1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Freescale eSDHC controller driver. 4 * 5 * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc. 6 * Copyright (c) 2009 MontaVista Software, Inc. 7 * Copyright 2020 NXP 8 * 9 * Authors: Xiaobo Xie <X.Xie@freescale.com> 10 * Anton Vorontsov <avorontsov@ru.mvista.com> 11 */ 12 13 #include <linux/err.h> 14 #include <linux/io.h> 15 #include <linux/of.h> 16 #include <linux/of_address.h> 17 #include <linux/delay.h> 18 #include <linux/module.h> 19 #include <linux/sys_soc.h> 20 #include <linux/clk.h> 21 #include <linux/ktime.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/iopoll.h> 24 #include <linux/mmc/host.h> 25 #include <linux/mmc/mmc.h> 26 #include "sdhci-pltfm.h" 27 #include "sdhci-esdhc.h" 28 29 #define VENDOR_V_22 0x12 30 #define VENDOR_V_23 0x13 31 32 #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1) 33 34 struct esdhc_clk_fixup { 35 const unsigned int sd_dflt_max_clk; 36 const unsigned int max_clk[MMC_TIMING_NUM]; 37 }; 38 39 static const struct esdhc_clk_fixup ls1021a_esdhc_clk = { 40 .sd_dflt_max_clk = 25000000, 41 .max_clk[MMC_TIMING_MMC_HS] = 46500000, 42 .max_clk[MMC_TIMING_SD_HS] = 46500000, 43 }; 44 45 static const struct esdhc_clk_fixup ls1043a_esdhc_clk = { 46 .sd_dflt_max_clk = 25000000, 47 .max_clk[MMC_TIMING_UHS_SDR104] = 116700000, 48 .max_clk[MMC_TIMING_MMC_HS200] = 116700000, 49 }; 50 51 static const struct esdhc_clk_fixup ls1046a_esdhc_clk = { 52 .sd_dflt_max_clk = 25000000, 53 .max_clk[MMC_TIMING_UHS_SDR104] = 167000000, 54 .max_clk[MMC_TIMING_MMC_HS200] = 167000000, 55 }; 56 57 static const struct esdhc_clk_fixup ls1012a_esdhc_clk = { 58 .sd_dflt_max_clk = 25000000, 59 .max_clk[MMC_TIMING_UHS_SDR104] = 125000000, 60 .max_clk[MMC_TIMING_MMC_HS200] = 125000000, 61 }; 62 63 static const struct esdhc_clk_fixup p1010_esdhc_clk = { 64 .sd_dflt_max_clk = 20000000, 65 .max_clk[MMC_TIMING_LEGACY] = 20000000, 66 .max_clk[MMC_TIMING_MMC_HS] = 42000000, 67 .max_clk[MMC_TIMING_SD_HS] = 40000000, 68 }; 69 70 static const struct of_device_id sdhci_esdhc_of_match[] = { 71 { .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk}, 72 { .compatible = "fsl,ls1043a-esdhc", .data = &ls1043a_esdhc_clk}, 73 { .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk}, 74 { .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk}, 75 { .compatible = "fsl,p1010-esdhc", .data = &p1010_esdhc_clk}, 76 { .compatible = "fsl,mpc8379-esdhc" }, 77 { .compatible = "fsl,mpc8536-esdhc" }, 78 { .compatible = "fsl,esdhc" }, 79 { } 80 }; 81 MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match); 82 83 struct sdhci_esdhc { 84 u8 vendor_ver; 85 u8 spec_ver; 86 bool quirk_incorrect_hostver; 87 bool quirk_limited_clk_division; 88 bool quirk_unreliable_pulse_detection; 89 bool quirk_tuning_erratum_type1; 90 bool quirk_tuning_erratum_type2; 91 bool quirk_ignore_data_inhibit; 92 bool quirk_delay_before_data_reset; 93 bool quirk_trans_complete_erratum; 94 bool in_sw_tuning; 95 unsigned int peripheral_clock; 96 const struct esdhc_clk_fixup *clk_fixup; 97 u32 div_ratio; 98 }; 99 100 /** 101 * esdhc_readl_fixup - Fixup the value read from incompatible eSDHC register 102 * to make it compatible with SD spec. 103 * 104 * @host: pointer to sdhci_host 105 * @spec_reg: SD spec register address 106 * @value: 32bit eSDHC register value on spec_reg address 107 * 108 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC 109 * registers are 32 bits. There are differences in register size, register 110 * address, register function, bit position and function between eSDHC spec 111 * and SD spec. 112 * 113 * Return a fixed up register value 114 */ 115 static u32 esdhc_readl_fixup(struct sdhci_host *host, 116 int spec_reg, u32 value) 117 { 118 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 119 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 120 u32 ret; 121 122 /* 123 * The bit of ADMA flag in eSDHC is not compatible with standard 124 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is 125 * supported by eSDHC. 126 * And for many FSL eSDHC controller, the reset value of field 127 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA, 128 * only these vendor version is greater than 2.2/0x12 support ADMA. 129 */ 130 if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) { 131 if (esdhc->vendor_ver > VENDOR_V_22) { 132 ret = value | SDHCI_CAN_DO_ADMA2; 133 return ret; 134 } 135 } 136 137 /* 138 * The DAT[3:0] line signal levels and the CMD line signal level are 139 * not compatible with standard SDHC register. The line signal levels 140 * DAT[7:0] are at bits 31:24 and the command line signal level is at 141 * bit 23. All other bits are the same as in the standard SDHC 142 * register. 143 */ 144 if (spec_reg == SDHCI_PRESENT_STATE) { 145 ret = value & 0x000fffff; 146 ret |= (value >> 4) & SDHCI_DATA_LVL_MASK; 147 ret |= (value << 1) & SDHCI_CMD_LVL; 148 149 /* 150 * Some controllers have unreliable Data Line Active 151 * bit for commands with busy signal. This affects 152 * Command Inhibit (data) bit. Just ignore it since 153 * MMC core driver has already polled card status 154 * with CMD13 after any command with busy siganl. 155 */ 156 if (esdhc->quirk_ignore_data_inhibit) 157 ret &= ~SDHCI_DATA_INHIBIT; 158 return ret; 159 } 160 161 /* 162 * DTS properties of mmc host are used to enable each speed mode 163 * according to soc and board capability. So clean up 164 * SDR50/SDR104/DDR50 support bits here. 165 */ 166 if (spec_reg == SDHCI_CAPABILITIES_1) { 167 ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 | 168 SDHCI_SUPPORT_DDR50); 169 return ret; 170 } 171 172 ret = value; 173 return ret; 174 } 175 176 static u16 esdhc_readw_fixup(struct sdhci_host *host, 177 int spec_reg, u32 value) 178 { 179 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 180 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 181 u16 ret; 182 int shift = (spec_reg & 0x2) * 8; 183 184 if (spec_reg == SDHCI_TRANSFER_MODE) 185 return pltfm_host->xfer_mode_shadow; 186 187 if (spec_reg == SDHCI_HOST_VERSION) 188 ret = value & 0xffff; 189 else 190 ret = (value >> shift) & 0xffff; 191 /* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect 192 * vendor version and spec version information. 193 */ 194 if ((spec_reg == SDHCI_HOST_VERSION) && 195 (esdhc->quirk_incorrect_hostver)) 196 ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200; 197 return ret; 198 } 199 200 static u8 esdhc_readb_fixup(struct sdhci_host *host, 201 int spec_reg, u32 value) 202 { 203 u8 ret; 204 u8 dma_bits; 205 int shift = (spec_reg & 0x3) * 8; 206 207 ret = (value >> shift) & 0xff; 208 209 /* 210 * "DMA select" locates at offset 0x28 in SD specification, but on 211 * P5020 or P3041, it locates at 0x29. 212 */ 213 if (spec_reg == SDHCI_HOST_CONTROL) { 214 /* DMA select is 22,23 bits in Protocol Control Register */ 215 dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK; 216 /* fixup the result */ 217 ret &= ~SDHCI_CTRL_DMA_MASK; 218 ret |= dma_bits; 219 } 220 return ret; 221 } 222 223 /** 224 * esdhc_writel_fixup - Fixup the SD spec register value so that it could be 225 * written into eSDHC register. 226 * 227 * @host: pointer to sdhci_host 228 * @spec_reg: SD spec register address 229 * @value: 8/16/32bit SD spec register value that would be written 230 * @old_value: 32bit eSDHC register value on spec_reg address 231 * 232 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC 233 * registers are 32 bits. There are differences in register size, register 234 * address, register function, bit position and function between eSDHC spec 235 * and SD spec. 236 * 237 * Return a fixed up register value 238 */ 239 static u32 esdhc_writel_fixup(struct sdhci_host *host, 240 int spec_reg, u32 value, u32 old_value) 241 { 242 u32 ret; 243 244 /* 245 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE] 246 * when SYSCTL[RSTD] is set for some special operations. 247 * No any impact on other operation. 248 */ 249 if (spec_reg == SDHCI_INT_ENABLE) 250 ret = value | SDHCI_INT_BLK_GAP; 251 else 252 ret = value; 253 254 return ret; 255 } 256 257 static u32 esdhc_writew_fixup(struct sdhci_host *host, 258 int spec_reg, u16 value, u32 old_value) 259 { 260 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 261 int shift = (spec_reg & 0x2) * 8; 262 u32 ret; 263 264 switch (spec_reg) { 265 case SDHCI_TRANSFER_MODE: 266 /* 267 * Postpone this write, we must do it together with a 268 * command write that is down below. Return old value. 269 */ 270 pltfm_host->xfer_mode_shadow = value; 271 return old_value; 272 case SDHCI_COMMAND: 273 ret = (value << 16) | pltfm_host->xfer_mode_shadow; 274 return ret; 275 } 276 277 ret = old_value & (~(0xffff << shift)); 278 ret |= (value << shift); 279 280 if (spec_reg == SDHCI_BLOCK_SIZE) { 281 /* 282 * Two last DMA bits are reserved, and first one is used for 283 * non-standard blksz of 4096 bytes that we don't support 284 * yet. So clear the DMA boundary bits. 285 */ 286 ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0)); 287 } 288 return ret; 289 } 290 291 static u32 esdhc_writeb_fixup(struct sdhci_host *host, 292 int spec_reg, u8 value, u32 old_value) 293 { 294 u32 ret; 295 u32 dma_bits; 296 u8 tmp; 297 int shift = (spec_reg & 0x3) * 8; 298 299 /* 300 * eSDHC doesn't have a standard power control register, so we do 301 * nothing here to avoid incorrect operation. 302 */ 303 if (spec_reg == SDHCI_POWER_CONTROL) 304 return old_value; 305 /* 306 * "DMA select" location is offset 0x28 in SD specification, but on 307 * P5020 or P3041, it's located at 0x29. 308 */ 309 if (spec_reg == SDHCI_HOST_CONTROL) { 310 /* 311 * If host control register is not standard, exit 312 * this function 313 */ 314 if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL) 315 return old_value; 316 317 /* DMA select is 22,23 bits in Protocol Control Register */ 318 dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5; 319 ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits; 320 tmp = (value & (~SDHCI_CTRL_DMA_MASK)) | 321 (old_value & SDHCI_CTRL_DMA_MASK); 322 ret = (ret & (~0xff)) | tmp; 323 324 /* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */ 325 ret &= ~ESDHC_HOST_CONTROL_RES; 326 return ret; 327 } 328 329 ret = (old_value & (~(0xff << shift))) | (value << shift); 330 return ret; 331 } 332 333 static u32 esdhc_be_readl(struct sdhci_host *host, int reg) 334 { 335 u32 ret; 336 u32 value; 337 338 if (reg == SDHCI_CAPABILITIES_1) 339 value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1); 340 else 341 value = ioread32be(host->ioaddr + reg); 342 343 ret = esdhc_readl_fixup(host, reg, value); 344 345 return ret; 346 } 347 348 static u32 esdhc_le_readl(struct sdhci_host *host, int reg) 349 { 350 u32 ret; 351 u32 value; 352 353 if (reg == SDHCI_CAPABILITIES_1) 354 value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1); 355 else 356 value = ioread32(host->ioaddr + reg); 357 358 ret = esdhc_readl_fixup(host, reg, value); 359 360 return ret; 361 } 362 363 static u16 esdhc_be_readw(struct sdhci_host *host, int reg) 364 { 365 u16 ret; 366 u32 value; 367 int base = reg & ~0x3; 368 369 value = ioread32be(host->ioaddr + base); 370 ret = esdhc_readw_fixup(host, reg, value); 371 return ret; 372 } 373 374 static u16 esdhc_le_readw(struct sdhci_host *host, int reg) 375 { 376 u16 ret; 377 u32 value; 378 int base = reg & ~0x3; 379 380 value = ioread32(host->ioaddr + base); 381 ret = esdhc_readw_fixup(host, reg, value); 382 return ret; 383 } 384 385 static u8 esdhc_be_readb(struct sdhci_host *host, int reg) 386 { 387 u8 ret; 388 u32 value; 389 int base = reg & ~0x3; 390 391 value = ioread32be(host->ioaddr + base); 392 ret = esdhc_readb_fixup(host, reg, value); 393 return ret; 394 } 395 396 static u8 esdhc_le_readb(struct sdhci_host *host, int reg) 397 { 398 u8 ret; 399 u32 value; 400 int base = reg & ~0x3; 401 402 value = ioread32(host->ioaddr + base); 403 ret = esdhc_readb_fixup(host, reg, value); 404 return ret; 405 } 406 407 static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg) 408 { 409 u32 value; 410 411 value = esdhc_writel_fixup(host, reg, val, 0); 412 iowrite32be(value, host->ioaddr + reg); 413 } 414 415 static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg) 416 { 417 u32 value; 418 419 value = esdhc_writel_fixup(host, reg, val, 0); 420 iowrite32(value, host->ioaddr + reg); 421 } 422 423 static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg) 424 { 425 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 426 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 427 int base = reg & ~0x3; 428 u32 value; 429 u32 ret; 430 431 value = ioread32be(host->ioaddr + base); 432 ret = esdhc_writew_fixup(host, reg, val, value); 433 if (reg != SDHCI_TRANSFER_MODE) 434 iowrite32be(ret, host->ioaddr + base); 435 436 /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set 437 * 1us later after ESDHC_EXTN is set. 438 */ 439 if (base == ESDHC_SYSTEM_CONTROL_2) { 440 if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) && 441 esdhc->in_sw_tuning) { 442 udelay(1); 443 ret |= ESDHC_SMPCLKSEL; 444 iowrite32be(ret, host->ioaddr + base); 445 } 446 } 447 } 448 449 static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg) 450 { 451 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 452 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 453 int base = reg & ~0x3; 454 u32 value; 455 u32 ret; 456 457 value = ioread32(host->ioaddr + base); 458 ret = esdhc_writew_fixup(host, reg, val, value); 459 if (reg != SDHCI_TRANSFER_MODE) 460 iowrite32(ret, host->ioaddr + base); 461 462 /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set 463 * 1us later after ESDHC_EXTN is set. 464 */ 465 if (base == ESDHC_SYSTEM_CONTROL_2) { 466 if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) && 467 esdhc->in_sw_tuning) { 468 udelay(1); 469 ret |= ESDHC_SMPCLKSEL; 470 iowrite32(ret, host->ioaddr + base); 471 } 472 } 473 } 474 475 static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg) 476 { 477 int base = reg & ~0x3; 478 u32 value; 479 u32 ret; 480 481 value = ioread32be(host->ioaddr + base); 482 ret = esdhc_writeb_fixup(host, reg, val, value); 483 iowrite32be(ret, host->ioaddr + base); 484 } 485 486 static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg) 487 { 488 int base = reg & ~0x3; 489 u32 value; 490 u32 ret; 491 492 value = ioread32(host->ioaddr + base); 493 ret = esdhc_writeb_fixup(host, reg, val, value); 494 iowrite32(ret, host->ioaddr + base); 495 } 496 497 /* 498 * For Abort or Suspend after Stop at Block Gap, ignore the ADMA 499 * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC]) 500 * and Block Gap Event(IRQSTAT[BGE]) are also set. 501 * For Continue, apply soft reset for data(SYSCTL[RSTD]); 502 * and re-issue the entire read transaction from beginning. 503 */ 504 static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask) 505 { 506 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 507 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 508 bool applicable; 509 dma_addr_t dmastart; 510 dma_addr_t dmanow; 511 512 applicable = (intmask & SDHCI_INT_DATA_END) && 513 (intmask & SDHCI_INT_BLK_GAP) && 514 (esdhc->vendor_ver == VENDOR_V_23); 515 if (!applicable) 516 return; 517 518 host->data->error = 0; 519 dmastart = sg_dma_address(host->data->sg); 520 dmanow = dmastart + host->data->bytes_xfered; 521 /* 522 * Force update to the next DMA block boundary. 523 */ 524 dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) + 525 SDHCI_DEFAULT_BOUNDARY_SIZE; 526 host->data->bytes_xfered = dmanow - dmastart; 527 sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS); 528 } 529 530 static int esdhc_of_enable_dma(struct sdhci_host *host) 531 { 532 int ret; 533 u32 value; 534 struct device *dev = mmc_dev(host->mmc); 535 536 if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") || 537 of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc")) { 538 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40)); 539 if (ret) 540 return ret; 541 } 542 543 value = sdhci_readl(host, ESDHC_DMA_SYSCTL); 544 545 if (of_dma_is_coherent(dev->of_node)) 546 value |= ESDHC_DMA_SNOOP; 547 else 548 value &= ~ESDHC_DMA_SNOOP; 549 550 sdhci_writel(host, value, ESDHC_DMA_SYSCTL); 551 return 0; 552 } 553 554 static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host) 555 { 556 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 557 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 558 559 if (esdhc->peripheral_clock) 560 return esdhc->peripheral_clock; 561 else 562 return pltfm_host->clock; 563 } 564 565 static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host) 566 { 567 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 568 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 569 unsigned int clock; 570 571 if (esdhc->peripheral_clock) 572 clock = esdhc->peripheral_clock; 573 else 574 clock = pltfm_host->clock; 575 return clock / 256 / 16; 576 } 577 578 static void esdhc_clock_enable(struct sdhci_host *host, bool enable) 579 { 580 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 581 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 582 ktime_t timeout; 583 u32 val, clk_en; 584 585 clk_en = ESDHC_CLOCK_SDCLKEN; 586 587 /* 588 * IPGEN/HCKEN/PEREN bits exist on eSDHC whose vendor version 589 * is 2.2 or lower. 590 */ 591 if (esdhc->vendor_ver <= VENDOR_V_22) 592 clk_en |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | 593 ESDHC_CLOCK_PEREN); 594 595 val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); 596 597 if (enable) 598 val |= clk_en; 599 else 600 val &= ~clk_en; 601 602 sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL); 603 604 /* 605 * Wait max 20 ms. If vendor version is 2.2 or lower, do not 606 * wait clock stable bit which does not exist. 607 */ 608 timeout = ktime_add_ms(ktime_get(), 20); 609 while (esdhc->vendor_ver > VENDOR_V_22) { 610 bool timedout = ktime_after(ktime_get(), timeout); 611 612 if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE) 613 break; 614 if (timedout) { 615 pr_err("%s: Internal clock never stabilised.\n", 616 mmc_hostname(host->mmc)); 617 break; 618 } 619 usleep_range(10, 20); 620 } 621 } 622 623 static void esdhc_flush_async_fifo(struct sdhci_host *host) 624 { 625 ktime_t timeout; 626 u32 val; 627 628 val = sdhci_readl(host, ESDHC_DMA_SYSCTL); 629 val |= ESDHC_FLUSH_ASYNC_FIFO; 630 sdhci_writel(host, val, ESDHC_DMA_SYSCTL); 631 632 /* Wait max 20 ms */ 633 timeout = ktime_add_ms(ktime_get(), 20); 634 while (1) { 635 bool timedout = ktime_after(ktime_get(), timeout); 636 637 if (!(sdhci_readl(host, ESDHC_DMA_SYSCTL) & 638 ESDHC_FLUSH_ASYNC_FIFO)) 639 break; 640 if (timedout) { 641 pr_err("%s: flushing asynchronous FIFO timeout.\n", 642 mmc_hostname(host->mmc)); 643 break; 644 } 645 usleep_range(10, 20); 646 } 647 } 648 649 static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock) 650 { 651 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 652 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 653 unsigned int pre_div = 1, div = 1; 654 unsigned int clock_fixup = 0; 655 ktime_t timeout; 656 u32 temp; 657 658 if (clock == 0) { 659 host->mmc->actual_clock = 0; 660 esdhc_clock_enable(host, false); 661 return; 662 } 663 664 /* Start pre_div at 2 for vendor version < 2.3. */ 665 if (esdhc->vendor_ver < VENDOR_V_23) 666 pre_div = 2; 667 668 /* Fix clock value. */ 669 if (host->mmc->card && mmc_card_sd(host->mmc->card) && 670 esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY) 671 clock_fixup = esdhc->clk_fixup->sd_dflt_max_clk; 672 else if (esdhc->clk_fixup) 673 clock_fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing]; 674 675 if (clock_fixup == 0 || clock < clock_fixup) 676 clock_fixup = clock; 677 678 /* Calculate pre_div and div. */ 679 while (host->max_clk / pre_div / 16 > clock_fixup && pre_div < 256) 680 pre_div *= 2; 681 682 while (host->max_clk / pre_div / div > clock_fixup && div < 16) 683 div++; 684 685 esdhc->div_ratio = pre_div * div; 686 687 /* Limit clock division for HS400 200MHz clock for quirk. */ 688 if (esdhc->quirk_limited_clk_division && 689 clock == MMC_HS200_MAX_DTR && 690 (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 || 691 host->flags & SDHCI_HS400_TUNING)) { 692 if (esdhc->div_ratio <= 4) { 693 pre_div = 4; 694 div = 1; 695 } else if (esdhc->div_ratio <= 8) { 696 pre_div = 4; 697 div = 2; 698 } else if (esdhc->div_ratio <= 12) { 699 pre_div = 4; 700 div = 3; 701 } else { 702 pr_warn("%s: using unsupported clock division.\n", 703 mmc_hostname(host->mmc)); 704 } 705 esdhc->div_ratio = pre_div * div; 706 } 707 708 host->mmc->actual_clock = host->max_clk / esdhc->div_ratio; 709 710 dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n", 711 clock, host->mmc->actual_clock); 712 713 /* Set clock division into register. */ 714 pre_div >>= 1; 715 div--; 716 717 esdhc_clock_enable(host, false); 718 719 temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); 720 temp &= ~ESDHC_CLOCK_MASK; 721 temp |= ((div << ESDHC_DIVIDER_SHIFT) | 722 (pre_div << ESDHC_PREDIV_SHIFT)); 723 sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL); 724 725 /* 726 * Wait max 20 ms. If vendor version is 2.2 or lower, do not 727 * wait clock stable bit which does not exist. 728 */ 729 timeout = ktime_add_ms(ktime_get(), 20); 730 while (esdhc->vendor_ver > VENDOR_V_22) { 731 bool timedout = ktime_after(ktime_get(), timeout); 732 733 if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE) 734 break; 735 if (timedout) { 736 pr_err("%s: Internal clock never stabilised.\n", 737 mmc_hostname(host->mmc)); 738 break; 739 } 740 usleep_range(10, 20); 741 } 742 743 /* Additional setting for HS400. */ 744 if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 && 745 clock == MMC_HS200_MAX_DTR) { 746 temp = sdhci_readl(host, ESDHC_TBCTL); 747 sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL); 748 temp = sdhci_readl(host, ESDHC_SDCLKCTL); 749 sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL); 750 esdhc_clock_enable(host, true); 751 752 temp = sdhci_readl(host, ESDHC_DLLCFG0); 753 temp |= ESDHC_DLL_ENABLE; 754 if (host->mmc->actual_clock == MMC_HS200_MAX_DTR) 755 temp |= ESDHC_DLL_FREQ_SEL; 756 sdhci_writel(host, temp, ESDHC_DLLCFG0); 757 758 temp |= ESDHC_DLL_RESET; 759 sdhci_writel(host, temp, ESDHC_DLLCFG0); 760 udelay(1); 761 temp &= ~ESDHC_DLL_RESET; 762 sdhci_writel(host, temp, ESDHC_DLLCFG0); 763 764 /* Wait max 20 ms */ 765 if (read_poll_timeout(sdhci_readl, temp, 766 temp & ESDHC_DLL_STS_SLV_LOCK, 767 10, 20000, false, 768 host, ESDHC_DLLSTAT0)) 769 pr_err("%s: timeout for delay chain lock.\n", 770 mmc_hostname(host->mmc)); 771 772 temp = sdhci_readl(host, ESDHC_TBCTL); 773 sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL); 774 775 esdhc_clock_enable(host, false); 776 esdhc_flush_async_fifo(host); 777 } 778 esdhc_clock_enable(host, true); 779 } 780 781 static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width) 782 { 783 u32 ctrl; 784 785 ctrl = sdhci_readl(host, ESDHC_PROCTL); 786 ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK); 787 switch (width) { 788 case MMC_BUS_WIDTH_8: 789 ctrl |= ESDHC_CTRL_8BITBUS; 790 break; 791 792 case MMC_BUS_WIDTH_4: 793 ctrl |= ESDHC_CTRL_4BITBUS; 794 break; 795 796 default: 797 break; 798 } 799 800 sdhci_writel(host, ctrl, ESDHC_PROCTL); 801 } 802 803 static void esdhc_reset(struct sdhci_host *host, u8 mask) 804 { 805 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 806 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 807 u32 val, bus_width = 0; 808 809 /* 810 * Add delay to make sure all the DMA transfers are finished 811 * for quirk. 812 */ 813 if (esdhc->quirk_delay_before_data_reset && 814 (mask & SDHCI_RESET_DATA) && 815 (host->flags & SDHCI_REQ_USE_DMA)) 816 mdelay(5); 817 818 /* 819 * Save bus-width for eSDHC whose vendor version is 2.2 820 * or lower for data reset. 821 */ 822 if ((mask & SDHCI_RESET_DATA) && 823 (esdhc->vendor_ver <= VENDOR_V_22)) { 824 val = sdhci_readl(host, ESDHC_PROCTL); 825 bus_width = val & ESDHC_CTRL_BUSWIDTH_MASK; 826 } 827 828 sdhci_reset(host, mask); 829 830 /* 831 * Restore bus-width setting and interrupt registers for eSDHC 832 * whose vendor version is 2.2 or lower for data reset. 833 */ 834 if ((mask & SDHCI_RESET_DATA) && 835 (esdhc->vendor_ver <= VENDOR_V_22)) { 836 val = sdhci_readl(host, ESDHC_PROCTL); 837 val &= ~ESDHC_CTRL_BUSWIDTH_MASK; 838 val |= bus_width; 839 sdhci_writel(host, val, ESDHC_PROCTL); 840 841 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); 842 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); 843 } 844 845 /* 846 * Some bits have to be cleaned manually for eSDHC whose spec 847 * version is higher than 3.0 for all reset. 848 */ 849 if ((mask & SDHCI_RESET_ALL) && 850 (esdhc->spec_ver >= SDHCI_SPEC_300)) { 851 val = sdhci_readl(host, ESDHC_TBCTL); 852 val &= ~ESDHC_TB_EN; 853 sdhci_writel(host, val, ESDHC_TBCTL); 854 855 /* 856 * Initialize eSDHC_DLLCFG1[DLL_PD_PULSE_STRETCH_SEL] to 857 * 0 for quirk. 858 */ 859 if (esdhc->quirk_unreliable_pulse_detection) { 860 val = sdhci_readl(host, ESDHC_DLLCFG1); 861 val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL; 862 sdhci_writel(host, val, ESDHC_DLLCFG1); 863 } 864 } 865 } 866 867 /* The SCFG, Supplemental Configuration Unit, provides SoC specific 868 * configuration and status registers for the device. There is a 869 * SDHC IO VSEL control register on SCFG for some platforms. It's 870 * used to support SDHC IO voltage switching. 871 */ 872 static const struct of_device_id scfg_device_ids[] = { 873 { .compatible = "fsl,t1040-scfg", }, 874 { .compatible = "fsl,ls1012a-scfg", }, 875 { .compatible = "fsl,ls1046a-scfg", }, 876 {} 877 }; 878 879 /* SDHC IO VSEL control register definition */ 880 #define SCFG_SDHCIOVSELCR 0x408 881 #define SDHCIOVSELCR_TGLEN 0x80000000 882 #define SDHCIOVSELCR_VSELVAL 0x60000000 883 #define SDHCIOVSELCR_SDHC_VS 0x00000001 884 885 static int esdhc_signal_voltage_switch(struct mmc_host *mmc, 886 struct mmc_ios *ios) 887 { 888 struct sdhci_host *host = mmc_priv(mmc); 889 struct device_node *scfg_node; 890 void __iomem *scfg_base = NULL; 891 u32 sdhciovselcr; 892 u32 val; 893 894 /* 895 * Signal Voltage Switching is only applicable for Host Controllers 896 * v3.00 and above. 897 */ 898 if (host->version < SDHCI_SPEC_300) 899 return 0; 900 901 val = sdhci_readl(host, ESDHC_PROCTL); 902 903 switch (ios->signal_voltage) { 904 case MMC_SIGNAL_VOLTAGE_330: 905 val &= ~ESDHC_VOLT_SEL; 906 sdhci_writel(host, val, ESDHC_PROCTL); 907 return 0; 908 case MMC_SIGNAL_VOLTAGE_180: 909 scfg_node = of_find_matching_node(NULL, scfg_device_ids); 910 if (scfg_node) 911 scfg_base = of_iomap(scfg_node, 0); 912 of_node_put(scfg_node); 913 if (scfg_base) { 914 sdhciovselcr = SDHCIOVSELCR_TGLEN | 915 SDHCIOVSELCR_VSELVAL; 916 iowrite32be(sdhciovselcr, 917 scfg_base + SCFG_SDHCIOVSELCR); 918 919 val |= ESDHC_VOLT_SEL; 920 sdhci_writel(host, val, ESDHC_PROCTL); 921 mdelay(5); 922 923 sdhciovselcr = SDHCIOVSELCR_TGLEN | 924 SDHCIOVSELCR_SDHC_VS; 925 iowrite32be(sdhciovselcr, 926 scfg_base + SCFG_SDHCIOVSELCR); 927 iounmap(scfg_base); 928 } else { 929 val |= ESDHC_VOLT_SEL; 930 sdhci_writel(host, val, ESDHC_PROCTL); 931 } 932 return 0; 933 default: 934 return 0; 935 } 936 } 937 938 static struct soc_device_attribute soc_tuning_erratum_type1[] = { 939 { .family = "QorIQ T1023", }, 940 { .family = "QorIQ T1040", }, 941 { .family = "QorIQ T2080", }, 942 { .family = "QorIQ LS1021A", }, 943 { /* sentinel */ } 944 }; 945 946 static struct soc_device_attribute soc_tuning_erratum_type2[] = { 947 { .family = "QorIQ LS1012A", }, 948 { .family = "QorIQ LS1043A", }, 949 { .family = "QorIQ LS1046A", }, 950 { .family = "QorIQ LS1080A", }, 951 { .family = "QorIQ LS2080A", }, 952 { .family = "QorIQ LA1575A", }, 953 { /* sentinel */ } 954 }; 955 956 static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable) 957 { 958 u32 val; 959 960 esdhc_clock_enable(host, false); 961 esdhc_flush_async_fifo(host); 962 963 val = sdhci_readl(host, ESDHC_TBCTL); 964 if (enable) 965 val |= ESDHC_TB_EN; 966 else 967 val &= ~ESDHC_TB_EN; 968 sdhci_writel(host, val, ESDHC_TBCTL); 969 970 esdhc_clock_enable(host, true); 971 } 972 973 static void esdhc_tuning_window_ptr(struct sdhci_host *host, u8 *window_start, 974 u8 *window_end) 975 { 976 u32 val; 977 978 /* Write TBCTL[11:8]=4'h8 */ 979 val = sdhci_readl(host, ESDHC_TBCTL); 980 val &= ~(0xf << 8); 981 val |= 8 << 8; 982 sdhci_writel(host, val, ESDHC_TBCTL); 983 984 mdelay(1); 985 986 /* Read TBCTL[31:0] register and rewrite again */ 987 val = sdhci_readl(host, ESDHC_TBCTL); 988 sdhci_writel(host, val, ESDHC_TBCTL); 989 990 mdelay(1); 991 992 /* Read the TBSTAT[31:0] register twice */ 993 val = sdhci_readl(host, ESDHC_TBSTAT); 994 val = sdhci_readl(host, ESDHC_TBSTAT); 995 996 *window_end = val & 0xff; 997 *window_start = (val >> 8) & 0xff; 998 } 999 1000 static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start, 1001 u8 *window_end) 1002 { 1003 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1004 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 1005 u8 start_ptr, end_ptr; 1006 1007 if (esdhc->quirk_tuning_erratum_type1) { 1008 *window_start = 5 * esdhc->div_ratio; 1009 *window_end = 3 * esdhc->div_ratio; 1010 return; 1011 } 1012 1013 esdhc_tuning_window_ptr(host, &start_ptr, &end_ptr); 1014 1015 /* Reset data lines by setting ESDHCCTL[RSTD] */ 1016 sdhci_reset(host, SDHCI_RESET_DATA); 1017 /* Write 32'hFFFF_FFFF to IRQSTAT register */ 1018 sdhci_writel(host, 0xFFFFFFFF, SDHCI_INT_STATUS); 1019 1020 /* If TBSTAT[15:8]-TBSTAT[7:0] > (4 * div_ratio) + 2 1021 * or TBSTAT[7:0]-TBSTAT[15:8] > (4 * div_ratio) + 2, 1022 * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio 1023 * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio. 1024 */ 1025 1026 if (abs(start_ptr - end_ptr) > (4 * esdhc->div_ratio + 2)) { 1027 *window_start = 8 * esdhc->div_ratio; 1028 *window_end = 4 * esdhc->div_ratio; 1029 } else { 1030 *window_start = 5 * esdhc->div_ratio; 1031 *window_end = 3 * esdhc->div_ratio; 1032 } 1033 } 1034 1035 static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode, 1036 u8 window_start, u8 window_end) 1037 { 1038 struct sdhci_host *host = mmc_priv(mmc); 1039 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1040 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 1041 u32 val; 1042 int ret; 1043 1044 /* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */ 1045 val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) & 1046 ESDHC_WNDW_STRT_PTR_MASK; 1047 val |= window_end & ESDHC_WNDW_END_PTR_MASK; 1048 sdhci_writel(host, val, ESDHC_TBPTR); 1049 1050 /* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */ 1051 val = sdhci_readl(host, ESDHC_TBCTL); 1052 val &= ~ESDHC_TB_MODE_MASK; 1053 val |= ESDHC_TB_MODE_SW; 1054 sdhci_writel(host, val, ESDHC_TBCTL); 1055 1056 esdhc->in_sw_tuning = true; 1057 ret = sdhci_execute_tuning(mmc, opcode); 1058 esdhc->in_sw_tuning = false; 1059 return ret; 1060 } 1061 1062 static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode) 1063 { 1064 struct sdhci_host *host = mmc_priv(mmc); 1065 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1066 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 1067 u8 window_start, window_end; 1068 int ret, retries = 1; 1069 bool hs400_tuning; 1070 unsigned int clk; 1071 u32 val; 1072 1073 /* For tuning mode, the sd clock divisor value 1074 * must be larger than 3 according to reference manual. 1075 */ 1076 clk = esdhc->peripheral_clock / 3; 1077 if (host->clock > clk) 1078 esdhc_of_set_clock(host, clk); 1079 1080 esdhc_tuning_block_enable(host, true); 1081 1082 /* 1083 * The eSDHC controller takes the data timeout value into account 1084 * during tuning. If the SD card is too slow sending the response, the 1085 * timer will expire and a "Buffer Read Ready" interrupt without data 1086 * is triggered. This leads to tuning errors. 1087 * 1088 * Just set the timeout to the maximum value because the core will 1089 * already take care of it in sdhci_send_tuning(). 1090 */ 1091 sdhci_writeb(host, 0xe, SDHCI_TIMEOUT_CONTROL); 1092 1093 hs400_tuning = host->flags & SDHCI_HS400_TUNING; 1094 1095 do { 1096 if (esdhc->quirk_limited_clk_division && 1097 hs400_tuning) 1098 esdhc_of_set_clock(host, host->clock); 1099 1100 /* Do HW tuning */ 1101 val = sdhci_readl(host, ESDHC_TBCTL); 1102 val &= ~ESDHC_TB_MODE_MASK; 1103 val |= ESDHC_TB_MODE_3; 1104 sdhci_writel(host, val, ESDHC_TBCTL); 1105 1106 ret = sdhci_execute_tuning(mmc, opcode); 1107 if (ret) 1108 break; 1109 1110 /* For type2 affected platforms of the tuning erratum, 1111 * tuning may succeed although eSDHC might not have 1112 * tuned properly. Need to check tuning window. 1113 */ 1114 if (esdhc->quirk_tuning_erratum_type2 && 1115 !host->tuning_err) { 1116 esdhc_tuning_window_ptr(host, &window_start, 1117 &window_end); 1118 if (abs(window_start - window_end) > 1119 (4 * esdhc->div_ratio + 2)) 1120 host->tuning_err = -EAGAIN; 1121 } 1122 1123 /* If HW tuning fails and triggers erratum, 1124 * try workaround. 1125 */ 1126 ret = host->tuning_err; 1127 if (ret == -EAGAIN && 1128 (esdhc->quirk_tuning_erratum_type1 || 1129 esdhc->quirk_tuning_erratum_type2)) { 1130 /* Recover HS400 tuning flag */ 1131 if (hs400_tuning) 1132 host->flags |= SDHCI_HS400_TUNING; 1133 pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n", 1134 mmc_hostname(mmc)); 1135 /* Do SW tuning */ 1136 esdhc_prepare_sw_tuning(host, &window_start, 1137 &window_end); 1138 ret = esdhc_execute_sw_tuning(mmc, opcode, 1139 window_start, 1140 window_end); 1141 if (ret) 1142 break; 1143 1144 /* Retry both HW/SW tuning with reduced clock. */ 1145 ret = host->tuning_err; 1146 if (ret == -EAGAIN && retries) { 1147 /* Recover HS400 tuning flag */ 1148 if (hs400_tuning) 1149 host->flags |= SDHCI_HS400_TUNING; 1150 1151 clk = host->max_clk / (esdhc->div_ratio + 1); 1152 esdhc_of_set_clock(host, clk); 1153 pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n", 1154 mmc_hostname(mmc)); 1155 } else { 1156 break; 1157 } 1158 } else { 1159 break; 1160 } 1161 } while (retries--); 1162 1163 if (ret) { 1164 esdhc_tuning_block_enable(host, false); 1165 } else if (hs400_tuning) { 1166 val = sdhci_readl(host, ESDHC_SDTIMNGCTL); 1167 val |= ESDHC_FLW_CTL_BG; 1168 sdhci_writel(host, val, ESDHC_SDTIMNGCTL); 1169 } 1170 1171 return ret; 1172 } 1173 1174 static void esdhc_set_uhs_signaling(struct sdhci_host *host, 1175 unsigned int timing) 1176 { 1177 u32 val; 1178 1179 /* 1180 * There are specific registers setting for HS400 mode. 1181 * Clean all of them if controller is in HS400 mode to 1182 * exit HS400 mode before re-setting any speed mode. 1183 */ 1184 val = sdhci_readl(host, ESDHC_TBCTL); 1185 if (val & ESDHC_HS400_MODE) { 1186 val = sdhci_readl(host, ESDHC_SDTIMNGCTL); 1187 val &= ~ESDHC_FLW_CTL_BG; 1188 sdhci_writel(host, val, ESDHC_SDTIMNGCTL); 1189 1190 val = sdhci_readl(host, ESDHC_SDCLKCTL); 1191 val &= ~ESDHC_CMD_CLK_CTL; 1192 sdhci_writel(host, val, ESDHC_SDCLKCTL); 1193 1194 esdhc_clock_enable(host, false); 1195 val = sdhci_readl(host, ESDHC_TBCTL); 1196 val &= ~ESDHC_HS400_MODE; 1197 sdhci_writel(host, val, ESDHC_TBCTL); 1198 esdhc_clock_enable(host, true); 1199 1200 val = sdhci_readl(host, ESDHC_DLLCFG0); 1201 val &= ~(ESDHC_DLL_ENABLE | ESDHC_DLL_FREQ_SEL); 1202 sdhci_writel(host, val, ESDHC_DLLCFG0); 1203 1204 val = sdhci_readl(host, ESDHC_TBCTL); 1205 val &= ~ESDHC_HS400_WNDW_ADJUST; 1206 sdhci_writel(host, val, ESDHC_TBCTL); 1207 1208 esdhc_tuning_block_enable(host, false); 1209 } 1210 1211 if (timing == MMC_TIMING_MMC_HS400) 1212 esdhc_tuning_block_enable(host, true); 1213 else 1214 sdhci_set_uhs_signaling(host, timing); 1215 } 1216 1217 static u32 esdhc_irq(struct sdhci_host *host, u32 intmask) 1218 { 1219 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1220 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); 1221 u32 command; 1222 1223 if (esdhc->quirk_trans_complete_erratum) { 1224 command = SDHCI_GET_CMD(sdhci_readw(host, 1225 SDHCI_COMMAND)); 1226 if (command == MMC_WRITE_MULTIPLE_BLOCK && 1227 sdhci_readw(host, SDHCI_BLOCK_COUNT) && 1228 intmask & SDHCI_INT_DATA_END) { 1229 intmask &= ~SDHCI_INT_DATA_END; 1230 sdhci_writel(host, SDHCI_INT_DATA_END, 1231 SDHCI_INT_STATUS); 1232 } 1233 } 1234 return intmask; 1235 } 1236 1237 #ifdef CONFIG_PM_SLEEP 1238 static u32 esdhc_proctl; 1239 static int esdhc_of_suspend(struct device *dev) 1240 { 1241 struct sdhci_host *host = dev_get_drvdata(dev); 1242 1243 esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL); 1244 1245 if (host->tuning_mode != SDHCI_TUNING_MODE_3) 1246 mmc_retune_needed(host->mmc); 1247 1248 return sdhci_suspend_host(host); 1249 } 1250 1251 static int esdhc_of_resume(struct device *dev) 1252 { 1253 struct sdhci_host *host = dev_get_drvdata(dev); 1254 int ret = sdhci_resume_host(host); 1255 1256 if (ret == 0) { 1257 /* Isn't this already done by sdhci_resume_host() ? --rmk */ 1258 esdhc_of_enable_dma(host); 1259 sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL); 1260 } 1261 return ret; 1262 } 1263 #endif 1264 1265 static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops, 1266 esdhc_of_suspend, 1267 esdhc_of_resume); 1268 1269 static const struct sdhci_ops sdhci_esdhc_be_ops = { 1270 .read_l = esdhc_be_readl, 1271 .read_w = esdhc_be_readw, 1272 .read_b = esdhc_be_readb, 1273 .write_l = esdhc_be_writel, 1274 .write_w = esdhc_be_writew, 1275 .write_b = esdhc_be_writeb, 1276 .set_clock = esdhc_of_set_clock, 1277 .enable_dma = esdhc_of_enable_dma, 1278 .get_max_clock = esdhc_of_get_max_clock, 1279 .get_min_clock = esdhc_of_get_min_clock, 1280 .adma_workaround = esdhc_of_adma_workaround, 1281 .set_bus_width = esdhc_pltfm_set_bus_width, 1282 .reset = esdhc_reset, 1283 .set_uhs_signaling = esdhc_set_uhs_signaling, 1284 .irq = esdhc_irq, 1285 }; 1286 1287 static const struct sdhci_ops sdhci_esdhc_le_ops = { 1288 .read_l = esdhc_le_readl, 1289 .read_w = esdhc_le_readw, 1290 .read_b = esdhc_le_readb, 1291 .write_l = esdhc_le_writel, 1292 .write_w = esdhc_le_writew, 1293 .write_b = esdhc_le_writeb, 1294 .set_clock = esdhc_of_set_clock, 1295 .enable_dma = esdhc_of_enable_dma, 1296 .get_max_clock = esdhc_of_get_max_clock, 1297 .get_min_clock = esdhc_of_get_min_clock, 1298 .adma_workaround = esdhc_of_adma_workaround, 1299 .set_bus_width = esdhc_pltfm_set_bus_width, 1300 .reset = esdhc_reset, 1301 .set_uhs_signaling = esdhc_set_uhs_signaling, 1302 .irq = esdhc_irq, 1303 }; 1304 1305 static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = { 1306 .quirks = ESDHC_DEFAULT_QUIRKS | 1307 #ifdef CONFIG_PPC 1308 SDHCI_QUIRK_BROKEN_CARD_DETECTION | 1309 #endif 1310 SDHCI_QUIRK_NO_CARD_NO_RESET | 1311 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, 1312 .ops = &sdhci_esdhc_be_ops, 1313 }; 1314 1315 static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = { 1316 .quirks = ESDHC_DEFAULT_QUIRKS | 1317 SDHCI_QUIRK_NO_CARD_NO_RESET | 1318 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, 1319 .ops = &sdhci_esdhc_le_ops, 1320 }; 1321 1322 static struct soc_device_attribute soc_incorrect_hostver[] = { 1323 { .family = "QorIQ T4240", .revision = "1.0", }, 1324 { .family = "QorIQ T4240", .revision = "2.0", }, 1325 { /* sentinel */ } 1326 }; 1327 1328 static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = { 1329 { .family = "QorIQ LX2160A", .revision = "1.0", }, 1330 { .family = "QorIQ LX2160A", .revision = "2.0", }, 1331 { .family = "QorIQ LS1028A", .revision = "1.0", }, 1332 { /* sentinel */ } 1333 }; 1334 1335 static struct soc_device_attribute soc_unreliable_pulse_detection[] = { 1336 { .family = "QorIQ LX2160A", .revision = "1.0", }, 1337 { .family = "QorIQ LX2160A", .revision = "2.0", }, 1338 { .family = "QorIQ LS1028A", .revision = "1.0", }, 1339 { /* sentinel */ } 1340 }; 1341 1342 static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host) 1343 { 1344 const struct of_device_id *match; 1345 struct sdhci_pltfm_host *pltfm_host; 1346 struct sdhci_esdhc *esdhc; 1347 struct device_node *np; 1348 struct clk *clk; 1349 u32 val; 1350 u16 host_ver; 1351 1352 pltfm_host = sdhci_priv(host); 1353 esdhc = sdhci_pltfm_priv(pltfm_host); 1354 1355 host_ver = sdhci_readw(host, SDHCI_HOST_VERSION); 1356 esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >> 1357 SDHCI_VENDOR_VER_SHIFT; 1358 esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK; 1359 if (soc_device_match(soc_incorrect_hostver)) 1360 esdhc->quirk_incorrect_hostver = true; 1361 else 1362 esdhc->quirk_incorrect_hostver = false; 1363 1364 if (soc_device_match(soc_fixup_sdhc_clkdivs)) 1365 esdhc->quirk_limited_clk_division = true; 1366 else 1367 esdhc->quirk_limited_clk_division = false; 1368 1369 if (soc_device_match(soc_unreliable_pulse_detection)) 1370 esdhc->quirk_unreliable_pulse_detection = true; 1371 else 1372 esdhc->quirk_unreliable_pulse_detection = false; 1373 1374 match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node); 1375 if (match) 1376 esdhc->clk_fixup = match->data; 1377 np = pdev->dev.of_node; 1378 1379 if (of_device_is_compatible(np, "fsl,p2020-esdhc")) { 1380 esdhc->quirk_delay_before_data_reset = true; 1381 esdhc->quirk_trans_complete_erratum = true; 1382 } 1383 1384 clk = of_clk_get(np, 0); 1385 if (!IS_ERR(clk)) { 1386 /* 1387 * esdhc->peripheral_clock would be assigned with a value 1388 * which is eSDHC base clock when use periperal clock. 1389 * For some platforms, the clock value got by common clk 1390 * API is peripheral clock while the eSDHC base clock is 1391 * 1/2 peripheral clock. 1392 */ 1393 if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") || 1394 of_device_is_compatible(np, "fsl,ls1028a-esdhc") || 1395 of_device_is_compatible(np, "fsl,ls1088a-esdhc")) 1396 esdhc->peripheral_clock = clk_get_rate(clk) / 2; 1397 else 1398 esdhc->peripheral_clock = clk_get_rate(clk); 1399 1400 clk_put(clk); 1401 } 1402 1403 esdhc_clock_enable(host, false); 1404 val = sdhci_readl(host, ESDHC_DMA_SYSCTL); 1405 /* 1406 * This bit is not able to be reset by SDHCI_RESET_ALL. Need to 1407 * initialize it as 1 or 0 once, to override the different value 1408 * which may be configured in bootloader. 1409 */ 1410 if (esdhc->peripheral_clock) 1411 val |= ESDHC_PERIPHERAL_CLK_SEL; 1412 else 1413 val &= ~ESDHC_PERIPHERAL_CLK_SEL; 1414 sdhci_writel(host, val, ESDHC_DMA_SYSCTL); 1415 esdhc_clock_enable(host, true); 1416 } 1417 1418 static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc) 1419 { 1420 esdhc_tuning_block_enable(mmc_priv(mmc), false); 1421 return 0; 1422 } 1423 1424 static int sdhci_esdhc_probe(struct platform_device *pdev) 1425 { 1426 struct sdhci_host *host; 1427 struct device_node *np, *tp; 1428 struct sdhci_pltfm_host *pltfm_host; 1429 struct sdhci_esdhc *esdhc; 1430 int ret; 1431 1432 np = pdev->dev.of_node; 1433 1434 if (of_property_read_bool(np, "little-endian")) 1435 host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata, 1436 sizeof(struct sdhci_esdhc)); 1437 else 1438 host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata, 1439 sizeof(struct sdhci_esdhc)); 1440 1441 if (IS_ERR(host)) 1442 return PTR_ERR(host); 1443 1444 host->mmc_host_ops.start_signal_voltage_switch = 1445 esdhc_signal_voltage_switch; 1446 host->mmc_host_ops.execute_tuning = esdhc_execute_tuning; 1447 host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr; 1448 host->tuning_delay = 1; 1449 1450 esdhc_init(pdev, host); 1451 1452 sdhci_get_of_property(pdev); 1453 1454 pltfm_host = sdhci_priv(host); 1455 esdhc = sdhci_pltfm_priv(pltfm_host); 1456 if (soc_device_match(soc_tuning_erratum_type1)) 1457 esdhc->quirk_tuning_erratum_type1 = true; 1458 else 1459 esdhc->quirk_tuning_erratum_type1 = false; 1460 1461 if (soc_device_match(soc_tuning_erratum_type2)) 1462 esdhc->quirk_tuning_erratum_type2 = true; 1463 else 1464 esdhc->quirk_tuning_erratum_type2 = false; 1465 1466 if (esdhc->vendor_ver == VENDOR_V_22) 1467 host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23; 1468 1469 if (esdhc->vendor_ver > VENDOR_V_22) 1470 host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ; 1471 1472 tp = of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc"); 1473 if (tp) { 1474 of_node_put(tp); 1475 host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST; 1476 host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; 1477 } 1478 1479 if (of_device_is_compatible(np, "fsl,p5040-esdhc") || 1480 of_device_is_compatible(np, "fsl,p5020-esdhc") || 1481 of_device_is_compatible(np, "fsl,p4080-esdhc") || 1482 of_device_is_compatible(np, "fsl,p1020-esdhc") || 1483 of_device_is_compatible(np, "fsl,t1040-esdhc")) 1484 host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION; 1485 1486 if (of_device_is_compatible(np, "fsl,ls1021a-esdhc")) 1487 host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; 1488 1489 esdhc->quirk_ignore_data_inhibit = false; 1490 if (of_device_is_compatible(np, "fsl,p2020-esdhc")) { 1491 /* 1492 * Freescale messed up with P2020 as it has a non-standard 1493 * host control register 1494 */ 1495 host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL; 1496 esdhc->quirk_ignore_data_inhibit = true; 1497 } 1498 1499 /* call to generic mmc_of_parse to support additional capabilities */ 1500 ret = mmc_of_parse(host->mmc); 1501 if (ret) 1502 goto err; 1503 1504 mmc_of_parse_voltage(host->mmc, &host->ocr_mask); 1505 1506 ret = sdhci_add_host(host); 1507 if (ret) 1508 goto err; 1509 1510 return 0; 1511 err: 1512 sdhci_pltfm_free(pdev); 1513 return ret; 1514 } 1515 1516 static struct platform_driver sdhci_esdhc_driver = { 1517 .driver = { 1518 .name = "sdhci-esdhc", 1519 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 1520 .of_match_table = sdhci_esdhc_of_match, 1521 .pm = &esdhc_of_dev_pm_ops, 1522 }, 1523 .probe = sdhci_esdhc_probe, 1524 .remove = sdhci_pltfm_unregister, 1525 }; 1526 1527 module_platform_driver(sdhci_esdhc_driver); 1528 1529 MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC"); 1530 MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, " 1531 "Anton Vorontsov <avorontsov@ru.mvista.com>"); 1532 MODULE_LICENSE("GPL v2"); 1533