xref: /openbmc/linux/drivers/mmc/host/sdhci-msm.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4  *
5  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/delay.h>
11 #include <linux/mmc/mmc.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/iopoll.h>
15 #include <linux/regulator/consumer.h>
16 
17 #include "sdhci-pltfm.h"
18 #include "cqhci.h"
19 
20 #define CORE_MCI_VERSION		0x50
21 #define CORE_VERSION_MAJOR_SHIFT	28
22 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
23 #define CORE_VERSION_MINOR_MASK		0xff
24 
25 #define CORE_MCI_GENERICS		0x70
26 #define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
27 
28 #define HC_MODE_EN		0x1
29 #define CORE_POWER		0x0
30 #define CORE_SW_RST		BIT(7)
31 #define FF_CLK_SW_RST_DIS	BIT(13)
32 
33 #define CORE_PWRCTL_BUS_OFF	BIT(0)
34 #define CORE_PWRCTL_BUS_ON	BIT(1)
35 #define CORE_PWRCTL_IO_LOW	BIT(2)
36 #define CORE_PWRCTL_IO_HIGH	BIT(3)
37 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
38 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
39 #define REQ_BUS_OFF		BIT(0)
40 #define REQ_BUS_ON		BIT(1)
41 #define REQ_IO_LOW		BIT(2)
42 #define REQ_IO_HIGH		BIT(3)
43 #define INT_MASK		0xf
44 #define MAX_PHASES		16
45 #define CORE_DLL_LOCK		BIT(7)
46 #define CORE_DDR_DLL_LOCK	BIT(11)
47 #define CORE_DLL_EN		BIT(16)
48 #define CORE_CDR_EN		BIT(17)
49 #define CORE_CK_OUT_EN		BIT(18)
50 #define CORE_CDR_EXT_EN		BIT(19)
51 #define CORE_DLL_PDN		BIT(29)
52 #define CORE_DLL_RST		BIT(30)
53 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
54 
55 #define CORE_DDR_CAL_EN		BIT(0)
56 #define CORE_FLL_CYCLE_CNT	BIT(18)
57 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
58 
59 #define CORE_VENDOR_SPEC_POR_VAL 0xa1c
60 #define CORE_CLK_PWRSAVE	BIT(1)
61 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
62 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
63 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
64 #define CORE_IO_PAD_PWR_SWITCH_EN	(1 << 15)
65 #define CORE_IO_PAD_PWR_SWITCH  (1 << 16)
66 #define CORE_HC_SELECT_IN_EN	BIT(18)
67 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
68 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
69 
70 #define CORE_3_0V_SUPPORT	(1 << 25)
71 #define CORE_1_8V_SUPPORT	(1 << 26)
72 #define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
73 
74 #define CORE_CSR_CDC_CTLR_CFG0		0x130
75 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
76 #define CORE_HW_AUTOCAL_ENA		BIT(17)
77 
78 #define CORE_CSR_CDC_CTLR_CFG1		0x134
79 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
80 #define CORE_TIMER_ENA			BIT(16)
81 
82 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
83 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
84 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
85 #define CORE_CDC_OFFSET_CFG		0x14C
86 #define CORE_CSR_CDC_DELAY_CFG		0x150
87 #define CORE_CDC_SLAVE_DDA_CFG		0x160
88 #define CORE_CSR_CDC_STATUS0		0x164
89 #define CORE_CALIBRATION_DONE		BIT(0)
90 
91 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
92 
93 #define CORE_CSR_CDC_GEN_CFG		0x178
94 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
95 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
96 
97 #define CORE_CDC_T4_DLY_SEL		BIT(0)
98 #define CORE_CMDIN_RCLK_EN		BIT(1)
99 #define CORE_START_CDC_TRAFFIC		BIT(6)
100 
101 #define CORE_PWRSAVE_DLL	BIT(3)
102 
103 #define DDR_CONFIG_POR_VAL	0x80040873
104 
105 
106 #define INVALID_TUNING_PHASE	-1
107 #define SDHCI_MSM_MIN_CLOCK	400000
108 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
109 
110 #define CDR_SELEXT_SHIFT	20
111 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
112 #define CMUX_SHIFT_PHASE_SHIFT	24
113 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
114 
115 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
116 
117 /* Timeout value to avoid infinite waiting for pwr_irq */
118 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
119 
120 #define msm_host_readl(msm_host, host, offset) \
121 	msm_host->var_ops->msm_readl_relaxed(host, offset)
122 
123 #define msm_host_writel(msm_host, val, host, offset) \
124 	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
125 
126 /* CQHCI vendor specific registers */
127 #define CQHCI_VENDOR_CFG1	0xA00
128 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
129 
130 struct sdhci_msm_offset {
131 	u32 core_hc_mode;
132 	u32 core_mci_data_cnt;
133 	u32 core_mci_status;
134 	u32 core_mci_fifo_cnt;
135 	u32 core_mci_version;
136 	u32 core_generics;
137 	u32 core_testbus_config;
138 	u32 core_testbus_sel2_bit;
139 	u32 core_testbus_ena;
140 	u32 core_testbus_sel2;
141 	u32 core_pwrctl_status;
142 	u32 core_pwrctl_mask;
143 	u32 core_pwrctl_clear;
144 	u32 core_pwrctl_ctl;
145 	u32 core_sdcc_debug_reg;
146 	u32 core_dll_config;
147 	u32 core_dll_status;
148 	u32 core_vendor_spec;
149 	u32 core_vendor_spec_adma_err_addr0;
150 	u32 core_vendor_spec_adma_err_addr1;
151 	u32 core_vendor_spec_func2;
152 	u32 core_vendor_spec_capabilities0;
153 	u32 core_ddr_200_cfg;
154 	u32 core_vendor_spec3;
155 	u32 core_dll_config_2;
156 	u32 core_dll_config_3;
157 	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
158 	u32 core_ddr_config;
159 };
160 
161 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
162 	.core_mci_data_cnt = 0x35c,
163 	.core_mci_status = 0x324,
164 	.core_mci_fifo_cnt = 0x308,
165 	.core_mci_version = 0x318,
166 	.core_generics = 0x320,
167 	.core_testbus_config = 0x32c,
168 	.core_testbus_sel2_bit = 3,
169 	.core_testbus_ena = (1 << 31),
170 	.core_testbus_sel2 = (1 << 3),
171 	.core_pwrctl_status = 0x240,
172 	.core_pwrctl_mask = 0x244,
173 	.core_pwrctl_clear = 0x248,
174 	.core_pwrctl_ctl = 0x24c,
175 	.core_sdcc_debug_reg = 0x358,
176 	.core_dll_config = 0x200,
177 	.core_dll_status = 0x208,
178 	.core_vendor_spec = 0x20c,
179 	.core_vendor_spec_adma_err_addr0 = 0x214,
180 	.core_vendor_spec_adma_err_addr1 = 0x218,
181 	.core_vendor_spec_func2 = 0x210,
182 	.core_vendor_spec_capabilities0 = 0x21c,
183 	.core_ddr_200_cfg = 0x224,
184 	.core_vendor_spec3 = 0x250,
185 	.core_dll_config_2 = 0x254,
186 	.core_dll_config_3 = 0x258,
187 	.core_ddr_config = 0x25c,
188 };
189 
190 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
191 	.core_hc_mode = 0x78,
192 	.core_mci_data_cnt = 0x30,
193 	.core_mci_status = 0x34,
194 	.core_mci_fifo_cnt = 0x44,
195 	.core_mci_version = 0x050,
196 	.core_generics = 0x70,
197 	.core_testbus_config = 0x0cc,
198 	.core_testbus_sel2_bit = 4,
199 	.core_testbus_ena = (1 << 3),
200 	.core_testbus_sel2 = (1 << 4),
201 	.core_pwrctl_status = 0xdc,
202 	.core_pwrctl_mask = 0xe0,
203 	.core_pwrctl_clear = 0xe4,
204 	.core_pwrctl_ctl = 0xe8,
205 	.core_sdcc_debug_reg = 0x124,
206 	.core_dll_config = 0x100,
207 	.core_dll_status = 0x108,
208 	.core_vendor_spec = 0x10c,
209 	.core_vendor_spec_adma_err_addr0 = 0x114,
210 	.core_vendor_spec_adma_err_addr1 = 0x118,
211 	.core_vendor_spec_func2 = 0x110,
212 	.core_vendor_spec_capabilities0 = 0x11c,
213 	.core_ddr_200_cfg = 0x184,
214 	.core_vendor_spec3 = 0x1b0,
215 	.core_dll_config_2 = 0x1b4,
216 	.core_ddr_config_old = 0x1b8,
217 	.core_ddr_config = 0x1bc,
218 };
219 
220 struct sdhci_msm_variant_ops {
221 	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
222 	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
223 			u32 offset);
224 };
225 
226 /*
227  * From V5, register spaces have changed. Wrap this info in a structure
228  * and choose the data_structure based on version info mentioned in DT.
229  */
230 struct sdhci_msm_variant_info {
231 	bool mci_removed;
232 	bool restore_dll_config;
233 	const struct sdhci_msm_variant_ops *var_ops;
234 	const struct sdhci_msm_offset *offset;
235 };
236 
237 struct sdhci_msm_host {
238 	struct platform_device *pdev;
239 	void __iomem *core_mem;	/* MSM SDCC mapped address */
240 	int pwr_irq;		/* power irq */
241 	struct clk *bus_clk;	/* SDHC bus voter clock */
242 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
243 	struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
244 	unsigned long clk_rate;
245 	struct mmc_host *mmc;
246 	bool use_14lpp_dll_reset;
247 	bool tuning_done;
248 	bool calibration_done;
249 	u8 saved_tuning_phase;
250 	bool use_cdclp533;
251 	u32 curr_pwr_state;
252 	u32 curr_io_level;
253 	wait_queue_head_t pwr_irq_wait;
254 	bool pwr_irq_flag;
255 	u32 caps_0;
256 	bool mci_removed;
257 	bool restore_dll_config;
258 	const struct sdhci_msm_variant_ops *var_ops;
259 	const struct sdhci_msm_offset *offset;
260 	bool use_cdr;
261 	u32 transfer_mode;
262 	bool updated_ddr_cfg;
263 };
264 
265 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
266 {
267 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
268 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
269 
270 	return msm_host->offset;
271 }
272 
273 /*
274  * APIs to read/write to vendor specific registers which were there in the
275  * core_mem region before MCI was removed.
276  */
277 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
278 		u32 offset)
279 {
280 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
281 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
282 
283 	return readl_relaxed(msm_host->core_mem + offset);
284 }
285 
286 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
287 		u32 offset)
288 {
289 	return readl_relaxed(host->ioaddr + offset);
290 }
291 
292 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
293 		struct sdhci_host *host, u32 offset)
294 {
295 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
296 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
297 
298 	writel_relaxed(val, msm_host->core_mem + offset);
299 }
300 
301 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
302 		struct sdhci_host *host, u32 offset)
303 {
304 	writel_relaxed(val, host->ioaddr + offset);
305 }
306 
307 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
308 						    unsigned int clock)
309 {
310 	struct mmc_ios ios = host->mmc->ios;
311 	/*
312 	 * The SDHC requires internal clock frequency to be double the
313 	 * actual clock that will be set for DDR mode. The controller
314 	 * uses the faster clock(100/400MHz) for some of its parts and
315 	 * send the actual required clock (50/200MHz) to the card.
316 	 */
317 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
318 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
319 	    ios.timing == MMC_TIMING_MMC_HS400 ||
320 	    host->flags & SDHCI_HS400_TUNING)
321 		clock *= 2;
322 	return clock;
323 }
324 
325 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
326 					    unsigned int clock)
327 {
328 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
329 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
330 	struct mmc_ios curr_ios = host->mmc->ios;
331 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
332 	int rc;
333 
334 	clock = msm_get_clock_rate_for_bus_mode(host, clock);
335 	rc = clk_set_rate(core_clk, clock);
336 	if (rc) {
337 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
338 		       mmc_hostname(host->mmc), clock,
339 		       curr_ios.timing);
340 		return;
341 	}
342 	msm_host->clk_rate = clock;
343 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
344 		 mmc_hostname(host->mmc), clk_get_rate(core_clk),
345 		 curr_ios.timing);
346 }
347 
348 /* Platform specific tuning */
349 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
350 {
351 	u32 wait_cnt = 50;
352 	u8 ck_out_en;
353 	struct mmc_host *mmc = host->mmc;
354 	const struct sdhci_msm_offset *msm_offset =
355 					sdhci_priv_msm_offset(host);
356 
357 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
358 	ck_out_en = !!(readl_relaxed(host->ioaddr +
359 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
360 
361 	while (ck_out_en != poll) {
362 		if (--wait_cnt == 0) {
363 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
364 			       mmc_hostname(mmc), poll);
365 			return -ETIMEDOUT;
366 		}
367 		udelay(1);
368 
369 		ck_out_en = !!(readl_relaxed(host->ioaddr +
370 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
371 	}
372 
373 	return 0;
374 }
375 
376 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
377 {
378 	int rc;
379 	static const u8 grey_coded_phase_table[] = {
380 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
381 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
382 	};
383 	unsigned long flags;
384 	u32 config;
385 	struct mmc_host *mmc = host->mmc;
386 	const struct sdhci_msm_offset *msm_offset =
387 					sdhci_priv_msm_offset(host);
388 
389 	if (phase > 0xf)
390 		return -EINVAL;
391 
392 	spin_lock_irqsave(&host->lock, flags);
393 
394 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
395 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
396 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
397 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
398 
399 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
400 	rc = msm_dll_poll_ck_out_en(host, 0);
401 	if (rc)
402 		goto err_out;
403 
404 	/*
405 	 * Write the selected DLL clock output phase (0 ... 15)
406 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
407 	 */
408 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
409 	config &= ~CDR_SELEXT_MASK;
410 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
411 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
412 
413 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
414 	config |= CORE_CK_OUT_EN;
415 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
416 
417 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
418 	rc = msm_dll_poll_ck_out_en(host, 1);
419 	if (rc)
420 		goto err_out;
421 
422 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
423 	config |= CORE_CDR_EN;
424 	config &= ~CORE_CDR_EXT_EN;
425 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
426 	goto out;
427 
428 err_out:
429 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
430 	       mmc_hostname(mmc), phase);
431 out:
432 	spin_unlock_irqrestore(&host->lock, flags);
433 	return rc;
434 }
435 
436 /*
437  * Find out the greatest range of consecuitive selected
438  * DLL clock output phases that can be used as sampling
439  * setting for SD3.0 UHS-I card read operation (in SDR104
440  * timing mode) or for eMMC4.5 card read operation (in
441  * HS400/HS200 timing mode).
442  * Select the 3/4 of the range and configure the DLL with the
443  * selected DLL clock output phase.
444  */
445 
446 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
447 					   u8 *phase_table, u8 total_phases)
448 {
449 	int ret;
450 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
451 	u8 phases_per_row[MAX_PHASES] = { 0 };
452 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
453 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
454 	bool phase_0_found = false, phase_15_found = false;
455 	struct mmc_host *mmc = host->mmc;
456 
457 	if (!total_phases || (total_phases > MAX_PHASES)) {
458 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
459 		       mmc_hostname(mmc), total_phases);
460 		return -EINVAL;
461 	}
462 
463 	for (cnt = 0; cnt < total_phases; cnt++) {
464 		ranges[row_index][col_index] = phase_table[cnt];
465 		phases_per_row[row_index] += 1;
466 		col_index++;
467 
468 		if ((cnt + 1) == total_phases) {
469 			continue;
470 		/* check if next phase in phase_table is consecutive or not */
471 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
472 			row_index++;
473 			col_index = 0;
474 		}
475 	}
476 
477 	if (row_index >= MAX_PHASES)
478 		return -EINVAL;
479 
480 	/* Check if phase-0 is present in first valid window? */
481 	if (!ranges[0][0]) {
482 		phase_0_found = true;
483 		phase_0_raw_index = 0;
484 		/* Check if cycle exist between 2 valid windows */
485 		for (cnt = 1; cnt <= row_index; cnt++) {
486 			if (phases_per_row[cnt]) {
487 				for (i = 0; i < phases_per_row[cnt]; i++) {
488 					if (ranges[cnt][i] == 15) {
489 						phase_15_found = true;
490 						phase_15_raw_index = cnt;
491 						break;
492 					}
493 				}
494 			}
495 		}
496 	}
497 
498 	/* If 2 valid windows form cycle then merge them as single window */
499 	if (phase_0_found && phase_15_found) {
500 		/* number of phases in raw where phase 0 is present */
501 		u8 phases_0 = phases_per_row[phase_0_raw_index];
502 		/* number of phases in raw where phase 15 is present */
503 		u8 phases_15 = phases_per_row[phase_15_raw_index];
504 
505 		if (phases_0 + phases_15 >= MAX_PHASES)
506 			/*
507 			 * If there are more than 1 phase windows then total
508 			 * number of phases in both the windows should not be
509 			 * more than or equal to MAX_PHASES.
510 			 */
511 			return -EINVAL;
512 
513 		/* Merge 2 cyclic windows */
514 		i = phases_15;
515 		for (cnt = 0; cnt < phases_0; cnt++) {
516 			ranges[phase_15_raw_index][i] =
517 			    ranges[phase_0_raw_index][cnt];
518 			if (++i >= MAX_PHASES)
519 				break;
520 		}
521 
522 		phases_per_row[phase_0_raw_index] = 0;
523 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
524 	}
525 
526 	for (cnt = 0; cnt <= row_index; cnt++) {
527 		if (phases_per_row[cnt] > curr_max) {
528 			curr_max = phases_per_row[cnt];
529 			selected_row_index = cnt;
530 		}
531 	}
532 
533 	i = (curr_max * 3) / 4;
534 	if (i)
535 		i--;
536 
537 	ret = ranges[selected_row_index][i];
538 
539 	if (ret >= MAX_PHASES) {
540 		ret = -EINVAL;
541 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
542 		       mmc_hostname(mmc), ret);
543 	}
544 
545 	return ret;
546 }
547 
548 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
549 {
550 	u32 mclk_freq = 0, config;
551 	const struct sdhci_msm_offset *msm_offset =
552 					sdhci_priv_msm_offset(host);
553 
554 	/* Program the MCLK value to MCLK_FREQ bit field */
555 	if (host->clock <= 112000000)
556 		mclk_freq = 0;
557 	else if (host->clock <= 125000000)
558 		mclk_freq = 1;
559 	else if (host->clock <= 137000000)
560 		mclk_freq = 2;
561 	else if (host->clock <= 150000000)
562 		mclk_freq = 3;
563 	else if (host->clock <= 162000000)
564 		mclk_freq = 4;
565 	else if (host->clock <= 175000000)
566 		mclk_freq = 5;
567 	else if (host->clock <= 187000000)
568 		mclk_freq = 6;
569 	else if (host->clock <= 200000000)
570 		mclk_freq = 7;
571 
572 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
573 	config &= ~CMUX_SHIFT_PHASE_MASK;
574 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
575 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
576 }
577 
578 /* Initialize the DLL (Programmable Delay Line) */
579 static int msm_init_cm_dll(struct sdhci_host *host)
580 {
581 	struct mmc_host *mmc = host->mmc;
582 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
583 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
584 	int wait_cnt = 50;
585 	unsigned long flags, xo_clk = 0;
586 	u32 config;
587 	const struct sdhci_msm_offset *msm_offset =
588 					msm_host->offset;
589 
590 	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
591 		xo_clk = clk_get_rate(msm_host->xo_clk);
592 
593 	spin_lock_irqsave(&host->lock, flags);
594 
595 	/*
596 	 * Make sure that clock is always enabled when DLL
597 	 * tuning is in progress. Keeping PWRSAVE ON may
598 	 * turn off the clock.
599 	 */
600 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
601 	config &= ~CORE_CLK_PWRSAVE;
602 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
603 
604 	if (msm_host->use_14lpp_dll_reset) {
605 		config = readl_relaxed(host->ioaddr +
606 				msm_offset->core_dll_config);
607 		config &= ~CORE_CK_OUT_EN;
608 		writel_relaxed(config, host->ioaddr +
609 				msm_offset->core_dll_config);
610 
611 		config = readl_relaxed(host->ioaddr +
612 				msm_offset->core_dll_config_2);
613 		config |= CORE_DLL_CLOCK_DISABLE;
614 		writel_relaxed(config, host->ioaddr +
615 				msm_offset->core_dll_config_2);
616 	}
617 
618 	config = readl_relaxed(host->ioaddr +
619 			msm_offset->core_dll_config);
620 	config |= CORE_DLL_RST;
621 	writel_relaxed(config, host->ioaddr +
622 			msm_offset->core_dll_config);
623 
624 	config = readl_relaxed(host->ioaddr +
625 			msm_offset->core_dll_config);
626 	config |= CORE_DLL_PDN;
627 	writel_relaxed(config, host->ioaddr +
628 			msm_offset->core_dll_config);
629 	msm_cm_dll_set_freq(host);
630 
631 	if (msm_host->use_14lpp_dll_reset &&
632 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
633 		u32 mclk_freq = 0;
634 
635 		config = readl_relaxed(host->ioaddr +
636 				msm_offset->core_dll_config_2);
637 		config &= CORE_FLL_CYCLE_CNT;
638 		if (config)
639 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
640 					xo_clk);
641 		else
642 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
643 					xo_clk);
644 
645 		config = readl_relaxed(host->ioaddr +
646 				msm_offset->core_dll_config_2);
647 		config &= ~(0xFF << 10);
648 		config |= mclk_freq << 10;
649 
650 		writel_relaxed(config, host->ioaddr +
651 				msm_offset->core_dll_config_2);
652 		/* wait for 5us before enabling DLL clock */
653 		udelay(5);
654 	}
655 
656 	config = readl_relaxed(host->ioaddr +
657 			msm_offset->core_dll_config);
658 	config &= ~CORE_DLL_RST;
659 	writel_relaxed(config, host->ioaddr +
660 			msm_offset->core_dll_config);
661 
662 	config = readl_relaxed(host->ioaddr +
663 			msm_offset->core_dll_config);
664 	config &= ~CORE_DLL_PDN;
665 	writel_relaxed(config, host->ioaddr +
666 			msm_offset->core_dll_config);
667 
668 	if (msm_host->use_14lpp_dll_reset) {
669 		msm_cm_dll_set_freq(host);
670 		config = readl_relaxed(host->ioaddr +
671 				msm_offset->core_dll_config_2);
672 		config &= ~CORE_DLL_CLOCK_DISABLE;
673 		writel_relaxed(config, host->ioaddr +
674 				msm_offset->core_dll_config_2);
675 	}
676 
677 	config = readl_relaxed(host->ioaddr +
678 			msm_offset->core_dll_config);
679 	config |= CORE_DLL_EN;
680 	writel_relaxed(config, host->ioaddr +
681 			msm_offset->core_dll_config);
682 
683 	config = readl_relaxed(host->ioaddr +
684 			msm_offset->core_dll_config);
685 	config |= CORE_CK_OUT_EN;
686 	writel_relaxed(config, host->ioaddr +
687 			msm_offset->core_dll_config);
688 
689 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
690 	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
691 		 CORE_DLL_LOCK)) {
692 		/* max. wait for 50us sec for LOCK bit to be set */
693 		if (--wait_cnt == 0) {
694 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
695 			       mmc_hostname(mmc));
696 			spin_unlock_irqrestore(&host->lock, flags);
697 			return -ETIMEDOUT;
698 		}
699 		udelay(1);
700 	}
701 
702 	spin_unlock_irqrestore(&host->lock, flags);
703 	return 0;
704 }
705 
706 static void msm_hc_select_default(struct sdhci_host *host)
707 {
708 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
709 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
710 	u32 config;
711 	const struct sdhci_msm_offset *msm_offset =
712 					msm_host->offset;
713 
714 	if (!msm_host->use_cdclp533) {
715 		config = readl_relaxed(host->ioaddr +
716 				msm_offset->core_vendor_spec3);
717 		config &= ~CORE_PWRSAVE_DLL;
718 		writel_relaxed(config, host->ioaddr +
719 				msm_offset->core_vendor_spec3);
720 	}
721 
722 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
723 	config &= ~CORE_HC_MCLK_SEL_MASK;
724 	config |= CORE_HC_MCLK_SEL_DFLT;
725 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
726 
727 	/*
728 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
729 	 * configuration from Host Control2 register for all other
730 	 * modes.
731 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
732 	 * in VENDOR_SPEC_FUNC
733 	 */
734 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
735 	config &= ~CORE_HC_SELECT_IN_EN;
736 	config &= ~CORE_HC_SELECT_IN_MASK;
737 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
738 
739 	/*
740 	 * Make sure above writes impacting free running MCLK are completed
741 	 * before changing the clk_rate at GCC.
742 	 */
743 	wmb();
744 }
745 
746 static void msm_hc_select_hs400(struct sdhci_host *host)
747 {
748 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
749 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
750 	struct mmc_ios ios = host->mmc->ios;
751 	u32 config, dll_lock;
752 	int rc;
753 	const struct sdhci_msm_offset *msm_offset =
754 					msm_host->offset;
755 
756 	/* Select the divided clock (free running MCLK/2) */
757 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
758 	config &= ~CORE_HC_MCLK_SEL_MASK;
759 	config |= CORE_HC_MCLK_SEL_HS400;
760 
761 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
762 	/*
763 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
764 	 * register
765 	 */
766 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
767 	    !msm_host->calibration_done) {
768 		config = readl_relaxed(host->ioaddr +
769 				msm_offset->core_vendor_spec);
770 		config |= CORE_HC_SELECT_IN_HS400;
771 		config |= CORE_HC_SELECT_IN_EN;
772 		writel_relaxed(config, host->ioaddr +
773 				msm_offset->core_vendor_spec);
774 	}
775 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
776 		/*
777 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
778 		 * core_dll_status to be set. This should get set
779 		 * within 15 us at 200 MHz.
780 		 */
781 		rc = readl_relaxed_poll_timeout(host->ioaddr +
782 						msm_offset->core_dll_status,
783 						dll_lock,
784 						(dll_lock &
785 						(CORE_DLL_LOCK |
786 						CORE_DDR_DLL_LOCK)), 10,
787 						1000);
788 		if (rc == -ETIMEDOUT)
789 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
790 			       mmc_hostname(host->mmc), dll_lock);
791 	}
792 	/*
793 	 * Make sure above writes impacting free running MCLK are completed
794 	 * before changing the clk_rate at GCC.
795 	 */
796 	wmb();
797 }
798 
799 /*
800  * sdhci_msm_hc_select_mode :- In general all timing modes are
801  * controlled via UHS mode select in Host Control2 register.
802  * eMMC specific HS200/HS400 doesn't have their respective modes
803  * defined here, hence we use these values.
804  *
805  * HS200 - SDR104 (Since they both are equivalent in functionality)
806  * HS400 - This involves multiple configurations
807  *		Initially SDR104 - when tuning is required as HS200
808  *		Then when switching to DDR @ 400MHz (HS400) we use
809  *		the vendor specific HC_SELECT_IN to control the mode.
810  *
811  * In addition to controlling the modes we also need to select the
812  * correct input clock for DLL depending on the mode.
813  *
814  * HS400 - divided clock (free running MCLK/2)
815  * All other modes - default (free running MCLK)
816  */
817 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
818 {
819 	struct mmc_ios ios = host->mmc->ios;
820 
821 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
822 	    host->flags & SDHCI_HS400_TUNING)
823 		msm_hc_select_hs400(host);
824 	else
825 		msm_hc_select_default(host);
826 }
827 
828 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
829 {
830 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
831 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
832 	u32 config, calib_done;
833 	int ret;
834 	const struct sdhci_msm_offset *msm_offset =
835 					msm_host->offset;
836 
837 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
838 
839 	/*
840 	 * Retuning in HS400 (DDR mode) will fail, just reset the
841 	 * tuning block and restore the saved tuning phase.
842 	 */
843 	ret = msm_init_cm_dll(host);
844 	if (ret)
845 		goto out;
846 
847 	/* Set the selected phase in delay line hw block */
848 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
849 	if (ret)
850 		goto out;
851 
852 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
853 	config |= CORE_CMD_DAT_TRACK_SEL;
854 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
855 
856 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
857 	config &= ~CORE_CDC_T4_DLY_SEL;
858 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
859 
860 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
861 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
862 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
863 
864 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
865 	config |= CORE_CDC_SWITCH_RC_EN;
866 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
867 
868 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
869 	config &= ~CORE_START_CDC_TRAFFIC;
870 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
871 
872 	/* Perform CDC Register Initialization Sequence */
873 
874 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
875 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
876 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
877 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
878 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
879 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
880 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
881 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
882 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
883 
884 	/* CDC HW Calibration */
885 
886 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
887 	config |= CORE_SW_TRIG_FULL_CALIB;
888 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
889 
890 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
891 	config &= ~CORE_SW_TRIG_FULL_CALIB;
892 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
893 
894 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
895 	config |= CORE_HW_AUTOCAL_ENA;
896 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
897 
898 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
899 	config |= CORE_TIMER_ENA;
900 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
901 
902 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
903 					 calib_done,
904 					 (calib_done & CORE_CALIBRATION_DONE),
905 					 1, 50);
906 
907 	if (ret == -ETIMEDOUT) {
908 		pr_err("%s: %s: CDC calibration was not completed\n",
909 		       mmc_hostname(host->mmc), __func__);
910 		goto out;
911 	}
912 
913 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
914 			& CORE_CDC_ERROR_CODE_MASK;
915 	if (ret) {
916 		pr_err("%s: %s: CDC error code %d\n",
917 		       mmc_hostname(host->mmc), __func__, ret);
918 		ret = -EINVAL;
919 		goto out;
920 	}
921 
922 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
923 	config |= CORE_START_CDC_TRAFFIC;
924 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
925 out:
926 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
927 		 __func__, ret);
928 	return ret;
929 }
930 
931 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
932 {
933 	struct mmc_host *mmc = host->mmc;
934 	u32 dll_status, config, ddr_cfg_offset;
935 	int ret;
936 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
937 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
938 	const struct sdhci_msm_offset *msm_offset =
939 					sdhci_priv_msm_offset(host);
940 
941 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
942 
943 	/*
944 	 * Currently the core_ddr_config register defaults to desired
945 	 * configuration on reset. Currently reprogramming the power on
946 	 * reset (POR) value in case it might have been modified by
947 	 * bootloaders. In the future, if this changes, then the desired
948 	 * values will need to be programmed appropriately.
949 	 */
950 	if (msm_host->updated_ddr_cfg)
951 		ddr_cfg_offset = msm_offset->core_ddr_config;
952 	else
953 		ddr_cfg_offset = msm_offset->core_ddr_config_old;
954 	writel_relaxed(DDR_CONFIG_POR_VAL, host->ioaddr + ddr_cfg_offset);
955 
956 	if (mmc->ios.enhanced_strobe) {
957 		config = readl_relaxed(host->ioaddr +
958 				msm_offset->core_ddr_200_cfg);
959 		config |= CORE_CMDIN_RCLK_EN;
960 		writel_relaxed(config, host->ioaddr +
961 				msm_offset->core_ddr_200_cfg);
962 	}
963 
964 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
965 	config |= CORE_DDR_CAL_EN;
966 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
967 
968 	ret = readl_relaxed_poll_timeout(host->ioaddr +
969 					msm_offset->core_dll_status,
970 					dll_status,
971 					(dll_status & CORE_DDR_DLL_LOCK),
972 					10, 1000);
973 
974 	if (ret == -ETIMEDOUT) {
975 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
976 		       mmc_hostname(host->mmc), __func__);
977 		goto out;
978 	}
979 
980 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3);
981 	config |= CORE_PWRSAVE_DLL;
982 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec3);
983 
984 	/*
985 	 * Drain writebuffer to ensure above DLL calibration
986 	 * and PWRSAVE DLL is enabled.
987 	 */
988 	wmb();
989 out:
990 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
991 		 __func__, ret);
992 	return ret;
993 }
994 
995 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
996 {
997 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
998 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
999 	struct mmc_host *mmc = host->mmc;
1000 	int ret;
1001 	u32 config;
1002 	const struct sdhci_msm_offset *msm_offset =
1003 					msm_host->offset;
1004 
1005 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1006 
1007 	/*
1008 	 * Retuning in HS400 (DDR mode) will fail, just reset the
1009 	 * tuning block and restore the saved tuning phase.
1010 	 */
1011 	ret = msm_init_cm_dll(host);
1012 	if (ret)
1013 		goto out;
1014 
1015 	if (!mmc->ios.enhanced_strobe) {
1016 		/* Set the selected phase in delay line hw block */
1017 		ret = msm_config_cm_dll_phase(host,
1018 					      msm_host->saved_tuning_phase);
1019 		if (ret)
1020 			goto out;
1021 		config = readl_relaxed(host->ioaddr +
1022 				msm_offset->core_dll_config);
1023 		config |= CORE_CMD_DAT_TRACK_SEL;
1024 		writel_relaxed(config, host->ioaddr +
1025 				msm_offset->core_dll_config);
1026 	}
1027 
1028 	if (msm_host->use_cdclp533)
1029 		ret = sdhci_msm_cdclp533_calibration(host);
1030 	else
1031 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1032 out:
1033 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1034 		 __func__, ret);
1035 	return ret;
1036 }
1037 
1038 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1039 {
1040 	struct mmc_ios *ios = &host->mmc->ios;
1041 
1042 	/*
1043 	 * Tuning is required for SDR104, HS200 and HS400 cards and
1044 	 * if clock frequency is greater than 100MHz in these modes.
1045 	 */
1046 	if (host->clock <= CORE_FREQ_100MHZ ||
1047 	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1048 	    ios->timing == MMC_TIMING_MMC_HS200 ||
1049 	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1050 	    ios->enhanced_strobe)
1051 		return false;
1052 
1053 	return true;
1054 }
1055 
1056 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1057 {
1058 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1059 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1060 	int ret;
1061 
1062 	/*
1063 	 * SDR DLL comes into picture only for timing modes which needs
1064 	 * tuning.
1065 	 */
1066 	if (!sdhci_msm_is_tuning_needed(host))
1067 		return 0;
1068 
1069 	/* Reset the tuning block */
1070 	ret = msm_init_cm_dll(host);
1071 	if (ret)
1072 		return ret;
1073 
1074 	/* Restore the tuning block */
1075 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1076 
1077 	return ret;
1078 }
1079 
1080 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1081 {
1082 	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1083 	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1084 					      msm_offset->core_dll_config);
1085 
1086 	config = oldconfig;
1087 	if (enable) {
1088 		config |= CORE_CDR_EN;
1089 		config &= ~CORE_CDR_EXT_EN;
1090 	} else {
1091 		config &= ~CORE_CDR_EN;
1092 		config |= CORE_CDR_EXT_EN;
1093 	}
1094 
1095 	if (config != oldconfig) {
1096 		writel_relaxed(config, host->ioaddr +
1097 			       msm_offset->core_dll_config);
1098 	}
1099 }
1100 
1101 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1102 {
1103 	struct sdhci_host *host = mmc_priv(mmc);
1104 	int tuning_seq_cnt = 3;
1105 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1106 	int rc;
1107 	struct mmc_ios ios = host->mmc->ios;
1108 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1109 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1110 
1111 	if (!sdhci_msm_is_tuning_needed(host)) {
1112 		msm_host->use_cdr = false;
1113 		sdhci_msm_set_cdr(host, false);
1114 		return 0;
1115 	}
1116 
1117 	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1118 	msm_host->use_cdr = true;
1119 
1120 	/*
1121 	 * For HS400 tuning in HS200 timing requires:
1122 	 * - select MCLK/2 in VENDOR_SPEC
1123 	 * - program MCLK to 400MHz (or nearest supported) in GCC
1124 	 */
1125 	if (host->flags & SDHCI_HS400_TUNING) {
1126 		sdhci_msm_hc_select_mode(host);
1127 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1128 		host->flags &= ~SDHCI_HS400_TUNING;
1129 	}
1130 
1131 retry:
1132 	/* First of all reset the tuning block */
1133 	rc = msm_init_cm_dll(host);
1134 	if (rc)
1135 		return rc;
1136 
1137 	phase = 0;
1138 	do {
1139 		/* Set the phase in delay line hw block */
1140 		rc = msm_config_cm_dll_phase(host, phase);
1141 		if (rc)
1142 			return rc;
1143 
1144 		rc = mmc_send_tuning(mmc, opcode, NULL);
1145 		if (!rc) {
1146 			/* Tuning is successful at this tuning point */
1147 			tuned_phases[tuned_phase_cnt++] = phase;
1148 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1149 				 mmc_hostname(mmc), phase);
1150 		}
1151 	} while (++phase < ARRAY_SIZE(tuned_phases));
1152 
1153 	if (tuned_phase_cnt) {
1154 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1155 						     tuned_phase_cnt);
1156 		if (rc < 0)
1157 			return rc;
1158 		else
1159 			phase = rc;
1160 
1161 		/*
1162 		 * Finally set the selected phase in delay
1163 		 * line hw block.
1164 		 */
1165 		rc = msm_config_cm_dll_phase(host, phase);
1166 		if (rc)
1167 			return rc;
1168 		msm_host->saved_tuning_phase = phase;
1169 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1170 			 mmc_hostname(mmc), phase);
1171 	} else {
1172 		if (--tuning_seq_cnt)
1173 			goto retry;
1174 		/* Tuning failed */
1175 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1176 		       mmc_hostname(mmc));
1177 		rc = -EIO;
1178 	}
1179 
1180 	if (!rc)
1181 		msm_host->tuning_done = true;
1182 	return rc;
1183 }
1184 
1185 /*
1186  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1187  * This needs to be done for both tuning and enhanced_strobe mode.
1188  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1189  * fixed feedback clock is used.
1190  */
1191 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1192 {
1193 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1194 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1195 	int ret;
1196 
1197 	if (host->clock > CORE_FREQ_100MHZ &&
1198 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1199 	    !msm_host->calibration_done) {
1200 		ret = sdhci_msm_hs400_dll_calibration(host);
1201 		if (!ret)
1202 			msm_host->calibration_done = true;
1203 		else
1204 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1205 			       mmc_hostname(host->mmc), ret);
1206 	}
1207 }
1208 
1209 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1210 					unsigned int uhs)
1211 {
1212 	struct mmc_host *mmc = host->mmc;
1213 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1214 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1215 	u16 ctrl_2;
1216 	u32 config;
1217 	const struct sdhci_msm_offset *msm_offset =
1218 					msm_host->offset;
1219 
1220 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1221 	/* Select Bus Speed Mode for host */
1222 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1223 	switch (uhs) {
1224 	case MMC_TIMING_UHS_SDR12:
1225 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1226 		break;
1227 	case MMC_TIMING_UHS_SDR25:
1228 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1229 		break;
1230 	case MMC_TIMING_UHS_SDR50:
1231 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1232 		break;
1233 	case MMC_TIMING_MMC_HS400:
1234 	case MMC_TIMING_MMC_HS200:
1235 	case MMC_TIMING_UHS_SDR104:
1236 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1237 		break;
1238 	case MMC_TIMING_UHS_DDR50:
1239 	case MMC_TIMING_MMC_DDR52:
1240 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1241 		break;
1242 	}
1243 
1244 	/*
1245 	 * When clock frequency is less than 100MHz, the feedback clock must be
1246 	 * provided and DLL must not be used so that tuning can be skipped. To
1247 	 * provide feedback clock, the mode selection can be any value less
1248 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1249 	 */
1250 	if (host->clock <= CORE_FREQ_100MHZ) {
1251 		if (uhs == MMC_TIMING_MMC_HS400 ||
1252 		    uhs == MMC_TIMING_MMC_HS200 ||
1253 		    uhs == MMC_TIMING_UHS_SDR104)
1254 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1255 		/*
1256 		 * DLL is not required for clock <= 100MHz
1257 		 * Thus, make sure DLL it is disabled when not required
1258 		 */
1259 		config = readl_relaxed(host->ioaddr +
1260 				msm_offset->core_dll_config);
1261 		config |= CORE_DLL_RST;
1262 		writel_relaxed(config, host->ioaddr +
1263 				msm_offset->core_dll_config);
1264 
1265 		config = readl_relaxed(host->ioaddr +
1266 				msm_offset->core_dll_config);
1267 		config |= CORE_DLL_PDN;
1268 		writel_relaxed(config, host->ioaddr +
1269 				msm_offset->core_dll_config);
1270 
1271 		/*
1272 		 * The DLL needs to be restored and CDCLP533 recalibrated
1273 		 * when the clock frequency is set back to 400MHz.
1274 		 */
1275 		msm_host->calibration_done = false;
1276 	}
1277 
1278 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1279 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1280 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1281 
1282 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1283 		sdhci_msm_hs400(host, &mmc->ios);
1284 }
1285 
1286 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1287 {
1288 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1289 }
1290 
1291 static inline void sdhci_msm_complete_pwr_irq_wait(
1292 		struct sdhci_msm_host *msm_host)
1293 {
1294 	wake_up(&msm_host->pwr_irq_wait);
1295 }
1296 
1297 /*
1298  * sdhci_msm_check_power_status API should be called when registers writes
1299  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1300  * To what state the register writes will change the IO lines should be passed
1301  * as the argument req_type. This API will check whether the IO line's state
1302  * is already the expected state and will wait for power irq only if
1303  * power irq is expected to be trigerred based on the current IO line state
1304  * and expected IO line state.
1305  */
1306 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1307 {
1308 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1309 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1310 	bool done = false;
1311 	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1312 	const struct sdhci_msm_offset *msm_offset =
1313 					msm_host->offset;
1314 
1315 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1316 			mmc_hostname(host->mmc), __func__, req_type,
1317 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1318 
1319 	/*
1320 	 * The power interrupt will not be generated for signal voltage
1321 	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1322 	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1323 	 * it as always set.
1324 	 */
1325 	if (!msm_host->mci_removed)
1326 		val = msm_host_readl(msm_host, host,
1327 				msm_offset->core_generics);
1328 	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1329 	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1330 		return;
1331 	}
1332 
1333 	/*
1334 	 * The IRQ for request type IO High/LOW will be generated when -
1335 	 * there is a state change in 1.8V enable bit (bit 3) of
1336 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1337 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1338 	 * to set it to 3.3V before card detection happens, the
1339 	 * IRQ doesn't get triggered as there is no state change in this bit.
1340 	 * The driver already handles this case by changing the IO voltage
1341 	 * level to high as part of controller power up sequence. Hence, check
1342 	 * for host->pwr to handle a case where IO voltage high request is
1343 	 * issued even before controller power up.
1344 	 */
1345 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1346 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1347 				mmc_hostname(host->mmc), req_type);
1348 		return;
1349 	}
1350 	if ((req_type & msm_host->curr_pwr_state) ||
1351 			(req_type & msm_host->curr_io_level))
1352 		done = true;
1353 	/*
1354 	 * This is needed here to handle cases where register writes will
1355 	 * not change the current bus state or io level of the controller.
1356 	 * In this case, no power irq will be triggerred and we should
1357 	 * not wait.
1358 	 */
1359 	if (!done) {
1360 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1361 				msm_host->pwr_irq_flag,
1362 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1363 			dev_warn(&msm_host->pdev->dev,
1364 				 "%s: pwr_irq for req: (%d) timed out\n",
1365 				 mmc_hostname(host->mmc), req_type);
1366 	}
1367 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1368 			__func__, req_type);
1369 }
1370 
1371 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1372 {
1373 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1374 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1375 	const struct sdhci_msm_offset *msm_offset =
1376 					msm_host->offset;
1377 
1378 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1379 		mmc_hostname(host->mmc),
1380 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1381 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1382 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1383 }
1384 
1385 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1386 {
1387 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1388 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1389 	u32 irq_status, irq_ack = 0;
1390 	int retry = 10;
1391 	u32 pwr_state = 0, io_level = 0;
1392 	u32 config;
1393 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1394 
1395 	irq_status = msm_host_readl(msm_host, host,
1396 			msm_offset->core_pwrctl_status);
1397 	irq_status &= INT_MASK;
1398 
1399 	msm_host_writel(msm_host, irq_status, host,
1400 			msm_offset->core_pwrctl_clear);
1401 
1402 	/*
1403 	 * There is a rare HW scenario where the first clear pulse could be
1404 	 * lost when actual reset and clear/read of status register is
1405 	 * happening at a time. Hence, retry for at least 10 times to make
1406 	 * sure status register is cleared. Otherwise, this will result in
1407 	 * a spurious power IRQ resulting in system instability.
1408 	 */
1409 	while (irq_status & msm_host_readl(msm_host, host,
1410 				msm_offset->core_pwrctl_status)) {
1411 		if (retry == 0) {
1412 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1413 					mmc_hostname(host->mmc), irq_status);
1414 			sdhci_msm_dump_pwr_ctrl_regs(host);
1415 			WARN_ON(1);
1416 			break;
1417 		}
1418 		msm_host_writel(msm_host, irq_status, host,
1419 			msm_offset->core_pwrctl_clear);
1420 		retry--;
1421 		udelay(10);
1422 	}
1423 
1424 	/* Handle BUS ON/OFF*/
1425 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1426 		pwr_state = REQ_BUS_ON;
1427 		io_level = REQ_IO_HIGH;
1428 		irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1429 	}
1430 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1431 		pwr_state = REQ_BUS_OFF;
1432 		io_level = REQ_IO_LOW;
1433 		irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1434 	}
1435 	/* Handle IO LOW/HIGH */
1436 	if (irq_status & CORE_PWRCTL_IO_LOW) {
1437 		io_level = REQ_IO_LOW;
1438 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1439 	}
1440 	if (irq_status & CORE_PWRCTL_IO_HIGH) {
1441 		io_level = REQ_IO_HIGH;
1442 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1443 	}
1444 
1445 	/*
1446 	 * The driver has to acknowledge the interrupt, switch voltages and
1447 	 * report back if it succeded or not to this register. The voltage
1448 	 * switches are handled by the sdhci core, so just report success.
1449 	 */
1450 	msm_host_writel(msm_host, irq_ack, host,
1451 			msm_offset->core_pwrctl_ctl);
1452 
1453 	/*
1454 	 * If we don't have info regarding the voltage levels supported by
1455 	 * regulators, don't change the IO PAD PWR SWITCH.
1456 	 */
1457 	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1458 		u32 new_config;
1459 		/*
1460 		 * We should unset IO PAD PWR switch only if the register write
1461 		 * can set IO lines high and the regulator also switches to 3 V.
1462 		 * Else, we should keep the IO PAD PWR switch set.
1463 		 * This is applicable to certain targets where eMMC vccq supply
1464 		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1465 		 * IO PAD PWR switch must be kept set to reflect actual
1466 		 * regulator voltage. This way, during initialization of
1467 		 * controllers with only 1.8V, we will set the IO PAD bit
1468 		 * without waiting for a REQ_IO_LOW.
1469 		 */
1470 		config = readl_relaxed(host->ioaddr +
1471 				msm_offset->core_vendor_spec);
1472 		new_config = config;
1473 
1474 		if ((io_level & REQ_IO_HIGH) &&
1475 				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1476 			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1477 		else if ((io_level & REQ_IO_LOW) ||
1478 				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1479 			new_config |= CORE_IO_PAD_PWR_SWITCH;
1480 
1481 		if (config ^ new_config)
1482 			writel_relaxed(new_config, host->ioaddr +
1483 					msm_offset->core_vendor_spec);
1484 	}
1485 
1486 	if (pwr_state)
1487 		msm_host->curr_pwr_state = pwr_state;
1488 	if (io_level)
1489 		msm_host->curr_io_level = io_level;
1490 
1491 	pr_debug("%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1492 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1493 		irq_ack);
1494 }
1495 
1496 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1497 {
1498 	struct sdhci_host *host = (struct sdhci_host *)data;
1499 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1500 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1501 
1502 	sdhci_msm_handle_pwr_irq(host, irq);
1503 	msm_host->pwr_irq_flag = 1;
1504 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1505 
1506 
1507 	return IRQ_HANDLED;
1508 }
1509 
1510 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1511 {
1512 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1513 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1514 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1515 
1516 	return clk_round_rate(core_clk, ULONG_MAX);
1517 }
1518 
1519 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1520 {
1521 	return SDHCI_MSM_MIN_CLOCK;
1522 }
1523 
1524 /**
1525  * __sdhci_msm_set_clock - sdhci_msm clock control.
1526  *
1527  * Description:
1528  * MSM controller does not use internal divider and
1529  * instead directly control the GCC clock as per
1530  * HW recommendation.
1531  **/
1532 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1533 {
1534 	u16 clk;
1535 	/*
1536 	 * Keep actual_clock as zero -
1537 	 * - since there is no divider used so no need of having actual_clock.
1538 	 * - MSM controller uses SDCLK for data timeout calculation. If
1539 	 *   actual_clock is zero, host->clock is taken for calculation.
1540 	 */
1541 	host->mmc->actual_clock = 0;
1542 
1543 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1544 
1545 	if (clock == 0)
1546 		return;
1547 
1548 	/*
1549 	 * MSM controller do not use clock divider.
1550 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1551 	 * clock with no divider value programmed.
1552 	 */
1553 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1554 	sdhci_enable_clk(host, clk);
1555 }
1556 
1557 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1558 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1559 {
1560 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1561 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1562 
1563 	if (!clock) {
1564 		msm_host->clk_rate = clock;
1565 		goto out;
1566 	}
1567 
1568 	sdhci_msm_hc_select_mode(host);
1569 
1570 	msm_set_clock_rate_for_bus_mode(host, clock);
1571 out:
1572 	__sdhci_msm_set_clock(host, clock);
1573 }
1574 
1575 /*****************************************************************************\
1576  *                                                                           *
1577  * MSM Command Queue Engine (CQE)                                            *
1578  *                                                                           *
1579 \*****************************************************************************/
1580 
1581 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
1582 {
1583 	int cmd_error = 0;
1584 	int data_error = 0;
1585 
1586 	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
1587 		return intmask;
1588 
1589 	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
1590 	return 0;
1591 }
1592 
1593 void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
1594 {
1595 	struct sdhci_host *host = mmc_priv(mmc);
1596 	unsigned long flags;
1597 	u32 ctrl;
1598 
1599 	/*
1600 	 * When CQE is halted, the legacy SDHCI path operates only
1601 	 * on 16-byte descriptors in 64bit mode.
1602 	 */
1603 	if (host->flags & SDHCI_USE_64_BIT_DMA)
1604 		host->desc_sz = 16;
1605 
1606 	spin_lock_irqsave(&host->lock, flags);
1607 
1608 	/*
1609 	 * During CQE command transfers, command complete bit gets latched.
1610 	 * So s/w should clear command complete interrupt status when CQE is
1611 	 * either halted or disabled. Otherwise unexpected SDCHI legacy
1612 	 * interrupt gets triggered when CQE is halted/disabled.
1613 	 */
1614 	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
1615 	ctrl |= SDHCI_INT_RESPONSE;
1616 	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
1617 	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
1618 
1619 	spin_unlock_irqrestore(&host->lock, flags);
1620 
1621 	sdhci_cqe_disable(mmc, recovery);
1622 }
1623 
1624 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
1625 	.enable		= sdhci_cqe_enable,
1626 	.disable	= sdhci_msm_cqe_disable,
1627 };
1628 
1629 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
1630 				struct platform_device *pdev)
1631 {
1632 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1633 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1634 	struct cqhci_host *cq_host;
1635 	bool dma64;
1636 	u32 cqcfg;
1637 	int ret;
1638 
1639 	/*
1640 	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
1641 	 * So ensure ADMA table is allocated for 16byte descriptors.
1642 	 */
1643 	if (host->caps & SDHCI_CAN_64BIT)
1644 		host->alloc_desc_sz = 16;
1645 
1646 	ret = sdhci_setup_host(host);
1647 	if (ret)
1648 		return ret;
1649 
1650 	cq_host = cqhci_pltfm_init(pdev);
1651 	if (IS_ERR(cq_host)) {
1652 		ret = PTR_ERR(cq_host);
1653 		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
1654 		goto cleanup;
1655 	}
1656 
1657 	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
1658 	cq_host->ops = &sdhci_msm_cqhci_ops;
1659 
1660 	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
1661 
1662 	ret = cqhci_init(cq_host, host->mmc, dma64);
1663 	if (ret) {
1664 		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
1665 				mmc_hostname(host->mmc), ret);
1666 		goto cleanup;
1667 	}
1668 
1669 	/* Disable cqe reset due to cqe enable signal */
1670 	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
1671 	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
1672 	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
1673 
1674 	/*
1675 	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
1676 	 * So limit desc_sz to 12 so that the data commands that are sent
1677 	 * during card initialization (before CQE gets enabled) would
1678 	 * get executed without any issues.
1679 	 */
1680 	if (host->flags & SDHCI_USE_64_BIT_DMA)
1681 		host->desc_sz = 12;
1682 
1683 	ret = __sdhci_add_host(host);
1684 	if (ret)
1685 		goto cleanup;
1686 
1687 	dev_info(&pdev->dev, "%s: CQE init: success\n",
1688 			mmc_hostname(host->mmc));
1689 	return ret;
1690 
1691 cleanup:
1692 	sdhci_cleanup_host(host);
1693 	return ret;
1694 }
1695 
1696 /*
1697  * Platform specific register write functions. This is so that, if any
1698  * register write needs to be followed up by platform specific actions,
1699  * they can be added here. These functions can go to sleep when writes
1700  * to certain registers are done.
1701  * These functions are relying on sdhci_set_ios not using spinlock.
1702  */
1703 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
1704 {
1705 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1706 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1707 	u32 req_type = 0;
1708 
1709 	switch (reg) {
1710 	case SDHCI_HOST_CONTROL2:
1711 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
1712 			REQ_IO_HIGH;
1713 		break;
1714 	case SDHCI_SOFTWARE_RESET:
1715 		if (host->pwr && (val & SDHCI_RESET_ALL))
1716 			req_type = REQ_BUS_OFF;
1717 		break;
1718 	case SDHCI_POWER_CONTROL:
1719 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
1720 		break;
1721 	case SDHCI_TRANSFER_MODE:
1722 		msm_host->transfer_mode = val;
1723 		break;
1724 	case SDHCI_COMMAND:
1725 		if (!msm_host->use_cdr)
1726 			break;
1727 		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
1728 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
1729 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
1730 			sdhci_msm_set_cdr(host, true);
1731 		else
1732 			sdhci_msm_set_cdr(host, false);
1733 		break;
1734 	}
1735 
1736 	if (req_type) {
1737 		msm_host->pwr_irq_flag = 0;
1738 		/*
1739 		 * Since this register write may trigger a power irq, ensure
1740 		 * all previous register writes are complete by this point.
1741 		 */
1742 		mb();
1743 	}
1744 	return req_type;
1745 }
1746 
1747 /* This function may sleep*/
1748 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
1749 {
1750 	u32 req_type = 0;
1751 
1752 	req_type = __sdhci_msm_check_write(host, val, reg);
1753 	writew_relaxed(val, host->ioaddr + reg);
1754 
1755 	if (req_type)
1756 		sdhci_msm_check_power_status(host, req_type);
1757 }
1758 
1759 /* This function may sleep*/
1760 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
1761 {
1762 	u32 req_type = 0;
1763 
1764 	req_type = __sdhci_msm_check_write(host, val, reg);
1765 
1766 	writeb_relaxed(val, host->ioaddr + reg);
1767 
1768 	if (req_type)
1769 		sdhci_msm_check_power_status(host, req_type);
1770 }
1771 
1772 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
1773 {
1774 	struct mmc_host *mmc = msm_host->mmc;
1775 	struct regulator *supply = mmc->supply.vqmmc;
1776 	u32 caps = 0, config;
1777 	struct sdhci_host *host = mmc_priv(mmc);
1778 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1779 
1780 	if (!IS_ERR(mmc->supply.vqmmc)) {
1781 		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
1782 			caps |= CORE_1_8V_SUPPORT;
1783 		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
1784 			caps |= CORE_3_0V_SUPPORT;
1785 
1786 		if (!caps)
1787 			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
1788 					mmc_hostname(mmc));
1789 	}
1790 
1791 	if (caps) {
1792 		/*
1793 		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
1794 		 * bit can be used as required later on.
1795 		 */
1796 		u32 io_level = msm_host->curr_io_level;
1797 
1798 		config = readl_relaxed(host->ioaddr +
1799 				msm_offset->core_vendor_spec);
1800 		config |= CORE_IO_PAD_PWR_SWITCH_EN;
1801 
1802 		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
1803 			config &= ~CORE_IO_PAD_PWR_SWITCH;
1804 		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
1805 			config |= CORE_IO_PAD_PWR_SWITCH;
1806 
1807 		writel_relaxed(config,
1808 				host->ioaddr + msm_offset->core_vendor_spec);
1809 	}
1810 	msm_host->caps_0 |= caps;
1811 	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
1812 }
1813 
1814 static const struct sdhci_msm_variant_ops mci_var_ops = {
1815 	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
1816 	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
1817 };
1818 
1819 static const struct sdhci_msm_variant_ops v5_var_ops = {
1820 	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
1821 	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
1822 };
1823 
1824 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
1825 	.var_ops = &mci_var_ops,
1826 	.offset = &sdhci_msm_mci_offset,
1827 };
1828 
1829 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
1830 	.mci_removed = true,
1831 	.var_ops = &v5_var_ops,
1832 	.offset = &sdhci_msm_v5_offset,
1833 };
1834 
1835 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
1836 	.mci_removed = true,
1837 	.restore_dll_config = true,
1838 	.var_ops = &v5_var_ops,
1839 	.offset = &sdhci_msm_v5_offset,
1840 };
1841 
1842 static const struct of_device_id sdhci_msm_dt_match[] = {
1843 	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
1844 	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
1845 	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
1846 	{},
1847 };
1848 
1849 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
1850 
1851 static const struct sdhci_ops sdhci_msm_ops = {
1852 	.reset = sdhci_reset,
1853 	.set_clock = sdhci_msm_set_clock,
1854 	.get_min_clock = sdhci_msm_get_min_clock,
1855 	.get_max_clock = sdhci_msm_get_max_clock,
1856 	.set_bus_width = sdhci_set_bus_width,
1857 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
1858 	.write_w = sdhci_msm_writew,
1859 	.write_b = sdhci_msm_writeb,
1860 	.irq	= sdhci_msm_cqe_irq,
1861 };
1862 
1863 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
1864 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1865 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
1866 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
1867 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
1868 	.ops = &sdhci_msm_ops,
1869 };
1870 
1871 static int sdhci_msm_probe(struct platform_device *pdev)
1872 {
1873 	struct sdhci_host *host;
1874 	struct sdhci_pltfm_host *pltfm_host;
1875 	struct sdhci_msm_host *msm_host;
1876 	struct clk *clk;
1877 	int ret;
1878 	u16 host_version, core_minor;
1879 	u32 core_version, config;
1880 	u8 core_major;
1881 	const struct sdhci_msm_offset *msm_offset;
1882 	const struct sdhci_msm_variant_info *var_info;
1883 	struct device_node *node = pdev->dev.of_node;
1884 
1885 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
1886 	if (IS_ERR(host))
1887 		return PTR_ERR(host);
1888 
1889 	host->sdma_boundary = 0;
1890 	pltfm_host = sdhci_priv(host);
1891 	msm_host = sdhci_pltfm_priv(pltfm_host);
1892 	msm_host->mmc = host->mmc;
1893 	msm_host->pdev = pdev;
1894 
1895 	ret = mmc_of_parse(host->mmc);
1896 	if (ret)
1897 		goto pltfm_free;
1898 
1899 	/*
1900 	 * Based on the compatible string, load the required msm host info from
1901 	 * the data associated with the version info.
1902 	 */
1903 	var_info = of_device_get_match_data(&pdev->dev);
1904 
1905 	msm_host->mci_removed = var_info->mci_removed;
1906 	msm_host->restore_dll_config = var_info->restore_dll_config;
1907 	msm_host->var_ops = var_info->var_ops;
1908 	msm_host->offset = var_info->offset;
1909 
1910 	msm_offset = msm_host->offset;
1911 
1912 	sdhci_get_of_property(pdev);
1913 
1914 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
1915 
1916 	/* Setup SDCC bus voter clock. */
1917 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
1918 	if (!IS_ERR(msm_host->bus_clk)) {
1919 		/* Vote for max. clk rate for max. performance */
1920 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
1921 		if (ret)
1922 			goto pltfm_free;
1923 		ret = clk_prepare_enable(msm_host->bus_clk);
1924 		if (ret)
1925 			goto pltfm_free;
1926 	}
1927 
1928 	/* Setup main peripheral bus clock */
1929 	clk = devm_clk_get(&pdev->dev, "iface");
1930 	if (IS_ERR(clk)) {
1931 		ret = PTR_ERR(clk);
1932 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
1933 		goto bus_clk_disable;
1934 	}
1935 	msm_host->bulk_clks[1].clk = clk;
1936 
1937 	/* Setup SDC MMC clock */
1938 	clk = devm_clk_get(&pdev->dev, "core");
1939 	if (IS_ERR(clk)) {
1940 		ret = PTR_ERR(clk);
1941 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
1942 		goto bus_clk_disable;
1943 	}
1944 	msm_host->bulk_clks[0].clk = clk;
1945 
1946 	/* Vote for maximum clock rate for maximum performance */
1947 	ret = clk_set_rate(clk, INT_MAX);
1948 	if (ret)
1949 		dev_warn(&pdev->dev, "core clock boost failed\n");
1950 
1951 	clk = devm_clk_get(&pdev->dev, "cal");
1952 	if (IS_ERR(clk))
1953 		clk = NULL;
1954 	msm_host->bulk_clks[2].clk = clk;
1955 
1956 	clk = devm_clk_get(&pdev->dev, "sleep");
1957 	if (IS_ERR(clk))
1958 		clk = NULL;
1959 	msm_host->bulk_clks[3].clk = clk;
1960 
1961 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
1962 				      msm_host->bulk_clks);
1963 	if (ret)
1964 		goto bus_clk_disable;
1965 
1966 	/*
1967 	 * xo clock is needed for FLL feature of cm_dll.
1968 	 * In case if xo clock is not mentioned in DT, warn and proceed.
1969 	 */
1970 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
1971 	if (IS_ERR(msm_host->xo_clk)) {
1972 		ret = PTR_ERR(msm_host->xo_clk);
1973 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
1974 	}
1975 
1976 	if (!msm_host->mci_removed) {
1977 		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
1978 		if (IS_ERR(msm_host->core_mem)) {
1979 			ret = PTR_ERR(msm_host->core_mem);
1980 			goto clk_disable;
1981 		}
1982 	}
1983 
1984 	/* Reset the vendor spec register to power on reset state */
1985 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
1986 			host->ioaddr + msm_offset->core_vendor_spec);
1987 
1988 	if (!msm_host->mci_removed) {
1989 		/* Set HC_MODE_EN bit in HC_MODE register */
1990 		msm_host_writel(msm_host, HC_MODE_EN, host,
1991 				msm_offset->core_hc_mode);
1992 		config = msm_host_readl(msm_host, host,
1993 				msm_offset->core_hc_mode);
1994 		config |= FF_CLK_SW_RST_DIS;
1995 		msm_host_writel(msm_host, config, host,
1996 				msm_offset->core_hc_mode);
1997 	}
1998 
1999 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2000 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2001 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2002 			       SDHCI_VENDOR_VER_SHIFT));
2003 
2004 	core_version = msm_host_readl(msm_host, host,
2005 			msm_offset->core_mci_version);
2006 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2007 		      CORE_VERSION_MAJOR_SHIFT;
2008 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2009 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2010 		core_version, core_major, core_minor);
2011 
2012 	if (core_major == 1 && core_minor >= 0x42)
2013 		msm_host->use_14lpp_dll_reset = true;
2014 
2015 	/*
2016 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2017 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2018 	 */
2019 	if (core_major == 1 && core_minor < 0x34)
2020 		msm_host->use_cdclp533 = true;
2021 
2022 	/*
2023 	 * Support for some capabilities is not advertised by newer
2024 	 * controller versions and must be explicitly enabled.
2025 	 */
2026 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2027 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2028 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2029 		writel_relaxed(config, host->ioaddr +
2030 				msm_offset->core_vendor_spec_capabilities0);
2031 	}
2032 
2033 	if (core_major == 1 && core_minor >= 0x49)
2034 		msm_host->updated_ddr_cfg = true;
2035 
2036 	/*
2037 	 * Power on reset state may trigger power irq if previous status of
2038 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2039 	 * interrupt in GIC, any pending power irq interrupt should be
2040 	 * acknowledged. Otherwise power irq interrupt handler would be
2041 	 * fired prematurely.
2042 	 */
2043 	sdhci_msm_handle_pwr_irq(host, 0);
2044 
2045 	/*
2046 	 * Ensure that above writes are propogated before interrupt enablement
2047 	 * in GIC.
2048 	 */
2049 	mb();
2050 
2051 	/* Setup IRQ for handling power/voltage tasks with PMIC */
2052 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2053 	if (msm_host->pwr_irq < 0) {
2054 		ret = msm_host->pwr_irq;
2055 		goto clk_disable;
2056 	}
2057 
2058 	sdhci_msm_init_pwr_irq_wait(msm_host);
2059 	/* Enable pwr irq interrupts */
2060 	msm_host_writel(msm_host, INT_MASK, host,
2061 		msm_offset->core_pwrctl_mask);
2062 
2063 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2064 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2065 					dev_name(&pdev->dev), host);
2066 	if (ret) {
2067 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2068 		goto clk_disable;
2069 	}
2070 
2071 	pm_runtime_get_noresume(&pdev->dev);
2072 	pm_runtime_set_active(&pdev->dev);
2073 	pm_runtime_enable(&pdev->dev);
2074 	pm_runtime_set_autosuspend_delay(&pdev->dev,
2075 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2076 	pm_runtime_use_autosuspend(&pdev->dev);
2077 
2078 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2079 	if (of_property_read_bool(node, "supports-cqe"))
2080 		ret = sdhci_msm_cqe_add_host(host, pdev);
2081 	else
2082 		ret = sdhci_add_host(host);
2083 	if (ret)
2084 		goto pm_runtime_disable;
2085 	sdhci_msm_set_regulator_caps(msm_host);
2086 
2087 	pm_runtime_mark_last_busy(&pdev->dev);
2088 	pm_runtime_put_autosuspend(&pdev->dev);
2089 
2090 	return 0;
2091 
2092 pm_runtime_disable:
2093 	pm_runtime_disable(&pdev->dev);
2094 	pm_runtime_set_suspended(&pdev->dev);
2095 	pm_runtime_put_noidle(&pdev->dev);
2096 clk_disable:
2097 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2098 				   msm_host->bulk_clks);
2099 bus_clk_disable:
2100 	if (!IS_ERR(msm_host->bus_clk))
2101 		clk_disable_unprepare(msm_host->bus_clk);
2102 pltfm_free:
2103 	sdhci_pltfm_free(pdev);
2104 	return ret;
2105 }
2106 
2107 static int sdhci_msm_remove(struct platform_device *pdev)
2108 {
2109 	struct sdhci_host *host = platform_get_drvdata(pdev);
2110 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2111 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2112 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2113 		    0xffffffff);
2114 
2115 	sdhci_remove_host(host, dead);
2116 
2117 	pm_runtime_get_sync(&pdev->dev);
2118 	pm_runtime_disable(&pdev->dev);
2119 	pm_runtime_put_noidle(&pdev->dev);
2120 
2121 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2122 				   msm_host->bulk_clks);
2123 	if (!IS_ERR(msm_host->bus_clk))
2124 		clk_disable_unprepare(msm_host->bus_clk);
2125 	sdhci_pltfm_free(pdev);
2126 	return 0;
2127 }
2128 
2129 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2130 {
2131 	struct sdhci_host *host = dev_get_drvdata(dev);
2132 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2133 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2134 
2135 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2136 				   msm_host->bulk_clks);
2137 
2138 	return 0;
2139 }
2140 
2141 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2142 {
2143 	struct sdhci_host *host = dev_get_drvdata(dev);
2144 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2145 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2146 	int ret;
2147 
2148 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2149 				       msm_host->bulk_clks);
2150 	if (ret)
2151 		return ret;
2152 	/*
2153 	 * Whenever core-clock is gated dynamically, it's needed to
2154 	 * restore the SDR DLL settings when the clock is ungated.
2155 	 */
2156 	if (msm_host->restore_dll_config && msm_host->clk_rate)
2157 		return sdhci_msm_restore_sdr_dll_config(host);
2158 
2159 	return 0;
2160 }
2161 
2162 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2163 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2164 				pm_runtime_force_resume)
2165 	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2166 			   sdhci_msm_runtime_resume,
2167 			   NULL)
2168 };
2169 
2170 static struct platform_driver sdhci_msm_driver = {
2171 	.probe = sdhci_msm_probe,
2172 	.remove = sdhci_msm_remove,
2173 	.driver = {
2174 		   .name = "sdhci_msm",
2175 		   .of_match_table = sdhci_msm_dt_match,
2176 		   .pm = &sdhci_msm_pm_ops,
2177 	},
2178 };
2179 
2180 module_platform_driver(sdhci_msm_driver);
2181 
2182 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2183 MODULE_LICENSE("GPL v2");
2184