xref: /openbmc/linux/drivers/mmc/host/sdhci-msm.c (revision d6e2d652)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4  *
5  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/delay.h>
11 #include <linux/mmc/mmc.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/pm_opp.h>
14 #include <linux/slab.h>
15 #include <linux/iopoll.h>
16 #include <linux/regulator/consumer.h>
17 #include <linux/interconnect.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/reset.h>
20 
21 #include <soc/qcom/ice.h>
22 
23 #include "sdhci-cqhci.h"
24 #include "sdhci-pltfm.h"
25 #include "cqhci.h"
26 
27 #define CORE_MCI_VERSION		0x50
28 #define CORE_VERSION_MAJOR_SHIFT	28
29 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
30 #define CORE_VERSION_MINOR_MASK		0xff
31 
32 #define CORE_MCI_GENERICS		0x70
33 #define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
34 
35 #define HC_MODE_EN		0x1
36 #define CORE_POWER		0x0
37 #define CORE_SW_RST		BIT(7)
38 #define FF_CLK_SW_RST_DIS	BIT(13)
39 
40 #define CORE_PWRCTL_BUS_OFF	BIT(0)
41 #define CORE_PWRCTL_BUS_ON	BIT(1)
42 #define CORE_PWRCTL_IO_LOW	BIT(2)
43 #define CORE_PWRCTL_IO_HIGH	BIT(3)
44 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
45 #define CORE_PWRCTL_BUS_FAIL    BIT(1)
46 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
47 #define CORE_PWRCTL_IO_FAIL     BIT(3)
48 #define REQ_BUS_OFF		BIT(0)
49 #define REQ_BUS_ON		BIT(1)
50 #define REQ_IO_LOW		BIT(2)
51 #define REQ_IO_HIGH		BIT(3)
52 #define INT_MASK		0xf
53 #define MAX_PHASES		16
54 #define CORE_DLL_LOCK		BIT(7)
55 #define CORE_DDR_DLL_LOCK	BIT(11)
56 #define CORE_DLL_EN		BIT(16)
57 #define CORE_CDR_EN		BIT(17)
58 #define CORE_CK_OUT_EN		BIT(18)
59 #define CORE_CDR_EXT_EN		BIT(19)
60 #define CORE_DLL_PDN		BIT(29)
61 #define CORE_DLL_RST		BIT(30)
62 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
63 
64 #define CORE_DDR_CAL_EN		BIT(0)
65 #define CORE_FLL_CYCLE_CNT	BIT(18)
66 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
67 
68 #define DLL_USR_CTL_POR_VAL	0x10800
69 #define ENABLE_DLL_LOCK_STATUS	BIT(26)
70 #define FINE_TUNE_MODE_EN	BIT(27)
71 #define BIAS_OK_SIGNAL		BIT(29)
72 
73 #define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
74 #define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
75 
76 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c
77 #define CORE_CLK_PWRSAVE	BIT(1)
78 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
79 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
80 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
81 #define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
82 #define CORE_IO_PAD_PWR_SWITCH	BIT(16)
83 #define CORE_HC_SELECT_IN_EN	BIT(18)
84 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
85 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
86 
87 #define CORE_3_0V_SUPPORT	BIT(25)
88 #define CORE_1_8V_SUPPORT	BIT(26)
89 #define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
90 
91 #define CORE_CSR_CDC_CTLR_CFG0		0x130
92 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
93 #define CORE_HW_AUTOCAL_ENA		BIT(17)
94 
95 #define CORE_CSR_CDC_CTLR_CFG1		0x134
96 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
97 #define CORE_TIMER_ENA			BIT(16)
98 
99 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
100 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
101 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
102 #define CORE_CDC_OFFSET_CFG		0x14C
103 #define CORE_CSR_CDC_DELAY_CFG		0x150
104 #define CORE_CDC_SLAVE_DDA_CFG		0x160
105 #define CORE_CSR_CDC_STATUS0		0x164
106 #define CORE_CALIBRATION_DONE		BIT(0)
107 
108 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
109 
110 #define CORE_CSR_CDC_GEN_CFG		0x178
111 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
112 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
113 
114 #define CORE_CDC_T4_DLY_SEL		BIT(0)
115 #define CORE_CMDIN_RCLK_EN		BIT(1)
116 #define CORE_START_CDC_TRAFFIC		BIT(6)
117 
118 #define CORE_PWRSAVE_DLL	BIT(3)
119 
120 #define DDR_CONFIG_POR_VAL	0x80040873
121 
122 
123 #define INVALID_TUNING_PHASE	-1
124 #define SDHCI_MSM_MIN_CLOCK	400000
125 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
126 
127 #define CDR_SELEXT_SHIFT	20
128 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
129 #define CMUX_SHIFT_PHASE_SHIFT	24
130 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
131 
132 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
133 
134 /* Timeout value to avoid infinite waiting for pwr_irq */
135 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
136 
137 /* Max load for eMMC Vdd-io supply */
138 #define MMC_VQMMC_MAX_LOAD_UA	325000
139 
140 #define msm_host_readl(msm_host, host, offset) \
141 	msm_host->var_ops->msm_readl_relaxed(host, offset)
142 
143 #define msm_host_writel(msm_host, val, host, offset) \
144 	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
145 
146 /* CQHCI vendor specific registers */
147 #define CQHCI_VENDOR_CFG1	0xA00
148 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
149 
150 struct sdhci_msm_offset {
151 	u32 core_hc_mode;
152 	u32 core_mci_data_cnt;
153 	u32 core_mci_status;
154 	u32 core_mci_fifo_cnt;
155 	u32 core_mci_version;
156 	u32 core_generics;
157 	u32 core_testbus_config;
158 	u32 core_testbus_sel2_bit;
159 	u32 core_testbus_ena;
160 	u32 core_testbus_sel2;
161 	u32 core_pwrctl_status;
162 	u32 core_pwrctl_mask;
163 	u32 core_pwrctl_clear;
164 	u32 core_pwrctl_ctl;
165 	u32 core_sdcc_debug_reg;
166 	u32 core_dll_config;
167 	u32 core_dll_status;
168 	u32 core_vendor_spec;
169 	u32 core_vendor_spec_adma_err_addr0;
170 	u32 core_vendor_spec_adma_err_addr1;
171 	u32 core_vendor_spec_func2;
172 	u32 core_vendor_spec_capabilities0;
173 	u32 core_ddr_200_cfg;
174 	u32 core_vendor_spec3;
175 	u32 core_dll_config_2;
176 	u32 core_dll_config_3;
177 	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
178 	u32 core_ddr_config;
179 	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
180 };
181 
182 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
183 	.core_mci_data_cnt = 0x35c,
184 	.core_mci_status = 0x324,
185 	.core_mci_fifo_cnt = 0x308,
186 	.core_mci_version = 0x318,
187 	.core_generics = 0x320,
188 	.core_testbus_config = 0x32c,
189 	.core_testbus_sel2_bit = 3,
190 	.core_testbus_ena = (1 << 31),
191 	.core_testbus_sel2 = (1 << 3),
192 	.core_pwrctl_status = 0x240,
193 	.core_pwrctl_mask = 0x244,
194 	.core_pwrctl_clear = 0x248,
195 	.core_pwrctl_ctl = 0x24c,
196 	.core_sdcc_debug_reg = 0x358,
197 	.core_dll_config = 0x200,
198 	.core_dll_status = 0x208,
199 	.core_vendor_spec = 0x20c,
200 	.core_vendor_spec_adma_err_addr0 = 0x214,
201 	.core_vendor_spec_adma_err_addr1 = 0x218,
202 	.core_vendor_spec_func2 = 0x210,
203 	.core_vendor_spec_capabilities0 = 0x21c,
204 	.core_ddr_200_cfg = 0x224,
205 	.core_vendor_spec3 = 0x250,
206 	.core_dll_config_2 = 0x254,
207 	.core_dll_config_3 = 0x258,
208 	.core_ddr_config = 0x25c,
209 	.core_dll_usr_ctl = 0x388,
210 };
211 
212 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
213 	.core_hc_mode = 0x78,
214 	.core_mci_data_cnt = 0x30,
215 	.core_mci_status = 0x34,
216 	.core_mci_fifo_cnt = 0x44,
217 	.core_mci_version = 0x050,
218 	.core_generics = 0x70,
219 	.core_testbus_config = 0x0cc,
220 	.core_testbus_sel2_bit = 4,
221 	.core_testbus_ena = (1 << 3),
222 	.core_testbus_sel2 = (1 << 4),
223 	.core_pwrctl_status = 0xdc,
224 	.core_pwrctl_mask = 0xe0,
225 	.core_pwrctl_clear = 0xe4,
226 	.core_pwrctl_ctl = 0xe8,
227 	.core_sdcc_debug_reg = 0x124,
228 	.core_dll_config = 0x100,
229 	.core_dll_status = 0x108,
230 	.core_vendor_spec = 0x10c,
231 	.core_vendor_spec_adma_err_addr0 = 0x114,
232 	.core_vendor_spec_adma_err_addr1 = 0x118,
233 	.core_vendor_spec_func2 = 0x110,
234 	.core_vendor_spec_capabilities0 = 0x11c,
235 	.core_ddr_200_cfg = 0x184,
236 	.core_vendor_spec3 = 0x1b0,
237 	.core_dll_config_2 = 0x1b4,
238 	.core_ddr_config_old = 0x1b8,
239 	.core_ddr_config = 0x1bc,
240 };
241 
242 struct sdhci_msm_variant_ops {
243 	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
244 	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
245 			u32 offset);
246 };
247 
248 /*
249  * From V5, register spaces have changed. Wrap this info in a structure
250  * and choose the data_structure based on version info mentioned in DT.
251  */
252 struct sdhci_msm_variant_info {
253 	bool mci_removed;
254 	bool restore_dll_config;
255 	const struct sdhci_msm_variant_ops *var_ops;
256 	const struct sdhci_msm_offset *offset;
257 };
258 
259 struct sdhci_msm_host {
260 	struct platform_device *pdev;
261 	void __iomem *core_mem;	/* MSM SDCC mapped address */
262 	int pwr_irq;		/* power irq */
263 	struct clk *bus_clk;	/* SDHC bus voter clock */
264 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
265 	/* core, iface, cal and sleep clocks */
266 	struct clk_bulk_data bulk_clks[4];
267 #ifdef CONFIG_MMC_CRYPTO
268 	struct qcom_ice *ice;
269 #endif
270 	unsigned long clk_rate;
271 	struct mmc_host *mmc;
272 	bool use_14lpp_dll_reset;
273 	bool tuning_done;
274 	bool calibration_done;
275 	u8 saved_tuning_phase;
276 	bool use_cdclp533;
277 	u32 curr_pwr_state;
278 	u32 curr_io_level;
279 	wait_queue_head_t pwr_irq_wait;
280 	bool pwr_irq_flag;
281 	u32 caps_0;
282 	bool mci_removed;
283 	bool restore_dll_config;
284 	const struct sdhci_msm_variant_ops *var_ops;
285 	const struct sdhci_msm_offset *offset;
286 	bool use_cdr;
287 	u32 transfer_mode;
288 	bool updated_ddr_cfg;
289 	bool uses_tassadar_dll;
290 	u32 dll_config;
291 	u32 ddr_config;
292 	bool vqmmc_enabled;
293 };
294 
295 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
296 {
297 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
298 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
299 
300 	return msm_host->offset;
301 }
302 
303 /*
304  * APIs to read/write to vendor specific registers which were there in the
305  * core_mem region before MCI was removed.
306  */
307 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
308 		u32 offset)
309 {
310 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
311 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
312 
313 	return readl_relaxed(msm_host->core_mem + offset);
314 }
315 
316 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
317 		u32 offset)
318 {
319 	return readl_relaxed(host->ioaddr + offset);
320 }
321 
322 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
323 		struct sdhci_host *host, u32 offset)
324 {
325 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
326 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
327 
328 	writel_relaxed(val, msm_host->core_mem + offset);
329 }
330 
331 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
332 		struct sdhci_host *host, u32 offset)
333 {
334 	writel_relaxed(val, host->ioaddr + offset);
335 }
336 
337 static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
338 {
339 	struct mmc_ios ios = host->mmc->ios;
340 	/*
341 	 * The SDHC requires internal clock frequency to be double the
342 	 * actual clock that will be set for DDR mode. The controller
343 	 * uses the faster clock(100/400MHz) for some of its parts and
344 	 * send the actual required clock (50/200MHz) to the card.
345 	 */
346 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
347 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
348 	    ios.timing == MMC_TIMING_MMC_HS400 ||
349 	    host->flags & SDHCI_HS400_TUNING)
350 		return 2;
351 	return 1;
352 }
353 
354 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
355 					    unsigned int clock)
356 {
357 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
358 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
359 	struct mmc_ios curr_ios = host->mmc->ios;
360 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
361 	unsigned long achieved_rate;
362 	unsigned int desired_rate;
363 	unsigned int mult;
364 	int rc;
365 
366 	mult = msm_get_clock_mult_for_bus_mode(host);
367 	desired_rate = clock * mult;
368 	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
369 	if (rc) {
370 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
371 		       mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
372 		return;
373 	}
374 
375 	/*
376 	 * Qualcomm clock drivers by default round clock _up_ if they can't
377 	 * make the requested rate.  This is not good for SD.  Yell if we
378 	 * encounter it.
379 	 */
380 	achieved_rate = clk_get_rate(core_clk);
381 	if (achieved_rate > desired_rate)
382 		pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
383 			mmc_hostname(host->mmc), desired_rate, achieved_rate);
384 	host->mmc->actual_clock = achieved_rate / mult;
385 
386 	/* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
387 	msm_host->clk_rate = desired_rate;
388 
389 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
390 		 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
391 }
392 
393 /* Platform specific tuning */
394 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
395 {
396 	u32 wait_cnt = 50;
397 	u8 ck_out_en;
398 	struct mmc_host *mmc = host->mmc;
399 	const struct sdhci_msm_offset *msm_offset =
400 					sdhci_priv_msm_offset(host);
401 
402 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
403 	ck_out_en = !!(readl_relaxed(host->ioaddr +
404 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
405 
406 	while (ck_out_en != poll) {
407 		if (--wait_cnt == 0) {
408 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
409 			       mmc_hostname(mmc), poll);
410 			return -ETIMEDOUT;
411 		}
412 		udelay(1);
413 
414 		ck_out_en = !!(readl_relaxed(host->ioaddr +
415 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
416 	}
417 
418 	return 0;
419 }
420 
421 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
422 {
423 	int rc;
424 	static const u8 grey_coded_phase_table[] = {
425 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
426 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
427 	};
428 	unsigned long flags;
429 	u32 config;
430 	struct mmc_host *mmc = host->mmc;
431 	const struct sdhci_msm_offset *msm_offset =
432 					sdhci_priv_msm_offset(host);
433 
434 	if (phase > 0xf)
435 		return -EINVAL;
436 
437 	spin_lock_irqsave(&host->lock, flags);
438 
439 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
440 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
441 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
442 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
443 
444 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
445 	rc = msm_dll_poll_ck_out_en(host, 0);
446 	if (rc)
447 		goto err_out;
448 
449 	/*
450 	 * Write the selected DLL clock output phase (0 ... 15)
451 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
452 	 */
453 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
454 	config &= ~CDR_SELEXT_MASK;
455 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
456 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
457 
458 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
459 	config |= CORE_CK_OUT_EN;
460 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
461 
462 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
463 	rc = msm_dll_poll_ck_out_en(host, 1);
464 	if (rc)
465 		goto err_out;
466 
467 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
468 	config |= CORE_CDR_EN;
469 	config &= ~CORE_CDR_EXT_EN;
470 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
471 	goto out;
472 
473 err_out:
474 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
475 	       mmc_hostname(mmc), phase);
476 out:
477 	spin_unlock_irqrestore(&host->lock, flags);
478 	return rc;
479 }
480 
481 /*
482  * Find out the greatest range of consecuitive selected
483  * DLL clock output phases that can be used as sampling
484  * setting for SD3.0 UHS-I card read operation (in SDR104
485  * timing mode) or for eMMC4.5 card read operation (in
486  * HS400/HS200 timing mode).
487  * Select the 3/4 of the range and configure the DLL with the
488  * selected DLL clock output phase.
489  */
490 
491 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
492 					   u8 *phase_table, u8 total_phases)
493 {
494 	int ret;
495 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
496 	u8 phases_per_row[MAX_PHASES] = { 0 };
497 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
498 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
499 	bool phase_0_found = false, phase_15_found = false;
500 	struct mmc_host *mmc = host->mmc;
501 
502 	if (!total_phases || (total_phases > MAX_PHASES)) {
503 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
504 		       mmc_hostname(mmc), total_phases);
505 		return -EINVAL;
506 	}
507 
508 	for (cnt = 0; cnt < total_phases; cnt++) {
509 		ranges[row_index][col_index] = phase_table[cnt];
510 		phases_per_row[row_index] += 1;
511 		col_index++;
512 
513 		if ((cnt + 1) == total_phases) {
514 			continue;
515 		/* check if next phase in phase_table is consecutive or not */
516 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
517 			row_index++;
518 			col_index = 0;
519 		}
520 	}
521 
522 	if (row_index >= MAX_PHASES)
523 		return -EINVAL;
524 
525 	/* Check if phase-0 is present in first valid window? */
526 	if (!ranges[0][0]) {
527 		phase_0_found = true;
528 		phase_0_raw_index = 0;
529 		/* Check if cycle exist between 2 valid windows */
530 		for (cnt = 1; cnt <= row_index; cnt++) {
531 			if (phases_per_row[cnt]) {
532 				for (i = 0; i < phases_per_row[cnt]; i++) {
533 					if (ranges[cnt][i] == 15) {
534 						phase_15_found = true;
535 						phase_15_raw_index = cnt;
536 						break;
537 					}
538 				}
539 			}
540 		}
541 	}
542 
543 	/* If 2 valid windows form cycle then merge them as single window */
544 	if (phase_0_found && phase_15_found) {
545 		/* number of phases in raw where phase 0 is present */
546 		u8 phases_0 = phases_per_row[phase_0_raw_index];
547 		/* number of phases in raw where phase 15 is present */
548 		u8 phases_15 = phases_per_row[phase_15_raw_index];
549 
550 		if (phases_0 + phases_15 >= MAX_PHASES)
551 			/*
552 			 * If there are more than 1 phase windows then total
553 			 * number of phases in both the windows should not be
554 			 * more than or equal to MAX_PHASES.
555 			 */
556 			return -EINVAL;
557 
558 		/* Merge 2 cyclic windows */
559 		i = phases_15;
560 		for (cnt = 0; cnt < phases_0; cnt++) {
561 			ranges[phase_15_raw_index][i] =
562 			    ranges[phase_0_raw_index][cnt];
563 			if (++i >= MAX_PHASES)
564 				break;
565 		}
566 
567 		phases_per_row[phase_0_raw_index] = 0;
568 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
569 	}
570 
571 	for (cnt = 0; cnt <= row_index; cnt++) {
572 		if (phases_per_row[cnt] > curr_max) {
573 			curr_max = phases_per_row[cnt];
574 			selected_row_index = cnt;
575 		}
576 	}
577 
578 	i = (curr_max * 3) / 4;
579 	if (i)
580 		i--;
581 
582 	ret = ranges[selected_row_index][i];
583 
584 	if (ret >= MAX_PHASES) {
585 		ret = -EINVAL;
586 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
587 		       mmc_hostname(mmc), ret);
588 	}
589 
590 	return ret;
591 }
592 
593 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
594 {
595 	u32 mclk_freq = 0, config;
596 	const struct sdhci_msm_offset *msm_offset =
597 					sdhci_priv_msm_offset(host);
598 
599 	/* Program the MCLK value to MCLK_FREQ bit field */
600 	if (host->clock <= 112000000)
601 		mclk_freq = 0;
602 	else if (host->clock <= 125000000)
603 		mclk_freq = 1;
604 	else if (host->clock <= 137000000)
605 		mclk_freq = 2;
606 	else if (host->clock <= 150000000)
607 		mclk_freq = 3;
608 	else if (host->clock <= 162000000)
609 		mclk_freq = 4;
610 	else if (host->clock <= 175000000)
611 		mclk_freq = 5;
612 	else if (host->clock <= 187000000)
613 		mclk_freq = 6;
614 	else if (host->clock <= 200000000)
615 		mclk_freq = 7;
616 
617 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
618 	config &= ~CMUX_SHIFT_PHASE_MASK;
619 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
620 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
621 }
622 
623 /* Initialize the DLL (Programmable Delay Line) */
624 static int msm_init_cm_dll(struct sdhci_host *host)
625 {
626 	struct mmc_host *mmc = host->mmc;
627 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
628 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
629 	int wait_cnt = 50;
630 	unsigned long flags, xo_clk = 0;
631 	u32 config;
632 	const struct sdhci_msm_offset *msm_offset =
633 					msm_host->offset;
634 
635 	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
636 		xo_clk = clk_get_rate(msm_host->xo_clk);
637 
638 	spin_lock_irqsave(&host->lock, flags);
639 
640 	/*
641 	 * Make sure that clock is always enabled when DLL
642 	 * tuning is in progress. Keeping PWRSAVE ON may
643 	 * turn off the clock.
644 	 */
645 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
646 	config &= ~CORE_CLK_PWRSAVE;
647 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
648 
649 	if (msm_host->dll_config)
650 		writel_relaxed(msm_host->dll_config,
651 				host->ioaddr + msm_offset->core_dll_config);
652 
653 	if (msm_host->use_14lpp_dll_reset) {
654 		config = readl_relaxed(host->ioaddr +
655 				msm_offset->core_dll_config);
656 		config &= ~CORE_CK_OUT_EN;
657 		writel_relaxed(config, host->ioaddr +
658 				msm_offset->core_dll_config);
659 
660 		config = readl_relaxed(host->ioaddr +
661 				msm_offset->core_dll_config_2);
662 		config |= CORE_DLL_CLOCK_DISABLE;
663 		writel_relaxed(config, host->ioaddr +
664 				msm_offset->core_dll_config_2);
665 	}
666 
667 	config = readl_relaxed(host->ioaddr +
668 			msm_offset->core_dll_config);
669 	config |= CORE_DLL_RST;
670 	writel_relaxed(config, host->ioaddr +
671 			msm_offset->core_dll_config);
672 
673 	config = readl_relaxed(host->ioaddr +
674 			msm_offset->core_dll_config);
675 	config |= CORE_DLL_PDN;
676 	writel_relaxed(config, host->ioaddr +
677 			msm_offset->core_dll_config);
678 
679 	if (!msm_host->dll_config)
680 		msm_cm_dll_set_freq(host);
681 
682 	if (msm_host->use_14lpp_dll_reset &&
683 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
684 		u32 mclk_freq = 0;
685 
686 		config = readl_relaxed(host->ioaddr +
687 				msm_offset->core_dll_config_2);
688 		config &= CORE_FLL_CYCLE_CNT;
689 		if (config)
690 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
691 					xo_clk);
692 		else
693 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
694 					xo_clk);
695 
696 		config = readl_relaxed(host->ioaddr +
697 				msm_offset->core_dll_config_2);
698 		config &= ~(0xFF << 10);
699 		config |= mclk_freq << 10;
700 
701 		writel_relaxed(config, host->ioaddr +
702 				msm_offset->core_dll_config_2);
703 		/* wait for 5us before enabling DLL clock */
704 		udelay(5);
705 	}
706 
707 	config = readl_relaxed(host->ioaddr +
708 			msm_offset->core_dll_config);
709 	config &= ~CORE_DLL_RST;
710 	writel_relaxed(config, host->ioaddr +
711 			msm_offset->core_dll_config);
712 
713 	config = readl_relaxed(host->ioaddr +
714 			msm_offset->core_dll_config);
715 	config &= ~CORE_DLL_PDN;
716 	writel_relaxed(config, host->ioaddr +
717 			msm_offset->core_dll_config);
718 
719 	if (msm_host->use_14lpp_dll_reset) {
720 		if (!msm_host->dll_config)
721 			msm_cm_dll_set_freq(host);
722 		config = readl_relaxed(host->ioaddr +
723 				msm_offset->core_dll_config_2);
724 		config &= ~CORE_DLL_CLOCK_DISABLE;
725 		writel_relaxed(config, host->ioaddr +
726 				msm_offset->core_dll_config_2);
727 	}
728 
729 	/*
730 	 * Configure DLL user control register to enable DLL status.
731 	 * This setting is applicable to SDCC v5.1 onwards only.
732 	 */
733 	if (msm_host->uses_tassadar_dll) {
734 		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
735 			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
736 		writel_relaxed(config, host->ioaddr +
737 				msm_offset->core_dll_usr_ctl);
738 
739 		config = readl_relaxed(host->ioaddr +
740 				msm_offset->core_dll_config_3);
741 		config &= ~0xFF;
742 		if (msm_host->clk_rate < 150000000)
743 			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
744 		else
745 			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
746 		writel_relaxed(config, host->ioaddr +
747 			msm_offset->core_dll_config_3);
748 	}
749 
750 	config = readl_relaxed(host->ioaddr +
751 			msm_offset->core_dll_config);
752 	config |= CORE_DLL_EN;
753 	writel_relaxed(config, host->ioaddr +
754 			msm_offset->core_dll_config);
755 
756 	config = readl_relaxed(host->ioaddr +
757 			msm_offset->core_dll_config);
758 	config |= CORE_CK_OUT_EN;
759 	writel_relaxed(config, host->ioaddr +
760 			msm_offset->core_dll_config);
761 
762 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
763 	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
764 		 CORE_DLL_LOCK)) {
765 		/* max. wait for 50us sec for LOCK bit to be set */
766 		if (--wait_cnt == 0) {
767 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
768 			       mmc_hostname(mmc));
769 			spin_unlock_irqrestore(&host->lock, flags);
770 			return -ETIMEDOUT;
771 		}
772 		udelay(1);
773 	}
774 
775 	spin_unlock_irqrestore(&host->lock, flags);
776 	return 0;
777 }
778 
779 static void msm_hc_select_default(struct sdhci_host *host)
780 {
781 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
782 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
783 	u32 config;
784 	const struct sdhci_msm_offset *msm_offset =
785 					msm_host->offset;
786 
787 	if (!msm_host->use_cdclp533) {
788 		config = readl_relaxed(host->ioaddr +
789 				msm_offset->core_vendor_spec3);
790 		config &= ~CORE_PWRSAVE_DLL;
791 		writel_relaxed(config, host->ioaddr +
792 				msm_offset->core_vendor_spec3);
793 	}
794 
795 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
796 	config &= ~CORE_HC_MCLK_SEL_MASK;
797 	config |= CORE_HC_MCLK_SEL_DFLT;
798 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
799 
800 	/*
801 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
802 	 * configuration from Host Control2 register for all other
803 	 * modes.
804 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
805 	 * in VENDOR_SPEC_FUNC
806 	 */
807 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
808 	config &= ~CORE_HC_SELECT_IN_EN;
809 	config &= ~CORE_HC_SELECT_IN_MASK;
810 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
811 
812 	/*
813 	 * Make sure above writes impacting free running MCLK are completed
814 	 * before changing the clk_rate at GCC.
815 	 */
816 	wmb();
817 }
818 
819 static void msm_hc_select_hs400(struct sdhci_host *host)
820 {
821 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
822 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
823 	struct mmc_ios ios = host->mmc->ios;
824 	u32 config, dll_lock;
825 	int rc;
826 	const struct sdhci_msm_offset *msm_offset =
827 					msm_host->offset;
828 
829 	/* Select the divided clock (free running MCLK/2) */
830 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
831 	config &= ~CORE_HC_MCLK_SEL_MASK;
832 	config |= CORE_HC_MCLK_SEL_HS400;
833 
834 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
835 	/*
836 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
837 	 * register
838 	 */
839 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
840 	    !msm_host->calibration_done) {
841 		config = readl_relaxed(host->ioaddr +
842 				msm_offset->core_vendor_spec);
843 		config |= CORE_HC_SELECT_IN_HS400;
844 		config |= CORE_HC_SELECT_IN_EN;
845 		writel_relaxed(config, host->ioaddr +
846 				msm_offset->core_vendor_spec);
847 	}
848 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
849 		/*
850 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
851 		 * core_dll_status to be set. This should get set
852 		 * within 15 us at 200 MHz.
853 		 */
854 		rc = readl_relaxed_poll_timeout(host->ioaddr +
855 						msm_offset->core_dll_status,
856 						dll_lock,
857 						(dll_lock &
858 						(CORE_DLL_LOCK |
859 						CORE_DDR_DLL_LOCK)), 10,
860 						1000);
861 		if (rc == -ETIMEDOUT)
862 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
863 			       mmc_hostname(host->mmc), dll_lock);
864 	}
865 	/*
866 	 * Make sure above writes impacting free running MCLK are completed
867 	 * before changing the clk_rate at GCC.
868 	 */
869 	wmb();
870 }
871 
872 /*
873  * sdhci_msm_hc_select_mode :- In general all timing modes are
874  * controlled via UHS mode select in Host Control2 register.
875  * eMMC specific HS200/HS400 doesn't have their respective modes
876  * defined here, hence we use these values.
877  *
878  * HS200 - SDR104 (Since they both are equivalent in functionality)
879  * HS400 - This involves multiple configurations
880  *		Initially SDR104 - when tuning is required as HS200
881  *		Then when switching to DDR @ 400MHz (HS400) we use
882  *		the vendor specific HC_SELECT_IN to control the mode.
883  *
884  * In addition to controlling the modes we also need to select the
885  * correct input clock for DLL depending on the mode.
886  *
887  * HS400 - divided clock (free running MCLK/2)
888  * All other modes - default (free running MCLK)
889  */
890 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
891 {
892 	struct mmc_ios ios = host->mmc->ios;
893 
894 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
895 	    host->flags & SDHCI_HS400_TUNING)
896 		msm_hc_select_hs400(host);
897 	else
898 		msm_hc_select_default(host);
899 }
900 
901 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
902 {
903 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
904 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
905 	u32 config, calib_done;
906 	int ret;
907 	const struct sdhci_msm_offset *msm_offset =
908 					msm_host->offset;
909 
910 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
911 
912 	/*
913 	 * Retuning in HS400 (DDR mode) will fail, just reset the
914 	 * tuning block and restore the saved tuning phase.
915 	 */
916 	ret = msm_init_cm_dll(host);
917 	if (ret)
918 		goto out;
919 
920 	/* Set the selected phase in delay line hw block */
921 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
922 	if (ret)
923 		goto out;
924 
925 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
926 	config |= CORE_CMD_DAT_TRACK_SEL;
927 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
928 
929 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
930 	config &= ~CORE_CDC_T4_DLY_SEL;
931 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
932 
933 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
934 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
935 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
936 
937 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
938 	config |= CORE_CDC_SWITCH_RC_EN;
939 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
940 
941 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
942 	config &= ~CORE_START_CDC_TRAFFIC;
943 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
944 
945 	/* Perform CDC Register Initialization Sequence */
946 
947 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
948 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
949 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
950 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
951 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
952 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
953 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
954 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
955 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
956 
957 	/* CDC HW Calibration */
958 
959 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
960 	config |= CORE_SW_TRIG_FULL_CALIB;
961 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
962 
963 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
964 	config &= ~CORE_SW_TRIG_FULL_CALIB;
965 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
966 
967 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
968 	config |= CORE_HW_AUTOCAL_ENA;
969 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
970 
971 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
972 	config |= CORE_TIMER_ENA;
973 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
974 
975 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
976 					 calib_done,
977 					 (calib_done & CORE_CALIBRATION_DONE),
978 					 1, 50);
979 
980 	if (ret == -ETIMEDOUT) {
981 		pr_err("%s: %s: CDC calibration was not completed\n",
982 		       mmc_hostname(host->mmc), __func__);
983 		goto out;
984 	}
985 
986 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
987 			& CORE_CDC_ERROR_CODE_MASK;
988 	if (ret) {
989 		pr_err("%s: %s: CDC error code %d\n",
990 		       mmc_hostname(host->mmc), __func__, ret);
991 		ret = -EINVAL;
992 		goto out;
993 	}
994 
995 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
996 	config |= CORE_START_CDC_TRAFFIC;
997 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
998 out:
999 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1000 		 __func__, ret);
1001 	return ret;
1002 }
1003 
1004 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1005 {
1006 	struct mmc_host *mmc = host->mmc;
1007 	u32 dll_status, config, ddr_cfg_offset;
1008 	int ret;
1009 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1010 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1011 	const struct sdhci_msm_offset *msm_offset =
1012 					sdhci_priv_msm_offset(host);
1013 
1014 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1015 
1016 	/*
1017 	 * Currently the core_ddr_config register defaults to desired
1018 	 * configuration on reset. Currently reprogramming the power on
1019 	 * reset (POR) value in case it might have been modified by
1020 	 * bootloaders. In the future, if this changes, then the desired
1021 	 * values will need to be programmed appropriately.
1022 	 */
1023 	if (msm_host->updated_ddr_cfg)
1024 		ddr_cfg_offset = msm_offset->core_ddr_config;
1025 	else
1026 		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1027 	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1028 
1029 	if (mmc->ios.enhanced_strobe) {
1030 		config = readl_relaxed(host->ioaddr +
1031 				msm_offset->core_ddr_200_cfg);
1032 		config |= CORE_CMDIN_RCLK_EN;
1033 		writel_relaxed(config, host->ioaddr +
1034 				msm_offset->core_ddr_200_cfg);
1035 	}
1036 
1037 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1038 	config |= CORE_DDR_CAL_EN;
1039 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1040 
1041 	ret = readl_relaxed_poll_timeout(host->ioaddr +
1042 					msm_offset->core_dll_status,
1043 					dll_status,
1044 					(dll_status & CORE_DDR_DLL_LOCK),
1045 					10, 1000);
1046 
1047 	if (ret == -ETIMEDOUT) {
1048 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1049 		       mmc_hostname(host->mmc), __func__);
1050 		goto out;
1051 	}
1052 
1053 	/*
1054 	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1055 	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1056 	 * and MCLK must be switched on for at-least 1us before DATA
1057 	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1058 	 * guarantee above requirement. So PWRSAVE_DLL should not be
1059 	 * turned on for host controllers using this DLL.
1060 	 */
1061 	if (!msm_host->use_14lpp_dll_reset) {
1062 		config = readl_relaxed(host->ioaddr +
1063 				msm_offset->core_vendor_spec3);
1064 		config |= CORE_PWRSAVE_DLL;
1065 		writel_relaxed(config, host->ioaddr +
1066 				msm_offset->core_vendor_spec3);
1067 	}
1068 
1069 	/*
1070 	 * Drain writebuffer to ensure above DLL calibration
1071 	 * and PWRSAVE DLL is enabled.
1072 	 */
1073 	wmb();
1074 out:
1075 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1076 		 __func__, ret);
1077 	return ret;
1078 }
1079 
1080 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1081 {
1082 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1083 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1084 	struct mmc_host *mmc = host->mmc;
1085 	int ret;
1086 	u32 config;
1087 	const struct sdhci_msm_offset *msm_offset =
1088 					msm_host->offset;
1089 
1090 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1091 
1092 	/*
1093 	 * Retuning in HS400 (DDR mode) will fail, just reset the
1094 	 * tuning block and restore the saved tuning phase.
1095 	 */
1096 	ret = msm_init_cm_dll(host);
1097 	if (ret)
1098 		goto out;
1099 
1100 	if (!mmc->ios.enhanced_strobe) {
1101 		/* Set the selected phase in delay line hw block */
1102 		ret = msm_config_cm_dll_phase(host,
1103 					      msm_host->saved_tuning_phase);
1104 		if (ret)
1105 			goto out;
1106 		config = readl_relaxed(host->ioaddr +
1107 				msm_offset->core_dll_config);
1108 		config |= CORE_CMD_DAT_TRACK_SEL;
1109 		writel_relaxed(config, host->ioaddr +
1110 				msm_offset->core_dll_config);
1111 	}
1112 
1113 	if (msm_host->use_cdclp533)
1114 		ret = sdhci_msm_cdclp533_calibration(host);
1115 	else
1116 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1117 out:
1118 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1119 		 __func__, ret);
1120 	return ret;
1121 }
1122 
1123 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1124 {
1125 	struct mmc_ios *ios = &host->mmc->ios;
1126 
1127 	/*
1128 	 * Tuning is required for SDR104, HS200 and HS400 cards and
1129 	 * if clock frequency is greater than 100MHz in these modes.
1130 	 */
1131 	if (host->clock <= CORE_FREQ_100MHZ ||
1132 	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1133 	    ios->timing == MMC_TIMING_MMC_HS200 ||
1134 	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1135 	    ios->enhanced_strobe)
1136 		return false;
1137 
1138 	return true;
1139 }
1140 
1141 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1142 {
1143 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1144 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1145 	int ret;
1146 
1147 	/*
1148 	 * SDR DLL comes into picture only for timing modes which needs
1149 	 * tuning.
1150 	 */
1151 	if (!sdhci_msm_is_tuning_needed(host))
1152 		return 0;
1153 
1154 	/* Reset the tuning block */
1155 	ret = msm_init_cm_dll(host);
1156 	if (ret)
1157 		return ret;
1158 
1159 	/* Restore the tuning block */
1160 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1161 
1162 	return ret;
1163 }
1164 
1165 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1166 {
1167 	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1168 	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1169 					      msm_offset->core_dll_config);
1170 
1171 	config = oldconfig;
1172 	if (enable) {
1173 		config |= CORE_CDR_EN;
1174 		config &= ~CORE_CDR_EXT_EN;
1175 	} else {
1176 		config &= ~CORE_CDR_EN;
1177 		config |= CORE_CDR_EXT_EN;
1178 	}
1179 
1180 	if (config != oldconfig) {
1181 		writel_relaxed(config, host->ioaddr +
1182 			       msm_offset->core_dll_config);
1183 	}
1184 }
1185 
1186 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1187 {
1188 	struct sdhci_host *host = mmc_priv(mmc);
1189 	int tuning_seq_cnt = 10;
1190 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1191 	int rc;
1192 	struct mmc_ios ios = host->mmc->ios;
1193 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1194 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1195 
1196 	if (!sdhci_msm_is_tuning_needed(host)) {
1197 		msm_host->use_cdr = false;
1198 		sdhci_msm_set_cdr(host, false);
1199 		return 0;
1200 	}
1201 
1202 	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1203 	msm_host->use_cdr = true;
1204 
1205 	/*
1206 	 * Clear tuning_done flag before tuning to ensure proper
1207 	 * HS400 settings.
1208 	 */
1209 	msm_host->tuning_done = 0;
1210 
1211 	/*
1212 	 * For HS400 tuning in HS200 timing requires:
1213 	 * - select MCLK/2 in VENDOR_SPEC
1214 	 * - program MCLK to 400MHz (or nearest supported) in GCC
1215 	 */
1216 	if (host->flags & SDHCI_HS400_TUNING) {
1217 		sdhci_msm_hc_select_mode(host);
1218 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1219 		host->flags &= ~SDHCI_HS400_TUNING;
1220 	}
1221 
1222 retry:
1223 	/* First of all reset the tuning block */
1224 	rc = msm_init_cm_dll(host);
1225 	if (rc)
1226 		return rc;
1227 
1228 	phase = 0;
1229 	do {
1230 		/* Set the phase in delay line hw block */
1231 		rc = msm_config_cm_dll_phase(host, phase);
1232 		if (rc)
1233 			return rc;
1234 
1235 		rc = mmc_send_tuning(mmc, opcode, NULL);
1236 		if (!rc) {
1237 			/* Tuning is successful at this tuning point */
1238 			tuned_phases[tuned_phase_cnt++] = phase;
1239 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1240 				 mmc_hostname(mmc), phase);
1241 		}
1242 	} while (++phase < ARRAY_SIZE(tuned_phases));
1243 
1244 	if (tuned_phase_cnt) {
1245 		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1246 			/*
1247 			 * All phases valid is _almost_ as bad as no phases
1248 			 * valid.  Probably all phases are not really reliable
1249 			 * but we didn't detect where the unreliable place is.
1250 			 * That means we'll essentially be guessing and hoping
1251 			 * we get a good phase.  Better to try a few times.
1252 			 */
1253 			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1254 				mmc_hostname(mmc));
1255 			if (--tuning_seq_cnt) {
1256 				tuned_phase_cnt = 0;
1257 				goto retry;
1258 			}
1259 		}
1260 
1261 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1262 						     tuned_phase_cnt);
1263 		if (rc < 0)
1264 			return rc;
1265 		else
1266 			phase = rc;
1267 
1268 		/*
1269 		 * Finally set the selected phase in delay
1270 		 * line hw block.
1271 		 */
1272 		rc = msm_config_cm_dll_phase(host, phase);
1273 		if (rc)
1274 			return rc;
1275 		msm_host->saved_tuning_phase = phase;
1276 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1277 			 mmc_hostname(mmc), phase);
1278 	} else {
1279 		if (--tuning_seq_cnt)
1280 			goto retry;
1281 		/* Tuning failed */
1282 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1283 		       mmc_hostname(mmc));
1284 		rc = -EIO;
1285 	}
1286 
1287 	if (!rc)
1288 		msm_host->tuning_done = true;
1289 	return rc;
1290 }
1291 
1292 /*
1293  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1294  * This needs to be done for both tuning and enhanced_strobe mode.
1295  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1296  * fixed feedback clock is used.
1297  */
1298 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1299 {
1300 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1301 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1302 	int ret;
1303 
1304 	if (host->clock > CORE_FREQ_100MHZ &&
1305 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1306 	    !msm_host->calibration_done) {
1307 		ret = sdhci_msm_hs400_dll_calibration(host);
1308 		if (!ret)
1309 			msm_host->calibration_done = true;
1310 		else
1311 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1312 			       mmc_hostname(host->mmc), ret);
1313 	}
1314 }
1315 
1316 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1317 					unsigned int uhs)
1318 {
1319 	struct mmc_host *mmc = host->mmc;
1320 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1321 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1322 	u16 ctrl_2;
1323 	u32 config;
1324 	const struct sdhci_msm_offset *msm_offset =
1325 					msm_host->offset;
1326 
1327 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1328 	/* Select Bus Speed Mode for host */
1329 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1330 	switch (uhs) {
1331 	case MMC_TIMING_UHS_SDR12:
1332 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1333 		break;
1334 	case MMC_TIMING_UHS_SDR25:
1335 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1336 		break;
1337 	case MMC_TIMING_UHS_SDR50:
1338 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1339 		break;
1340 	case MMC_TIMING_MMC_HS400:
1341 	case MMC_TIMING_MMC_HS200:
1342 	case MMC_TIMING_UHS_SDR104:
1343 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1344 		break;
1345 	case MMC_TIMING_UHS_DDR50:
1346 	case MMC_TIMING_MMC_DDR52:
1347 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1348 		break;
1349 	}
1350 
1351 	/*
1352 	 * When clock frequency is less than 100MHz, the feedback clock must be
1353 	 * provided and DLL must not be used so that tuning can be skipped. To
1354 	 * provide feedback clock, the mode selection can be any value less
1355 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1356 	 */
1357 	if (host->clock <= CORE_FREQ_100MHZ) {
1358 		if (uhs == MMC_TIMING_MMC_HS400 ||
1359 		    uhs == MMC_TIMING_MMC_HS200 ||
1360 		    uhs == MMC_TIMING_UHS_SDR104)
1361 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1362 		/*
1363 		 * DLL is not required for clock <= 100MHz
1364 		 * Thus, make sure DLL it is disabled when not required
1365 		 */
1366 		config = readl_relaxed(host->ioaddr +
1367 				msm_offset->core_dll_config);
1368 		config |= CORE_DLL_RST;
1369 		writel_relaxed(config, host->ioaddr +
1370 				msm_offset->core_dll_config);
1371 
1372 		config = readl_relaxed(host->ioaddr +
1373 				msm_offset->core_dll_config);
1374 		config |= CORE_DLL_PDN;
1375 		writel_relaxed(config, host->ioaddr +
1376 				msm_offset->core_dll_config);
1377 
1378 		/*
1379 		 * The DLL needs to be restored and CDCLP533 recalibrated
1380 		 * when the clock frequency is set back to 400MHz.
1381 		 */
1382 		msm_host->calibration_done = false;
1383 	}
1384 
1385 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1386 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1387 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1388 
1389 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1390 		sdhci_msm_hs400(host, &mmc->ios);
1391 }
1392 
1393 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1394 {
1395 	struct platform_device *pdev = msm_host->pdev;
1396 	int ret;
1397 
1398 	if (level)
1399 		ret = pinctrl_pm_select_default_state(&pdev->dev);
1400 	else
1401 		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1402 
1403 	return ret;
1404 }
1405 
1406 static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1407 {
1408 	if (IS_ERR(mmc->supply.vmmc))
1409 		return 0;
1410 
1411 	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1412 }
1413 
1414 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1415 			      struct mmc_host *mmc, bool level)
1416 {
1417 	int ret;
1418 	struct mmc_ios ios;
1419 
1420 	if (msm_host->vqmmc_enabled == level)
1421 		return 0;
1422 
1423 	if (level) {
1424 		/* Set the IO voltage regulator to default voltage level */
1425 		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1426 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1427 		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1428 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1429 
1430 		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1431 			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1432 			if (ret < 0) {
1433 				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1434 					mmc_hostname(mmc), ret);
1435 				goto out;
1436 			}
1437 		}
1438 		ret = regulator_enable(mmc->supply.vqmmc);
1439 	} else {
1440 		ret = regulator_disable(mmc->supply.vqmmc);
1441 	}
1442 
1443 	if (ret)
1444 		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1445 			mmc_hostname(mmc), level ? "en":"dis", ret);
1446 	else
1447 		msm_host->vqmmc_enabled = level;
1448 out:
1449 	return ret;
1450 }
1451 
1452 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1453 			      struct mmc_host *mmc, bool hpm)
1454 {
1455 	int load, ret;
1456 
1457 	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1458 	ret = regulator_set_load(mmc->supply.vqmmc, load);
1459 	if (ret)
1460 		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1461 			mmc_hostname(mmc), ret);
1462 	return ret;
1463 }
1464 
1465 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1466 			      struct mmc_host *mmc, bool level)
1467 {
1468 	int ret;
1469 	bool always_on;
1470 
1471 	if (IS_ERR(mmc->supply.vqmmc) ||
1472 			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1473 		return 0;
1474 	/*
1475 	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1476 	 * and HPM modes by setting the corresponding load.
1477 	 *
1478 	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1479 	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1480 	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1481 	 * Vqmmc should remain ON, So just set the load instead of turning it
1482 	 * off/on.
1483 	 */
1484 	always_on = !mmc_card_is_removable(mmc) &&
1485 			mmc->card && mmc_card_mmc(mmc->card);
1486 
1487 	if (always_on)
1488 		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1489 	else
1490 		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1491 
1492 	return ret;
1493 }
1494 
1495 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1496 {
1497 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1498 }
1499 
1500 static inline void sdhci_msm_complete_pwr_irq_wait(
1501 		struct sdhci_msm_host *msm_host)
1502 {
1503 	wake_up(&msm_host->pwr_irq_wait);
1504 }
1505 
1506 /*
1507  * sdhci_msm_check_power_status API should be called when registers writes
1508  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1509  * To what state the register writes will change the IO lines should be passed
1510  * as the argument req_type. This API will check whether the IO line's state
1511  * is already the expected state and will wait for power irq only if
1512  * power irq is expected to be triggered based on the current IO line state
1513  * and expected IO line state.
1514  */
1515 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1516 {
1517 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1518 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1519 	bool done = false;
1520 	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1521 	const struct sdhci_msm_offset *msm_offset =
1522 					msm_host->offset;
1523 
1524 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1525 			mmc_hostname(host->mmc), __func__, req_type,
1526 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1527 
1528 	/*
1529 	 * The power interrupt will not be generated for signal voltage
1530 	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1531 	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1532 	 * it as always set.
1533 	 */
1534 	if (!msm_host->mci_removed)
1535 		val = msm_host_readl(msm_host, host,
1536 				msm_offset->core_generics);
1537 	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1538 	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1539 		return;
1540 	}
1541 
1542 	/*
1543 	 * The IRQ for request type IO High/LOW will be generated when -
1544 	 * there is a state change in 1.8V enable bit (bit 3) of
1545 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1546 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1547 	 * to set it to 3.3V before card detection happens, the
1548 	 * IRQ doesn't get triggered as there is no state change in this bit.
1549 	 * The driver already handles this case by changing the IO voltage
1550 	 * level to high as part of controller power up sequence. Hence, check
1551 	 * for host->pwr to handle a case where IO voltage high request is
1552 	 * issued even before controller power up.
1553 	 */
1554 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1555 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1556 				mmc_hostname(host->mmc), req_type);
1557 		return;
1558 	}
1559 	if ((req_type & msm_host->curr_pwr_state) ||
1560 			(req_type & msm_host->curr_io_level))
1561 		done = true;
1562 	/*
1563 	 * This is needed here to handle cases where register writes will
1564 	 * not change the current bus state or io level of the controller.
1565 	 * In this case, no power irq will be triggerred and we should
1566 	 * not wait.
1567 	 */
1568 	if (!done) {
1569 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1570 				msm_host->pwr_irq_flag,
1571 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1572 			dev_warn(&msm_host->pdev->dev,
1573 				 "%s: pwr_irq for req: (%d) timed out\n",
1574 				 mmc_hostname(host->mmc), req_type);
1575 	}
1576 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1577 			__func__, req_type);
1578 }
1579 
1580 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1581 {
1582 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1583 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1584 	const struct sdhci_msm_offset *msm_offset =
1585 					msm_host->offset;
1586 
1587 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1588 		mmc_hostname(host->mmc),
1589 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1590 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1591 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1592 }
1593 
1594 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1595 {
1596 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1597 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1598 	struct mmc_host *mmc = host->mmc;
1599 	u32 irq_status, irq_ack = 0;
1600 	int retry = 10, ret;
1601 	u32 pwr_state = 0, io_level = 0;
1602 	u32 config;
1603 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1604 
1605 	irq_status = msm_host_readl(msm_host, host,
1606 			msm_offset->core_pwrctl_status);
1607 	irq_status &= INT_MASK;
1608 
1609 	msm_host_writel(msm_host, irq_status, host,
1610 			msm_offset->core_pwrctl_clear);
1611 
1612 	/*
1613 	 * There is a rare HW scenario where the first clear pulse could be
1614 	 * lost when actual reset and clear/read of status register is
1615 	 * happening at a time. Hence, retry for at least 10 times to make
1616 	 * sure status register is cleared. Otherwise, this will result in
1617 	 * a spurious power IRQ resulting in system instability.
1618 	 */
1619 	while (irq_status & msm_host_readl(msm_host, host,
1620 				msm_offset->core_pwrctl_status)) {
1621 		if (retry == 0) {
1622 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1623 					mmc_hostname(host->mmc), irq_status);
1624 			sdhci_msm_dump_pwr_ctrl_regs(host);
1625 			WARN_ON(1);
1626 			break;
1627 		}
1628 		msm_host_writel(msm_host, irq_status, host,
1629 			msm_offset->core_pwrctl_clear);
1630 		retry--;
1631 		udelay(10);
1632 	}
1633 
1634 	/* Handle BUS ON/OFF*/
1635 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1636 		pwr_state = REQ_BUS_ON;
1637 		io_level = REQ_IO_HIGH;
1638 	}
1639 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1640 		pwr_state = REQ_BUS_OFF;
1641 		io_level = REQ_IO_LOW;
1642 	}
1643 
1644 	if (pwr_state) {
1645 		ret = sdhci_msm_set_vmmc(mmc);
1646 		if (!ret)
1647 			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1648 					pwr_state & REQ_BUS_ON);
1649 		if (!ret)
1650 			ret = sdhci_msm_set_pincfg(msm_host,
1651 					pwr_state & REQ_BUS_ON);
1652 		if (!ret)
1653 			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1654 		else
1655 			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1656 	}
1657 
1658 	/* Handle IO LOW/HIGH */
1659 	if (irq_status & CORE_PWRCTL_IO_LOW)
1660 		io_level = REQ_IO_LOW;
1661 
1662 	if (irq_status & CORE_PWRCTL_IO_HIGH)
1663 		io_level = REQ_IO_HIGH;
1664 
1665 	if (io_level)
1666 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1667 
1668 	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1669 		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1670 		if (ret < 0) {
1671 			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1672 					mmc_hostname(mmc), ret,
1673 					mmc->ios.signal_voltage, mmc->ios.vdd,
1674 					irq_status);
1675 			irq_ack |= CORE_PWRCTL_IO_FAIL;
1676 		}
1677 	}
1678 
1679 	/*
1680 	 * The driver has to acknowledge the interrupt, switch voltages and
1681 	 * report back if it succeded or not to this register. The voltage
1682 	 * switches are handled by the sdhci core, so just report success.
1683 	 */
1684 	msm_host_writel(msm_host, irq_ack, host,
1685 			msm_offset->core_pwrctl_ctl);
1686 
1687 	/*
1688 	 * If we don't have info regarding the voltage levels supported by
1689 	 * regulators, don't change the IO PAD PWR SWITCH.
1690 	 */
1691 	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1692 		u32 new_config;
1693 		/*
1694 		 * We should unset IO PAD PWR switch only if the register write
1695 		 * can set IO lines high and the regulator also switches to 3 V.
1696 		 * Else, we should keep the IO PAD PWR switch set.
1697 		 * This is applicable to certain targets where eMMC vccq supply
1698 		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1699 		 * IO PAD PWR switch must be kept set to reflect actual
1700 		 * regulator voltage. This way, during initialization of
1701 		 * controllers with only 1.8V, we will set the IO PAD bit
1702 		 * without waiting for a REQ_IO_LOW.
1703 		 */
1704 		config = readl_relaxed(host->ioaddr +
1705 				msm_offset->core_vendor_spec);
1706 		new_config = config;
1707 
1708 		if ((io_level & REQ_IO_HIGH) &&
1709 				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1710 			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1711 		else if ((io_level & REQ_IO_LOW) ||
1712 				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1713 			new_config |= CORE_IO_PAD_PWR_SWITCH;
1714 
1715 		if (config ^ new_config)
1716 			writel_relaxed(new_config, host->ioaddr +
1717 					msm_offset->core_vendor_spec);
1718 	}
1719 
1720 	if (pwr_state)
1721 		msm_host->curr_pwr_state = pwr_state;
1722 	if (io_level)
1723 		msm_host->curr_io_level = io_level;
1724 
1725 	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1726 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1727 		irq_ack);
1728 }
1729 
1730 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1731 {
1732 	struct sdhci_host *host = (struct sdhci_host *)data;
1733 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1734 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1735 
1736 	sdhci_msm_handle_pwr_irq(host, irq);
1737 	msm_host->pwr_irq_flag = 1;
1738 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1739 
1740 
1741 	return IRQ_HANDLED;
1742 }
1743 
1744 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1745 {
1746 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1747 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1748 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1749 
1750 	return clk_round_rate(core_clk, ULONG_MAX);
1751 }
1752 
1753 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1754 {
1755 	return SDHCI_MSM_MIN_CLOCK;
1756 }
1757 
1758 /*
1759  * __sdhci_msm_set_clock - sdhci_msm clock control.
1760  *
1761  * Description:
1762  * MSM controller does not use internal divider and
1763  * instead directly control the GCC clock as per
1764  * HW recommendation.
1765  **/
1766 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1767 {
1768 	u16 clk;
1769 
1770 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1771 
1772 	if (clock == 0)
1773 		return;
1774 
1775 	/*
1776 	 * MSM controller do not use clock divider.
1777 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1778 	 * clock with no divider value programmed.
1779 	 */
1780 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1781 	sdhci_enable_clk(host, clk);
1782 }
1783 
1784 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1785 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1786 {
1787 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1788 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1789 
1790 	if (!clock) {
1791 		host->mmc->actual_clock = msm_host->clk_rate = 0;
1792 		goto out;
1793 	}
1794 
1795 	sdhci_msm_hc_select_mode(host);
1796 
1797 	msm_set_clock_rate_for_bus_mode(host, clock);
1798 out:
1799 	__sdhci_msm_set_clock(host, clock);
1800 }
1801 
1802 /*****************************************************************************\
1803  *                                                                           *
1804  * Inline Crypto Engine (ICE) support                                        *
1805  *                                                                           *
1806 \*****************************************************************************/
1807 
1808 #ifdef CONFIG_MMC_CRYPTO
1809 
1810 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1811 			      struct cqhci_host *cq_host)
1812 {
1813 	struct mmc_host *mmc = msm_host->mmc;
1814 	struct device *dev = mmc_dev(mmc);
1815 	struct qcom_ice *ice;
1816 
1817 	if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1818 		return 0;
1819 
1820 	ice = of_qcom_ice_get(dev);
1821 	if (ice == ERR_PTR(-EOPNOTSUPP)) {
1822 		dev_warn(dev, "Disabling inline encryption support\n");
1823 		ice = NULL;
1824 	}
1825 
1826 	if (IS_ERR_OR_NULL(ice))
1827 		return PTR_ERR_OR_ZERO(ice);
1828 
1829 	msm_host->ice = ice;
1830 	mmc->caps2 |= MMC_CAP2_CRYPTO;
1831 
1832 	return 0;
1833 }
1834 
1835 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1836 {
1837 	if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1838 		qcom_ice_enable(msm_host->ice);
1839 }
1840 
1841 static __maybe_unused int sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1842 {
1843 	if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1844 		return qcom_ice_resume(msm_host->ice);
1845 
1846 	return 0;
1847 }
1848 
1849 static __maybe_unused int sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
1850 {
1851 	if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1852 		return qcom_ice_suspend(msm_host->ice);
1853 
1854 	return 0;
1855 }
1856 
1857 /*
1858  * Program a key into a QC ICE keyslot, or evict a keyslot.  QC ICE requires
1859  * vendor-specific SCM calls for this; it doesn't support the standard way.
1860  */
1861 static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1862 				 const union cqhci_crypto_cfg_entry *cfg,
1863 				 int slot)
1864 {
1865 	struct sdhci_host *host = mmc_priv(cq_host->mmc);
1866 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1867 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1868 	union cqhci_crypto_cap_entry cap;
1869 
1870 	/* Only AES-256-XTS has been tested so far. */
1871 	cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1872 	if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1873 		cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256)
1874 		return -EINVAL;
1875 
1876 	if (cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE)
1877 		return qcom_ice_program_key(msm_host->ice,
1878 					    QCOM_ICE_CRYPTO_ALG_AES_XTS,
1879 					    QCOM_ICE_CRYPTO_KEY_SIZE_256,
1880 					    cfg->crypto_key,
1881 					    cfg->data_unit_size, slot);
1882 	else
1883 		return qcom_ice_evict_key(msm_host->ice, slot);
1884 }
1885 
1886 #else /* CONFIG_MMC_CRYPTO */
1887 
1888 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1889 				     struct cqhci_host *cq_host)
1890 {
1891 	return 0;
1892 }
1893 
1894 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1895 {
1896 }
1897 
1898 static inline __maybe_unused int
1899 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1900 {
1901 	return 0;
1902 }
1903 
1904 static inline __maybe_unused int
1905 sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
1906 {
1907 	return 0;
1908 }
1909 #endif /* !CONFIG_MMC_CRYPTO */
1910 
1911 /*****************************************************************************\
1912  *                                                                           *
1913  * MSM Command Queue Engine (CQE)                                            *
1914  *                                                                           *
1915 \*****************************************************************************/
1916 
1917 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
1918 {
1919 	int cmd_error = 0;
1920 	int data_error = 0;
1921 
1922 	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
1923 		return intmask;
1924 
1925 	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
1926 	return 0;
1927 }
1928 
1929 static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
1930 {
1931 	struct sdhci_host *host = mmc_priv(mmc);
1932 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1933 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1934 
1935 	sdhci_cqe_enable(mmc);
1936 	sdhci_msm_ice_enable(msm_host);
1937 }
1938 
1939 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
1940 {
1941 	struct sdhci_host *host = mmc_priv(mmc);
1942 	unsigned long flags;
1943 	u32 ctrl;
1944 
1945 	/*
1946 	 * When CQE is halted, the legacy SDHCI path operates only
1947 	 * on 16-byte descriptors in 64bit mode.
1948 	 */
1949 	if (host->flags & SDHCI_USE_64_BIT_DMA)
1950 		host->desc_sz = 16;
1951 
1952 	spin_lock_irqsave(&host->lock, flags);
1953 
1954 	/*
1955 	 * During CQE command transfers, command complete bit gets latched.
1956 	 * So s/w should clear command complete interrupt status when CQE is
1957 	 * either halted or disabled. Otherwise unexpected SDCHI legacy
1958 	 * interrupt gets triggered when CQE is halted/disabled.
1959 	 */
1960 	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
1961 	ctrl |= SDHCI_INT_RESPONSE;
1962 	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
1963 	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
1964 
1965 	spin_unlock_irqrestore(&host->lock, flags);
1966 
1967 	sdhci_cqe_disable(mmc, recovery);
1968 }
1969 
1970 static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
1971 {
1972 	u32 count, start = 15;
1973 
1974 	__sdhci_set_timeout(host, cmd);
1975 	count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
1976 	/*
1977 	 * Update software timeout value if its value is less than hardware data
1978 	 * timeout value. Qcom SoC hardware data timeout value was calculated
1979 	 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
1980 	 */
1981 	if (cmd && cmd->data && host->clock > 400000 &&
1982 	    host->clock <= 50000000 &&
1983 	    ((1 << (count + start)) > (10 * host->clock)))
1984 		host->data_timeout = 22LL * NSEC_PER_SEC;
1985 }
1986 
1987 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
1988 	.enable		= sdhci_msm_cqe_enable,
1989 	.disable	= sdhci_msm_cqe_disable,
1990 #ifdef CONFIG_MMC_CRYPTO
1991 	.program_key	= sdhci_msm_program_key,
1992 #endif
1993 };
1994 
1995 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
1996 				struct platform_device *pdev)
1997 {
1998 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1999 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2000 	struct cqhci_host *cq_host;
2001 	bool dma64;
2002 	u32 cqcfg;
2003 	int ret;
2004 
2005 	/*
2006 	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2007 	 * So ensure ADMA table is allocated for 16byte descriptors.
2008 	 */
2009 	if (host->caps & SDHCI_CAN_64BIT)
2010 		host->alloc_desc_sz = 16;
2011 
2012 	ret = sdhci_setup_host(host);
2013 	if (ret)
2014 		return ret;
2015 
2016 	cq_host = cqhci_pltfm_init(pdev);
2017 	if (IS_ERR(cq_host)) {
2018 		ret = PTR_ERR(cq_host);
2019 		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2020 		goto cleanup;
2021 	}
2022 
2023 	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2024 	cq_host->ops = &sdhci_msm_cqhci_ops;
2025 
2026 	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2027 
2028 	ret = sdhci_msm_ice_init(msm_host, cq_host);
2029 	if (ret)
2030 		goto cleanup;
2031 
2032 	ret = cqhci_init(cq_host, host->mmc, dma64);
2033 	if (ret) {
2034 		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2035 				mmc_hostname(host->mmc), ret);
2036 		goto cleanup;
2037 	}
2038 
2039 	/* Disable cqe reset due to cqe enable signal */
2040 	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2041 	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2042 	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2043 
2044 	/*
2045 	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2046 	 * So limit desc_sz to 12 so that the data commands that are sent
2047 	 * during card initialization (before CQE gets enabled) would
2048 	 * get executed without any issues.
2049 	 */
2050 	if (host->flags & SDHCI_USE_64_BIT_DMA)
2051 		host->desc_sz = 12;
2052 
2053 	ret = __sdhci_add_host(host);
2054 	if (ret)
2055 		goto cleanup;
2056 
2057 	dev_info(&pdev->dev, "%s: CQE init: success\n",
2058 			mmc_hostname(host->mmc));
2059 	return ret;
2060 
2061 cleanup:
2062 	sdhci_cleanup_host(host);
2063 	return ret;
2064 }
2065 
2066 /*
2067  * Platform specific register write functions. This is so that, if any
2068  * register write needs to be followed up by platform specific actions,
2069  * they can be added here. These functions can go to sleep when writes
2070  * to certain registers are done.
2071  * These functions are relying on sdhci_set_ios not using spinlock.
2072  */
2073 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2074 {
2075 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2076 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2077 	u32 req_type = 0;
2078 
2079 	switch (reg) {
2080 	case SDHCI_HOST_CONTROL2:
2081 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2082 			REQ_IO_HIGH;
2083 		break;
2084 	case SDHCI_SOFTWARE_RESET:
2085 		if (host->pwr && (val & SDHCI_RESET_ALL))
2086 			req_type = REQ_BUS_OFF;
2087 		break;
2088 	case SDHCI_POWER_CONTROL:
2089 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2090 		break;
2091 	case SDHCI_TRANSFER_MODE:
2092 		msm_host->transfer_mode = val;
2093 		break;
2094 	case SDHCI_COMMAND:
2095 		if (!msm_host->use_cdr)
2096 			break;
2097 		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2098 		    !mmc_op_tuning(SDHCI_GET_CMD(val)))
2099 			sdhci_msm_set_cdr(host, true);
2100 		else
2101 			sdhci_msm_set_cdr(host, false);
2102 		break;
2103 	}
2104 
2105 	if (req_type) {
2106 		msm_host->pwr_irq_flag = 0;
2107 		/*
2108 		 * Since this register write may trigger a power irq, ensure
2109 		 * all previous register writes are complete by this point.
2110 		 */
2111 		mb();
2112 	}
2113 	return req_type;
2114 }
2115 
2116 /* This function may sleep*/
2117 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2118 {
2119 	u32 req_type = 0;
2120 
2121 	req_type = __sdhci_msm_check_write(host, val, reg);
2122 	writew_relaxed(val, host->ioaddr + reg);
2123 
2124 	if (req_type)
2125 		sdhci_msm_check_power_status(host, req_type);
2126 }
2127 
2128 /* This function may sleep*/
2129 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2130 {
2131 	u32 req_type = 0;
2132 
2133 	req_type = __sdhci_msm_check_write(host, val, reg);
2134 
2135 	writeb_relaxed(val, host->ioaddr + reg);
2136 
2137 	if (req_type)
2138 		sdhci_msm_check_power_status(host, req_type);
2139 }
2140 
2141 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2142 {
2143 	struct mmc_host *mmc = msm_host->mmc;
2144 	struct regulator *supply = mmc->supply.vqmmc;
2145 	u32 caps = 0, config;
2146 	struct sdhci_host *host = mmc_priv(mmc);
2147 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2148 
2149 	if (!IS_ERR(mmc->supply.vqmmc)) {
2150 		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2151 			caps |= CORE_1_8V_SUPPORT;
2152 		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2153 			caps |= CORE_3_0V_SUPPORT;
2154 
2155 		if (!caps)
2156 			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2157 					mmc_hostname(mmc));
2158 	}
2159 
2160 	if (caps) {
2161 		/*
2162 		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2163 		 * bit can be used as required later on.
2164 		 */
2165 		u32 io_level = msm_host->curr_io_level;
2166 
2167 		config = readl_relaxed(host->ioaddr +
2168 				msm_offset->core_vendor_spec);
2169 		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2170 
2171 		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2172 			config &= ~CORE_IO_PAD_PWR_SWITCH;
2173 		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2174 			config |= CORE_IO_PAD_PWR_SWITCH;
2175 
2176 		writel_relaxed(config,
2177 				host->ioaddr + msm_offset->core_vendor_spec);
2178 	}
2179 	msm_host->caps_0 |= caps;
2180 	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2181 }
2182 
2183 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2184 {
2185 	int ret;
2186 
2187 	ret = mmc_regulator_get_supply(msm_host->mmc);
2188 	if (ret)
2189 		return ret;
2190 
2191 	sdhci_msm_set_regulator_caps(msm_host);
2192 
2193 	return 0;
2194 }
2195 
2196 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2197 				      struct mmc_ios *ios)
2198 {
2199 	struct sdhci_host *host = mmc_priv(mmc);
2200 	u16 ctrl, status;
2201 
2202 	/*
2203 	 * Signal Voltage Switching is only applicable for Host Controllers
2204 	 * v3.00 and above.
2205 	 */
2206 	if (host->version < SDHCI_SPEC_300)
2207 		return 0;
2208 
2209 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2210 
2211 	switch (ios->signal_voltage) {
2212 	case MMC_SIGNAL_VOLTAGE_330:
2213 		if (!(host->flags & SDHCI_SIGNALING_330))
2214 			return -EINVAL;
2215 
2216 		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2217 		ctrl &= ~SDHCI_CTRL_VDD_180;
2218 		break;
2219 	case MMC_SIGNAL_VOLTAGE_180:
2220 		if (!(host->flags & SDHCI_SIGNALING_180))
2221 			return -EINVAL;
2222 
2223 		/* Enable 1.8V Signal Enable in the Host Control2 register */
2224 		ctrl |= SDHCI_CTRL_VDD_180;
2225 		break;
2226 
2227 	default:
2228 		return -EINVAL;
2229 	}
2230 
2231 	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2232 
2233 	/* Wait for 5ms */
2234 	usleep_range(5000, 5500);
2235 
2236 	/* regulator output should be stable within 5 ms */
2237 	status = ctrl & SDHCI_CTRL_VDD_180;
2238 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2239 	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2240 		return 0;
2241 
2242 	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2243 		mmc_hostname(mmc));
2244 
2245 	return -EAGAIN;
2246 }
2247 
2248 #define DRIVER_NAME "sdhci_msm"
2249 #define SDHCI_MSM_DUMP(f, x...) \
2250 	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2251 
2252 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2253 {
2254 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2255 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2256 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2257 
2258 	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2259 
2260 	SDHCI_MSM_DUMP(
2261 			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2262 		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2263 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2264 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2265 	SDHCI_MSM_DUMP(
2266 			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2267 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2268 		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2269 		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2270 	SDHCI_MSM_DUMP(
2271 			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2272 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2273 		readl_relaxed(host->ioaddr +
2274 			msm_offset->core_vendor_spec_func2),
2275 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2276 }
2277 
2278 static const struct sdhci_msm_variant_ops mci_var_ops = {
2279 	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2280 	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2281 };
2282 
2283 static const struct sdhci_msm_variant_ops v5_var_ops = {
2284 	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2285 	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2286 };
2287 
2288 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2289 	.var_ops = &mci_var_ops,
2290 	.offset = &sdhci_msm_mci_offset,
2291 };
2292 
2293 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2294 	.mci_removed = true,
2295 	.var_ops = &v5_var_ops,
2296 	.offset = &sdhci_msm_v5_offset,
2297 };
2298 
2299 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2300 	.mci_removed = true,
2301 	.restore_dll_config = true,
2302 	.var_ops = &v5_var_ops,
2303 	.offset = &sdhci_msm_v5_offset,
2304 };
2305 
2306 static const struct of_device_id sdhci_msm_dt_match[] = {
2307 	/*
2308 	 * Do not add new variants to the driver which are compatible with
2309 	 * generic ones, unless they need customization.
2310 	 */
2311 	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2312 	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2313 	{.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2314 	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2315 	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2316 	{},
2317 };
2318 
2319 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2320 
2321 static const struct sdhci_ops sdhci_msm_ops = {
2322 	.reset = sdhci_and_cqhci_reset,
2323 	.set_clock = sdhci_msm_set_clock,
2324 	.get_min_clock = sdhci_msm_get_min_clock,
2325 	.get_max_clock = sdhci_msm_get_max_clock,
2326 	.set_bus_width = sdhci_set_bus_width,
2327 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2328 	.write_w = sdhci_msm_writew,
2329 	.write_b = sdhci_msm_writeb,
2330 	.irq	= sdhci_msm_cqe_irq,
2331 	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2332 	.set_power = sdhci_set_power_noreg,
2333 	.set_timeout = sdhci_msm_set_timeout,
2334 };
2335 
2336 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2337 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2338 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2339 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2340 		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2341 
2342 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2343 	.ops = &sdhci_msm_ops,
2344 };
2345 
2346 static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2347 		struct sdhci_host *host)
2348 {
2349 	struct device_node *node = pdev->dev.of_node;
2350 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2351 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2352 
2353 	if (of_property_read_u32(node, "qcom,ddr-config",
2354 				&msm_host->ddr_config))
2355 		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2356 
2357 	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2358 
2359 	if (of_device_is_compatible(node, "qcom,msm8916-sdhci"))
2360 		host->quirks2 |= SDHCI_QUIRK2_BROKEN_64_BIT_DMA;
2361 }
2362 
2363 static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2364 {
2365 	struct reset_control *reset;
2366 	int ret = 0;
2367 
2368 	reset = reset_control_get_optional_exclusive(dev, NULL);
2369 	if (IS_ERR(reset))
2370 		return dev_err_probe(dev, PTR_ERR(reset),
2371 				"unable to acquire core_reset\n");
2372 
2373 	if (!reset)
2374 		return ret;
2375 
2376 	ret = reset_control_assert(reset);
2377 	if (ret) {
2378 		reset_control_put(reset);
2379 		return dev_err_probe(dev, ret, "core_reset assert failed\n");
2380 	}
2381 
2382 	/*
2383 	 * The hardware requirement for delay between assert/deassert
2384 	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2385 	 * ~125us (4/32768). To be on the safe side add 200us delay.
2386 	 */
2387 	usleep_range(200, 210);
2388 
2389 	ret = reset_control_deassert(reset);
2390 	if (ret) {
2391 		reset_control_put(reset);
2392 		return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2393 	}
2394 
2395 	usleep_range(200, 210);
2396 	reset_control_put(reset);
2397 
2398 	return ret;
2399 }
2400 
2401 static int sdhci_msm_probe(struct platform_device *pdev)
2402 {
2403 	struct sdhci_host *host;
2404 	struct sdhci_pltfm_host *pltfm_host;
2405 	struct sdhci_msm_host *msm_host;
2406 	struct clk *clk;
2407 	int ret;
2408 	u16 host_version, core_minor;
2409 	u32 core_version, config;
2410 	u8 core_major;
2411 	const struct sdhci_msm_offset *msm_offset;
2412 	const struct sdhci_msm_variant_info *var_info;
2413 	struct device_node *node = pdev->dev.of_node;
2414 
2415 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2416 	if (IS_ERR(host))
2417 		return PTR_ERR(host);
2418 
2419 	host->sdma_boundary = 0;
2420 	pltfm_host = sdhci_priv(host);
2421 	msm_host = sdhci_pltfm_priv(pltfm_host);
2422 	msm_host->mmc = host->mmc;
2423 	msm_host->pdev = pdev;
2424 
2425 	ret = mmc_of_parse(host->mmc);
2426 	if (ret)
2427 		goto pltfm_free;
2428 
2429 	/*
2430 	 * Based on the compatible string, load the required msm host info from
2431 	 * the data associated with the version info.
2432 	 */
2433 	var_info = of_device_get_match_data(&pdev->dev);
2434 
2435 	msm_host->mci_removed = var_info->mci_removed;
2436 	msm_host->restore_dll_config = var_info->restore_dll_config;
2437 	msm_host->var_ops = var_info->var_ops;
2438 	msm_host->offset = var_info->offset;
2439 
2440 	msm_offset = msm_host->offset;
2441 
2442 	sdhci_get_of_property(pdev);
2443 	sdhci_msm_get_of_property(pdev, host);
2444 
2445 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2446 
2447 	ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2448 	if (ret)
2449 		goto pltfm_free;
2450 
2451 	/* Setup SDCC bus voter clock. */
2452 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2453 	if (!IS_ERR(msm_host->bus_clk)) {
2454 		/* Vote for max. clk rate for max. performance */
2455 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2456 		if (ret)
2457 			goto pltfm_free;
2458 		ret = clk_prepare_enable(msm_host->bus_clk);
2459 		if (ret)
2460 			goto pltfm_free;
2461 	}
2462 
2463 	/* Setup main peripheral bus clock */
2464 	clk = devm_clk_get(&pdev->dev, "iface");
2465 	if (IS_ERR(clk)) {
2466 		ret = PTR_ERR(clk);
2467 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2468 		goto bus_clk_disable;
2469 	}
2470 	msm_host->bulk_clks[1].clk = clk;
2471 
2472 	/* Setup SDC MMC clock */
2473 	clk = devm_clk_get(&pdev->dev, "core");
2474 	if (IS_ERR(clk)) {
2475 		ret = PTR_ERR(clk);
2476 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2477 		goto bus_clk_disable;
2478 	}
2479 	msm_host->bulk_clks[0].clk = clk;
2480 
2481 	 /* Check for optional interconnect paths */
2482 	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2483 	if (ret)
2484 		goto bus_clk_disable;
2485 
2486 	ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2487 	if (ret)
2488 		goto bus_clk_disable;
2489 
2490 	/* OPP table is optional */
2491 	ret = devm_pm_opp_of_add_table(&pdev->dev);
2492 	if (ret && ret != -ENODEV) {
2493 		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2494 		goto bus_clk_disable;
2495 	}
2496 
2497 	/* Vote for maximum clock rate for maximum performance */
2498 	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2499 	if (ret)
2500 		dev_warn(&pdev->dev, "core clock boost failed\n");
2501 
2502 	clk = devm_clk_get(&pdev->dev, "cal");
2503 	if (IS_ERR(clk))
2504 		clk = NULL;
2505 	msm_host->bulk_clks[2].clk = clk;
2506 
2507 	clk = devm_clk_get(&pdev->dev, "sleep");
2508 	if (IS_ERR(clk))
2509 		clk = NULL;
2510 	msm_host->bulk_clks[3].clk = clk;
2511 
2512 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2513 				      msm_host->bulk_clks);
2514 	if (ret)
2515 		goto bus_clk_disable;
2516 
2517 	/*
2518 	 * xo clock is needed for FLL feature of cm_dll.
2519 	 * In case if xo clock is not mentioned in DT, warn and proceed.
2520 	 */
2521 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2522 	if (IS_ERR(msm_host->xo_clk)) {
2523 		ret = PTR_ERR(msm_host->xo_clk);
2524 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2525 	}
2526 
2527 	if (!msm_host->mci_removed) {
2528 		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2529 		if (IS_ERR(msm_host->core_mem)) {
2530 			ret = PTR_ERR(msm_host->core_mem);
2531 			goto clk_disable;
2532 		}
2533 	}
2534 
2535 	/* Reset the vendor spec register to power on reset state */
2536 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2537 			host->ioaddr + msm_offset->core_vendor_spec);
2538 
2539 	if (!msm_host->mci_removed) {
2540 		/* Set HC_MODE_EN bit in HC_MODE register */
2541 		msm_host_writel(msm_host, HC_MODE_EN, host,
2542 				msm_offset->core_hc_mode);
2543 		config = msm_host_readl(msm_host, host,
2544 				msm_offset->core_hc_mode);
2545 		config |= FF_CLK_SW_RST_DIS;
2546 		msm_host_writel(msm_host, config, host,
2547 				msm_offset->core_hc_mode);
2548 	}
2549 
2550 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2551 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2552 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2553 			       SDHCI_VENDOR_VER_SHIFT));
2554 
2555 	core_version = msm_host_readl(msm_host, host,
2556 			msm_offset->core_mci_version);
2557 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2558 		      CORE_VERSION_MAJOR_SHIFT;
2559 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2560 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2561 		core_version, core_major, core_minor);
2562 
2563 	if (core_major == 1 && core_minor >= 0x42)
2564 		msm_host->use_14lpp_dll_reset = true;
2565 
2566 	/*
2567 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2568 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2569 	 */
2570 	if (core_major == 1 && core_minor < 0x34)
2571 		msm_host->use_cdclp533 = true;
2572 
2573 	/*
2574 	 * Support for some capabilities is not advertised by newer
2575 	 * controller versions and must be explicitly enabled.
2576 	 */
2577 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2578 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2579 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2580 		writel_relaxed(config, host->ioaddr +
2581 				msm_offset->core_vendor_spec_capabilities0);
2582 	}
2583 
2584 	if (core_major == 1 && core_minor >= 0x49)
2585 		msm_host->updated_ddr_cfg = true;
2586 
2587 	if (core_major == 1 && core_minor >= 0x71)
2588 		msm_host->uses_tassadar_dll = true;
2589 
2590 	ret = sdhci_msm_register_vreg(msm_host);
2591 	if (ret)
2592 		goto clk_disable;
2593 
2594 	/*
2595 	 * Power on reset state may trigger power irq if previous status of
2596 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2597 	 * interrupt in GIC, any pending power irq interrupt should be
2598 	 * acknowledged. Otherwise power irq interrupt handler would be
2599 	 * fired prematurely.
2600 	 */
2601 	sdhci_msm_handle_pwr_irq(host, 0);
2602 
2603 	/*
2604 	 * Ensure that above writes are propogated before interrupt enablement
2605 	 * in GIC.
2606 	 */
2607 	mb();
2608 
2609 	/* Setup IRQ for handling power/voltage tasks with PMIC */
2610 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2611 	if (msm_host->pwr_irq < 0) {
2612 		ret = msm_host->pwr_irq;
2613 		goto clk_disable;
2614 	}
2615 
2616 	sdhci_msm_init_pwr_irq_wait(msm_host);
2617 	/* Enable pwr irq interrupts */
2618 	msm_host_writel(msm_host, INT_MASK, host,
2619 		msm_offset->core_pwrctl_mask);
2620 
2621 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2622 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2623 					dev_name(&pdev->dev), host);
2624 	if (ret) {
2625 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2626 		goto clk_disable;
2627 	}
2628 
2629 	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2630 
2631 	/* Set the timeout value to max possible */
2632 	host->max_timeout_count = 0xF;
2633 
2634 	pm_runtime_get_noresume(&pdev->dev);
2635 	pm_runtime_set_active(&pdev->dev);
2636 	pm_runtime_enable(&pdev->dev);
2637 	pm_runtime_set_autosuspend_delay(&pdev->dev,
2638 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2639 	pm_runtime_use_autosuspend(&pdev->dev);
2640 
2641 	host->mmc_host_ops.start_signal_voltage_switch =
2642 		sdhci_msm_start_signal_voltage_switch;
2643 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2644 	if (of_property_read_bool(node, "supports-cqe"))
2645 		ret = sdhci_msm_cqe_add_host(host, pdev);
2646 	else
2647 		ret = sdhci_add_host(host);
2648 	if (ret)
2649 		goto pm_runtime_disable;
2650 
2651 	pm_runtime_mark_last_busy(&pdev->dev);
2652 	pm_runtime_put_autosuspend(&pdev->dev);
2653 
2654 	return 0;
2655 
2656 pm_runtime_disable:
2657 	pm_runtime_disable(&pdev->dev);
2658 	pm_runtime_set_suspended(&pdev->dev);
2659 	pm_runtime_put_noidle(&pdev->dev);
2660 clk_disable:
2661 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2662 				   msm_host->bulk_clks);
2663 bus_clk_disable:
2664 	if (!IS_ERR(msm_host->bus_clk))
2665 		clk_disable_unprepare(msm_host->bus_clk);
2666 pltfm_free:
2667 	sdhci_pltfm_free(pdev);
2668 	return ret;
2669 }
2670 
2671 static int sdhci_msm_remove(struct platform_device *pdev)
2672 {
2673 	struct sdhci_host *host = platform_get_drvdata(pdev);
2674 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2675 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2676 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2677 		    0xffffffff);
2678 
2679 	sdhci_remove_host(host, dead);
2680 
2681 	pm_runtime_get_sync(&pdev->dev);
2682 	pm_runtime_disable(&pdev->dev);
2683 	pm_runtime_put_noidle(&pdev->dev);
2684 
2685 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2686 				   msm_host->bulk_clks);
2687 	if (!IS_ERR(msm_host->bus_clk))
2688 		clk_disable_unprepare(msm_host->bus_clk);
2689 	sdhci_pltfm_free(pdev);
2690 	return 0;
2691 }
2692 
2693 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2694 {
2695 	struct sdhci_host *host = dev_get_drvdata(dev);
2696 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2697 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2698 
2699 	/* Drop the performance vote */
2700 	dev_pm_opp_set_rate(dev, 0);
2701 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2702 				   msm_host->bulk_clks);
2703 
2704 	return sdhci_msm_ice_suspend(msm_host);
2705 }
2706 
2707 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2708 {
2709 	struct sdhci_host *host = dev_get_drvdata(dev);
2710 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2711 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2712 	int ret;
2713 
2714 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2715 				       msm_host->bulk_clks);
2716 	if (ret)
2717 		return ret;
2718 	/*
2719 	 * Whenever core-clock is gated dynamically, it's needed to
2720 	 * restore the SDR DLL settings when the clock is ungated.
2721 	 */
2722 	if (msm_host->restore_dll_config && msm_host->clk_rate) {
2723 		ret = sdhci_msm_restore_sdr_dll_config(host);
2724 		if (ret)
2725 			return ret;
2726 	}
2727 
2728 	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2729 
2730 	return sdhci_msm_ice_resume(msm_host);
2731 }
2732 
2733 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2734 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2735 				pm_runtime_force_resume)
2736 	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2737 			   sdhci_msm_runtime_resume,
2738 			   NULL)
2739 };
2740 
2741 static struct platform_driver sdhci_msm_driver = {
2742 	.probe = sdhci_msm_probe,
2743 	.remove = sdhci_msm_remove,
2744 	.driver = {
2745 		   .name = "sdhci_msm",
2746 		   .of_match_table = sdhci_msm_dt_match,
2747 		   .pm = &sdhci_msm_pm_ops,
2748 		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2749 	},
2750 };
2751 
2752 module_platform_driver(sdhci_msm_driver);
2753 
2754 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2755 MODULE_LICENSE("GPL v2");
2756