xref: /openbmc/linux/drivers/mmc/host/sdhci-msm.c (revision e5bd61e8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4  *
5  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/delay.h>
11 #include <linux/mmc/mmc.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/pm_opp.h>
14 #include <linux/slab.h>
15 #include <linux/iopoll.h>
16 #include <linux/qcom_scm.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/interconnect.h>
19 #include <linux/pinctrl/consumer.h>
20 
21 #include "sdhci-pltfm.h"
22 #include "cqhci.h"
23 
24 #define CORE_MCI_VERSION		0x50
25 #define CORE_VERSION_MAJOR_SHIFT	28
26 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
27 #define CORE_VERSION_MINOR_MASK		0xff
28 
29 #define CORE_MCI_GENERICS		0x70
30 #define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
31 
32 #define HC_MODE_EN		0x1
33 #define CORE_POWER		0x0
34 #define CORE_SW_RST		BIT(7)
35 #define FF_CLK_SW_RST_DIS	BIT(13)
36 
37 #define CORE_PWRCTL_BUS_OFF	BIT(0)
38 #define CORE_PWRCTL_BUS_ON	BIT(1)
39 #define CORE_PWRCTL_IO_LOW	BIT(2)
40 #define CORE_PWRCTL_IO_HIGH	BIT(3)
41 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
42 #define CORE_PWRCTL_BUS_FAIL    BIT(1)
43 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
44 #define CORE_PWRCTL_IO_FAIL     BIT(3)
45 #define REQ_BUS_OFF		BIT(0)
46 #define REQ_BUS_ON		BIT(1)
47 #define REQ_IO_LOW		BIT(2)
48 #define REQ_IO_HIGH		BIT(3)
49 #define INT_MASK		0xf
50 #define MAX_PHASES		16
51 #define CORE_DLL_LOCK		BIT(7)
52 #define CORE_DDR_DLL_LOCK	BIT(11)
53 #define CORE_DLL_EN		BIT(16)
54 #define CORE_CDR_EN		BIT(17)
55 #define CORE_CK_OUT_EN		BIT(18)
56 #define CORE_CDR_EXT_EN		BIT(19)
57 #define CORE_DLL_PDN		BIT(29)
58 #define CORE_DLL_RST		BIT(30)
59 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
60 
61 #define CORE_DDR_CAL_EN		BIT(0)
62 #define CORE_FLL_CYCLE_CNT	BIT(18)
63 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
64 
65 #define DLL_USR_CTL_POR_VAL	0x10800
66 #define ENABLE_DLL_LOCK_STATUS	BIT(26)
67 #define FINE_TUNE_MODE_EN	BIT(27)
68 #define BIAS_OK_SIGNAL		BIT(29)
69 
70 #define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
71 #define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
72 
73 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c
74 #define CORE_CLK_PWRSAVE	BIT(1)
75 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
76 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
77 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
78 #define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
79 #define CORE_IO_PAD_PWR_SWITCH	BIT(16)
80 #define CORE_HC_SELECT_IN_EN	BIT(18)
81 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
82 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
83 
84 #define CORE_3_0V_SUPPORT	BIT(25)
85 #define CORE_1_8V_SUPPORT	BIT(26)
86 #define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
87 
88 #define CORE_CSR_CDC_CTLR_CFG0		0x130
89 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
90 #define CORE_HW_AUTOCAL_ENA		BIT(17)
91 
92 #define CORE_CSR_CDC_CTLR_CFG1		0x134
93 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
94 #define CORE_TIMER_ENA			BIT(16)
95 
96 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
97 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
98 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
99 #define CORE_CDC_OFFSET_CFG		0x14C
100 #define CORE_CSR_CDC_DELAY_CFG		0x150
101 #define CORE_CDC_SLAVE_DDA_CFG		0x160
102 #define CORE_CSR_CDC_STATUS0		0x164
103 #define CORE_CALIBRATION_DONE		BIT(0)
104 
105 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
106 
107 #define CORE_CSR_CDC_GEN_CFG		0x178
108 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
109 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
110 
111 #define CORE_CDC_T4_DLY_SEL		BIT(0)
112 #define CORE_CMDIN_RCLK_EN		BIT(1)
113 #define CORE_START_CDC_TRAFFIC		BIT(6)
114 
115 #define CORE_PWRSAVE_DLL	BIT(3)
116 
117 #define DDR_CONFIG_POR_VAL	0x80040873
118 
119 
120 #define INVALID_TUNING_PHASE	-1
121 #define SDHCI_MSM_MIN_CLOCK	400000
122 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
123 
124 #define CDR_SELEXT_SHIFT	20
125 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
126 #define CMUX_SHIFT_PHASE_SHIFT	24
127 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
128 
129 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
130 
131 /* Timeout value to avoid infinite waiting for pwr_irq */
132 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
133 
134 /* Max load for eMMC Vdd-io supply */
135 #define MMC_VQMMC_MAX_LOAD_UA	325000
136 
137 #define msm_host_readl(msm_host, host, offset) \
138 	msm_host->var_ops->msm_readl_relaxed(host, offset)
139 
140 #define msm_host_writel(msm_host, val, host, offset) \
141 	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
142 
143 /* CQHCI vendor specific registers */
144 #define CQHCI_VENDOR_CFG1	0xA00
145 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
146 
147 struct sdhci_msm_offset {
148 	u32 core_hc_mode;
149 	u32 core_mci_data_cnt;
150 	u32 core_mci_status;
151 	u32 core_mci_fifo_cnt;
152 	u32 core_mci_version;
153 	u32 core_generics;
154 	u32 core_testbus_config;
155 	u32 core_testbus_sel2_bit;
156 	u32 core_testbus_ena;
157 	u32 core_testbus_sel2;
158 	u32 core_pwrctl_status;
159 	u32 core_pwrctl_mask;
160 	u32 core_pwrctl_clear;
161 	u32 core_pwrctl_ctl;
162 	u32 core_sdcc_debug_reg;
163 	u32 core_dll_config;
164 	u32 core_dll_status;
165 	u32 core_vendor_spec;
166 	u32 core_vendor_spec_adma_err_addr0;
167 	u32 core_vendor_spec_adma_err_addr1;
168 	u32 core_vendor_spec_func2;
169 	u32 core_vendor_spec_capabilities0;
170 	u32 core_ddr_200_cfg;
171 	u32 core_vendor_spec3;
172 	u32 core_dll_config_2;
173 	u32 core_dll_config_3;
174 	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
175 	u32 core_ddr_config;
176 	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
177 };
178 
179 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
180 	.core_mci_data_cnt = 0x35c,
181 	.core_mci_status = 0x324,
182 	.core_mci_fifo_cnt = 0x308,
183 	.core_mci_version = 0x318,
184 	.core_generics = 0x320,
185 	.core_testbus_config = 0x32c,
186 	.core_testbus_sel2_bit = 3,
187 	.core_testbus_ena = (1 << 31),
188 	.core_testbus_sel2 = (1 << 3),
189 	.core_pwrctl_status = 0x240,
190 	.core_pwrctl_mask = 0x244,
191 	.core_pwrctl_clear = 0x248,
192 	.core_pwrctl_ctl = 0x24c,
193 	.core_sdcc_debug_reg = 0x358,
194 	.core_dll_config = 0x200,
195 	.core_dll_status = 0x208,
196 	.core_vendor_spec = 0x20c,
197 	.core_vendor_spec_adma_err_addr0 = 0x214,
198 	.core_vendor_spec_adma_err_addr1 = 0x218,
199 	.core_vendor_spec_func2 = 0x210,
200 	.core_vendor_spec_capabilities0 = 0x21c,
201 	.core_ddr_200_cfg = 0x224,
202 	.core_vendor_spec3 = 0x250,
203 	.core_dll_config_2 = 0x254,
204 	.core_dll_config_3 = 0x258,
205 	.core_ddr_config = 0x25c,
206 	.core_dll_usr_ctl = 0x388,
207 };
208 
209 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
210 	.core_hc_mode = 0x78,
211 	.core_mci_data_cnt = 0x30,
212 	.core_mci_status = 0x34,
213 	.core_mci_fifo_cnt = 0x44,
214 	.core_mci_version = 0x050,
215 	.core_generics = 0x70,
216 	.core_testbus_config = 0x0cc,
217 	.core_testbus_sel2_bit = 4,
218 	.core_testbus_ena = (1 << 3),
219 	.core_testbus_sel2 = (1 << 4),
220 	.core_pwrctl_status = 0xdc,
221 	.core_pwrctl_mask = 0xe0,
222 	.core_pwrctl_clear = 0xe4,
223 	.core_pwrctl_ctl = 0xe8,
224 	.core_sdcc_debug_reg = 0x124,
225 	.core_dll_config = 0x100,
226 	.core_dll_status = 0x108,
227 	.core_vendor_spec = 0x10c,
228 	.core_vendor_spec_adma_err_addr0 = 0x114,
229 	.core_vendor_spec_adma_err_addr1 = 0x118,
230 	.core_vendor_spec_func2 = 0x110,
231 	.core_vendor_spec_capabilities0 = 0x11c,
232 	.core_ddr_200_cfg = 0x184,
233 	.core_vendor_spec3 = 0x1b0,
234 	.core_dll_config_2 = 0x1b4,
235 	.core_ddr_config_old = 0x1b8,
236 	.core_ddr_config = 0x1bc,
237 };
238 
239 struct sdhci_msm_variant_ops {
240 	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
241 	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
242 			u32 offset);
243 };
244 
245 /*
246  * From V5, register spaces have changed. Wrap this info in a structure
247  * and choose the data_structure based on version info mentioned in DT.
248  */
249 struct sdhci_msm_variant_info {
250 	bool mci_removed;
251 	bool restore_dll_config;
252 	const struct sdhci_msm_variant_ops *var_ops;
253 	const struct sdhci_msm_offset *offset;
254 };
255 
256 struct sdhci_msm_host {
257 	struct platform_device *pdev;
258 	void __iomem *core_mem;	/* MSM SDCC mapped address */
259 	void __iomem *ice_mem;	/* MSM ICE mapped address (if available) */
260 	int pwr_irq;		/* power irq */
261 	struct clk *bus_clk;	/* SDHC bus voter clock */
262 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
263 	/* core, iface, cal, sleep, and ice clocks */
264 	struct clk_bulk_data bulk_clks[5];
265 	unsigned long clk_rate;
266 	struct mmc_host *mmc;
267 	bool use_14lpp_dll_reset;
268 	bool tuning_done;
269 	bool calibration_done;
270 	u8 saved_tuning_phase;
271 	bool use_cdclp533;
272 	u32 curr_pwr_state;
273 	u32 curr_io_level;
274 	wait_queue_head_t pwr_irq_wait;
275 	bool pwr_irq_flag;
276 	u32 caps_0;
277 	bool mci_removed;
278 	bool restore_dll_config;
279 	const struct sdhci_msm_variant_ops *var_ops;
280 	const struct sdhci_msm_offset *offset;
281 	bool use_cdr;
282 	u32 transfer_mode;
283 	bool updated_ddr_cfg;
284 	bool uses_tassadar_dll;
285 	u32 dll_config;
286 	u32 ddr_config;
287 	bool vqmmc_enabled;
288 };
289 
290 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
291 {
292 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
293 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
294 
295 	return msm_host->offset;
296 }
297 
298 /*
299  * APIs to read/write to vendor specific registers which were there in the
300  * core_mem region before MCI was removed.
301  */
302 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
303 		u32 offset)
304 {
305 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
306 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
307 
308 	return readl_relaxed(msm_host->core_mem + offset);
309 }
310 
311 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
312 		u32 offset)
313 {
314 	return readl_relaxed(host->ioaddr + offset);
315 }
316 
317 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
318 		struct sdhci_host *host, u32 offset)
319 {
320 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
321 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
322 
323 	writel_relaxed(val, msm_host->core_mem + offset);
324 }
325 
326 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
327 		struct sdhci_host *host, u32 offset)
328 {
329 	writel_relaxed(val, host->ioaddr + offset);
330 }
331 
332 static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
333 {
334 	struct mmc_ios ios = host->mmc->ios;
335 	/*
336 	 * The SDHC requires internal clock frequency to be double the
337 	 * actual clock that will be set for DDR mode. The controller
338 	 * uses the faster clock(100/400MHz) for some of its parts and
339 	 * send the actual required clock (50/200MHz) to the card.
340 	 */
341 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
342 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
343 	    ios.timing == MMC_TIMING_MMC_HS400 ||
344 	    host->flags & SDHCI_HS400_TUNING)
345 		return 2;
346 	return 1;
347 }
348 
349 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
350 					    unsigned int clock)
351 {
352 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
353 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
354 	struct mmc_ios curr_ios = host->mmc->ios;
355 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
356 	unsigned long achieved_rate;
357 	unsigned int desired_rate;
358 	unsigned int mult;
359 	int rc;
360 
361 	mult = msm_get_clock_mult_for_bus_mode(host);
362 	desired_rate = clock * mult;
363 	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
364 	if (rc) {
365 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
366 		       mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
367 		return;
368 	}
369 
370 	/*
371 	 * Qualcomm clock drivers by default round clock _up_ if they can't
372 	 * make the requested rate.  This is not good for SD.  Yell if we
373 	 * encounter it.
374 	 */
375 	achieved_rate = clk_get_rate(core_clk);
376 	if (achieved_rate > desired_rate)
377 		pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
378 			mmc_hostname(host->mmc), desired_rate, achieved_rate);
379 	host->mmc->actual_clock = achieved_rate / mult;
380 
381 	/* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
382 	msm_host->clk_rate = desired_rate;
383 
384 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
385 		 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
386 }
387 
388 /* Platform specific tuning */
389 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
390 {
391 	u32 wait_cnt = 50;
392 	u8 ck_out_en;
393 	struct mmc_host *mmc = host->mmc;
394 	const struct sdhci_msm_offset *msm_offset =
395 					sdhci_priv_msm_offset(host);
396 
397 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
398 	ck_out_en = !!(readl_relaxed(host->ioaddr +
399 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
400 
401 	while (ck_out_en != poll) {
402 		if (--wait_cnt == 0) {
403 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
404 			       mmc_hostname(mmc), poll);
405 			return -ETIMEDOUT;
406 		}
407 		udelay(1);
408 
409 		ck_out_en = !!(readl_relaxed(host->ioaddr +
410 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
411 	}
412 
413 	return 0;
414 }
415 
416 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
417 {
418 	int rc;
419 	static const u8 grey_coded_phase_table[] = {
420 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
421 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
422 	};
423 	unsigned long flags;
424 	u32 config;
425 	struct mmc_host *mmc = host->mmc;
426 	const struct sdhci_msm_offset *msm_offset =
427 					sdhci_priv_msm_offset(host);
428 
429 	if (phase > 0xf)
430 		return -EINVAL;
431 
432 	spin_lock_irqsave(&host->lock, flags);
433 
434 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
435 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
436 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
437 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
438 
439 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
440 	rc = msm_dll_poll_ck_out_en(host, 0);
441 	if (rc)
442 		goto err_out;
443 
444 	/*
445 	 * Write the selected DLL clock output phase (0 ... 15)
446 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
447 	 */
448 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
449 	config &= ~CDR_SELEXT_MASK;
450 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
451 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
452 
453 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
454 	config |= CORE_CK_OUT_EN;
455 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
456 
457 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
458 	rc = msm_dll_poll_ck_out_en(host, 1);
459 	if (rc)
460 		goto err_out;
461 
462 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
463 	config |= CORE_CDR_EN;
464 	config &= ~CORE_CDR_EXT_EN;
465 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
466 	goto out;
467 
468 err_out:
469 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
470 	       mmc_hostname(mmc), phase);
471 out:
472 	spin_unlock_irqrestore(&host->lock, flags);
473 	return rc;
474 }
475 
476 /*
477  * Find out the greatest range of consecuitive selected
478  * DLL clock output phases that can be used as sampling
479  * setting for SD3.0 UHS-I card read operation (in SDR104
480  * timing mode) or for eMMC4.5 card read operation (in
481  * HS400/HS200 timing mode).
482  * Select the 3/4 of the range and configure the DLL with the
483  * selected DLL clock output phase.
484  */
485 
486 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
487 					   u8 *phase_table, u8 total_phases)
488 {
489 	int ret;
490 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
491 	u8 phases_per_row[MAX_PHASES] = { 0 };
492 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
493 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
494 	bool phase_0_found = false, phase_15_found = false;
495 	struct mmc_host *mmc = host->mmc;
496 
497 	if (!total_phases || (total_phases > MAX_PHASES)) {
498 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
499 		       mmc_hostname(mmc), total_phases);
500 		return -EINVAL;
501 	}
502 
503 	for (cnt = 0; cnt < total_phases; cnt++) {
504 		ranges[row_index][col_index] = phase_table[cnt];
505 		phases_per_row[row_index] += 1;
506 		col_index++;
507 
508 		if ((cnt + 1) == total_phases) {
509 			continue;
510 		/* check if next phase in phase_table is consecutive or not */
511 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
512 			row_index++;
513 			col_index = 0;
514 		}
515 	}
516 
517 	if (row_index >= MAX_PHASES)
518 		return -EINVAL;
519 
520 	/* Check if phase-0 is present in first valid window? */
521 	if (!ranges[0][0]) {
522 		phase_0_found = true;
523 		phase_0_raw_index = 0;
524 		/* Check if cycle exist between 2 valid windows */
525 		for (cnt = 1; cnt <= row_index; cnt++) {
526 			if (phases_per_row[cnt]) {
527 				for (i = 0; i < phases_per_row[cnt]; i++) {
528 					if (ranges[cnt][i] == 15) {
529 						phase_15_found = true;
530 						phase_15_raw_index = cnt;
531 						break;
532 					}
533 				}
534 			}
535 		}
536 	}
537 
538 	/* If 2 valid windows form cycle then merge them as single window */
539 	if (phase_0_found && phase_15_found) {
540 		/* number of phases in raw where phase 0 is present */
541 		u8 phases_0 = phases_per_row[phase_0_raw_index];
542 		/* number of phases in raw where phase 15 is present */
543 		u8 phases_15 = phases_per_row[phase_15_raw_index];
544 
545 		if (phases_0 + phases_15 >= MAX_PHASES)
546 			/*
547 			 * If there are more than 1 phase windows then total
548 			 * number of phases in both the windows should not be
549 			 * more than or equal to MAX_PHASES.
550 			 */
551 			return -EINVAL;
552 
553 		/* Merge 2 cyclic windows */
554 		i = phases_15;
555 		for (cnt = 0; cnt < phases_0; cnt++) {
556 			ranges[phase_15_raw_index][i] =
557 			    ranges[phase_0_raw_index][cnt];
558 			if (++i >= MAX_PHASES)
559 				break;
560 		}
561 
562 		phases_per_row[phase_0_raw_index] = 0;
563 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
564 	}
565 
566 	for (cnt = 0; cnt <= row_index; cnt++) {
567 		if (phases_per_row[cnt] > curr_max) {
568 			curr_max = phases_per_row[cnt];
569 			selected_row_index = cnt;
570 		}
571 	}
572 
573 	i = (curr_max * 3) / 4;
574 	if (i)
575 		i--;
576 
577 	ret = ranges[selected_row_index][i];
578 
579 	if (ret >= MAX_PHASES) {
580 		ret = -EINVAL;
581 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
582 		       mmc_hostname(mmc), ret);
583 	}
584 
585 	return ret;
586 }
587 
588 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
589 {
590 	u32 mclk_freq = 0, config;
591 	const struct sdhci_msm_offset *msm_offset =
592 					sdhci_priv_msm_offset(host);
593 
594 	/* Program the MCLK value to MCLK_FREQ bit field */
595 	if (host->clock <= 112000000)
596 		mclk_freq = 0;
597 	else if (host->clock <= 125000000)
598 		mclk_freq = 1;
599 	else if (host->clock <= 137000000)
600 		mclk_freq = 2;
601 	else if (host->clock <= 150000000)
602 		mclk_freq = 3;
603 	else if (host->clock <= 162000000)
604 		mclk_freq = 4;
605 	else if (host->clock <= 175000000)
606 		mclk_freq = 5;
607 	else if (host->clock <= 187000000)
608 		mclk_freq = 6;
609 	else if (host->clock <= 200000000)
610 		mclk_freq = 7;
611 
612 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
613 	config &= ~CMUX_SHIFT_PHASE_MASK;
614 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
615 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
616 }
617 
618 /* Initialize the DLL (Programmable Delay Line) */
619 static int msm_init_cm_dll(struct sdhci_host *host)
620 {
621 	struct mmc_host *mmc = host->mmc;
622 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
623 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
624 	int wait_cnt = 50;
625 	unsigned long flags, xo_clk = 0;
626 	u32 config;
627 	const struct sdhci_msm_offset *msm_offset =
628 					msm_host->offset;
629 
630 	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
631 		xo_clk = clk_get_rate(msm_host->xo_clk);
632 
633 	spin_lock_irqsave(&host->lock, flags);
634 
635 	/*
636 	 * Make sure that clock is always enabled when DLL
637 	 * tuning is in progress. Keeping PWRSAVE ON may
638 	 * turn off the clock.
639 	 */
640 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
641 	config &= ~CORE_CLK_PWRSAVE;
642 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
643 
644 	if (msm_host->dll_config)
645 		writel_relaxed(msm_host->dll_config,
646 				host->ioaddr + msm_offset->core_dll_config);
647 
648 	if (msm_host->use_14lpp_dll_reset) {
649 		config = readl_relaxed(host->ioaddr +
650 				msm_offset->core_dll_config);
651 		config &= ~CORE_CK_OUT_EN;
652 		writel_relaxed(config, host->ioaddr +
653 				msm_offset->core_dll_config);
654 
655 		config = readl_relaxed(host->ioaddr +
656 				msm_offset->core_dll_config_2);
657 		config |= CORE_DLL_CLOCK_DISABLE;
658 		writel_relaxed(config, host->ioaddr +
659 				msm_offset->core_dll_config_2);
660 	}
661 
662 	config = readl_relaxed(host->ioaddr +
663 			msm_offset->core_dll_config);
664 	config |= CORE_DLL_RST;
665 	writel_relaxed(config, host->ioaddr +
666 			msm_offset->core_dll_config);
667 
668 	config = readl_relaxed(host->ioaddr +
669 			msm_offset->core_dll_config);
670 	config |= CORE_DLL_PDN;
671 	writel_relaxed(config, host->ioaddr +
672 			msm_offset->core_dll_config);
673 
674 	if (!msm_host->dll_config)
675 		msm_cm_dll_set_freq(host);
676 
677 	if (msm_host->use_14lpp_dll_reset &&
678 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
679 		u32 mclk_freq = 0;
680 
681 		config = readl_relaxed(host->ioaddr +
682 				msm_offset->core_dll_config_2);
683 		config &= CORE_FLL_CYCLE_CNT;
684 		if (config)
685 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
686 					xo_clk);
687 		else
688 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
689 					xo_clk);
690 
691 		config = readl_relaxed(host->ioaddr +
692 				msm_offset->core_dll_config_2);
693 		config &= ~(0xFF << 10);
694 		config |= mclk_freq << 10;
695 
696 		writel_relaxed(config, host->ioaddr +
697 				msm_offset->core_dll_config_2);
698 		/* wait for 5us before enabling DLL clock */
699 		udelay(5);
700 	}
701 
702 	config = readl_relaxed(host->ioaddr +
703 			msm_offset->core_dll_config);
704 	config &= ~CORE_DLL_RST;
705 	writel_relaxed(config, host->ioaddr +
706 			msm_offset->core_dll_config);
707 
708 	config = readl_relaxed(host->ioaddr +
709 			msm_offset->core_dll_config);
710 	config &= ~CORE_DLL_PDN;
711 	writel_relaxed(config, host->ioaddr +
712 			msm_offset->core_dll_config);
713 
714 	if (msm_host->use_14lpp_dll_reset) {
715 		if (!msm_host->dll_config)
716 			msm_cm_dll_set_freq(host);
717 		config = readl_relaxed(host->ioaddr +
718 				msm_offset->core_dll_config_2);
719 		config &= ~CORE_DLL_CLOCK_DISABLE;
720 		writel_relaxed(config, host->ioaddr +
721 				msm_offset->core_dll_config_2);
722 	}
723 
724 	/*
725 	 * Configure DLL user control register to enable DLL status.
726 	 * This setting is applicable to SDCC v5.1 onwards only.
727 	 */
728 	if (msm_host->uses_tassadar_dll) {
729 		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
730 			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
731 		writel_relaxed(config, host->ioaddr +
732 				msm_offset->core_dll_usr_ctl);
733 
734 		config = readl_relaxed(host->ioaddr +
735 				msm_offset->core_dll_config_3);
736 		config &= ~0xFF;
737 		if (msm_host->clk_rate < 150000000)
738 			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
739 		else
740 			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
741 		writel_relaxed(config, host->ioaddr +
742 			msm_offset->core_dll_config_3);
743 	}
744 
745 	config = readl_relaxed(host->ioaddr +
746 			msm_offset->core_dll_config);
747 	config |= CORE_DLL_EN;
748 	writel_relaxed(config, host->ioaddr +
749 			msm_offset->core_dll_config);
750 
751 	config = readl_relaxed(host->ioaddr +
752 			msm_offset->core_dll_config);
753 	config |= CORE_CK_OUT_EN;
754 	writel_relaxed(config, host->ioaddr +
755 			msm_offset->core_dll_config);
756 
757 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
758 	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
759 		 CORE_DLL_LOCK)) {
760 		/* max. wait for 50us sec for LOCK bit to be set */
761 		if (--wait_cnt == 0) {
762 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
763 			       mmc_hostname(mmc));
764 			spin_unlock_irqrestore(&host->lock, flags);
765 			return -ETIMEDOUT;
766 		}
767 		udelay(1);
768 	}
769 
770 	spin_unlock_irqrestore(&host->lock, flags);
771 	return 0;
772 }
773 
774 static void msm_hc_select_default(struct sdhci_host *host)
775 {
776 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
777 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
778 	u32 config;
779 	const struct sdhci_msm_offset *msm_offset =
780 					msm_host->offset;
781 
782 	if (!msm_host->use_cdclp533) {
783 		config = readl_relaxed(host->ioaddr +
784 				msm_offset->core_vendor_spec3);
785 		config &= ~CORE_PWRSAVE_DLL;
786 		writel_relaxed(config, host->ioaddr +
787 				msm_offset->core_vendor_spec3);
788 	}
789 
790 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
791 	config &= ~CORE_HC_MCLK_SEL_MASK;
792 	config |= CORE_HC_MCLK_SEL_DFLT;
793 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
794 
795 	/*
796 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
797 	 * configuration from Host Control2 register for all other
798 	 * modes.
799 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
800 	 * in VENDOR_SPEC_FUNC
801 	 */
802 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
803 	config &= ~CORE_HC_SELECT_IN_EN;
804 	config &= ~CORE_HC_SELECT_IN_MASK;
805 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
806 
807 	/*
808 	 * Make sure above writes impacting free running MCLK are completed
809 	 * before changing the clk_rate at GCC.
810 	 */
811 	wmb();
812 }
813 
814 static void msm_hc_select_hs400(struct sdhci_host *host)
815 {
816 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
817 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
818 	struct mmc_ios ios = host->mmc->ios;
819 	u32 config, dll_lock;
820 	int rc;
821 	const struct sdhci_msm_offset *msm_offset =
822 					msm_host->offset;
823 
824 	/* Select the divided clock (free running MCLK/2) */
825 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
826 	config &= ~CORE_HC_MCLK_SEL_MASK;
827 	config |= CORE_HC_MCLK_SEL_HS400;
828 
829 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
830 	/*
831 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
832 	 * register
833 	 */
834 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
835 	    !msm_host->calibration_done) {
836 		config = readl_relaxed(host->ioaddr +
837 				msm_offset->core_vendor_spec);
838 		config |= CORE_HC_SELECT_IN_HS400;
839 		config |= CORE_HC_SELECT_IN_EN;
840 		writel_relaxed(config, host->ioaddr +
841 				msm_offset->core_vendor_spec);
842 	}
843 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
844 		/*
845 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
846 		 * core_dll_status to be set. This should get set
847 		 * within 15 us at 200 MHz.
848 		 */
849 		rc = readl_relaxed_poll_timeout(host->ioaddr +
850 						msm_offset->core_dll_status,
851 						dll_lock,
852 						(dll_lock &
853 						(CORE_DLL_LOCK |
854 						CORE_DDR_DLL_LOCK)), 10,
855 						1000);
856 		if (rc == -ETIMEDOUT)
857 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
858 			       mmc_hostname(host->mmc), dll_lock);
859 	}
860 	/*
861 	 * Make sure above writes impacting free running MCLK are completed
862 	 * before changing the clk_rate at GCC.
863 	 */
864 	wmb();
865 }
866 
867 /*
868  * sdhci_msm_hc_select_mode :- In general all timing modes are
869  * controlled via UHS mode select in Host Control2 register.
870  * eMMC specific HS200/HS400 doesn't have their respective modes
871  * defined here, hence we use these values.
872  *
873  * HS200 - SDR104 (Since they both are equivalent in functionality)
874  * HS400 - This involves multiple configurations
875  *		Initially SDR104 - when tuning is required as HS200
876  *		Then when switching to DDR @ 400MHz (HS400) we use
877  *		the vendor specific HC_SELECT_IN to control the mode.
878  *
879  * In addition to controlling the modes we also need to select the
880  * correct input clock for DLL depending on the mode.
881  *
882  * HS400 - divided clock (free running MCLK/2)
883  * All other modes - default (free running MCLK)
884  */
885 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
886 {
887 	struct mmc_ios ios = host->mmc->ios;
888 
889 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
890 	    host->flags & SDHCI_HS400_TUNING)
891 		msm_hc_select_hs400(host);
892 	else
893 		msm_hc_select_default(host);
894 }
895 
896 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
897 {
898 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
899 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
900 	u32 config, calib_done;
901 	int ret;
902 	const struct sdhci_msm_offset *msm_offset =
903 					msm_host->offset;
904 
905 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
906 
907 	/*
908 	 * Retuning in HS400 (DDR mode) will fail, just reset the
909 	 * tuning block and restore the saved tuning phase.
910 	 */
911 	ret = msm_init_cm_dll(host);
912 	if (ret)
913 		goto out;
914 
915 	/* Set the selected phase in delay line hw block */
916 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
917 	if (ret)
918 		goto out;
919 
920 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
921 	config |= CORE_CMD_DAT_TRACK_SEL;
922 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
923 
924 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
925 	config &= ~CORE_CDC_T4_DLY_SEL;
926 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
927 
928 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
929 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
930 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
931 
932 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
933 	config |= CORE_CDC_SWITCH_RC_EN;
934 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
935 
936 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
937 	config &= ~CORE_START_CDC_TRAFFIC;
938 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
939 
940 	/* Perform CDC Register Initialization Sequence */
941 
942 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
943 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
944 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
945 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
946 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
947 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
948 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
949 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
950 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
951 
952 	/* CDC HW Calibration */
953 
954 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
955 	config |= CORE_SW_TRIG_FULL_CALIB;
956 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
957 
958 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
959 	config &= ~CORE_SW_TRIG_FULL_CALIB;
960 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
961 
962 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
963 	config |= CORE_HW_AUTOCAL_ENA;
964 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
965 
966 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
967 	config |= CORE_TIMER_ENA;
968 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
969 
970 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
971 					 calib_done,
972 					 (calib_done & CORE_CALIBRATION_DONE),
973 					 1, 50);
974 
975 	if (ret == -ETIMEDOUT) {
976 		pr_err("%s: %s: CDC calibration was not completed\n",
977 		       mmc_hostname(host->mmc), __func__);
978 		goto out;
979 	}
980 
981 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
982 			& CORE_CDC_ERROR_CODE_MASK;
983 	if (ret) {
984 		pr_err("%s: %s: CDC error code %d\n",
985 		       mmc_hostname(host->mmc), __func__, ret);
986 		ret = -EINVAL;
987 		goto out;
988 	}
989 
990 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
991 	config |= CORE_START_CDC_TRAFFIC;
992 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
993 out:
994 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
995 		 __func__, ret);
996 	return ret;
997 }
998 
999 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1000 {
1001 	struct mmc_host *mmc = host->mmc;
1002 	u32 dll_status, config, ddr_cfg_offset;
1003 	int ret;
1004 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1005 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1006 	const struct sdhci_msm_offset *msm_offset =
1007 					sdhci_priv_msm_offset(host);
1008 
1009 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1010 
1011 	/*
1012 	 * Currently the core_ddr_config register defaults to desired
1013 	 * configuration on reset. Currently reprogramming the power on
1014 	 * reset (POR) value in case it might have been modified by
1015 	 * bootloaders. In the future, if this changes, then the desired
1016 	 * values will need to be programmed appropriately.
1017 	 */
1018 	if (msm_host->updated_ddr_cfg)
1019 		ddr_cfg_offset = msm_offset->core_ddr_config;
1020 	else
1021 		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1022 	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1023 
1024 	if (mmc->ios.enhanced_strobe) {
1025 		config = readl_relaxed(host->ioaddr +
1026 				msm_offset->core_ddr_200_cfg);
1027 		config |= CORE_CMDIN_RCLK_EN;
1028 		writel_relaxed(config, host->ioaddr +
1029 				msm_offset->core_ddr_200_cfg);
1030 	}
1031 
1032 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1033 	config |= CORE_DDR_CAL_EN;
1034 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1035 
1036 	ret = readl_relaxed_poll_timeout(host->ioaddr +
1037 					msm_offset->core_dll_status,
1038 					dll_status,
1039 					(dll_status & CORE_DDR_DLL_LOCK),
1040 					10, 1000);
1041 
1042 	if (ret == -ETIMEDOUT) {
1043 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1044 		       mmc_hostname(host->mmc), __func__);
1045 		goto out;
1046 	}
1047 
1048 	/*
1049 	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1050 	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1051 	 * and MCLK must be switched on for at-least 1us before DATA
1052 	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1053 	 * guarantee above requirement. So PWRSAVE_DLL should not be
1054 	 * turned on for host controllers using this DLL.
1055 	 */
1056 	if (!msm_host->use_14lpp_dll_reset) {
1057 		config = readl_relaxed(host->ioaddr +
1058 				msm_offset->core_vendor_spec3);
1059 		config |= CORE_PWRSAVE_DLL;
1060 		writel_relaxed(config, host->ioaddr +
1061 				msm_offset->core_vendor_spec3);
1062 	}
1063 
1064 	/*
1065 	 * Drain writebuffer to ensure above DLL calibration
1066 	 * and PWRSAVE DLL is enabled.
1067 	 */
1068 	wmb();
1069 out:
1070 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1071 		 __func__, ret);
1072 	return ret;
1073 }
1074 
1075 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1076 {
1077 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1078 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1079 	struct mmc_host *mmc = host->mmc;
1080 	int ret;
1081 	u32 config;
1082 	const struct sdhci_msm_offset *msm_offset =
1083 					msm_host->offset;
1084 
1085 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1086 
1087 	/*
1088 	 * Retuning in HS400 (DDR mode) will fail, just reset the
1089 	 * tuning block and restore the saved tuning phase.
1090 	 */
1091 	ret = msm_init_cm_dll(host);
1092 	if (ret)
1093 		goto out;
1094 
1095 	if (!mmc->ios.enhanced_strobe) {
1096 		/* Set the selected phase in delay line hw block */
1097 		ret = msm_config_cm_dll_phase(host,
1098 					      msm_host->saved_tuning_phase);
1099 		if (ret)
1100 			goto out;
1101 		config = readl_relaxed(host->ioaddr +
1102 				msm_offset->core_dll_config);
1103 		config |= CORE_CMD_DAT_TRACK_SEL;
1104 		writel_relaxed(config, host->ioaddr +
1105 				msm_offset->core_dll_config);
1106 	}
1107 
1108 	if (msm_host->use_cdclp533)
1109 		ret = sdhci_msm_cdclp533_calibration(host);
1110 	else
1111 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1112 out:
1113 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1114 		 __func__, ret);
1115 	return ret;
1116 }
1117 
1118 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1119 {
1120 	struct mmc_ios *ios = &host->mmc->ios;
1121 
1122 	/*
1123 	 * Tuning is required for SDR104, HS200 and HS400 cards and
1124 	 * if clock frequency is greater than 100MHz in these modes.
1125 	 */
1126 	if (host->clock <= CORE_FREQ_100MHZ ||
1127 	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1128 	    ios->timing == MMC_TIMING_MMC_HS200 ||
1129 	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1130 	    ios->enhanced_strobe)
1131 		return false;
1132 
1133 	return true;
1134 }
1135 
1136 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1137 {
1138 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1139 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1140 	int ret;
1141 
1142 	/*
1143 	 * SDR DLL comes into picture only for timing modes which needs
1144 	 * tuning.
1145 	 */
1146 	if (!sdhci_msm_is_tuning_needed(host))
1147 		return 0;
1148 
1149 	/* Reset the tuning block */
1150 	ret = msm_init_cm_dll(host);
1151 	if (ret)
1152 		return ret;
1153 
1154 	/* Restore the tuning block */
1155 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1156 
1157 	return ret;
1158 }
1159 
1160 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1161 {
1162 	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1163 	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1164 					      msm_offset->core_dll_config);
1165 
1166 	config = oldconfig;
1167 	if (enable) {
1168 		config |= CORE_CDR_EN;
1169 		config &= ~CORE_CDR_EXT_EN;
1170 	} else {
1171 		config &= ~CORE_CDR_EN;
1172 		config |= CORE_CDR_EXT_EN;
1173 	}
1174 
1175 	if (config != oldconfig) {
1176 		writel_relaxed(config, host->ioaddr +
1177 			       msm_offset->core_dll_config);
1178 	}
1179 }
1180 
1181 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1182 {
1183 	struct sdhci_host *host = mmc_priv(mmc);
1184 	int tuning_seq_cnt = 10;
1185 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1186 	int rc;
1187 	struct mmc_ios ios = host->mmc->ios;
1188 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1189 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1190 
1191 	if (!sdhci_msm_is_tuning_needed(host)) {
1192 		msm_host->use_cdr = false;
1193 		sdhci_msm_set_cdr(host, false);
1194 		return 0;
1195 	}
1196 
1197 	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1198 	msm_host->use_cdr = true;
1199 
1200 	/*
1201 	 * Clear tuning_done flag before tuning to ensure proper
1202 	 * HS400 settings.
1203 	 */
1204 	msm_host->tuning_done = 0;
1205 
1206 	/*
1207 	 * For HS400 tuning in HS200 timing requires:
1208 	 * - select MCLK/2 in VENDOR_SPEC
1209 	 * - program MCLK to 400MHz (or nearest supported) in GCC
1210 	 */
1211 	if (host->flags & SDHCI_HS400_TUNING) {
1212 		sdhci_msm_hc_select_mode(host);
1213 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1214 		host->flags &= ~SDHCI_HS400_TUNING;
1215 	}
1216 
1217 retry:
1218 	/* First of all reset the tuning block */
1219 	rc = msm_init_cm_dll(host);
1220 	if (rc)
1221 		return rc;
1222 
1223 	phase = 0;
1224 	do {
1225 		/* Set the phase in delay line hw block */
1226 		rc = msm_config_cm_dll_phase(host, phase);
1227 		if (rc)
1228 			return rc;
1229 
1230 		rc = mmc_send_tuning(mmc, opcode, NULL);
1231 		if (!rc) {
1232 			/* Tuning is successful at this tuning point */
1233 			tuned_phases[tuned_phase_cnt++] = phase;
1234 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1235 				 mmc_hostname(mmc), phase);
1236 		}
1237 	} while (++phase < ARRAY_SIZE(tuned_phases));
1238 
1239 	if (tuned_phase_cnt) {
1240 		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1241 			/*
1242 			 * All phases valid is _almost_ as bad as no phases
1243 			 * valid.  Probably all phases are not really reliable
1244 			 * but we didn't detect where the unreliable place is.
1245 			 * That means we'll essentially be guessing and hoping
1246 			 * we get a good phase.  Better to try a few times.
1247 			 */
1248 			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1249 				mmc_hostname(mmc));
1250 			if (--tuning_seq_cnt) {
1251 				tuned_phase_cnt = 0;
1252 				goto retry;
1253 			}
1254 		}
1255 
1256 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1257 						     tuned_phase_cnt);
1258 		if (rc < 0)
1259 			return rc;
1260 		else
1261 			phase = rc;
1262 
1263 		/*
1264 		 * Finally set the selected phase in delay
1265 		 * line hw block.
1266 		 */
1267 		rc = msm_config_cm_dll_phase(host, phase);
1268 		if (rc)
1269 			return rc;
1270 		msm_host->saved_tuning_phase = phase;
1271 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1272 			 mmc_hostname(mmc), phase);
1273 	} else {
1274 		if (--tuning_seq_cnt)
1275 			goto retry;
1276 		/* Tuning failed */
1277 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1278 		       mmc_hostname(mmc));
1279 		rc = -EIO;
1280 	}
1281 
1282 	if (!rc)
1283 		msm_host->tuning_done = true;
1284 	return rc;
1285 }
1286 
1287 /*
1288  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1289  * This needs to be done for both tuning and enhanced_strobe mode.
1290  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1291  * fixed feedback clock is used.
1292  */
1293 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1294 {
1295 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1296 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1297 	int ret;
1298 
1299 	if (host->clock > CORE_FREQ_100MHZ &&
1300 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1301 	    !msm_host->calibration_done) {
1302 		ret = sdhci_msm_hs400_dll_calibration(host);
1303 		if (!ret)
1304 			msm_host->calibration_done = true;
1305 		else
1306 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1307 			       mmc_hostname(host->mmc), ret);
1308 	}
1309 }
1310 
1311 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1312 					unsigned int uhs)
1313 {
1314 	struct mmc_host *mmc = host->mmc;
1315 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1316 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1317 	u16 ctrl_2;
1318 	u32 config;
1319 	const struct sdhci_msm_offset *msm_offset =
1320 					msm_host->offset;
1321 
1322 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1323 	/* Select Bus Speed Mode for host */
1324 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1325 	switch (uhs) {
1326 	case MMC_TIMING_UHS_SDR12:
1327 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1328 		break;
1329 	case MMC_TIMING_UHS_SDR25:
1330 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1331 		break;
1332 	case MMC_TIMING_UHS_SDR50:
1333 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1334 		break;
1335 	case MMC_TIMING_MMC_HS400:
1336 	case MMC_TIMING_MMC_HS200:
1337 	case MMC_TIMING_UHS_SDR104:
1338 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1339 		break;
1340 	case MMC_TIMING_UHS_DDR50:
1341 	case MMC_TIMING_MMC_DDR52:
1342 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1343 		break;
1344 	}
1345 
1346 	/*
1347 	 * When clock frequency is less than 100MHz, the feedback clock must be
1348 	 * provided and DLL must not be used so that tuning can be skipped. To
1349 	 * provide feedback clock, the mode selection can be any value less
1350 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1351 	 */
1352 	if (host->clock <= CORE_FREQ_100MHZ) {
1353 		if (uhs == MMC_TIMING_MMC_HS400 ||
1354 		    uhs == MMC_TIMING_MMC_HS200 ||
1355 		    uhs == MMC_TIMING_UHS_SDR104)
1356 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1357 		/*
1358 		 * DLL is not required for clock <= 100MHz
1359 		 * Thus, make sure DLL it is disabled when not required
1360 		 */
1361 		config = readl_relaxed(host->ioaddr +
1362 				msm_offset->core_dll_config);
1363 		config |= CORE_DLL_RST;
1364 		writel_relaxed(config, host->ioaddr +
1365 				msm_offset->core_dll_config);
1366 
1367 		config = readl_relaxed(host->ioaddr +
1368 				msm_offset->core_dll_config);
1369 		config |= CORE_DLL_PDN;
1370 		writel_relaxed(config, host->ioaddr +
1371 				msm_offset->core_dll_config);
1372 
1373 		/*
1374 		 * The DLL needs to be restored and CDCLP533 recalibrated
1375 		 * when the clock frequency is set back to 400MHz.
1376 		 */
1377 		msm_host->calibration_done = false;
1378 	}
1379 
1380 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1381 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1382 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1383 
1384 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1385 		sdhci_msm_hs400(host, &mmc->ios);
1386 }
1387 
1388 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1389 {
1390 	struct platform_device *pdev = msm_host->pdev;
1391 	int ret;
1392 
1393 	if (level)
1394 		ret = pinctrl_pm_select_default_state(&pdev->dev);
1395 	else
1396 		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1397 
1398 	return ret;
1399 }
1400 
1401 static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1402 {
1403 	if (IS_ERR(mmc->supply.vmmc))
1404 		return 0;
1405 
1406 	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1407 }
1408 
1409 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1410 			      struct mmc_host *mmc, bool level)
1411 {
1412 	int ret;
1413 	struct mmc_ios ios;
1414 
1415 	if (msm_host->vqmmc_enabled == level)
1416 		return 0;
1417 
1418 	if (level) {
1419 		/* Set the IO voltage regulator to default voltage level */
1420 		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1421 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1422 		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1423 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1424 
1425 		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1426 			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1427 			if (ret < 0) {
1428 				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1429 					mmc_hostname(mmc), ret);
1430 				goto out;
1431 			}
1432 		}
1433 		ret = regulator_enable(mmc->supply.vqmmc);
1434 	} else {
1435 		ret = regulator_disable(mmc->supply.vqmmc);
1436 	}
1437 
1438 	if (ret)
1439 		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1440 			mmc_hostname(mmc), level ? "en":"dis", ret);
1441 	else
1442 		msm_host->vqmmc_enabled = level;
1443 out:
1444 	return ret;
1445 }
1446 
1447 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1448 			      struct mmc_host *mmc, bool hpm)
1449 {
1450 	int load, ret;
1451 
1452 	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1453 	ret = regulator_set_load(mmc->supply.vqmmc, load);
1454 	if (ret)
1455 		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1456 			mmc_hostname(mmc), ret);
1457 	return ret;
1458 }
1459 
1460 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1461 			      struct mmc_host *mmc, bool level)
1462 {
1463 	int ret;
1464 	bool always_on;
1465 
1466 	if (IS_ERR(mmc->supply.vqmmc) ||
1467 			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1468 		return 0;
1469 	/*
1470 	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1471 	 * and HPM modes by setting the corresponding load.
1472 	 *
1473 	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1474 	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1475 	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1476 	 * Vqmmc should remain ON, So just set the load instead of turning it
1477 	 * off/on.
1478 	 */
1479 	always_on = !mmc_card_is_removable(mmc) &&
1480 			mmc->card && mmc_card_mmc(mmc->card);
1481 
1482 	if (always_on)
1483 		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1484 	else
1485 		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1486 
1487 	return ret;
1488 }
1489 
1490 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1491 {
1492 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1493 }
1494 
1495 static inline void sdhci_msm_complete_pwr_irq_wait(
1496 		struct sdhci_msm_host *msm_host)
1497 {
1498 	wake_up(&msm_host->pwr_irq_wait);
1499 }
1500 
1501 /*
1502  * sdhci_msm_check_power_status API should be called when registers writes
1503  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1504  * To what state the register writes will change the IO lines should be passed
1505  * as the argument req_type. This API will check whether the IO line's state
1506  * is already the expected state and will wait for power irq only if
1507  * power irq is expected to be triggered based on the current IO line state
1508  * and expected IO line state.
1509  */
1510 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1511 {
1512 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1513 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1514 	bool done = false;
1515 	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1516 	const struct sdhci_msm_offset *msm_offset =
1517 					msm_host->offset;
1518 
1519 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1520 			mmc_hostname(host->mmc), __func__, req_type,
1521 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1522 
1523 	/*
1524 	 * The power interrupt will not be generated for signal voltage
1525 	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1526 	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1527 	 * it as always set.
1528 	 */
1529 	if (!msm_host->mci_removed)
1530 		val = msm_host_readl(msm_host, host,
1531 				msm_offset->core_generics);
1532 	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1533 	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1534 		return;
1535 	}
1536 
1537 	/*
1538 	 * The IRQ for request type IO High/LOW will be generated when -
1539 	 * there is a state change in 1.8V enable bit (bit 3) of
1540 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1541 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1542 	 * to set it to 3.3V before card detection happens, the
1543 	 * IRQ doesn't get triggered as there is no state change in this bit.
1544 	 * The driver already handles this case by changing the IO voltage
1545 	 * level to high as part of controller power up sequence. Hence, check
1546 	 * for host->pwr to handle a case where IO voltage high request is
1547 	 * issued even before controller power up.
1548 	 */
1549 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1550 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1551 				mmc_hostname(host->mmc), req_type);
1552 		return;
1553 	}
1554 	if ((req_type & msm_host->curr_pwr_state) ||
1555 			(req_type & msm_host->curr_io_level))
1556 		done = true;
1557 	/*
1558 	 * This is needed here to handle cases where register writes will
1559 	 * not change the current bus state or io level of the controller.
1560 	 * In this case, no power irq will be triggerred and we should
1561 	 * not wait.
1562 	 */
1563 	if (!done) {
1564 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1565 				msm_host->pwr_irq_flag,
1566 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1567 			dev_warn(&msm_host->pdev->dev,
1568 				 "%s: pwr_irq for req: (%d) timed out\n",
1569 				 mmc_hostname(host->mmc), req_type);
1570 	}
1571 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1572 			__func__, req_type);
1573 }
1574 
1575 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1576 {
1577 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1578 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1579 	const struct sdhci_msm_offset *msm_offset =
1580 					msm_host->offset;
1581 
1582 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1583 		mmc_hostname(host->mmc),
1584 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1585 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1586 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1587 }
1588 
1589 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1590 {
1591 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1592 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1593 	struct mmc_host *mmc = host->mmc;
1594 	u32 irq_status, irq_ack = 0;
1595 	int retry = 10, ret;
1596 	u32 pwr_state = 0, io_level = 0;
1597 	u32 config;
1598 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1599 
1600 	irq_status = msm_host_readl(msm_host, host,
1601 			msm_offset->core_pwrctl_status);
1602 	irq_status &= INT_MASK;
1603 
1604 	msm_host_writel(msm_host, irq_status, host,
1605 			msm_offset->core_pwrctl_clear);
1606 
1607 	/*
1608 	 * There is a rare HW scenario where the first clear pulse could be
1609 	 * lost when actual reset and clear/read of status register is
1610 	 * happening at a time. Hence, retry for at least 10 times to make
1611 	 * sure status register is cleared. Otherwise, this will result in
1612 	 * a spurious power IRQ resulting in system instability.
1613 	 */
1614 	while (irq_status & msm_host_readl(msm_host, host,
1615 				msm_offset->core_pwrctl_status)) {
1616 		if (retry == 0) {
1617 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1618 					mmc_hostname(host->mmc), irq_status);
1619 			sdhci_msm_dump_pwr_ctrl_regs(host);
1620 			WARN_ON(1);
1621 			break;
1622 		}
1623 		msm_host_writel(msm_host, irq_status, host,
1624 			msm_offset->core_pwrctl_clear);
1625 		retry--;
1626 		udelay(10);
1627 	}
1628 
1629 	/* Handle BUS ON/OFF*/
1630 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1631 		pwr_state = REQ_BUS_ON;
1632 		io_level = REQ_IO_HIGH;
1633 	}
1634 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1635 		pwr_state = REQ_BUS_OFF;
1636 		io_level = REQ_IO_LOW;
1637 	}
1638 
1639 	if (pwr_state) {
1640 		ret = sdhci_msm_set_vmmc(mmc);
1641 		if (!ret)
1642 			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1643 					pwr_state & REQ_BUS_ON);
1644 		if (!ret)
1645 			ret = sdhci_msm_set_pincfg(msm_host,
1646 					pwr_state & REQ_BUS_ON);
1647 		if (!ret)
1648 			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1649 		else
1650 			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1651 	}
1652 
1653 	/* Handle IO LOW/HIGH */
1654 	if (irq_status & CORE_PWRCTL_IO_LOW)
1655 		io_level = REQ_IO_LOW;
1656 
1657 	if (irq_status & CORE_PWRCTL_IO_HIGH)
1658 		io_level = REQ_IO_HIGH;
1659 
1660 	if (io_level)
1661 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1662 
1663 	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1664 		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1665 		if (ret < 0) {
1666 			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1667 					mmc_hostname(mmc), ret,
1668 					mmc->ios.signal_voltage, mmc->ios.vdd,
1669 					irq_status);
1670 			irq_ack |= CORE_PWRCTL_IO_FAIL;
1671 		}
1672 	}
1673 
1674 	/*
1675 	 * The driver has to acknowledge the interrupt, switch voltages and
1676 	 * report back if it succeded or not to this register. The voltage
1677 	 * switches are handled by the sdhci core, so just report success.
1678 	 */
1679 	msm_host_writel(msm_host, irq_ack, host,
1680 			msm_offset->core_pwrctl_ctl);
1681 
1682 	/*
1683 	 * If we don't have info regarding the voltage levels supported by
1684 	 * regulators, don't change the IO PAD PWR SWITCH.
1685 	 */
1686 	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1687 		u32 new_config;
1688 		/*
1689 		 * We should unset IO PAD PWR switch only if the register write
1690 		 * can set IO lines high and the regulator also switches to 3 V.
1691 		 * Else, we should keep the IO PAD PWR switch set.
1692 		 * This is applicable to certain targets where eMMC vccq supply
1693 		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1694 		 * IO PAD PWR switch must be kept set to reflect actual
1695 		 * regulator voltage. This way, during initialization of
1696 		 * controllers with only 1.8V, we will set the IO PAD bit
1697 		 * without waiting for a REQ_IO_LOW.
1698 		 */
1699 		config = readl_relaxed(host->ioaddr +
1700 				msm_offset->core_vendor_spec);
1701 		new_config = config;
1702 
1703 		if ((io_level & REQ_IO_HIGH) &&
1704 				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1705 			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1706 		else if ((io_level & REQ_IO_LOW) ||
1707 				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1708 			new_config |= CORE_IO_PAD_PWR_SWITCH;
1709 
1710 		if (config ^ new_config)
1711 			writel_relaxed(new_config, host->ioaddr +
1712 					msm_offset->core_vendor_spec);
1713 	}
1714 
1715 	if (pwr_state)
1716 		msm_host->curr_pwr_state = pwr_state;
1717 	if (io_level)
1718 		msm_host->curr_io_level = io_level;
1719 
1720 	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1721 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1722 		irq_ack);
1723 }
1724 
1725 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1726 {
1727 	struct sdhci_host *host = (struct sdhci_host *)data;
1728 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1729 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1730 
1731 	sdhci_msm_handle_pwr_irq(host, irq);
1732 	msm_host->pwr_irq_flag = 1;
1733 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1734 
1735 
1736 	return IRQ_HANDLED;
1737 }
1738 
1739 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1740 {
1741 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1742 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1743 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1744 
1745 	return clk_round_rate(core_clk, ULONG_MAX);
1746 }
1747 
1748 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1749 {
1750 	return SDHCI_MSM_MIN_CLOCK;
1751 }
1752 
1753 /*
1754  * __sdhci_msm_set_clock - sdhci_msm clock control.
1755  *
1756  * Description:
1757  * MSM controller does not use internal divider and
1758  * instead directly control the GCC clock as per
1759  * HW recommendation.
1760  **/
1761 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1762 {
1763 	u16 clk;
1764 
1765 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1766 
1767 	if (clock == 0)
1768 		return;
1769 
1770 	/*
1771 	 * MSM controller do not use clock divider.
1772 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1773 	 * clock with no divider value programmed.
1774 	 */
1775 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1776 	sdhci_enable_clk(host, clk);
1777 }
1778 
1779 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1780 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1781 {
1782 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1783 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1784 
1785 	if (!clock) {
1786 		host->mmc->actual_clock = msm_host->clk_rate = 0;
1787 		goto out;
1788 	}
1789 
1790 	sdhci_msm_hc_select_mode(host);
1791 
1792 	msm_set_clock_rate_for_bus_mode(host, clock);
1793 out:
1794 	__sdhci_msm_set_clock(host, clock);
1795 }
1796 
1797 /*****************************************************************************\
1798  *                                                                           *
1799  * Inline Crypto Engine (ICE) support                                        *
1800  *                                                                           *
1801 \*****************************************************************************/
1802 
1803 #ifdef CONFIG_MMC_CRYPTO
1804 
1805 #define AES_256_XTS_KEY_SIZE			64
1806 
1807 /* QCOM ICE registers */
1808 
1809 #define QCOM_ICE_REG_VERSION			0x0008
1810 
1811 #define QCOM_ICE_REG_FUSE_SETTING		0x0010
1812 #define QCOM_ICE_FUSE_SETTING_MASK		0x1
1813 #define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK	0x2
1814 #define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK	0x4
1815 
1816 #define QCOM_ICE_REG_BIST_STATUS		0x0070
1817 #define QCOM_ICE_BIST_STATUS_MASK		0xF0000000
1818 
1819 #define QCOM_ICE_REG_ADVANCED_CONTROL		0x1000
1820 
1821 #define sdhci_msm_ice_writel(host, val, reg)	\
1822 	writel((val), (host)->ice_mem + (reg))
1823 #define sdhci_msm_ice_readl(host, reg)	\
1824 	readl((host)->ice_mem + (reg))
1825 
1826 static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
1827 {
1828 	struct device *dev = mmc_dev(msm_host->mmc);
1829 	u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
1830 	int major = regval >> 24;
1831 	int minor = (regval >> 16) & 0xFF;
1832 	int step = regval & 0xFFFF;
1833 
1834 	/* For now this driver only supports ICE version 3. */
1835 	if (major != 3) {
1836 		dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
1837 			 major, minor, step);
1838 		return false;
1839 	}
1840 
1841 	dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
1842 		 major, minor, step);
1843 
1844 	/* If fuses are blown, ICE might not work in the standard way. */
1845 	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
1846 	if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
1847 		      QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
1848 		      QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
1849 		dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
1850 		return false;
1851 	}
1852 	return true;
1853 }
1854 
1855 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
1856 {
1857 	return devm_clk_get(dev, "ice");
1858 }
1859 
1860 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1861 			      struct cqhci_host *cq_host)
1862 {
1863 	struct mmc_host *mmc = msm_host->mmc;
1864 	struct device *dev = mmc_dev(mmc);
1865 	struct resource *res;
1866 
1867 	if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1868 		return 0;
1869 
1870 	res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
1871 					   "ice");
1872 	if (!res) {
1873 		dev_warn(dev, "ICE registers not found\n");
1874 		goto disable;
1875 	}
1876 
1877 	if (!qcom_scm_ice_available()) {
1878 		dev_warn(dev, "ICE SCM interface not found\n");
1879 		goto disable;
1880 	}
1881 
1882 	msm_host->ice_mem = devm_ioremap_resource(dev, res);
1883 	if (IS_ERR(msm_host->ice_mem))
1884 		return PTR_ERR(msm_host->ice_mem);
1885 
1886 	if (!sdhci_msm_ice_supported(msm_host))
1887 		goto disable;
1888 
1889 	mmc->caps2 |= MMC_CAP2_CRYPTO;
1890 	return 0;
1891 
1892 disable:
1893 	dev_warn(dev, "Disabling inline encryption support\n");
1894 	return 0;
1895 }
1896 
1897 static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
1898 {
1899 	u32 regval;
1900 
1901 	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1902 	/*
1903 	 * Enable low power mode sequence
1904 	 * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
1905 	 */
1906 	regval |= 0x7000;
1907 	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1908 }
1909 
1910 static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
1911 {
1912 	u32 regval;
1913 
1914 	/* ICE Optimizations Enable Sequence */
1915 	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1916 	regval |= 0xD807100;
1917 	/* ICE HPG requires delay before writing */
1918 	udelay(5);
1919 	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1920 	udelay(5);
1921 }
1922 
1923 /*
1924  * Wait until the ICE BIST (built-in self-test) has completed.
1925  *
1926  * This may be necessary before ICE can be used.
1927  *
1928  * Note that we don't really care whether the BIST passed or failed; we really
1929  * just want to make sure that it isn't still running.  This is because (a) the
1930  * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
1931  * documented to reject crypto requests if the BIST fails, so we needn't do it
1932  * in software too, and (c) properly testing storage encryption requires testing
1933  * the full storage stack anyway, and not relying on hardware-level self-tests.
1934  */
1935 static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
1936 {
1937 	u32 regval;
1938 	int err;
1939 
1940 	err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
1941 				 regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
1942 				 50, 5000);
1943 	if (err)
1944 		dev_err(mmc_dev(msm_host->mmc),
1945 			"Timed out waiting for ICE self-test to complete\n");
1946 	return err;
1947 }
1948 
1949 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1950 {
1951 	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1952 		return;
1953 	sdhci_msm_ice_low_power_mode_enable(msm_host);
1954 	sdhci_msm_ice_optimization_enable(msm_host);
1955 	sdhci_msm_ice_wait_bist_status(msm_host);
1956 }
1957 
1958 static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1959 {
1960 	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1961 		return 0;
1962 	return sdhci_msm_ice_wait_bist_status(msm_host);
1963 }
1964 
1965 /*
1966  * Program a key into a QC ICE keyslot, or evict a keyslot.  QC ICE requires
1967  * vendor-specific SCM calls for this; it doesn't support the standard way.
1968  */
1969 static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1970 				 const union cqhci_crypto_cfg_entry *cfg,
1971 				 int slot)
1972 {
1973 	struct device *dev = mmc_dev(cq_host->mmc);
1974 	union cqhci_crypto_cap_entry cap;
1975 	union {
1976 		u8 bytes[AES_256_XTS_KEY_SIZE];
1977 		u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
1978 	} key;
1979 	int i;
1980 	int err;
1981 
1982 	if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
1983 		return qcom_scm_ice_invalidate_key(slot);
1984 
1985 	/* Only AES-256-XTS has been tested so far. */
1986 	cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1987 	if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1988 	    cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
1989 		dev_err_ratelimited(dev,
1990 				    "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
1991 				    cap.algorithm_id, cap.key_size);
1992 		return -EINVAL;
1993 	}
1994 
1995 	memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
1996 
1997 	/*
1998 	 * The SCM call byte-swaps the 32-bit words of the key.  So we have to
1999 	 * do the same, in order for the final key be correct.
2000 	 */
2001 	for (i = 0; i < ARRAY_SIZE(key.words); i++)
2002 		__cpu_to_be32s(&key.words[i]);
2003 
2004 	err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
2005 				   QCOM_SCM_ICE_CIPHER_AES_256_XTS,
2006 				   cfg->data_unit_size);
2007 	memzero_explicit(&key, sizeof(key));
2008 	return err;
2009 }
2010 #else /* CONFIG_MMC_CRYPTO */
2011 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
2012 {
2013 	return NULL;
2014 }
2015 
2016 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
2017 				     struct cqhci_host *cq_host)
2018 {
2019 	return 0;
2020 }
2021 
2022 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
2023 {
2024 }
2025 
2026 static inline int __maybe_unused
2027 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
2028 {
2029 	return 0;
2030 }
2031 #endif /* !CONFIG_MMC_CRYPTO */
2032 
2033 /*****************************************************************************\
2034  *                                                                           *
2035  * MSM Command Queue Engine (CQE)                                            *
2036  *                                                                           *
2037 \*****************************************************************************/
2038 
2039 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
2040 {
2041 	int cmd_error = 0;
2042 	int data_error = 0;
2043 
2044 	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
2045 		return intmask;
2046 
2047 	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
2048 	return 0;
2049 }
2050 
2051 static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
2052 {
2053 	struct sdhci_host *host = mmc_priv(mmc);
2054 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2055 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2056 
2057 	sdhci_cqe_enable(mmc);
2058 	sdhci_msm_ice_enable(msm_host);
2059 }
2060 
2061 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
2062 {
2063 	struct sdhci_host *host = mmc_priv(mmc);
2064 	unsigned long flags;
2065 	u32 ctrl;
2066 
2067 	/*
2068 	 * When CQE is halted, the legacy SDHCI path operates only
2069 	 * on 16-byte descriptors in 64bit mode.
2070 	 */
2071 	if (host->flags & SDHCI_USE_64_BIT_DMA)
2072 		host->desc_sz = 16;
2073 
2074 	spin_lock_irqsave(&host->lock, flags);
2075 
2076 	/*
2077 	 * During CQE command transfers, command complete bit gets latched.
2078 	 * So s/w should clear command complete interrupt status when CQE is
2079 	 * either halted or disabled. Otherwise unexpected SDCHI legacy
2080 	 * interrupt gets triggered when CQE is halted/disabled.
2081 	 */
2082 	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2083 	ctrl |= SDHCI_INT_RESPONSE;
2084 	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
2085 	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2086 
2087 	spin_unlock_irqrestore(&host->lock, flags);
2088 
2089 	sdhci_cqe_disable(mmc, recovery);
2090 }
2091 
2092 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2093 	.enable		= sdhci_msm_cqe_enable,
2094 	.disable	= sdhci_msm_cqe_disable,
2095 #ifdef CONFIG_MMC_CRYPTO
2096 	.program_key	= sdhci_msm_program_key,
2097 #endif
2098 };
2099 
2100 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2101 				struct platform_device *pdev)
2102 {
2103 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2104 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2105 	struct cqhci_host *cq_host;
2106 	bool dma64;
2107 	u32 cqcfg;
2108 	int ret;
2109 
2110 	/*
2111 	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2112 	 * So ensure ADMA table is allocated for 16byte descriptors.
2113 	 */
2114 	if (host->caps & SDHCI_CAN_64BIT)
2115 		host->alloc_desc_sz = 16;
2116 
2117 	ret = sdhci_setup_host(host);
2118 	if (ret)
2119 		return ret;
2120 
2121 	cq_host = cqhci_pltfm_init(pdev);
2122 	if (IS_ERR(cq_host)) {
2123 		ret = PTR_ERR(cq_host);
2124 		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2125 		goto cleanup;
2126 	}
2127 
2128 	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2129 	cq_host->ops = &sdhci_msm_cqhci_ops;
2130 
2131 	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2132 
2133 	ret = sdhci_msm_ice_init(msm_host, cq_host);
2134 	if (ret)
2135 		goto cleanup;
2136 
2137 	ret = cqhci_init(cq_host, host->mmc, dma64);
2138 	if (ret) {
2139 		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2140 				mmc_hostname(host->mmc), ret);
2141 		goto cleanup;
2142 	}
2143 
2144 	/* Disable cqe reset due to cqe enable signal */
2145 	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2146 	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2147 	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2148 
2149 	/*
2150 	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2151 	 * So limit desc_sz to 12 so that the data commands that are sent
2152 	 * during card initialization (before CQE gets enabled) would
2153 	 * get executed without any issues.
2154 	 */
2155 	if (host->flags & SDHCI_USE_64_BIT_DMA)
2156 		host->desc_sz = 12;
2157 
2158 	ret = __sdhci_add_host(host);
2159 	if (ret)
2160 		goto cleanup;
2161 
2162 	dev_info(&pdev->dev, "%s: CQE init: success\n",
2163 			mmc_hostname(host->mmc));
2164 	return ret;
2165 
2166 cleanup:
2167 	sdhci_cleanup_host(host);
2168 	return ret;
2169 }
2170 
2171 /*
2172  * Platform specific register write functions. This is so that, if any
2173  * register write needs to be followed up by platform specific actions,
2174  * they can be added here. These functions can go to sleep when writes
2175  * to certain registers are done.
2176  * These functions are relying on sdhci_set_ios not using spinlock.
2177  */
2178 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2179 {
2180 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2181 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2182 	u32 req_type = 0;
2183 
2184 	switch (reg) {
2185 	case SDHCI_HOST_CONTROL2:
2186 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2187 			REQ_IO_HIGH;
2188 		break;
2189 	case SDHCI_SOFTWARE_RESET:
2190 		if (host->pwr && (val & SDHCI_RESET_ALL))
2191 			req_type = REQ_BUS_OFF;
2192 		break;
2193 	case SDHCI_POWER_CONTROL:
2194 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2195 		break;
2196 	case SDHCI_TRANSFER_MODE:
2197 		msm_host->transfer_mode = val;
2198 		break;
2199 	case SDHCI_COMMAND:
2200 		if (!msm_host->use_cdr)
2201 			break;
2202 		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2203 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
2204 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
2205 			sdhci_msm_set_cdr(host, true);
2206 		else
2207 			sdhci_msm_set_cdr(host, false);
2208 		break;
2209 	}
2210 
2211 	if (req_type) {
2212 		msm_host->pwr_irq_flag = 0;
2213 		/*
2214 		 * Since this register write may trigger a power irq, ensure
2215 		 * all previous register writes are complete by this point.
2216 		 */
2217 		mb();
2218 	}
2219 	return req_type;
2220 }
2221 
2222 /* This function may sleep*/
2223 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2224 {
2225 	u32 req_type = 0;
2226 
2227 	req_type = __sdhci_msm_check_write(host, val, reg);
2228 	writew_relaxed(val, host->ioaddr + reg);
2229 
2230 	if (req_type)
2231 		sdhci_msm_check_power_status(host, req_type);
2232 }
2233 
2234 /* This function may sleep*/
2235 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2236 {
2237 	u32 req_type = 0;
2238 
2239 	req_type = __sdhci_msm_check_write(host, val, reg);
2240 
2241 	writeb_relaxed(val, host->ioaddr + reg);
2242 
2243 	if (req_type)
2244 		sdhci_msm_check_power_status(host, req_type);
2245 }
2246 
2247 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2248 {
2249 	struct mmc_host *mmc = msm_host->mmc;
2250 	struct regulator *supply = mmc->supply.vqmmc;
2251 	u32 caps = 0, config;
2252 	struct sdhci_host *host = mmc_priv(mmc);
2253 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2254 
2255 	if (!IS_ERR(mmc->supply.vqmmc)) {
2256 		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2257 			caps |= CORE_1_8V_SUPPORT;
2258 		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2259 			caps |= CORE_3_0V_SUPPORT;
2260 
2261 		if (!caps)
2262 			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2263 					mmc_hostname(mmc));
2264 	}
2265 
2266 	if (caps) {
2267 		/*
2268 		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2269 		 * bit can be used as required later on.
2270 		 */
2271 		u32 io_level = msm_host->curr_io_level;
2272 
2273 		config = readl_relaxed(host->ioaddr +
2274 				msm_offset->core_vendor_spec);
2275 		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2276 
2277 		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2278 			config &= ~CORE_IO_PAD_PWR_SWITCH;
2279 		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2280 			config |= CORE_IO_PAD_PWR_SWITCH;
2281 
2282 		writel_relaxed(config,
2283 				host->ioaddr + msm_offset->core_vendor_spec);
2284 	}
2285 	msm_host->caps_0 |= caps;
2286 	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2287 }
2288 
2289 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
2290 {
2291 	if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
2292 		cqhci_deactivate(host->mmc);
2293 	sdhci_reset(host, mask);
2294 }
2295 
2296 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2297 {
2298 	int ret;
2299 
2300 	ret = mmc_regulator_get_supply(msm_host->mmc);
2301 	if (ret)
2302 		return ret;
2303 
2304 	sdhci_msm_set_regulator_caps(msm_host);
2305 
2306 	return 0;
2307 }
2308 
2309 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2310 				      struct mmc_ios *ios)
2311 {
2312 	struct sdhci_host *host = mmc_priv(mmc);
2313 	u16 ctrl, status;
2314 
2315 	/*
2316 	 * Signal Voltage Switching is only applicable for Host Controllers
2317 	 * v3.00 and above.
2318 	 */
2319 	if (host->version < SDHCI_SPEC_300)
2320 		return 0;
2321 
2322 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2323 
2324 	switch (ios->signal_voltage) {
2325 	case MMC_SIGNAL_VOLTAGE_330:
2326 		if (!(host->flags & SDHCI_SIGNALING_330))
2327 			return -EINVAL;
2328 
2329 		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2330 		ctrl &= ~SDHCI_CTRL_VDD_180;
2331 		break;
2332 	case MMC_SIGNAL_VOLTAGE_180:
2333 		if (!(host->flags & SDHCI_SIGNALING_180))
2334 			return -EINVAL;
2335 
2336 		/* Enable 1.8V Signal Enable in the Host Control2 register */
2337 		ctrl |= SDHCI_CTRL_VDD_180;
2338 		break;
2339 
2340 	default:
2341 		return -EINVAL;
2342 	}
2343 
2344 	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2345 
2346 	/* Wait for 5ms */
2347 	usleep_range(5000, 5500);
2348 
2349 	/* regulator output should be stable within 5 ms */
2350 	status = ctrl & SDHCI_CTRL_VDD_180;
2351 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2352 	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2353 		return 0;
2354 
2355 	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2356 		mmc_hostname(mmc));
2357 
2358 	return -EAGAIN;
2359 }
2360 
2361 #define DRIVER_NAME "sdhci_msm"
2362 #define SDHCI_MSM_DUMP(f, x...) \
2363 	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2364 
2365 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2366 {
2367 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2368 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2369 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2370 
2371 	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2372 
2373 	SDHCI_MSM_DUMP(
2374 			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2375 		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2376 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2377 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2378 	SDHCI_MSM_DUMP(
2379 			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2380 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2381 		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2382 		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2383 	SDHCI_MSM_DUMP(
2384 			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2385 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2386 		readl_relaxed(host->ioaddr +
2387 			msm_offset->core_vendor_spec_func2),
2388 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2389 }
2390 
2391 static const struct sdhci_msm_variant_ops mci_var_ops = {
2392 	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2393 	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2394 };
2395 
2396 static const struct sdhci_msm_variant_ops v5_var_ops = {
2397 	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2398 	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2399 };
2400 
2401 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2402 	.var_ops = &mci_var_ops,
2403 	.offset = &sdhci_msm_mci_offset,
2404 };
2405 
2406 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2407 	.mci_removed = true,
2408 	.var_ops = &v5_var_ops,
2409 	.offset = &sdhci_msm_v5_offset,
2410 };
2411 
2412 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2413 	.mci_removed = true,
2414 	.restore_dll_config = true,
2415 	.var_ops = &v5_var_ops,
2416 	.offset = &sdhci_msm_v5_offset,
2417 };
2418 
2419 static const struct of_device_id sdhci_msm_dt_match[] = {
2420 	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2421 	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2422 	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2423 	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2424 	{},
2425 };
2426 
2427 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2428 
2429 static const struct sdhci_ops sdhci_msm_ops = {
2430 	.reset = sdhci_msm_reset,
2431 	.set_clock = sdhci_msm_set_clock,
2432 	.get_min_clock = sdhci_msm_get_min_clock,
2433 	.get_max_clock = sdhci_msm_get_max_clock,
2434 	.set_bus_width = sdhci_set_bus_width,
2435 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2436 	.write_w = sdhci_msm_writew,
2437 	.write_b = sdhci_msm_writeb,
2438 	.irq	= sdhci_msm_cqe_irq,
2439 	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2440 	.set_power = sdhci_set_power_noreg,
2441 };
2442 
2443 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2444 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2445 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2446 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2447 		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2448 
2449 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2450 	.ops = &sdhci_msm_ops,
2451 };
2452 
2453 static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2454 		struct sdhci_host *host)
2455 {
2456 	struct device_node *node = pdev->dev.of_node;
2457 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2458 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2459 
2460 	if (of_property_read_u32(node, "qcom,ddr-config",
2461 				&msm_host->ddr_config))
2462 		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2463 
2464 	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2465 }
2466 
2467 
2468 static int sdhci_msm_probe(struct platform_device *pdev)
2469 {
2470 	struct sdhci_host *host;
2471 	struct sdhci_pltfm_host *pltfm_host;
2472 	struct sdhci_msm_host *msm_host;
2473 	struct clk *clk;
2474 	int ret;
2475 	u16 host_version, core_minor;
2476 	u32 core_version, config;
2477 	u8 core_major;
2478 	const struct sdhci_msm_offset *msm_offset;
2479 	const struct sdhci_msm_variant_info *var_info;
2480 	struct device_node *node = pdev->dev.of_node;
2481 
2482 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2483 	if (IS_ERR(host))
2484 		return PTR_ERR(host);
2485 
2486 	host->sdma_boundary = 0;
2487 	pltfm_host = sdhci_priv(host);
2488 	msm_host = sdhci_pltfm_priv(pltfm_host);
2489 	msm_host->mmc = host->mmc;
2490 	msm_host->pdev = pdev;
2491 
2492 	ret = mmc_of_parse(host->mmc);
2493 	if (ret)
2494 		goto pltfm_free;
2495 
2496 	/*
2497 	 * Based on the compatible string, load the required msm host info from
2498 	 * the data associated with the version info.
2499 	 */
2500 	var_info = of_device_get_match_data(&pdev->dev);
2501 
2502 	msm_host->mci_removed = var_info->mci_removed;
2503 	msm_host->restore_dll_config = var_info->restore_dll_config;
2504 	msm_host->var_ops = var_info->var_ops;
2505 	msm_host->offset = var_info->offset;
2506 
2507 	msm_offset = msm_host->offset;
2508 
2509 	sdhci_get_of_property(pdev);
2510 	sdhci_msm_get_of_property(pdev, host);
2511 
2512 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2513 
2514 	/* Setup SDCC bus voter clock. */
2515 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2516 	if (!IS_ERR(msm_host->bus_clk)) {
2517 		/* Vote for max. clk rate for max. performance */
2518 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2519 		if (ret)
2520 			goto pltfm_free;
2521 		ret = clk_prepare_enable(msm_host->bus_clk);
2522 		if (ret)
2523 			goto pltfm_free;
2524 	}
2525 
2526 	/* Setup main peripheral bus clock */
2527 	clk = devm_clk_get(&pdev->dev, "iface");
2528 	if (IS_ERR(clk)) {
2529 		ret = PTR_ERR(clk);
2530 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2531 		goto bus_clk_disable;
2532 	}
2533 	msm_host->bulk_clks[1].clk = clk;
2534 
2535 	/* Setup SDC MMC clock */
2536 	clk = devm_clk_get(&pdev->dev, "core");
2537 	if (IS_ERR(clk)) {
2538 		ret = PTR_ERR(clk);
2539 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2540 		goto bus_clk_disable;
2541 	}
2542 	msm_host->bulk_clks[0].clk = clk;
2543 
2544 	 /* Check for optional interconnect paths */
2545 	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2546 	if (ret)
2547 		goto bus_clk_disable;
2548 
2549 	ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2550 	if (ret)
2551 		goto bus_clk_disable;
2552 
2553 	/* OPP table is optional */
2554 	ret = devm_pm_opp_of_add_table(&pdev->dev);
2555 	if (ret && ret != -ENODEV) {
2556 		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2557 		goto bus_clk_disable;
2558 	}
2559 
2560 	/* Vote for maximum clock rate for maximum performance */
2561 	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2562 	if (ret)
2563 		dev_warn(&pdev->dev, "core clock boost failed\n");
2564 
2565 	clk = devm_clk_get(&pdev->dev, "cal");
2566 	if (IS_ERR(clk))
2567 		clk = NULL;
2568 	msm_host->bulk_clks[2].clk = clk;
2569 
2570 	clk = devm_clk_get(&pdev->dev, "sleep");
2571 	if (IS_ERR(clk))
2572 		clk = NULL;
2573 	msm_host->bulk_clks[3].clk = clk;
2574 
2575 	clk = sdhci_msm_ice_get_clk(&pdev->dev);
2576 	if (IS_ERR(clk))
2577 		clk = NULL;
2578 	msm_host->bulk_clks[4].clk = clk;
2579 
2580 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2581 				      msm_host->bulk_clks);
2582 	if (ret)
2583 		goto bus_clk_disable;
2584 
2585 	/*
2586 	 * xo clock is needed for FLL feature of cm_dll.
2587 	 * In case if xo clock is not mentioned in DT, warn and proceed.
2588 	 */
2589 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2590 	if (IS_ERR(msm_host->xo_clk)) {
2591 		ret = PTR_ERR(msm_host->xo_clk);
2592 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2593 	}
2594 
2595 	if (!msm_host->mci_removed) {
2596 		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2597 		if (IS_ERR(msm_host->core_mem)) {
2598 			ret = PTR_ERR(msm_host->core_mem);
2599 			goto clk_disable;
2600 		}
2601 	}
2602 
2603 	/* Reset the vendor spec register to power on reset state */
2604 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2605 			host->ioaddr + msm_offset->core_vendor_spec);
2606 
2607 	if (!msm_host->mci_removed) {
2608 		/* Set HC_MODE_EN bit in HC_MODE register */
2609 		msm_host_writel(msm_host, HC_MODE_EN, host,
2610 				msm_offset->core_hc_mode);
2611 		config = msm_host_readl(msm_host, host,
2612 				msm_offset->core_hc_mode);
2613 		config |= FF_CLK_SW_RST_DIS;
2614 		msm_host_writel(msm_host, config, host,
2615 				msm_offset->core_hc_mode);
2616 	}
2617 
2618 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2619 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2620 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2621 			       SDHCI_VENDOR_VER_SHIFT));
2622 
2623 	core_version = msm_host_readl(msm_host, host,
2624 			msm_offset->core_mci_version);
2625 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2626 		      CORE_VERSION_MAJOR_SHIFT;
2627 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2628 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2629 		core_version, core_major, core_minor);
2630 
2631 	if (core_major == 1 && core_minor >= 0x42)
2632 		msm_host->use_14lpp_dll_reset = true;
2633 
2634 	/*
2635 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2636 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2637 	 */
2638 	if (core_major == 1 && core_minor < 0x34)
2639 		msm_host->use_cdclp533 = true;
2640 
2641 	/*
2642 	 * Support for some capabilities is not advertised by newer
2643 	 * controller versions and must be explicitly enabled.
2644 	 */
2645 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2646 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2647 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2648 		writel_relaxed(config, host->ioaddr +
2649 				msm_offset->core_vendor_spec_capabilities0);
2650 	}
2651 
2652 	if (core_major == 1 && core_minor >= 0x49)
2653 		msm_host->updated_ddr_cfg = true;
2654 
2655 	if (core_major == 1 && core_minor >= 0x71)
2656 		msm_host->uses_tassadar_dll = true;
2657 
2658 	ret = sdhci_msm_register_vreg(msm_host);
2659 	if (ret)
2660 		goto clk_disable;
2661 
2662 	/*
2663 	 * Power on reset state may trigger power irq if previous status of
2664 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2665 	 * interrupt in GIC, any pending power irq interrupt should be
2666 	 * acknowledged. Otherwise power irq interrupt handler would be
2667 	 * fired prematurely.
2668 	 */
2669 	sdhci_msm_handle_pwr_irq(host, 0);
2670 
2671 	/*
2672 	 * Ensure that above writes are propogated before interrupt enablement
2673 	 * in GIC.
2674 	 */
2675 	mb();
2676 
2677 	/* Setup IRQ for handling power/voltage tasks with PMIC */
2678 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2679 	if (msm_host->pwr_irq < 0) {
2680 		ret = msm_host->pwr_irq;
2681 		goto clk_disable;
2682 	}
2683 
2684 	sdhci_msm_init_pwr_irq_wait(msm_host);
2685 	/* Enable pwr irq interrupts */
2686 	msm_host_writel(msm_host, INT_MASK, host,
2687 		msm_offset->core_pwrctl_mask);
2688 
2689 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2690 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2691 					dev_name(&pdev->dev), host);
2692 	if (ret) {
2693 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2694 		goto clk_disable;
2695 	}
2696 
2697 	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2698 
2699 	pm_runtime_get_noresume(&pdev->dev);
2700 	pm_runtime_set_active(&pdev->dev);
2701 	pm_runtime_enable(&pdev->dev);
2702 	pm_runtime_set_autosuspend_delay(&pdev->dev,
2703 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2704 	pm_runtime_use_autosuspend(&pdev->dev);
2705 
2706 	host->mmc_host_ops.start_signal_voltage_switch =
2707 		sdhci_msm_start_signal_voltage_switch;
2708 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2709 	if (of_property_read_bool(node, "supports-cqe"))
2710 		ret = sdhci_msm_cqe_add_host(host, pdev);
2711 	else
2712 		ret = sdhci_add_host(host);
2713 	if (ret)
2714 		goto pm_runtime_disable;
2715 
2716 	pm_runtime_mark_last_busy(&pdev->dev);
2717 	pm_runtime_put_autosuspend(&pdev->dev);
2718 
2719 	return 0;
2720 
2721 pm_runtime_disable:
2722 	pm_runtime_disable(&pdev->dev);
2723 	pm_runtime_set_suspended(&pdev->dev);
2724 	pm_runtime_put_noidle(&pdev->dev);
2725 clk_disable:
2726 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2727 				   msm_host->bulk_clks);
2728 bus_clk_disable:
2729 	if (!IS_ERR(msm_host->bus_clk))
2730 		clk_disable_unprepare(msm_host->bus_clk);
2731 pltfm_free:
2732 	sdhci_pltfm_free(pdev);
2733 	return ret;
2734 }
2735 
2736 static int sdhci_msm_remove(struct platform_device *pdev)
2737 {
2738 	struct sdhci_host *host = platform_get_drvdata(pdev);
2739 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2740 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2741 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2742 		    0xffffffff);
2743 
2744 	sdhci_remove_host(host, dead);
2745 
2746 	pm_runtime_get_sync(&pdev->dev);
2747 	pm_runtime_disable(&pdev->dev);
2748 	pm_runtime_put_noidle(&pdev->dev);
2749 
2750 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2751 				   msm_host->bulk_clks);
2752 	if (!IS_ERR(msm_host->bus_clk))
2753 		clk_disable_unprepare(msm_host->bus_clk);
2754 	sdhci_pltfm_free(pdev);
2755 	return 0;
2756 }
2757 
2758 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2759 {
2760 	struct sdhci_host *host = dev_get_drvdata(dev);
2761 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2762 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2763 
2764 	/* Drop the performance vote */
2765 	dev_pm_opp_set_rate(dev, 0);
2766 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2767 				   msm_host->bulk_clks);
2768 
2769 	return 0;
2770 }
2771 
2772 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2773 {
2774 	struct sdhci_host *host = dev_get_drvdata(dev);
2775 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2776 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2777 	int ret;
2778 
2779 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2780 				       msm_host->bulk_clks);
2781 	if (ret)
2782 		return ret;
2783 	/*
2784 	 * Whenever core-clock is gated dynamically, it's needed to
2785 	 * restore the SDR DLL settings when the clock is ungated.
2786 	 */
2787 	if (msm_host->restore_dll_config && msm_host->clk_rate) {
2788 		ret = sdhci_msm_restore_sdr_dll_config(host);
2789 		if (ret)
2790 			return ret;
2791 	}
2792 
2793 	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2794 
2795 	return sdhci_msm_ice_resume(msm_host);
2796 }
2797 
2798 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2799 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2800 				pm_runtime_force_resume)
2801 	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2802 			   sdhci_msm_runtime_resume,
2803 			   NULL)
2804 };
2805 
2806 static struct platform_driver sdhci_msm_driver = {
2807 	.probe = sdhci_msm_probe,
2808 	.remove = sdhci_msm_remove,
2809 	.driver = {
2810 		   .name = "sdhci_msm",
2811 		   .of_match_table = sdhci_msm_dt_match,
2812 		   .pm = &sdhci_msm_pm_ops,
2813 		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2814 	},
2815 };
2816 
2817 module_platform_driver(sdhci_msm_driver);
2818 
2819 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2820 MODULE_LICENSE("GPL v2");
2821