xref: /openbmc/linux/drivers/mmc/host/sdhci-msm.c (revision e6f9e590)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4  *
5  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/delay.h>
11 #include <linux/mmc/mmc.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/pm_opp.h>
14 #include <linux/slab.h>
15 #include <linux/iopoll.h>
16 #include <linux/firmware/qcom/qcom_scm.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/interconnect.h>
19 #include <linux/pinctrl/consumer.h>
20 #include <linux/reset.h>
21 
22 #include "sdhci-cqhci.h"
23 #include "sdhci-pltfm.h"
24 #include "cqhci.h"
25 
26 #define CORE_MCI_VERSION		0x50
27 #define CORE_VERSION_MAJOR_SHIFT	28
28 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
29 #define CORE_VERSION_MINOR_MASK		0xff
30 
31 #define CORE_MCI_GENERICS		0x70
32 #define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
33 
34 #define HC_MODE_EN		0x1
35 #define CORE_POWER		0x0
36 #define CORE_SW_RST		BIT(7)
37 #define FF_CLK_SW_RST_DIS	BIT(13)
38 
39 #define CORE_PWRCTL_BUS_OFF	BIT(0)
40 #define CORE_PWRCTL_BUS_ON	BIT(1)
41 #define CORE_PWRCTL_IO_LOW	BIT(2)
42 #define CORE_PWRCTL_IO_HIGH	BIT(3)
43 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
44 #define CORE_PWRCTL_BUS_FAIL    BIT(1)
45 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
46 #define CORE_PWRCTL_IO_FAIL     BIT(3)
47 #define REQ_BUS_OFF		BIT(0)
48 #define REQ_BUS_ON		BIT(1)
49 #define REQ_IO_LOW		BIT(2)
50 #define REQ_IO_HIGH		BIT(3)
51 #define INT_MASK		0xf
52 #define MAX_PHASES		16
53 #define CORE_DLL_LOCK		BIT(7)
54 #define CORE_DDR_DLL_LOCK	BIT(11)
55 #define CORE_DLL_EN		BIT(16)
56 #define CORE_CDR_EN		BIT(17)
57 #define CORE_CK_OUT_EN		BIT(18)
58 #define CORE_CDR_EXT_EN		BIT(19)
59 #define CORE_DLL_PDN		BIT(29)
60 #define CORE_DLL_RST		BIT(30)
61 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
62 
63 #define CORE_DDR_CAL_EN		BIT(0)
64 #define CORE_FLL_CYCLE_CNT	BIT(18)
65 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
66 
67 #define DLL_USR_CTL_POR_VAL	0x10800
68 #define ENABLE_DLL_LOCK_STATUS	BIT(26)
69 #define FINE_TUNE_MODE_EN	BIT(27)
70 #define BIAS_OK_SIGNAL		BIT(29)
71 
72 #define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
73 #define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
74 
75 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c
76 #define CORE_CLK_PWRSAVE	BIT(1)
77 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
78 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
79 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
80 #define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
81 #define CORE_IO_PAD_PWR_SWITCH	BIT(16)
82 #define CORE_HC_SELECT_IN_EN	BIT(18)
83 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
84 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
85 
86 #define CORE_3_0V_SUPPORT	BIT(25)
87 #define CORE_1_8V_SUPPORT	BIT(26)
88 #define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
89 
90 #define CORE_CSR_CDC_CTLR_CFG0		0x130
91 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
92 #define CORE_HW_AUTOCAL_ENA		BIT(17)
93 
94 #define CORE_CSR_CDC_CTLR_CFG1		0x134
95 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
96 #define CORE_TIMER_ENA			BIT(16)
97 
98 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
99 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
100 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
101 #define CORE_CDC_OFFSET_CFG		0x14C
102 #define CORE_CSR_CDC_DELAY_CFG		0x150
103 #define CORE_CDC_SLAVE_DDA_CFG		0x160
104 #define CORE_CSR_CDC_STATUS0		0x164
105 #define CORE_CALIBRATION_DONE		BIT(0)
106 
107 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
108 
109 #define CORE_CSR_CDC_GEN_CFG		0x178
110 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
111 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
112 
113 #define CORE_CDC_T4_DLY_SEL		BIT(0)
114 #define CORE_CMDIN_RCLK_EN		BIT(1)
115 #define CORE_START_CDC_TRAFFIC		BIT(6)
116 
117 #define CORE_PWRSAVE_DLL	BIT(3)
118 
119 #define DDR_CONFIG_POR_VAL	0x80040873
120 
121 
122 #define INVALID_TUNING_PHASE	-1
123 #define SDHCI_MSM_MIN_CLOCK	400000
124 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
125 
126 #define CDR_SELEXT_SHIFT	20
127 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
128 #define CMUX_SHIFT_PHASE_SHIFT	24
129 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
130 
131 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
132 
133 /* Timeout value to avoid infinite waiting for pwr_irq */
134 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
135 
136 /* Max load for eMMC Vdd-io supply */
137 #define MMC_VQMMC_MAX_LOAD_UA	325000
138 
139 #define msm_host_readl(msm_host, host, offset) \
140 	msm_host->var_ops->msm_readl_relaxed(host, offset)
141 
142 #define msm_host_writel(msm_host, val, host, offset) \
143 	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
144 
145 /* CQHCI vendor specific registers */
146 #define CQHCI_VENDOR_CFG1	0xA00
147 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
148 
149 struct sdhci_msm_offset {
150 	u32 core_hc_mode;
151 	u32 core_mci_data_cnt;
152 	u32 core_mci_status;
153 	u32 core_mci_fifo_cnt;
154 	u32 core_mci_version;
155 	u32 core_generics;
156 	u32 core_testbus_config;
157 	u32 core_testbus_sel2_bit;
158 	u32 core_testbus_ena;
159 	u32 core_testbus_sel2;
160 	u32 core_pwrctl_status;
161 	u32 core_pwrctl_mask;
162 	u32 core_pwrctl_clear;
163 	u32 core_pwrctl_ctl;
164 	u32 core_sdcc_debug_reg;
165 	u32 core_dll_config;
166 	u32 core_dll_status;
167 	u32 core_vendor_spec;
168 	u32 core_vendor_spec_adma_err_addr0;
169 	u32 core_vendor_spec_adma_err_addr1;
170 	u32 core_vendor_spec_func2;
171 	u32 core_vendor_spec_capabilities0;
172 	u32 core_ddr_200_cfg;
173 	u32 core_vendor_spec3;
174 	u32 core_dll_config_2;
175 	u32 core_dll_config_3;
176 	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
177 	u32 core_ddr_config;
178 	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
179 };
180 
181 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
182 	.core_mci_data_cnt = 0x35c,
183 	.core_mci_status = 0x324,
184 	.core_mci_fifo_cnt = 0x308,
185 	.core_mci_version = 0x318,
186 	.core_generics = 0x320,
187 	.core_testbus_config = 0x32c,
188 	.core_testbus_sel2_bit = 3,
189 	.core_testbus_ena = (1 << 31),
190 	.core_testbus_sel2 = (1 << 3),
191 	.core_pwrctl_status = 0x240,
192 	.core_pwrctl_mask = 0x244,
193 	.core_pwrctl_clear = 0x248,
194 	.core_pwrctl_ctl = 0x24c,
195 	.core_sdcc_debug_reg = 0x358,
196 	.core_dll_config = 0x200,
197 	.core_dll_status = 0x208,
198 	.core_vendor_spec = 0x20c,
199 	.core_vendor_spec_adma_err_addr0 = 0x214,
200 	.core_vendor_spec_adma_err_addr1 = 0x218,
201 	.core_vendor_spec_func2 = 0x210,
202 	.core_vendor_spec_capabilities0 = 0x21c,
203 	.core_ddr_200_cfg = 0x224,
204 	.core_vendor_spec3 = 0x250,
205 	.core_dll_config_2 = 0x254,
206 	.core_dll_config_3 = 0x258,
207 	.core_ddr_config = 0x25c,
208 	.core_dll_usr_ctl = 0x388,
209 };
210 
211 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
212 	.core_hc_mode = 0x78,
213 	.core_mci_data_cnt = 0x30,
214 	.core_mci_status = 0x34,
215 	.core_mci_fifo_cnt = 0x44,
216 	.core_mci_version = 0x050,
217 	.core_generics = 0x70,
218 	.core_testbus_config = 0x0cc,
219 	.core_testbus_sel2_bit = 4,
220 	.core_testbus_ena = (1 << 3),
221 	.core_testbus_sel2 = (1 << 4),
222 	.core_pwrctl_status = 0xdc,
223 	.core_pwrctl_mask = 0xe0,
224 	.core_pwrctl_clear = 0xe4,
225 	.core_pwrctl_ctl = 0xe8,
226 	.core_sdcc_debug_reg = 0x124,
227 	.core_dll_config = 0x100,
228 	.core_dll_status = 0x108,
229 	.core_vendor_spec = 0x10c,
230 	.core_vendor_spec_adma_err_addr0 = 0x114,
231 	.core_vendor_spec_adma_err_addr1 = 0x118,
232 	.core_vendor_spec_func2 = 0x110,
233 	.core_vendor_spec_capabilities0 = 0x11c,
234 	.core_ddr_200_cfg = 0x184,
235 	.core_vendor_spec3 = 0x1b0,
236 	.core_dll_config_2 = 0x1b4,
237 	.core_ddr_config_old = 0x1b8,
238 	.core_ddr_config = 0x1bc,
239 };
240 
241 struct sdhci_msm_variant_ops {
242 	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
243 	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
244 			u32 offset);
245 };
246 
247 /*
248  * From V5, register spaces have changed. Wrap this info in a structure
249  * and choose the data_structure based on version info mentioned in DT.
250  */
251 struct sdhci_msm_variant_info {
252 	bool mci_removed;
253 	bool restore_dll_config;
254 	const struct sdhci_msm_variant_ops *var_ops;
255 	const struct sdhci_msm_offset *offset;
256 };
257 
258 struct sdhci_msm_host {
259 	struct platform_device *pdev;
260 	void __iomem *core_mem;	/* MSM SDCC mapped address */
261 	void __iomem *ice_mem;	/* MSM ICE mapped address (if available) */
262 	int pwr_irq;		/* power irq */
263 	struct clk *bus_clk;	/* SDHC bus voter clock */
264 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
265 	/* core, iface, cal, sleep, and ice clocks */
266 	struct clk_bulk_data bulk_clks[5];
267 	unsigned long clk_rate;
268 	struct mmc_host *mmc;
269 	bool use_14lpp_dll_reset;
270 	bool tuning_done;
271 	bool calibration_done;
272 	u8 saved_tuning_phase;
273 	bool use_cdclp533;
274 	u32 curr_pwr_state;
275 	u32 curr_io_level;
276 	wait_queue_head_t pwr_irq_wait;
277 	bool pwr_irq_flag;
278 	u32 caps_0;
279 	bool mci_removed;
280 	bool restore_dll_config;
281 	const struct sdhci_msm_variant_ops *var_ops;
282 	const struct sdhci_msm_offset *offset;
283 	bool use_cdr;
284 	u32 transfer_mode;
285 	bool updated_ddr_cfg;
286 	bool uses_tassadar_dll;
287 	u32 dll_config;
288 	u32 ddr_config;
289 	bool vqmmc_enabled;
290 };
291 
292 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
293 {
294 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
295 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
296 
297 	return msm_host->offset;
298 }
299 
300 /*
301  * APIs to read/write to vendor specific registers which were there in the
302  * core_mem region before MCI was removed.
303  */
304 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
305 		u32 offset)
306 {
307 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
308 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
309 
310 	return readl_relaxed(msm_host->core_mem + offset);
311 }
312 
313 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
314 		u32 offset)
315 {
316 	return readl_relaxed(host->ioaddr + offset);
317 }
318 
319 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
320 		struct sdhci_host *host, u32 offset)
321 {
322 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
323 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
324 
325 	writel_relaxed(val, msm_host->core_mem + offset);
326 }
327 
328 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
329 		struct sdhci_host *host, u32 offset)
330 {
331 	writel_relaxed(val, host->ioaddr + offset);
332 }
333 
334 static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
335 {
336 	struct mmc_ios ios = host->mmc->ios;
337 	/*
338 	 * The SDHC requires internal clock frequency to be double the
339 	 * actual clock that will be set for DDR mode. The controller
340 	 * uses the faster clock(100/400MHz) for some of its parts and
341 	 * send the actual required clock (50/200MHz) to the card.
342 	 */
343 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
344 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
345 	    ios.timing == MMC_TIMING_MMC_HS400 ||
346 	    host->flags & SDHCI_HS400_TUNING)
347 		return 2;
348 	return 1;
349 }
350 
351 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
352 					    unsigned int clock)
353 {
354 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
355 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
356 	struct mmc_ios curr_ios = host->mmc->ios;
357 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
358 	unsigned long achieved_rate;
359 	unsigned int desired_rate;
360 	unsigned int mult;
361 	int rc;
362 
363 	mult = msm_get_clock_mult_for_bus_mode(host);
364 	desired_rate = clock * mult;
365 	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
366 	if (rc) {
367 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
368 		       mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
369 		return;
370 	}
371 
372 	/*
373 	 * Qualcomm clock drivers by default round clock _up_ if they can't
374 	 * make the requested rate.  This is not good for SD.  Yell if we
375 	 * encounter it.
376 	 */
377 	achieved_rate = clk_get_rate(core_clk);
378 	if (achieved_rate > desired_rate)
379 		pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
380 			mmc_hostname(host->mmc), desired_rate, achieved_rate);
381 	host->mmc->actual_clock = achieved_rate / mult;
382 
383 	/* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
384 	msm_host->clk_rate = desired_rate;
385 
386 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
387 		 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
388 }
389 
390 /* Platform specific tuning */
391 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
392 {
393 	u32 wait_cnt = 50;
394 	u8 ck_out_en;
395 	struct mmc_host *mmc = host->mmc;
396 	const struct sdhci_msm_offset *msm_offset =
397 					sdhci_priv_msm_offset(host);
398 
399 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
400 	ck_out_en = !!(readl_relaxed(host->ioaddr +
401 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
402 
403 	while (ck_out_en != poll) {
404 		if (--wait_cnt == 0) {
405 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
406 			       mmc_hostname(mmc), poll);
407 			return -ETIMEDOUT;
408 		}
409 		udelay(1);
410 
411 		ck_out_en = !!(readl_relaxed(host->ioaddr +
412 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
413 	}
414 
415 	return 0;
416 }
417 
418 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
419 {
420 	int rc;
421 	static const u8 grey_coded_phase_table[] = {
422 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
423 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
424 	};
425 	unsigned long flags;
426 	u32 config;
427 	struct mmc_host *mmc = host->mmc;
428 	const struct sdhci_msm_offset *msm_offset =
429 					sdhci_priv_msm_offset(host);
430 
431 	if (phase > 0xf)
432 		return -EINVAL;
433 
434 	spin_lock_irqsave(&host->lock, flags);
435 
436 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
437 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
438 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
439 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
440 
441 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
442 	rc = msm_dll_poll_ck_out_en(host, 0);
443 	if (rc)
444 		goto err_out;
445 
446 	/*
447 	 * Write the selected DLL clock output phase (0 ... 15)
448 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
449 	 */
450 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
451 	config &= ~CDR_SELEXT_MASK;
452 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
453 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
454 
455 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
456 	config |= CORE_CK_OUT_EN;
457 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
458 
459 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
460 	rc = msm_dll_poll_ck_out_en(host, 1);
461 	if (rc)
462 		goto err_out;
463 
464 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
465 	config |= CORE_CDR_EN;
466 	config &= ~CORE_CDR_EXT_EN;
467 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
468 	goto out;
469 
470 err_out:
471 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
472 	       mmc_hostname(mmc), phase);
473 out:
474 	spin_unlock_irqrestore(&host->lock, flags);
475 	return rc;
476 }
477 
478 /*
479  * Find out the greatest range of consecuitive selected
480  * DLL clock output phases that can be used as sampling
481  * setting for SD3.0 UHS-I card read operation (in SDR104
482  * timing mode) or for eMMC4.5 card read operation (in
483  * HS400/HS200 timing mode).
484  * Select the 3/4 of the range and configure the DLL with the
485  * selected DLL clock output phase.
486  */
487 
488 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
489 					   u8 *phase_table, u8 total_phases)
490 {
491 	int ret;
492 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
493 	u8 phases_per_row[MAX_PHASES] = { 0 };
494 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
495 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
496 	bool phase_0_found = false, phase_15_found = false;
497 	struct mmc_host *mmc = host->mmc;
498 
499 	if (!total_phases || (total_phases > MAX_PHASES)) {
500 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
501 		       mmc_hostname(mmc), total_phases);
502 		return -EINVAL;
503 	}
504 
505 	for (cnt = 0; cnt < total_phases; cnt++) {
506 		ranges[row_index][col_index] = phase_table[cnt];
507 		phases_per_row[row_index] += 1;
508 		col_index++;
509 
510 		if ((cnt + 1) == total_phases) {
511 			continue;
512 		/* check if next phase in phase_table is consecutive or not */
513 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
514 			row_index++;
515 			col_index = 0;
516 		}
517 	}
518 
519 	if (row_index >= MAX_PHASES)
520 		return -EINVAL;
521 
522 	/* Check if phase-0 is present in first valid window? */
523 	if (!ranges[0][0]) {
524 		phase_0_found = true;
525 		phase_0_raw_index = 0;
526 		/* Check if cycle exist between 2 valid windows */
527 		for (cnt = 1; cnt <= row_index; cnt++) {
528 			if (phases_per_row[cnt]) {
529 				for (i = 0; i < phases_per_row[cnt]; i++) {
530 					if (ranges[cnt][i] == 15) {
531 						phase_15_found = true;
532 						phase_15_raw_index = cnt;
533 						break;
534 					}
535 				}
536 			}
537 		}
538 	}
539 
540 	/* If 2 valid windows form cycle then merge them as single window */
541 	if (phase_0_found && phase_15_found) {
542 		/* number of phases in raw where phase 0 is present */
543 		u8 phases_0 = phases_per_row[phase_0_raw_index];
544 		/* number of phases in raw where phase 15 is present */
545 		u8 phases_15 = phases_per_row[phase_15_raw_index];
546 
547 		if (phases_0 + phases_15 >= MAX_PHASES)
548 			/*
549 			 * If there are more than 1 phase windows then total
550 			 * number of phases in both the windows should not be
551 			 * more than or equal to MAX_PHASES.
552 			 */
553 			return -EINVAL;
554 
555 		/* Merge 2 cyclic windows */
556 		i = phases_15;
557 		for (cnt = 0; cnt < phases_0; cnt++) {
558 			ranges[phase_15_raw_index][i] =
559 			    ranges[phase_0_raw_index][cnt];
560 			if (++i >= MAX_PHASES)
561 				break;
562 		}
563 
564 		phases_per_row[phase_0_raw_index] = 0;
565 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
566 	}
567 
568 	for (cnt = 0; cnt <= row_index; cnt++) {
569 		if (phases_per_row[cnt] > curr_max) {
570 			curr_max = phases_per_row[cnt];
571 			selected_row_index = cnt;
572 		}
573 	}
574 
575 	i = (curr_max * 3) / 4;
576 	if (i)
577 		i--;
578 
579 	ret = ranges[selected_row_index][i];
580 
581 	if (ret >= MAX_PHASES) {
582 		ret = -EINVAL;
583 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
584 		       mmc_hostname(mmc), ret);
585 	}
586 
587 	return ret;
588 }
589 
590 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
591 {
592 	u32 mclk_freq = 0, config;
593 	const struct sdhci_msm_offset *msm_offset =
594 					sdhci_priv_msm_offset(host);
595 
596 	/* Program the MCLK value to MCLK_FREQ bit field */
597 	if (host->clock <= 112000000)
598 		mclk_freq = 0;
599 	else if (host->clock <= 125000000)
600 		mclk_freq = 1;
601 	else if (host->clock <= 137000000)
602 		mclk_freq = 2;
603 	else if (host->clock <= 150000000)
604 		mclk_freq = 3;
605 	else if (host->clock <= 162000000)
606 		mclk_freq = 4;
607 	else if (host->clock <= 175000000)
608 		mclk_freq = 5;
609 	else if (host->clock <= 187000000)
610 		mclk_freq = 6;
611 	else if (host->clock <= 200000000)
612 		mclk_freq = 7;
613 
614 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
615 	config &= ~CMUX_SHIFT_PHASE_MASK;
616 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
617 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
618 }
619 
620 /* Initialize the DLL (Programmable Delay Line) */
621 static int msm_init_cm_dll(struct sdhci_host *host)
622 {
623 	struct mmc_host *mmc = host->mmc;
624 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
625 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
626 	int wait_cnt = 50;
627 	unsigned long flags, xo_clk = 0;
628 	u32 config;
629 	const struct sdhci_msm_offset *msm_offset =
630 					msm_host->offset;
631 
632 	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
633 		xo_clk = clk_get_rate(msm_host->xo_clk);
634 
635 	spin_lock_irqsave(&host->lock, flags);
636 
637 	/*
638 	 * Make sure that clock is always enabled when DLL
639 	 * tuning is in progress. Keeping PWRSAVE ON may
640 	 * turn off the clock.
641 	 */
642 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
643 	config &= ~CORE_CLK_PWRSAVE;
644 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
645 
646 	if (msm_host->dll_config)
647 		writel_relaxed(msm_host->dll_config,
648 				host->ioaddr + msm_offset->core_dll_config);
649 
650 	if (msm_host->use_14lpp_dll_reset) {
651 		config = readl_relaxed(host->ioaddr +
652 				msm_offset->core_dll_config);
653 		config &= ~CORE_CK_OUT_EN;
654 		writel_relaxed(config, host->ioaddr +
655 				msm_offset->core_dll_config);
656 
657 		config = readl_relaxed(host->ioaddr +
658 				msm_offset->core_dll_config_2);
659 		config |= CORE_DLL_CLOCK_DISABLE;
660 		writel_relaxed(config, host->ioaddr +
661 				msm_offset->core_dll_config_2);
662 	}
663 
664 	config = readl_relaxed(host->ioaddr +
665 			msm_offset->core_dll_config);
666 	config |= CORE_DLL_RST;
667 	writel_relaxed(config, host->ioaddr +
668 			msm_offset->core_dll_config);
669 
670 	config = readl_relaxed(host->ioaddr +
671 			msm_offset->core_dll_config);
672 	config |= CORE_DLL_PDN;
673 	writel_relaxed(config, host->ioaddr +
674 			msm_offset->core_dll_config);
675 
676 	if (!msm_host->dll_config)
677 		msm_cm_dll_set_freq(host);
678 
679 	if (msm_host->use_14lpp_dll_reset &&
680 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
681 		u32 mclk_freq = 0;
682 
683 		config = readl_relaxed(host->ioaddr +
684 				msm_offset->core_dll_config_2);
685 		config &= CORE_FLL_CYCLE_CNT;
686 		if (config)
687 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
688 					xo_clk);
689 		else
690 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
691 					xo_clk);
692 
693 		config = readl_relaxed(host->ioaddr +
694 				msm_offset->core_dll_config_2);
695 		config &= ~(0xFF << 10);
696 		config |= mclk_freq << 10;
697 
698 		writel_relaxed(config, host->ioaddr +
699 				msm_offset->core_dll_config_2);
700 		/* wait for 5us before enabling DLL clock */
701 		udelay(5);
702 	}
703 
704 	config = readl_relaxed(host->ioaddr +
705 			msm_offset->core_dll_config);
706 	config &= ~CORE_DLL_RST;
707 	writel_relaxed(config, host->ioaddr +
708 			msm_offset->core_dll_config);
709 
710 	config = readl_relaxed(host->ioaddr +
711 			msm_offset->core_dll_config);
712 	config &= ~CORE_DLL_PDN;
713 	writel_relaxed(config, host->ioaddr +
714 			msm_offset->core_dll_config);
715 
716 	if (msm_host->use_14lpp_dll_reset) {
717 		if (!msm_host->dll_config)
718 			msm_cm_dll_set_freq(host);
719 		config = readl_relaxed(host->ioaddr +
720 				msm_offset->core_dll_config_2);
721 		config &= ~CORE_DLL_CLOCK_DISABLE;
722 		writel_relaxed(config, host->ioaddr +
723 				msm_offset->core_dll_config_2);
724 	}
725 
726 	/*
727 	 * Configure DLL user control register to enable DLL status.
728 	 * This setting is applicable to SDCC v5.1 onwards only.
729 	 */
730 	if (msm_host->uses_tassadar_dll) {
731 		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
732 			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
733 		writel_relaxed(config, host->ioaddr +
734 				msm_offset->core_dll_usr_ctl);
735 
736 		config = readl_relaxed(host->ioaddr +
737 				msm_offset->core_dll_config_3);
738 		config &= ~0xFF;
739 		if (msm_host->clk_rate < 150000000)
740 			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
741 		else
742 			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
743 		writel_relaxed(config, host->ioaddr +
744 			msm_offset->core_dll_config_3);
745 	}
746 
747 	config = readl_relaxed(host->ioaddr +
748 			msm_offset->core_dll_config);
749 	config |= CORE_DLL_EN;
750 	writel_relaxed(config, host->ioaddr +
751 			msm_offset->core_dll_config);
752 
753 	config = readl_relaxed(host->ioaddr +
754 			msm_offset->core_dll_config);
755 	config |= CORE_CK_OUT_EN;
756 	writel_relaxed(config, host->ioaddr +
757 			msm_offset->core_dll_config);
758 
759 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
760 	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
761 		 CORE_DLL_LOCK)) {
762 		/* max. wait for 50us sec for LOCK bit to be set */
763 		if (--wait_cnt == 0) {
764 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
765 			       mmc_hostname(mmc));
766 			spin_unlock_irqrestore(&host->lock, flags);
767 			return -ETIMEDOUT;
768 		}
769 		udelay(1);
770 	}
771 
772 	spin_unlock_irqrestore(&host->lock, flags);
773 	return 0;
774 }
775 
776 static void msm_hc_select_default(struct sdhci_host *host)
777 {
778 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
779 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
780 	u32 config;
781 	const struct sdhci_msm_offset *msm_offset =
782 					msm_host->offset;
783 
784 	if (!msm_host->use_cdclp533) {
785 		config = readl_relaxed(host->ioaddr +
786 				msm_offset->core_vendor_spec3);
787 		config &= ~CORE_PWRSAVE_DLL;
788 		writel_relaxed(config, host->ioaddr +
789 				msm_offset->core_vendor_spec3);
790 	}
791 
792 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
793 	config &= ~CORE_HC_MCLK_SEL_MASK;
794 	config |= CORE_HC_MCLK_SEL_DFLT;
795 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
796 
797 	/*
798 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
799 	 * configuration from Host Control2 register for all other
800 	 * modes.
801 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
802 	 * in VENDOR_SPEC_FUNC
803 	 */
804 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
805 	config &= ~CORE_HC_SELECT_IN_EN;
806 	config &= ~CORE_HC_SELECT_IN_MASK;
807 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
808 
809 	/*
810 	 * Make sure above writes impacting free running MCLK are completed
811 	 * before changing the clk_rate at GCC.
812 	 */
813 	wmb();
814 }
815 
816 static void msm_hc_select_hs400(struct sdhci_host *host)
817 {
818 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
819 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
820 	struct mmc_ios ios = host->mmc->ios;
821 	u32 config, dll_lock;
822 	int rc;
823 	const struct sdhci_msm_offset *msm_offset =
824 					msm_host->offset;
825 
826 	/* Select the divided clock (free running MCLK/2) */
827 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
828 	config &= ~CORE_HC_MCLK_SEL_MASK;
829 	config |= CORE_HC_MCLK_SEL_HS400;
830 
831 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
832 	/*
833 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
834 	 * register
835 	 */
836 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
837 	    !msm_host->calibration_done) {
838 		config = readl_relaxed(host->ioaddr +
839 				msm_offset->core_vendor_spec);
840 		config |= CORE_HC_SELECT_IN_HS400;
841 		config |= CORE_HC_SELECT_IN_EN;
842 		writel_relaxed(config, host->ioaddr +
843 				msm_offset->core_vendor_spec);
844 	}
845 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
846 		/*
847 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
848 		 * core_dll_status to be set. This should get set
849 		 * within 15 us at 200 MHz.
850 		 */
851 		rc = readl_relaxed_poll_timeout(host->ioaddr +
852 						msm_offset->core_dll_status,
853 						dll_lock,
854 						(dll_lock &
855 						(CORE_DLL_LOCK |
856 						CORE_DDR_DLL_LOCK)), 10,
857 						1000);
858 		if (rc == -ETIMEDOUT)
859 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
860 			       mmc_hostname(host->mmc), dll_lock);
861 	}
862 	/*
863 	 * Make sure above writes impacting free running MCLK are completed
864 	 * before changing the clk_rate at GCC.
865 	 */
866 	wmb();
867 }
868 
869 /*
870  * sdhci_msm_hc_select_mode :- In general all timing modes are
871  * controlled via UHS mode select in Host Control2 register.
872  * eMMC specific HS200/HS400 doesn't have their respective modes
873  * defined here, hence we use these values.
874  *
875  * HS200 - SDR104 (Since they both are equivalent in functionality)
876  * HS400 - This involves multiple configurations
877  *		Initially SDR104 - when tuning is required as HS200
878  *		Then when switching to DDR @ 400MHz (HS400) we use
879  *		the vendor specific HC_SELECT_IN to control the mode.
880  *
881  * In addition to controlling the modes we also need to select the
882  * correct input clock for DLL depending on the mode.
883  *
884  * HS400 - divided clock (free running MCLK/2)
885  * All other modes - default (free running MCLK)
886  */
887 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
888 {
889 	struct mmc_ios ios = host->mmc->ios;
890 
891 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
892 	    host->flags & SDHCI_HS400_TUNING)
893 		msm_hc_select_hs400(host);
894 	else
895 		msm_hc_select_default(host);
896 }
897 
898 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
899 {
900 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
901 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
902 	u32 config, calib_done;
903 	int ret;
904 	const struct sdhci_msm_offset *msm_offset =
905 					msm_host->offset;
906 
907 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
908 
909 	/*
910 	 * Retuning in HS400 (DDR mode) will fail, just reset the
911 	 * tuning block and restore the saved tuning phase.
912 	 */
913 	ret = msm_init_cm_dll(host);
914 	if (ret)
915 		goto out;
916 
917 	/* Set the selected phase in delay line hw block */
918 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
919 	if (ret)
920 		goto out;
921 
922 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
923 	config |= CORE_CMD_DAT_TRACK_SEL;
924 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
925 
926 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
927 	config &= ~CORE_CDC_T4_DLY_SEL;
928 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
929 
930 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
931 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
932 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
933 
934 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
935 	config |= CORE_CDC_SWITCH_RC_EN;
936 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
937 
938 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
939 	config &= ~CORE_START_CDC_TRAFFIC;
940 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
941 
942 	/* Perform CDC Register Initialization Sequence */
943 
944 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
945 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
946 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
947 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
948 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
949 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
950 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
951 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
952 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
953 
954 	/* CDC HW Calibration */
955 
956 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
957 	config |= CORE_SW_TRIG_FULL_CALIB;
958 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
959 
960 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
961 	config &= ~CORE_SW_TRIG_FULL_CALIB;
962 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
963 
964 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
965 	config |= CORE_HW_AUTOCAL_ENA;
966 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
967 
968 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
969 	config |= CORE_TIMER_ENA;
970 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
971 
972 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
973 					 calib_done,
974 					 (calib_done & CORE_CALIBRATION_DONE),
975 					 1, 50);
976 
977 	if (ret == -ETIMEDOUT) {
978 		pr_err("%s: %s: CDC calibration was not completed\n",
979 		       mmc_hostname(host->mmc), __func__);
980 		goto out;
981 	}
982 
983 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
984 			& CORE_CDC_ERROR_CODE_MASK;
985 	if (ret) {
986 		pr_err("%s: %s: CDC error code %d\n",
987 		       mmc_hostname(host->mmc), __func__, ret);
988 		ret = -EINVAL;
989 		goto out;
990 	}
991 
992 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
993 	config |= CORE_START_CDC_TRAFFIC;
994 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
995 out:
996 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
997 		 __func__, ret);
998 	return ret;
999 }
1000 
1001 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1002 {
1003 	struct mmc_host *mmc = host->mmc;
1004 	u32 dll_status, config, ddr_cfg_offset;
1005 	int ret;
1006 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1007 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1008 	const struct sdhci_msm_offset *msm_offset =
1009 					sdhci_priv_msm_offset(host);
1010 
1011 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1012 
1013 	/*
1014 	 * Currently the core_ddr_config register defaults to desired
1015 	 * configuration on reset. Currently reprogramming the power on
1016 	 * reset (POR) value in case it might have been modified by
1017 	 * bootloaders. In the future, if this changes, then the desired
1018 	 * values will need to be programmed appropriately.
1019 	 */
1020 	if (msm_host->updated_ddr_cfg)
1021 		ddr_cfg_offset = msm_offset->core_ddr_config;
1022 	else
1023 		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1024 	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1025 
1026 	if (mmc->ios.enhanced_strobe) {
1027 		config = readl_relaxed(host->ioaddr +
1028 				msm_offset->core_ddr_200_cfg);
1029 		config |= CORE_CMDIN_RCLK_EN;
1030 		writel_relaxed(config, host->ioaddr +
1031 				msm_offset->core_ddr_200_cfg);
1032 	}
1033 
1034 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1035 	config |= CORE_DDR_CAL_EN;
1036 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1037 
1038 	ret = readl_relaxed_poll_timeout(host->ioaddr +
1039 					msm_offset->core_dll_status,
1040 					dll_status,
1041 					(dll_status & CORE_DDR_DLL_LOCK),
1042 					10, 1000);
1043 
1044 	if (ret == -ETIMEDOUT) {
1045 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1046 		       mmc_hostname(host->mmc), __func__);
1047 		goto out;
1048 	}
1049 
1050 	/*
1051 	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1052 	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1053 	 * and MCLK must be switched on for at-least 1us before DATA
1054 	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1055 	 * guarantee above requirement. So PWRSAVE_DLL should not be
1056 	 * turned on for host controllers using this DLL.
1057 	 */
1058 	if (!msm_host->use_14lpp_dll_reset) {
1059 		config = readl_relaxed(host->ioaddr +
1060 				msm_offset->core_vendor_spec3);
1061 		config |= CORE_PWRSAVE_DLL;
1062 		writel_relaxed(config, host->ioaddr +
1063 				msm_offset->core_vendor_spec3);
1064 	}
1065 
1066 	/*
1067 	 * Drain writebuffer to ensure above DLL calibration
1068 	 * and PWRSAVE DLL is enabled.
1069 	 */
1070 	wmb();
1071 out:
1072 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1073 		 __func__, ret);
1074 	return ret;
1075 }
1076 
1077 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1078 {
1079 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1080 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1081 	struct mmc_host *mmc = host->mmc;
1082 	int ret;
1083 	u32 config;
1084 	const struct sdhci_msm_offset *msm_offset =
1085 					msm_host->offset;
1086 
1087 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1088 
1089 	/*
1090 	 * Retuning in HS400 (DDR mode) will fail, just reset the
1091 	 * tuning block and restore the saved tuning phase.
1092 	 */
1093 	ret = msm_init_cm_dll(host);
1094 	if (ret)
1095 		goto out;
1096 
1097 	if (!mmc->ios.enhanced_strobe) {
1098 		/* Set the selected phase in delay line hw block */
1099 		ret = msm_config_cm_dll_phase(host,
1100 					      msm_host->saved_tuning_phase);
1101 		if (ret)
1102 			goto out;
1103 		config = readl_relaxed(host->ioaddr +
1104 				msm_offset->core_dll_config);
1105 		config |= CORE_CMD_DAT_TRACK_SEL;
1106 		writel_relaxed(config, host->ioaddr +
1107 				msm_offset->core_dll_config);
1108 	}
1109 
1110 	if (msm_host->use_cdclp533)
1111 		ret = sdhci_msm_cdclp533_calibration(host);
1112 	else
1113 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1114 out:
1115 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1116 		 __func__, ret);
1117 	return ret;
1118 }
1119 
1120 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1121 {
1122 	struct mmc_ios *ios = &host->mmc->ios;
1123 
1124 	/*
1125 	 * Tuning is required for SDR104, HS200 and HS400 cards and
1126 	 * if clock frequency is greater than 100MHz in these modes.
1127 	 */
1128 	if (host->clock <= CORE_FREQ_100MHZ ||
1129 	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1130 	    ios->timing == MMC_TIMING_MMC_HS200 ||
1131 	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1132 	    ios->enhanced_strobe)
1133 		return false;
1134 
1135 	return true;
1136 }
1137 
1138 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1139 {
1140 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1141 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1142 	int ret;
1143 
1144 	/*
1145 	 * SDR DLL comes into picture only for timing modes which needs
1146 	 * tuning.
1147 	 */
1148 	if (!sdhci_msm_is_tuning_needed(host))
1149 		return 0;
1150 
1151 	/* Reset the tuning block */
1152 	ret = msm_init_cm_dll(host);
1153 	if (ret)
1154 		return ret;
1155 
1156 	/* Restore the tuning block */
1157 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1158 
1159 	return ret;
1160 }
1161 
1162 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1163 {
1164 	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1165 	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1166 					      msm_offset->core_dll_config);
1167 
1168 	config = oldconfig;
1169 	if (enable) {
1170 		config |= CORE_CDR_EN;
1171 		config &= ~CORE_CDR_EXT_EN;
1172 	} else {
1173 		config &= ~CORE_CDR_EN;
1174 		config |= CORE_CDR_EXT_EN;
1175 	}
1176 
1177 	if (config != oldconfig) {
1178 		writel_relaxed(config, host->ioaddr +
1179 			       msm_offset->core_dll_config);
1180 	}
1181 }
1182 
1183 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1184 {
1185 	struct sdhci_host *host = mmc_priv(mmc);
1186 	int tuning_seq_cnt = 10;
1187 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1188 	int rc;
1189 	struct mmc_ios ios = host->mmc->ios;
1190 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1191 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1192 
1193 	if (!sdhci_msm_is_tuning_needed(host)) {
1194 		msm_host->use_cdr = false;
1195 		sdhci_msm_set_cdr(host, false);
1196 		return 0;
1197 	}
1198 
1199 	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1200 	msm_host->use_cdr = true;
1201 
1202 	/*
1203 	 * Clear tuning_done flag before tuning to ensure proper
1204 	 * HS400 settings.
1205 	 */
1206 	msm_host->tuning_done = 0;
1207 
1208 	/*
1209 	 * For HS400 tuning in HS200 timing requires:
1210 	 * - select MCLK/2 in VENDOR_SPEC
1211 	 * - program MCLK to 400MHz (or nearest supported) in GCC
1212 	 */
1213 	if (host->flags & SDHCI_HS400_TUNING) {
1214 		sdhci_msm_hc_select_mode(host);
1215 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1216 		host->flags &= ~SDHCI_HS400_TUNING;
1217 	}
1218 
1219 retry:
1220 	/* First of all reset the tuning block */
1221 	rc = msm_init_cm_dll(host);
1222 	if (rc)
1223 		return rc;
1224 
1225 	phase = 0;
1226 	do {
1227 		/* Set the phase in delay line hw block */
1228 		rc = msm_config_cm_dll_phase(host, phase);
1229 		if (rc)
1230 			return rc;
1231 
1232 		rc = mmc_send_tuning(mmc, opcode, NULL);
1233 		if (!rc) {
1234 			/* Tuning is successful at this tuning point */
1235 			tuned_phases[tuned_phase_cnt++] = phase;
1236 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1237 				 mmc_hostname(mmc), phase);
1238 		}
1239 	} while (++phase < ARRAY_SIZE(tuned_phases));
1240 
1241 	if (tuned_phase_cnt) {
1242 		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1243 			/*
1244 			 * All phases valid is _almost_ as bad as no phases
1245 			 * valid.  Probably all phases are not really reliable
1246 			 * but we didn't detect where the unreliable place is.
1247 			 * That means we'll essentially be guessing and hoping
1248 			 * we get a good phase.  Better to try a few times.
1249 			 */
1250 			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1251 				mmc_hostname(mmc));
1252 			if (--tuning_seq_cnt) {
1253 				tuned_phase_cnt = 0;
1254 				goto retry;
1255 			}
1256 		}
1257 
1258 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1259 						     tuned_phase_cnt);
1260 		if (rc < 0)
1261 			return rc;
1262 		else
1263 			phase = rc;
1264 
1265 		/*
1266 		 * Finally set the selected phase in delay
1267 		 * line hw block.
1268 		 */
1269 		rc = msm_config_cm_dll_phase(host, phase);
1270 		if (rc)
1271 			return rc;
1272 		msm_host->saved_tuning_phase = phase;
1273 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1274 			 mmc_hostname(mmc), phase);
1275 	} else {
1276 		if (--tuning_seq_cnt)
1277 			goto retry;
1278 		/* Tuning failed */
1279 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1280 		       mmc_hostname(mmc));
1281 		rc = -EIO;
1282 	}
1283 
1284 	if (!rc)
1285 		msm_host->tuning_done = true;
1286 	return rc;
1287 }
1288 
1289 /*
1290  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1291  * This needs to be done for both tuning and enhanced_strobe mode.
1292  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1293  * fixed feedback clock is used.
1294  */
1295 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1296 {
1297 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1298 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1299 	int ret;
1300 
1301 	if (host->clock > CORE_FREQ_100MHZ &&
1302 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1303 	    !msm_host->calibration_done) {
1304 		ret = sdhci_msm_hs400_dll_calibration(host);
1305 		if (!ret)
1306 			msm_host->calibration_done = true;
1307 		else
1308 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1309 			       mmc_hostname(host->mmc), ret);
1310 	}
1311 }
1312 
1313 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1314 					unsigned int uhs)
1315 {
1316 	struct mmc_host *mmc = host->mmc;
1317 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1318 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1319 	u16 ctrl_2;
1320 	u32 config;
1321 	const struct sdhci_msm_offset *msm_offset =
1322 					msm_host->offset;
1323 
1324 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1325 	/* Select Bus Speed Mode for host */
1326 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1327 	switch (uhs) {
1328 	case MMC_TIMING_UHS_SDR12:
1329 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1330 		break;
1331 	case MMC_TIMING_UHS_SDR25:
1332 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1333 		break;
1334 	case MMC_TIMING_UHS_SDR50:
1335 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1336 		break;
1337 	case MMC_TIMING_MMC_HS400:
1338 	case MMC_TIMING_MMC_HS200:
1339 	case MMC_TIMING_UHS_SDR104:
1340 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1341 		break;
1342 	case MMC_TIMING_UHS_DDR50:
1343 	case MMC_TIMING_MMC_DDR52:
1344 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1345 		break;
1346 	}
1347 
1348 	/*
1349 	 * When clock frequency is less than 100MHz, the feedback clock must be
1350 	 * provided and DLL must not be used so that tuning can be skipped. To
1351 	 * provide feedback clock, the mode selection can be any value less
1352 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1353 	 */
1354 	if (host->clock <= CORE_FREQ_100MHZ) {
1355 		if (uhs == MMC_TIMING_MMC_HS400 ||
1356 		    uhs == MMC_TIMING_MMC_HS200 ||
1357 		    uhs == MMC_TIMING_UHS_SDR104)
1358 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1359 		/*
1360 		 * DLL is not required for clock <= 100MHz
1361 		 * Thus, make sure DLL it is disabled when not required
1362 		 */
1363 		config = readl_relaxed(host->ioaddr +
1364 				msm_offset->core_dll_config);
1365 		config |= CORE_DLL_RST;
1366 		writel_relaxed(config, host->ioaddr +
1367 				msm_offset->core_dll_config);
1368 
1369 		config = readl_relaxed(host->ioaddr +
1370 				msm_offset->core_dll_config);
1371 		config |= CORE_DLL_PDN;
1372 		writel_relaxed(config, host->ioaddr +
1373 				msm_offset->core_dll_config);
1374 
1375 		/*
1376 		 * The DLL needs to be restored and CDCLP533 recalibrated
1377 		 * when the clock frequency is set back to 400MHz.
1378 		 */
1379 		msm_host->calibration_done = false;
1380 	}
1381 
1382 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1383 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1384 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1385 
1386 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1387 		sdhci_msm_hs400(host, &mmc->ios);
1388 }
1389 
1390 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1391 {
1392 	struct platform_device *pdev = msm_host->pdev;
1393 	int ret;
1394 
1395 	if (level)
1396 		ret = pinctrl_pm_select_default_state(&pdev->dev);
1397 	else
1398 		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1399 
1400 	return ret;
1401 }
1402 
1403 static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1404 {
1405 	if (IS_ERR(mmc->supply.vmmc))
1406 		return 0;
1407 
1408 	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1409 }
1410 
1411 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1412 			      struct mmc_host *mmc, bool level)
1413 {
1414 	int ret;
1415 	struct mmc_ios ios;
1416 
1417 	if (msm_host->vqmmc_enabled == level)
1418 		return 0;
1419 
1420 	if (level) {
1421 		/* Set the IO voltage regulator to default voltage level */
1422 		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1423 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1424 		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1425 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1426 
1427 		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1428 			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1429 			if (ret < 0) {
1430 				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1431 					mmc_hostname(mmc), ret);
1432 				goto out;
1433 			}
1434 		}
1435 		ret = regulator_enable(mmc->supply.vqmmc);
1436 	} else {
1437 		ret = regulator_disable(mmc->supply.vqmmc);
1438 	}
1439 
1440 	if (ret)
1441 		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1442 			mmc_hostname(mmc), level ? "en":"dis", ret);
1443 	else
1444 		msm_host->vqmmc_enabled = level;
1445 out:
1446 	return ret;
1447 }
1448 
1449 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1450 			      struct mmc_host *mmc, bool hpm)
1451 {
1452 	int load, ret;
1453 
1454 	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1455 	ret = regulator_set_load(mmc->supply.vqmmc, load);
1456 	if (ret)
1457 		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1458 			mmc_hostname(mmc), ret);
1459 	return ret;
1460 }
1461 
1462 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1463 			      struct mmc_host *mmc, bool level)
1464 {
1465 	int ret;
1466 	bool always_on;
1467 
1468 	if (IS_ERR(mmc->supply.vqmmc) ||
1469 			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1470 		return 0;
1471 	/*
1472 	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1473 	 * and HPM modes by setting the corresponding load.
1474 	 *
1475 	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1476 	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1477 	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1478 	 * Vqmmc should remain ON, So just set the load instead of turning it
1479 	 * off/on.
1480 	 */
1481 	always_on = !mmc_card_is_removable(mmc) &&
1482 			mmc->card && mmc_card_mmc(mmc->card);
1483 
1484 	if (always_on)
1485 		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1486 	else
1487 		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1488 
1489 	return ret;
1490 }
1491 
1492 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1493 {
1494 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1495 }
1496 
1497 static inline void sdhci_msm_complete_pwr_irq_wait(
1498 		struct sdhci_msm_host *msm_host)
1499 {
1500 	wake_up(&msm_host->pwr_irq_wait);
1501 }
1502 
1503 /*
1504  * sdhci_msm_check_power_status API should be called when registers writes
1505  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1506  * To what state the register writes will change the IO lines should be passed
1507  * as the argument req_type. This API will check whether the IO line's state
1508  * is already the expected state and will wait for power irq only if
1509  * power irq is expected to be triggered based on the current IO line state
1510  * and expected IO line state.
1511  */
1512 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1513 {
1514 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1515 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1516 	bool done = false;
1517 	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1518 	const struct sdhci_msm_offset *msm_offset =
1519 					msm_host->offset;
1520 
1521 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1522 			mmc_hostname(host->mmc), __func__, req_type,
1523 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1524 
1525 	/*
1526 	 * The power interrupt will not be generated for signal voltage
1527 	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1528 	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1529 	 * it as always set.
1530 	 */
1531 	if (!msm_host->mci_removed)
1532 		val = msm_host_readl(msm_host, host,
1533 				msm_offset->core_generics);
1534 	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1535 	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1536 		return;
1537 	}
1538 
1539 	/*
1540 	 * The IRQ for request type IO High/LOW will be generated when -
1541 	 * there is a state change in 1.8V enable bit (bit 3) of
1542 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1543 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1544 	 * to set it to 3.3V before card detection happens, the
1545 	 * IRQ doesn't get triggered as there is no state change in this bit.
1546 	 * The driver already handles this case by changing the IO voltage
1547 	 * level to high as part of controller power up sequence. Hence, check
1548 	 * for host->pwr to handle a case where IO voltage high request is
1549 	 * issued even before controller power up.
1550 	 */
1551 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1552 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1553 				mmc_hostname(host->mmc), req_type);
1554 		return;
1555 	}
1556 	if ((req_type & msm_host->curr_pwr_state) ||
1557 			(req_type & msm_host->curr_io_level))
1558 		done = true;
1559 	/*
1560 	 * This is needed here to handle cases where register writes will
1561 	 * not change the current bus state or io level of the controller.
1562 	 * In this case, no power irq will be triggerred and we should
1563 	 * not wait.
1564 	 */
1565 	if (!done) {
1566 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1567 				msm_host->pwr_irq_flag,
1568 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1569 			dev_warn(&msm_host->pdev->dev,
1570 				 "%s: pwr_irq for req: (%d) timed out\n",
1571 				 mmc_hostname(host->mmc), req_type);
1572 	}
1573 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1574 			__func__, req_type);
1575 }
1576 
1577 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1578 {
1579 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1580 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1581 	const struct sdhci_msm_offset *msm_offset =
1582 					msm_host->offset;
1583 
1584 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1585 		mmc_hostname(host->mmc),
1586 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1587 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1588 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1589 }
1590 
1591 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1592 {
1593 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1594 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1595 	struct mmc_host *mmc = host->mmc;
1596 	u32 irq_status, irq_ack = 0;
1597 	int retry = 10, ret;
1598 	u32 pwr_state = 0, io_level = 0;
1599 	u32 config;
1600 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1601 
1602 	irq_status = msm_host_readl(msm_host, host,
1603 			msm_offset->core_pwrctl_status);
1604 	irq_status &= INT_MASK;
1605 
1606 	msm_host_writel(msm_host, irq_status, host,
1607 			msm_offset->core_pwrctl_clear);
1608 
1609 	/*
1610 	 * There is a rare HW scenario where the first clear pulse could be
1611 	 * lost when actual reset and clear/read of status register is
1612 	 * happening at a time. Hence, retry for at least 10 times to make
1613 	 * sure status register is cleared. Otherwise, this will result in
1614 	 * a spurious power IRQ resulting in system instability.
1615 	 */
1616 	while (irq_status & msm_host_readl(msm_host, host,
1617 				msm_offset->core_pwrctl_status)) {
1618 		if (retry == 0) {
1619 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1620 					mmc_hostname(host->mmc), irq_status);
1621 			sdhci_msm_dump_pwr_ctrl_regs(host);
1622 			WARN_ON(1);
1623 			break;
1624 		}
1625 		msm_host_writel(msm_host, irq_status, host,
1626 			msm_offset->core_pwrctl_clear);
1627 		retry--;
1628 		udelay(10);
1629 	}
1630 
1631 	/* Handle BUS ON/OFF*/
1632 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1633 		pwr_state = REQ_BUS_ON;
1634 		io_level = REQ_IO_HIGH;
1635 	}
1636 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1637 		pwr_state = REQ_BUS_OFF;
1638 		io_level = REQ_IO_LOW;
1639 	}
1640 
1641 	if (pwr_state) {
1642 		ret = sdhci_msm_set_vmmc(mmc);
1643 		if (!ret)
1644 			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1645 					pwr_state & REQ_BUS_ON);
1646 		if (!ret)
1647 			ret = sdhci_msm_set_pincfg(msm_host,
1648 					pwr_state & REQ_BUS_ON);
1649 		if (!ret)
1650 			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1651 		else
1652 			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1653 	}
1654 
1655 	/* Handle IO LOW/HIGH */
1656 	if (irq_status & CORE_PWRCTL_IO_LOW)
1657 		io_level = REQ_IO_LOW;
1658 
1659 	if (irq_status & CORE_PWRCTL_IO_HIGH)
1660 		io_level = REQ_IO_HIGH;
1661 
1662 	if (io_level)
1663 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1664 
1665 	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1666 		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1667 		if (ret < 0) {
1668 			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1669 					mmc_hostname(mmc), ret,
1670 					mmc->ios.signal_voltage, mmc->ios.vdd,
1671 					irq_status);
1672 			irq_ack |= CORE_PWRCTL_IO_FAIL;
1673 		}
1674 	}
1675 
1676 	/*
1677 	 * The driver has to acknowledge the interrupt, switch voltages and
1678 	 * report back if it succeded or not to this register. The voltage
1679 	 * switches are handled by the sdhci core, so just report success.
1680 	 */
1681 	msm_host_writel(msm_host, irq_ack, host,
1682 			msm_offset->core_pwrctl_ctl);
1683 
1684 	/*
1685 	 * If we don't have info regarding the voltage levels supported by
1686 	 * regulators, don't change the IO PAD PWR SWITCH.
1687 	 */
1688 	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1689 		u32 new_config;
1690 		/*
1691 		 * We should unset IO PAD PWR switch only if the register write
1692 		 * can set IO lines high and the regulator also switches to 3 V.
1693 		 * Else, we should keep the IO PAD PWR switch set.
1694 		 * This is applicable to certain targets where eMMC vccq supply
1695 		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1696 		 * IO PAD PWR switch must be kept set to reflect actual
1697 		 * regulator voltage. This way, during initialization of
1698 		 * controllers with only 1.8V, we will set the IO PAD bit
1699 		 * without waiting for a REQ_IO_LOW.
1700 		 */
1701 		config = readl_relaxed(host->ioaddr +
1702 				msm_offset->core_vendor_spec);
1703 		new_config = config;
1704 
1705 		if ((io_level & REQ_IO_HIGH) &&
1706 				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1707 			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1708 		else if ((io_level & REQ_IO_LOW) ||
1709 				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1710 			new_config |= CORE_IO_PAD_PWR_SWITCH;
1711 
1712 		if (config ^ new_config)
1713 			writel_relaxed(new_config, host->ioaddr +
1714 					msm_offset->core_vendor_spec);
1715 	}
1716 
1717 	if (pwr_state)
1718 		msm_host->curr_pwr_state = pwr_state;
1719 	if (io_level)
1720 		msm_host->curr_io_level = io_level;
1721 
1722 	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1723 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1724 		irq_ack);
1725 }
1726 
1727 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1728 {
1729 	struct sdhci_host *host = (struct sdhci_host *)data;
1730 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1731 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1732 
1733 	sdhci_msm_handle_pwr_irq(host, irq);
1734 	msm_host->pwr_irq_flag = 1;
1735 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1736 
1737 
1738 	return IRQ_HANDLED;
1739 }
1740 
1741 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1742 {
1743 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1744 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1745 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1746 
1747 	return clk_round_rate(core_clk, ULONG_MAX);
1748 }
1749 
1750 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1751 {
1752 	return SDHCI_MSM_MIN_CLOCK;
1753 }
1754 
1755 /*
1756  * __sdhci_msm_set_clock - sdhci_msm clock control.
1757  *
1758  * Description:
1759  * MSM controller does not use internal divider and
1760  * instead directly control the GCC clock as per
1761  * HW recommendation.
1762  **/
1763 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1764 {
1765 	u16 clk;
1766 
1767 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1768 
1769 	if (clock == 0)
1770 		return;
1771 
1772 	/*
1773 	 * MSM controller do not use clock divider.
1774 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1775 	 * clock with no divider value programmed.
1776 	 */
1777 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1778 	sdhci_enable_clk(host, clk);
1779 }
1780 
1781 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1782 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1783 {
1784 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1785 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1786 
1787 	if (!clock) {
1788 		host->mmc->actual_clock = msm_host->clk_rate = 0;
1789 		goto out;
1790 	}
1791 
1792 	sdhci_msm_hc_select_mode(host);
1793 
1794 	msm_set_clock_rate_for_bus_mode(host, clock);
1795 out:
1796 	__sdhci_msm_set_clock(host, clock);
1797 }
1798 
1799 /*****************************************************************************\
1800  *                                                                           *
1801  * Inline Crypto Engine (ICE) support                                        *
1802  *                                                                           *
1803 \*****************************************************************************/
1804 
1805 #ifdef CONFIG_MMC_CRYPTO
1806 
1807 #define AES_256_XTS_KEY_SIZE			64
1808 
1809 /* QCOM ICE registers */
1810 
1811 #define QCOM_ICE_REG_VERSION			0x0008
1812 
1813 #define QCOM_ICE_REG_FUSE_SETTING		0x0010
1814 #define QCOM_ICE_FUSE_SETTING_MASK		0x1
1815 #define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK	0x2
1816 #define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK	0x4
1817 
1818 #define QCOM_ICE_REG_BIST_STATUS		0x0070
1819 #define QCOM_ICE_BIST_STATUS_MASK		0xF0000000
1820 
1821 #define QCOM_ICE_REG_ADVANCED_CONTROL		0x1000
1822 
1823 #define sdhci_msm_ice_writel(host, val, reg)	\
1824 	writel((val), (host)->ice_mem + (reg))
1825 #define sdhci_msm_ice_readl(host, reg)	\
1826 	readl((host)->ice_mem + (reg))
1827 
1828 static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
1829 {
1830 	struct device *dev = mmc_dev(msm_host->mmc);
1831 	u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
1832 	int major = regval >> 24;
1833 	int minor = (regval >> 16) & 0xFF;
1834 	int step = regval & 0xFFFF;
1835 
1836 	/* For now this driver only supports ICE version 3. */
1837 	if (major != 3) {
1838 		dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
1839 			 major, minor, step);
1840 		return false;
1841 	}
1842 
1843 	dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
1844 		 major, minor, step);
1845 
1846 	/* If fuses are blown, ICE might not work in the standard way. */
1847 	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
1848 	if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
1849 		      QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
1850 		      QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
1851 		dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
1852 		return false;
1853 	}
1854 	return true;
1855 }
1856 
1857 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
1858 {
1859 	return devm_clk_get(dev, "ice");
1860 }
1861 
1862 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1863 			      struct cqhci_host *cq_host)
1864 {
1865 	struct mmc_host *mmc = msm_host->mmc;
1866 	struct device *dev = mmc_dev(mmc);
1867 	struct resource *res;
1868 
1869 	if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1870 		return 0;
1871 
1872 	res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
1873 					   "ice");
1874 	if (!res) {
1875 		dev_warn(dev, "ICE registers not found\n");
1876 		goto disable;
1877 	}
1878 
1879 	if (!qcom_scm_ice_available()) {
1880 		dev_warn(dev, "ICE SCM interface not found\n");
1881 		goto disable;
1882 	}
1883 
1884 	msm_host->ice_mem = devm_ioremap_resource(dev, res);
1885 	if (IS_ERR(msm_host->ice_mem))
1886 		return PTR_ERR(msm_host->ice_mem);
1887 
1888 	if (!sdhci_msm_ice_supported(msm_host))
1889 		goto disable;
1890 
1891 	mmc->caps2 |= MMC_CAP2_CRYPTO;
1892 	return 0;
1893 
1894 disable:
1895 	dev_warn(dev, "Disabling inline encryption support\n");
1896 	return 0;
1897 }
1898 
1899 static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
1900 {
1901 	u32 regval;
1902 
1903 	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1904 	/*
1905 	 * Enable low power mode sequence
1906 	 * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
1907 	 */
1908 	regval |= 0x7000;
1909 	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1910 }
1911 
1912 static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
1913 {
1914 	u32 regval;
1915 
1916 	/* ICE Optimizations Enable Sequence */
1917 	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1918 	regval |= 0xD807100;
1919 	/* ICE HPG requires delay before writing */
1920 	udelay(5);
1921 	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1922 	udelay(5);
1923 }
1924 
1925 /*
1926  * Wait until the ICE BIST (built-in self-test) has completed.
1927  *
1928  * This may be necessary before ICE can be used.
1929  *
1930  * Note that we don't really care whether the BIST passed or failed; we really
1931  * just want to make sure that it isn't still running.  This is because (a) the
1932  * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
1933  * documented to reject crypto requests if the BIST fails, so we needn't do it
1934  * in software too, and (c) properly testing storage encryption requires testing
1935  * the full storage stack anyway, and not relying on hardware-level self-tests.
1936  */
1937 static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
1938 {
1939 	u32 regval;
1940 	int err;
1941 
1942 	err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
1943 				 regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
1944 				 50, 5000);
1945 	if (err)
1946 		dev_err(mmc_dev(msm_host->mmc),
1947 			"Timed out waiting for ICE self-test to complete\n");
1948 	return err;
1949 }
1950 
1951 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1952 {
1953 	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1954 		return;
1955 	sdhci_msm_ice_low_power_mode_enable(msm_host);
1956 	sdhci_msm_ice_optimization_enable(msm_host);
1957 	sdhci_msm_ice_wait_bist_status(msm_host);
1958 }
1959 
1960 static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1961 {
1962 	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1963 		return 0;
1964 	return sdhci_msm_ice_wait_bist_status(msm_host);
1965 }
1966 
1967 /*
1968  * Program a key into a QC ICE keyslot, or evict a keyslot.  QC ICE requires
1969  * vendor-specific SCM calls for this; it doesn't support the standard way.
1970  */
1971 static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1972 				 const union cqhci_crypto_cfg_entry *cfg,
1973 				 int slot)
1974 {
1975 	struct device *dev = mmc_dev(cq_host->mmc);
1976 	union cqhci_crypto_cap_entry cap;
1977 	union {
1978 		u8 bytes[AES_256_XTS_KEY_SIZE];
1979 		u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
1980 	} key;
1981 	int i;
1982 	int err;
1983 
1984 	if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
1985 		return qcom_scm_ice_invalidate_key(slot);
1986 
1987 	/* Only AES-256-XTS has been tested so far. */
1988 	cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1989 	if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1990 	    cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
1991 		dev_err_ratelimited(dev,
1992 				    "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
1993 				    cap.algorithm_id, cap.key_size);
1994 		return -EINVAL;
1995 	}
1996 
1997 	memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
1998 
1999 	/*
2000 	 * The SCM call byte-swaps the 32-bit words of the key.  So we have to
2001 	 * do the same, in order for the final key be correct.
2002 	 */
2003 	for (i = 0; i < ARRAY_SIZE(key.words); i++)
2004 		__cpu_to_be32s(&key.words[i]);
2005 
2006 	err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
2007 				   QCOM_SCM_ICE_CIPHER_AES_256_XTS,
2008 				   cfg->data_unit_size);
2009 	memzero_explicit(&key, sizeof(key));
2010 	return err;
2011 }
2012 #else /* CONFIG_MMC_CRYPTO */
2013 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
2014 {
2015 	return NULL;
2016 }
2017 
2018 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
2019 				     struct cqhci_host *cq_host)
2020 {
2021 	return 0;
2022 }
2023 
2024 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
2025 {
2026 }
2027 
2028 static inline int __maybe_unused
2029 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
2030 {
2031 	return 0;
2032 }
2033 #endif /* !CONFIG_MMC_CRYPTO */
2034 
2035 /*****************************************************************************\
2036  *                                                                           *
2037  * MSM Command Queue Engine (CQE)                                            *
2038  *                                                                           *
2039 \*****************************************************************************/
2040 
2041 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
2042 {
2043 	int cmd_error = 0;
2044 	int data_error = 0;
2045 
2046 	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
2047 		return intmask;
2048 
2049 	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
2050 	return 0;
2051 }
2052 
2053 static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
2054 {
2055 	struct sdhci_host *host = mmc_priv(mmc);
2056 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2057 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2058 
2059 	sdhci_cqe_enable(mmc);
2060 	sdhci_msm_ice_enable(msm_host);
2061 }
2062 
2063 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
2064 {
2065 	struct sdhci_host *host = mmc_priv(mmc);
2066 	unsigned long flags;
2067 	u32 ctrl;
2068 
2069 	/*
2070 	 * When CQE is halted, the legacy SDHCI path operates only
2071 	 * on 16-byte descriptors in 64bit mode.
2072 	 */
2073 	if (host->flags & SDHCI_USE_64_BIT_DMA)
2074 		host->desc_sz = 16;
2075 
2076 	spin_lock_irqsave(&host->lock, flags);
2077 
2078 	/*
2079 	 * During CQE command transfers, command complete bit gets latched.
2080 	 * So s/w should clear command complete interrupt status when CQE is
2081 	 * either halted or disabled. Otherwise unexpected SDCHI legacy
2082 	 * interrupt gets triggered when CQE is halted/disabled.
2083 	 */
2084 	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2085 	ctrl |= SDHCI_INT_RESPONSE;
2086 	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
2087 	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2088 
2089 	spin_unlock_irqrestore(&host->lock, flags);
2090 
2091 	sdhci_cqe_disable(mmc, recovery);
2092 }
2093 
2094 static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
2095 {
2096 	u32 count, start = 15;
2097 
2098 	__sdhci_set_timeout(host, cmd);
2099 	count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
2100 	/*
2101 	 * Update software timeout value if its value is less than hardware data
2102 	 * timeout value. Qcom SoC hardware data timeout value was calculated
2103 	 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
2104 	 */
2105 	if (cmd && cmd->data && host->clock > 400000 &&
2106 	    host->clock <= 50000000 &&
2107 	    ((1 << (count + start)) > (10 * host->clock)))
2108 		host->data_timeout = 22LL * NSEC_PER_SEC;
2109 }
2110 
2111 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2112 	.enable		= sdhci_msm_cqe_enable,
2113 	.disable	= sdhci_msm_cqe_disable,
2114 #ifdef CONFIG_MMC_CRYPTO
2115 	.program_key	= sdhci_msm_program_key,
2116 #endif
2117 };
2118 
2119 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2120 				struct platform_device *pdev)
2121 {
2122 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2123 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2124 	struct cqhci_host *cq_host;
2125 	bool dma64;
2126 	u32 cqcfg;
2127 	int ret;
2128 
2129 	/*
2130 	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2131 	 * So ensure ADMA table is allocated for 16byte descriptors.
2132 	 */
2133 	if (host->caps & SDHCI_CAN_64BIT)
2134 		host->alloc_desc_sz = 16;
2135 
2136 	ret = sdhci_setup_host(host);
2137 	if (ret)
2138 		return ret;
2139 
2140 	cq_host = cqhci_pltfm_init(pdev);
2141 	if (IS_ERR(cq_host)) {
2142 		ret = PTR_ERR(cq_host);
2143 		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2144 		goto cleanup;
2145 	}
2146 
2147 	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2148 	cq_host->ops = &sdhci_msm_cqhci_ops;
2149 
2150 	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2151 
2152 	ret = sdhci_msm_ice_init(msm_host, cq_host);
2153 	if (ret)
2154 		goto cleanup;
2155 
2156 	ret = cqhci_init(cq_host, host->mmc, dma64);
2157 	if (ret) {
2158 		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2159 				mmc_hostname(host->mmc), ret);
2160 		goto cleanup;
2161 	}
2162 
2163 	/* Disable cqe reset due to cqe enable signal */
2164 	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2165 	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2166 	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2167 
2168 	/*
2169 	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2170 	 * So limit desc_sz to 12 so that the data commands that are sent
2171 	 * during card initialization (before CQE gets enabled) would
2172 	 * get executed without any issues.
2173 	 */
2174 	if (host->flags & SDHCI_USE_64_BIT_DMA)
2175 		host->desc_sz = 12;
2176 
2177 	ret = __sdhci_add_host(host);
2178 	if (ret)
2179 		goto cleanup;
2180 
2181 	dev_info(&pdev->dev, "%s: CQE init: success\n",
2182 			mmc_hostname(host->mmc));
2183 	return ret;
2184 
2185 cleanup:
2186 	sdhci_cleanup_host(host);
2187 	return ret;
2188 }
2189 
2190 /*
2191  * Platform specific register write functions. This is so that, if any
2192  * register write needs to be followed up by platform specific actions,
2193  * they can be added here. These functions can go to sleep when writes
2194  * to certain registers are done.
2195  * These functions are relying on sdhci_set_ios not using spinlock.
2196  */
2197 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2198 {
2199 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2200 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2201 	u32 req_type = 0;
2202 
2203 	switch (reg) {
2204 	case SDHCI_HOST_CONTROL2:
2205 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2206 			REQ_IO_HIGH;
2207 		break;
2208 	case SDHCI_SOFTWARE_RESET:
2209 		if (host->pwr && (val & SDHCI_RESET_ALL))
2210 			req_type = REQ_BUS_OFF;
2211 		break;
2212 	case SDHCI_POWER_CONTROL:
2213 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2214 		break;
2215 	case SDHCI_TRANSFER_MODE:
2216 		msm_host->transfer_mode = val;
2217 		break;
2218 	case SDHCI_COMMAND:
2219 		if (!msm_host->use_cdr)
2220 			break;
2221 		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2222 		    !mmc_op_tuning(SDHCI_GET_CMD(val)))
2223 			sdhci_msm_set_cdr(host, true);
2224 		else
2225 			sdhci_msm_set_cdr(host, false);
2226 		break;
2227 	}
2228 
2229 	if (req_type) {
2230 		msm_host->pwr_irq_flag = 0;
2231 		/*
2232 		 * Since this register write may trigger a power irq, ensure
2233 		 * all previous register writes are complete by this point.
2234 		 */
2235 		mb();
2236 	}
2237 	return req_type;
2238 }
2239 
2240 /* This function may sleep*/
2241 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2242 {
2243 	u32 req_type = 0;
2244 
2245 	req_type = __sdhci_msm_check_write(host, val, reg);
2246 	writew_relaxed(val, host->ioaddr + reg);
2247 
2248 	if (req_type)
2249 		sdhci_msm_check_power_status(host, req_type);
2250 }
2251 
2252 /* This function may sleep*/
2253 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2254 {
2255 	u32 req_type = 0;
2256 
2257 	req_type = __sdhci_msm_check_write(host, val, reg);
2258 
2259 	writeb_relaxed(val, host->ioaddr + reg);
2260 
2261 	if (req_type)
2262 		sdhci_msm_check_power_status(host, req_type);
2263 }
2264 
2265 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2266 {
2267 	struct mmc_host *mmc = msm_host->mmc;
2268 	struct regulator *supply = mmc->supply.vqmmc;
2269 	u32 caps = 0, config;
2270 	struct sdhci_host *host = mmc_priv(mmc);
2271 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2272 
2273 	if (!IS_ERR(mmc->supply.vqmmc)) {
2274 		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2275 			caps |= CORE_1_8V_SUPPORT;
2276 		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2277 			caps |= CORE_3_0V_SUPPORT;
2278 
2279 		if (!caps)
2280 			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2281 					mmc_hostname(mmc));
2282 	}
2283 
2284 	if (caps) {
2285 		/*
2286 		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2287 		 * bit can be used as required later on.
2288 		 */
2289 		u32 io_level = msm_host->curr_io_level;
2290 
2291 		config = readl_relaxed(host->ioaddr +
2292 				msm_offset->core_vendor_spec);
2293 		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2294 
2295 		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2296 			config &= ~CORE_IO_PAD_PWR_SWITCH;
2297 		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2298 			config |= CORE_IO_PAD_PWR_SWITCH;
2299 
2300 		writel_relaxed(config,
2301 				host->ioaddr + msm_offset->core_vendor_spec);
2302 	}
2303 	msm_host->caps_0 |= caps;
2304 	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2305 }
2306 
2307 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2308 {
2309 	int ret;
2310 
2311 	ret = mmc_regulator_get_supply(msm_host->mmc);
2312 	if (ret)
2313 		return ret;
2314 
2315 	sdhci_msm_set_regulator_caps(msm_host);
2316 
2317 	return 0;
2318 }
2319 
2320 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2321 				      struct mmc_ios *ios)
2322 {
2323 	struct sdhci_host *host = mmc_priv(mmc);
2324 	u16 ctrl, status;
2325 
2326 	/*
2327 	 * Signal Voltage Switching is only applicable for Host Controllers
2328 	 * v3.00 and above.
2329 	 */
2330 	if (host->version < SDHCI_SPEC_300)
2331 		return 0;
2332 
2333 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2334 
2335 	switch (ios->signal_voltage) {
2336 	case MMC_SIGNAL_VOLTAGE_330:
2337 		if (!(host->flags & SDHCI_SIGNALING_330))
2338 			return -EINVAL;
2339 
2340 		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2341 		ctrl &= ~SDHCI_CTRL_VDD_180;
2342 		break;
2343 	case MMC_SIGNAL_VOLTAGE_180:
2344 		if (!(host->flags & SDHCI_SIGNALING_180))
2345 			return -EINVAL;
2346 
2347 		/* Enable 1.8V Signal Enable in the Host Control2 register */
2348 		ctrl |= SDHCI_CTRL_VDD_180;
2349 		break;
2350 
2351 	default:
2352 		return -EINVAL;
2353 	}
2354 
2355 	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2356 
2357 	/* Wait for 5ms */
2358 	usleep_range(5000, 5500);
2359 
2360 	/* regulator output should be stable within 5 ms */
2361 	status = ctrl & SDHCI_CTRL_VDD_180;
2362 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2363 	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2364 		return 0;
2365 
2366 	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2367 		mmc_hostname(mmc));
2368 
2369 	return -EAGAIN;
2370 }
2371 
2372 #define DRIVER_NAME "sdhci_msm"
2373 #define SDHCI_MSM_DUMP(f, x...) \
2374 	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2375 
2376 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2377 {
2378 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2379 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2380 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2381 
2382 	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2383 
2384 	SDHCI_MSM_DUMP(
2385 			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2386 		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2387 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2388 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2389 	SDHCI_MSM_DUMP(
2390 			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2391 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2392 		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2393 		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2394 	SDHCI_MSM_DUMP(
2395 			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2396 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2397 		readl_relaxed(host->ioaddr +
2398 			msm_offset->core_vendor_spec_func2),
2399 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2400 }
2401 
2402 static const struct sdhci_msm_variant_ops mci_var_ops = {
2403 	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2404 	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2405 };
2406 
2407 static const struct sdhci_msm_variant_ops v5_var_ops = {
2408 	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2409 	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2410 };
2411 
2412 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2413 	.var_ops = &mci_var_ops,
2414 	.offset = &sdhci_msm_mci_offset,
2415 };
2416 
2417 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2418 	.mci_removed = true,
2419 	.var_ops = &v5_var_ops,
2420 	.offset = &sdhci_msm_v5_offset,
2421 };
2422 
2423 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2424 	.mci_removed = true,
2425 	.restore_dll_config = true,
2426 	.var_ops = &v5_var_ops,
2427 	.offset = &sdhci_msm_v5_offset,
2428 };
2429 
2430 static const struct of_device_id sdhci_msm_dt_match[] = {
2431 	/*
2432 	 * Do not add new variants to the driver which are compatible with
2433 	 * generic ones, unless they need customization.
2434 	 */
2435 	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2436 	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2437 	{.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2438 	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2439 	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2440 	{},
2441 };
2442 
2443 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2444 
2445 static const struct sdhci_ops sdhci_msm_ops = {
2446 	.reset = sdhci_and_cqhci_reset,
2447 	.set_clock = sdhci_msm_set_clock,
2448 	.get_min_clock = sdhci_msm_get_min_clock,
2449 	.get_max_clock = sdhci_msm_get_max_clock,
2450 	.set_bus_width = sdhci_set_bus_width,
2451 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2452 	.write_w = sdhci_msm_writew,
2453 	.write_b = sdhci_msm_writeb,
2454 	.irq	= sdhci_msm_cqe_irq,
2455 	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2456 	.set_power = sdhci_set_power_noreg,
2457 	.set_timeout = sdhci_msm_set_timeout,
2458 };
2459 
2460 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2461 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2462 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2463 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2464 		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2465 
2466 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2467 	.ops = &sdhci_msm_ops,
2468 };
2469 
2470 static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2471 		struct sdhci_host *host)
2472 {
2473 	struct device_node *node = pdev->dev.of_node;
2474 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2475 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2476 
2477 	if (of_property_read_u32(node, "qcom,ddr-config",
2478 				&msm_host->ddr_config))
2479 		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2480 
2481 	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2482 
2483 	if (of_device_is_compatible(node, "qcom,msm8916-sdhci"))
2484 		host->quirks2 |= SDHCI_QUIRK2_BROKEN_64_BIT_DMA;
2485 }
2486 
2487 static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2488 {
2489 	struct reset_control *reset;
2490 	int ret = 0;
2491 
2492 	reset = reset_control_get_optional_exclusive(dev, NULL);
2493 	if (IS_ERR(reset))
2494 		return dev_err_probe(dev, PTR_ERR(reset),
2495 				"unable to acquire core_reset\n");
2496 
2497 	if (!reset)
2498 		return ret;
2499 
2500 	ret = reset_control_assert(reset);
2501 	if (ret) {
2502 		reset_control_put(reset);
2503 		return dev_err_probe(dev, ret, "core_reset assert failed\n");
2504 	}
2505 
2506 	/*
2507 	 * The hardware requirement for delay between assert/deassert
2508 	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2509 	 * ~125us (4/32768). To be on the safe side add 200us delay.
2510 	 */
2511 	usleep_range(200, 210);
2512 
2513 	ret = reset_control_deassert(reset);
2514 	if (ret) {
2515 		reset_control_put(reset);
2516 		return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2517 	}
2518 
2519 	usleep_range(200, 210);
2520 	reset_control_put(reset);
2521 
2522 	return ret;
2523 }
2524 
2525 static int sdhci_msm_probe(struct platform_device *pdev)
2526 {
2527 	struct sdhci_host *host;
2528 	struct sdhci_pltfm_host *pltfm_host;
2529 	struct sdhci_msm_host *msm_host;
2530 	struct clk *clk;
2531 	int ret;
2532 	u16 host_version, core_minor;
2533 	u32 core_version, config;
2534 	u8 core_major;
2535 	const struct sdhci_msm_offset *msm_offset;
2536 	const struct sdhci_msm_variant_info *var_info;
2537 	struct device_node *node = pdev->dev.of_node;
2538 
2539 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2540 	if (IS_ERR(host))
2541 		return PTR_ERR(host);
2542 
2543 	host->sdma_boundary = 0;
2544 	pltfm_host = sdhci_priv(host);
2545 	msm_host = sdhci_pltfm_priv(pltfm_host);
2546 	msm_host->mmc = host->mmc;
2547 	msm_host->pdev = pdev;
2548 
2549 	ret = mmc_of_parse(host->mmc);
2550 	if (ret)
2551 		goto pltfm_free;
2552 
2553 	/*
2554 	 * Based on the compatible string, load the required msm host info from
2555 	 * the data associated with the version info.
2556 	 */
2557 	var_info = of_device_get_match_data(&pdev->dev);
2558 
2559 	msm_host->mci_removed = var_info->mci_removed;
2560 	msm_host->restore_dll_config = var_info->restore_dll_config;
2561 	msm_host->var_ops = var_info->var_ops;
2562 	msm_host->offset = var_info->offset;
2563 
2564 	msm_offset = msm_host->offset;
2565 
2566 	sdhci_get_of_property(pdev);
2567 	sdhci_msm_get_of_property(pdev, host);
2568 
2569 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2570 
2571 	ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2572 	if (ret)
2573 		goto pltfm_free;
2574 
2575 	/* Setup SDCC bus voter clock. */
2576 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2577 	if (!IS_ERR(msm_host->bus_clk)) {
2578 		/* Vote for max. clk rate for max. performance */
2579 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2580 		if (ret)
2581 			goto pltfm_free;
2582 		ret = clk_prepare_enable(msm_host->bus_clk);
2583 		if (ret)
2584 			goto pltfm_free;
2585 	}
2586 
2587 	/* Setup main peripheral bus clock */
2588 	clk = devm_clk_get(&pdev->dev, "iface");
2589 	if (IS_ERR(clk)) {
2590 		ret = PTR_ERR(clk);
2591 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2592 		goto bus_clk_disable;
2593 	}
2594 	msm_host->bulk_clks[1].clk = clk;
2595 
2596 	/* Setup SDC MMC clock */
2597 	clk = devm_clk_get(&pdev->dev, "core");
2598 	if (IS_ERR(clk)) {
2599 		ret = PTR_ERR(clk);
2600 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2601 		goto bus_clk_disable;
2602 	}
2603 	msm_host->bulk_clks[0].clk = clk;
2604 
2605 	 /* Check for optional interconnect paths */
2606 	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2607 	if (ret)
2608 		goto bus_clk_disable;
2609 
2610 	ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2611 	if (ret)
2612 		goto bus_clk_disable;
2613 
2614 	/* OPP table is optional */
2615 	ret = devm_pm_opp_of_add_table(&pdev->dev);
2616 	if (ret && ret != -ENODEV) {
2617 		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2618 		goto bus_clk_disable;
2619 	}
2620 
2621 	/* Vote for maximum clock rate for maximum performance */
2622 	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2623 	if (ret)
2624 		dev_warn(&pdev->dev, "core clock boost failed\n");
2625 
2626 	clk = devm_clk_get(&pdev->dev, "cal");
2627 	if (IS_ERR(clk))
2628 		clk = NULL;
2629 	msm_host->bulk_clks[2].clk = clk;
2630 
2631 	clk = devm_clk_get(&pdev->dev, "sleep");
2632 	if (IS_ERR(clk))
2633 		clk = NULL;
2634 	msm_host->bulk_clks[3].clk = clk;
2635 
2636 	clk = sdhci_msm_ice_get_clk(&pdev->dev);
2637 	if (IS_ERR(clk))
2638 		clk = NULL;
2639 	msm_host->bulk_clks[4].clk = clk;
2640 
2641 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2642 				      msm_host->bulk_clks);
2643 	if (ret)
2644 		goto bus_clk_disable;
2645 
2646 	/*
2647 	 * xo clock is needed for FLL feature of cm_dll.
2648 	 * In case if xo clock is not mentioned in DT, warn and proceed.
2649 	 */
2650 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2651 	if (IS_ERR(msm_host->xo_clk)) {
2652 		ret = PTR_ERR(msm_host->xo_clk);
2653 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2654 	}
2655 
2656 	if (!msm_host->mci_removed) {
2657 		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2658 		if (IS_ERR(msm_host->core_mem)) {
2659 			ret = PTR_ERR(msm_host->core_mem);
2660 			goto clk_disable;
2661 		}
2662 	}
2663 
2664 	/* Reset the vendor spec register to power on reset state */
2665 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2666 			host->ioaddr + msm_offset->core_vendor_spec);
2667 
2668 	if (!msm_host->mci_removed) {
2669 		/* Set HC_MODE_EN bit in HC_MODE register */
2670 		msm_host_writel(msm_host, HC_MODE_EN, host,
2671 				msm_offset->core_hc_mode);
2672 		config = msm_host_readl(msm_host, host,
2673 				msm_offset->core_hc_mode);
2674 		config |= FF_CLK_SW_RST_DIS;
2675 		msm_host_writel(msm_host, config, host,
2676 				msm_offset->core_hc_mode);
2677 	}
2678 
2679 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2680 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2681 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2682 			       SDHCI_VENDOR_VER_SHIFT));
2683 
2684 	core_version = msm_host_readl(msm_host, host,
2685 			msm_offset->core_mci_version);
2686 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2687 		      CORE_VERSION_MAJOR_SHIFT;
2688 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2689 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2690 		core_version, core_major, core_minor);
2691 
2692 	if (core_major == 1 && core_minor >= 0x42)
2693 		msm_host->use_14lpp_dll_reset = true;
2694 
2695 	/*
2696 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2697 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2698 	 */
2699 	if (core_major == 1 && core_minor < 0x34)
2700 		msm_host->use_cdclp533 = true;
2701 
2702 	/*
2703 	 * Support for some capabilities is not advertised by newer
2704 	 * controller versions and must be explicitly enabled.
2705 	 */
2706 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2707 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2708 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2709 		writel_relaxed(config, host->ioaddr +
2710 				msm_offset->core_vendor_spec_capabilities0);
2711 	}
2712 
2713 	if (core_major == 1 && core_minor >= 0x49)
2714 		msm_host->updated_ddr_cfg = true;
2715 
2716 	if (core_major == 1 && core_minor >= 0x71)
2717 		msm_host->uses_tassadar_dll = true;
2718 
2719 	ret = sdhci_msm_register_vreg(msm_host);
2720 	if (ret)
2721 		goto clk_disable;
2722 
2723 	/*
2724 	 * Power on reset state may trigger power irq if previous status of
2725 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2726 	 * interrupt in GIC, any pending power irq interrupt should be
2727 	 * acknowledged. Otherwise power irq interrupt handler would be
2728 	 * fired prematurely.
2729 	 */
2730 	sdhci_msm_handle_pwr_irq(host, 0);
2731 
2732 	/*
2733 	 * Ensure that above writes are propogated before interrupt enablement
2734 	 * in GIC.
2735 	 */
2736 	mb();
2737 
2738 	/* Setup IRQ for handling power/voltage tasks with PMIC */
2739 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2740 	if (msm_host->pwr_irq < 0) {
2741 		ret = msm_host->pwr_irq;
2742 		goto clk_disable;
2743 	}
2744 
2745 	sdhci_msm_init_pwr_irq_wait(msm_host);
2746 	/* Enable pwr irq interrupts */
2747 	msm_host_writel(msm_host, INT_MASK, host,
2748 		msm_offset->core_pwrctl_mask);
2749 
2750 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2751 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2752 					dev_name(&pdev->dev), host);
2753 	if (ret) {
2754 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2755 		goto clk_disable;
2756 	}
2757 
2758 	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2759 
2760 	/* Set the timeout value to max possible */
2761 	host->max_timeout_count = 0xF;
2762 
2763 	pm_runtime_get_noresume(&pdev->dev);
2764 	pm_runtime_set_active(&pdev->dev);
2765 	pm_runtime_enable(&pdev->dev);
2766 	pm_runtime_set_autosuspend_delay(&pdev->dev,
2767 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2768 	pm_runtime_use_autosuspend(&pdev->dev);
2769 
2770 	host->mmc_host_ops.start_signal_voltage_switch =
2771 		sdhci_msm_start_signal_voltage_switch;
2772 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2773 	if (of_property_read_bool(node, "supports-cqe"))
2774 		ret = sdhci_msm_cqe_add_host(host, pdev);
2775 	else
2776 		ret = sdhci_add_host(host);
2777 	if (ret)
2778 		goto pm_runtime_disable;
2779 
2780 	pm_runtime_mark_last_busy(&pdev->dev);
2781 	pm_runtime_put_autosuspend(&pdev->dev);
2782 
2783 	return 0;
2784 
2785 pm_runtime_disable:
2786 	pm_runtime_disable(&pdev->dev);
2787 	pm_runtime_set_suspended(&pdev->dev);
2788 	pm_runtime_put_noidle(&pdev->dev);
2789 clk_disable:
2790 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2791 				   msm_host->bulk_clks);
2792 bus_clk_disable:
2793 	if (!IS_ERR(msm_host->bus_clk))
2794 		clk_disable_unprepare(msm_host->bus_clk);
2795 pltfm_free:
2796 	sdhci_pltfm_free(pdev);
2797 	return ret;
2798 }
2799 
2800 static int sdhci_msm_remove(struct platform_device *pdev)
2801 {
2802 	struct sdhci_host *host = platform_get_drvdata(pdev);
2803 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2804 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2805 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2806 		    0xffffffff);
2807 
2808 	sdhci_remove_host(host, dead);
2809 
2810 	pm_runtime_get_sync(&pdev->dev);
2811 	pm_runtime_disable(&pdev->dev);
2812 	pm_runtime_put_noidle(&pdev->dev);
2813 
2814 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2815 				   msm_host->bulk_clks);
2816 	if (!IS_ERR(msm_host->bus_clk))
2817 		clk_disable_unprepare(msm_host->bus_clk);
2818 	sdhci_pltfm_free(pdev);
2819 	return 0;
2820 }
2821 
2822 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2823 {
2824 	struct sdhci_host *host = dev_get_drvdata(dev);
2825 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2826 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2827 
2828 	/* Drop the performance vote */
2829 	dev_pm_opp_set_rate(dev, 0);
2830 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2831 				   msm_host->bulk_clks);
2832 
2833 	return 0;
2834 }
2835 
2836 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2837 {
2838 	struct sdhci_host *host = dev_get_drvdata(dev);
2839 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2840 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2841 	int ret;
2842 
2843 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2844 				       msm_host->bulk_clks);
2845 	if (ret)
2846 		return ret;
2847 	/*
2848 	 * Whenever core-clock is gated dynamically, it's needed to
2849 	 * restore the SDR DLL settings when the clock is ungated.
2850 	 */
2851 	if (msm_host->restore_dll_config && msm_host->clk_rate) {
2852 		ret = sdhci_msm_restore_sdr_dll_config(host);
2853 		if (ret)
2854 			return ret;
2855 	}
2856 
2857 	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2858 
2859 	return sdhci_msm_ice_resume(msm_host);
2860 }
2861 
2862 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2863 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2864 				pm_runtime_force_resume)
2865 	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2866 			   sdhci_msm_runtime_resume,
2867 			   NULL)
2868 };
2869 
2870 static struct platform_driver sdhci_msm_driver = {
2871 	.probe = sdhci_msm_probe,
2872 	.remove = sdhci_msm_remove,
2873 	.driver = {
2874 		   .name = "sdhci_msm",
2875 		   .of_match_table = sdhci_msm_dt_match,
2876 		   .pm = &sdhci_msm_pm_ops,
2877 		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2878 	},
2879 };
2880 
2881 module_platform_driver(sdhci_msm_driver);
2882 
2883 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2884 MODULE_LICENSE("GPL v2");
2885