	 * Clean all of them if controller is in HS400 mode to
1144 	 * exit HS400 mode before re-setting any speed mode.
1145 	 */
1146 	val = sdhci_readl(host, ESDHC_TBCTL);
1147 	if (val & ESDHC_HS400_MODE) {
1148 		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1149 		val &= ~ESDHC_FLW_CTL_BG;
1150 		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1151 
1152 		val = sdhci_readl(host, ESDHC_SDCLKCTL);
1153 		val &= ~ESDHC_CMD_CLK_CTL;
1154 		sdhci_writel(host, val, ESDHC_SDCLKCTL);
1155 
1156 		esdhc_clock_enable(host, false);
1157 		val = sdhci_readl(host, ESDHC_TBCTL);
1158 		val &= ~ESDHC_HS400_MODE;
1159 		sdhci_writel(host, val, ESDHC_TBCTL);
1160 		esdhc_clock_enable(host, true);
1161 
1162 		val = sdhci_readl(host, ESDHC_DLLCFG0);
1163 		val &= ~(ESDHC_DLL_ENABLE | ESDHC_DLL_FREQ_SEL);
1164 		sdhci_writel(host, val, ESDHC_DLLCFG0);
1165 
1166 		val = sdhci_readl(host, ESDHC_TBCTL);
1167 		val &= ~ESDHC_HS400_WNDW_ADJUST;
1168 		sdhci_writel(host, val, ESDHC_TBCTL);
1169 
1170 		esdhc_tuning_block_enable(host, false);
1171 	}
1172 
1173 	if (timing == MMC_TIMING_MMC_HS400)
1174 		esdhc_tuning_block_enable(host, true);
1175 	else
1176 		sdhci_set_uhs_signaling(host, timing);
1177 }
1178 
1179 static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
1180 {
1181 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1182 	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1183 	u32 command;
1184 
1185 	if (esdhc->quirk_trans_complete_erratum) {
1186 		command = SDHCI_GET_CMD(sdhci_readw(host,
1187 					SDHCI_COMMAND));
1188 		if (command == MMC_WRITE_MULTIPLE_BLOCK &&
1189 				sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
1190 				intmask & SDHCI_INT_DATA_END) {
1191 			intmask &= ~SDHCI_INT_DATA_END;
1192 			sdhci_writel(host, SDHCI_INT_DATA_END,
1193 					SDHCI_INT_STATUS);
1194 		}
1195 	}
1196 	return intmask;
1197 }
1198 
1199 #ifdef CONFIG_PM_SLEEP
1200 static u32 esdhc_proctl;
1201 static int esdhc_of_suspend(struct device *dev)
1202 {
1203 	struct sdhci_host *host = dev_get_drvdata(dev);
1204 
1205 	esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
1206 
1207 	if (host->tuning_mode != SDHCI_TUNING_MODE_3)
1208 		mmc_retune_needed(host->mmc);
1209 
1210 	return sdhci_suspend_host(host);
1211 }
1212 
1213 static int esdhc_of_resume(struct device *dev)
1214 {
1215 	struct sdhci_host *host = dev_get_drvdata(dev);
1216 	int ret = sdhci_resume_host(host);
1217 
1218 	if (ret == 0) {
1219 		/* Isn't this already done by sdhci_resume_host() ? --rmk */
1220 		esdhc_of_enable_dma(host);
1221 		sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
1222 	}
1223 	return ret;
1224 }
1225 #endif
1226 
1227 static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
1228 			esdhc_of_suspend,
1229 			esdhc_of_resume);
1230 
1231 static const struct sdhci_ops sdhci_esdhc_be_ops = {
1232 	.read_l = esdhc_be_readl,
1233 	.read_w = esdhc_be_readw,
1234 	.read_b = esdhc_be_readb,
1235 	.write_l = esdhc_be_writel,
1236 	.write_w = esdhc_be_writew,
1237 	.write_b = esdhc_be_writeb,
1238 	.set_clock = esdhc_of_set_clock,
1239 	.enable_dma = esdhc_of_enable_dma,
1240 	.get_max_clock = esdhc_of_get_max_clock,
1241 	.get_min_clock = esdhc_of_get_min_clock,
1242 	.adma_workaround = esdhc_of_adma_workaround,
1243 	.set_bus_width = esdhc_pltfm_set_bus_width,
1244 	.reset = esdhc_reset,
1245 	.set_uhs_signaling = esdhc_set_uhs_signaling,
1246 	.irq = esdhc_irq,
1247 };
1248 
1249 static const struct sdhci_ops sdhci_esdhc_le_ops = {
1250 	.read_l = esdhc_le_readl,
1251 	.read_w = esdhc_le_readw,
1252 	.read_b = esdhc_le_readb,
1253 	.write_l = esdhc_le_writel,
1254 	.write_w = esdhc_le_writew,
1255 	.write_b = esdhc_le_writeb,
1256 	.set_clock = esdhc_of_set_clock,
1257 	.enable_dma = esdhc_of_enable_dma,
1258 	.get_max_clock = esdhc_of_get_max_clock,
1259 	.get_min_clock = esdhc_of_get_min_clock,
1260 	.adma_workaround = esdhc_of_adma_workaround,
1261 	.set_bus_width = esdhc_pltfm_set_bus_width,
1262 	.reset = esdhc_reset,
1263 	.set_uhs_signaling = esdhc_set_uhs_signaling,
1264 	.irq = esdhc_irq,
1265 };
1266 
1267 static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
1268 	.quirks = ESDHC_DEFAULT_QUIRKS |
1269 #ifdef CONFIG_PPC
1270 		  SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1271 #endif
1272 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1273 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1274 	.ops = &sdhci_esdhc_be_ops,
1275 };
1276 
1277 static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
1278 	.quirks = ESDHC_DEFAULT_QUIRKS |
1279 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1280 		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1281 	.ops = &sdhci_esdhc_le_ops,
1282 };
1283 
1284 static struct soc_device_attribute soc_incorrect_hostver[] = {
1285 	{ .family = "QorIQ T4240", .revision = "1.0", },
1286 	{ .family = "QorIQ T4240", .revision = "2.0", },
1287 	{ },
1288 };
1289 
1290 static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1291 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1292 	{ .family = "QorIQ LX2160A", .revision = "2.0", },
1293 	{ .family = "QorIQ LS1028A", .revision = "1.0", },
1294 	{ },
1295 };
1296 
1297 static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1298 	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1299 	{ },
1300 };
1301 
1302 static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1303 {
1304 	const struct of_device_id *match;
1305 	struct sdhci_pltfm_host *pltfm_host;
1306 	struct sdhci_esdhc *esdhc;
1307 	struct device_node *np;
1308 	struct clk *clk;
1309 	u32 val;
1310 	u16 host_ver;
1311 
1312 	pltfm_host = sdhci_priv(host);
1313 	esdhc = sdhci_pltfm_priv(pltfm_host);
1314 
1315 	host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1316 	esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1317 			     SDHCI_VENDOR_VER_SHIFT;
1318 	esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1319 	if (soc_device_match(soc_incorrect_hostver))
1320 		esdhc->quirk_incorrect_hostver = true;
1321 	else
1322 		esdhc->quirk_incorrect_hostver = false;
1323 
1324 	if (soc_device_match(soc_fixup_sdhc_clkdivs))
1325 		esdhc->quirk_limited_clk_division = true;
1326 	else
1327 		esdhc->quirk_limited_clk_division = false;
1328 
1329 	if (soc_device_match(soc_unreliable_pulse_detection))
1330 		esdhc->quirk_unreliable_pulse_detection = true;
1331 	else
1332 		esdhc->quirk_unreliable_pulse_detection = false;
1333 
1334 	match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
1335 	if (match)
1336 		esdhc->clk_fixup = match->data;
1337 	np = pdev->dev.of_node;
1338 
1339 	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1340 		esdhc->quirk_delay_before_data_reset = true;
1341 		esdhc->quirk_trans_complete_erratum = true;
1342 	}
1343 
1344 	clk = of_clk_get(np, 0);
1345 	if (!IS_ERR(clk)) {
1346 		/*
1347 		 * esdhc->peripheral_clock would be assigned with a value
1348 		 * which is eSDHC base clock when use periperal clock.
1349 		 * For some platforms, the clock value got by common clk
1350 		 * API is peripheral clock while the eSDHC base clock is
1351 		 * 1/2 peripheral clock.
1352 		 */
1353 		if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") ||
1354 		    of_device_is_compatible(np, "fsl,ls1028a-esdhc") ||
1355 		    of_device_is_compatible(np, "fsl,ls1088a-esdhc"))
1356 			esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1357 		else
1358 			esdhc->peripheral_clock = clk_get_rate(clk);
1359 
1360 		clk_put(clk);
1361 	}
1362 
1363 	esdhc_clock_enable(host, false);
1364 	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1365 	/*
1366 	 * This bit is not able to be reset by SDHCI_RESET_ALL. Need to
1367 	 * initialize it as 1 or 0 once, to override the different value
1368 	 * which may be configured in bootloader.
1369 	 */
1370 	if (esdhc->peripheral_clock)
1371 		val |= ESDHC_PERIPHERAL_CLK_SEL;
1372 	else
1373 		val &= ~ESDHC_PERIPHERAL_CLK_SEL;
1374 	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1375 	esdhc_clock_enable(host, true);
1376 }
1377 
1378 static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1379 {
1380 	esdhc_tuning_block_enable(mmc_priv(mmc), false);
1381 	return 0;
1382 }
1383 
1384 static int sdhci_esdhc_probe(struct platform_device *pdev)
1385 {
1386 	struct sdhci_host *host;
1387 	struct device_node *np;
1388 	struct sdhci_pltfm_host *pltfm_host;
1389 	struct sdhci_esdhc *esdhc;
1390 	int ret;
1391 
1392 	np = pdev->dev.of_node;
1393 
1394 	if (of_property_read_bool(np, "little-endian"))
1395 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1396 					sizeof(struct sdhci_esdhc));
1397 	else
1398 		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1399 					sizeof(struct sdhci_esdhc));
1400 
1401 	if (IS_ERR(host))
1402 		return PTR_ERR(host);
1403 
1404 	host->mmc_host_ops.start_signal_voltage_switch =
1405 		esdhc_signal_voltage_switch;
1406 	host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1407 	host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1408 	host->tuning_delay = 1;
1409 
1410 	esdhc_init(pdev, host);
1411 
1412 	sdhci_get_of_property(pdev);
1413 
1414 	pltfm_host = sdhci_priv(host);
1415 	esdhc = sdhci_pltfm_priv(pltfm_host);
1416 	if (soc_device_match(soc_tuning_erratum_type1))
1417 		esdhc->quirk_tuning_erratum_type1 = true;
1418 	else
1419 		esdhc->quirk_tuning_erratum_type1 = false;
1420 
1421 	if (soc_device_match(soc_tuning_erratum_type2))
1422 		esdhc->quirk_tuning_erratum_type2 = true;
1423 	else
1424 		esdhc->quirk_tuning_erratum_type2 = false;
1425 
1426 	if (esdhc->vendor_ver == VENDOR_V_22)
1427 		host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1428 
1429 	if (esdhc->vendor_ver > VENDOR_V_22)
1430 		host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1431 
1432 	if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) {
1433 		host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1434 		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1435 	}
1436 
1437 	if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1438 	    of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1439 	    of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1440 	    of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1441 	    of_device_is_compatible(np, "fsl,t1040-esdhc"))
1442 		host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1443 
1444 	if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1445 		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1446 
1447 	esdhc->quirk_ignore_data_inhibit = false;
1448 	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1449 		/*
1450 		 * Freescale messed up with P2020 as it has a non-standard
1451 		 * host control register
1452 		 */
1453 		host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1454 		esdhc->quirk_ignore_data_inhibit = true;
1455 	}
1456 
1457 	/* call to generic mmc_of_parse to support additional capabilities */
1458 	ret = mmc_of_parse(host->mmc);
1459 	if (ret)
1460 		goto err;
1461 
1462 	mmc_of_parse_voltage(np, &host->ocr_mask);
1463 
1464 	ret = sdhci_add_host(host);
1465 	if (ret)
1466 		goto err;
1467 
1468 	return 0;
1469  err:
1470 	sdhci_pltfm_free(pdev);
1471 	return ret;
1472 }
1473 
1474 static struct platform_driver sdhci_esdhc_driver = {
1475 	.driver = {
1476 		.name = "sdhci-esdhc",
1477 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1478 		.of_match_table = sdhci_esdhc_of_match,
1479 		.pm = &esdhc_of_dev_pm_ops,
1480 	},
1481 	.probe = sdhci_esdhc_probe,
1482 	.remove = sdhci_pltfm_unregister,
1483 };
1484 
1485 module_platform_driver(sdhci_esdhc_driver);
1486 
1487 MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1488 MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1489 	      "Anton Vorontsov <avorontsov@ru.mvista.com>");
1490 MODULE_LICENSE("GPL v2");
1491