xref: /openbmc/linux/drivers/mmc/host/sdhci-msm.c (revision c4a7b9b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4  *
5  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/delay.h>
11 #include <linux/mmc/mmc.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/pm_opp.h>
14 #include <linux/slab.h>
15 #include <linux/iopoll.h>
16 #include <linux/qcom_scm.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/interconnect.h>
19 #include <linux/pinctrl/consumer.h>
20 #include <linux/reset.h>
21 
22 #include "sdhci-pltfm.h"
23 #include "cqhci.h"
24 
25 #define CORE_MCI_VERSION		0x50
26 #define CORE_VERSION_MAJOR_SHIFT	28
27 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
28 #define CORE_VERSION_MINOR_MASK		0xff
29 
30 #define CORE_MCI_GENERICS		0x70
31 #define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
32 
33 #define HC_MODE_EN		0x1
34 #define CORE_POWER		0x0
35 #define CORE_SW_RST		BIT(7)
36 #define FF_CLK_SW_RST_DIS	BIT(13)
37 
38 #define CORE_PWRCTL_BUS_OFF	BIT(0)
39 #define CORE_PWRCTL_BUS_ON	BIT(1)
40 #define CORE_PWRCTL_IO_LOW	BIT(2)
41 #define CORE_PWRCTL_IO_HIGH	BIT(3)
42 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
43 #define CORE_PWRCTL_BUS_FAIL    BIT(1)
44 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
45 #define CORE_PWRCTL_IO_FAIL     BIT(3)
46 #define REQ_BUS_OFF		BIT(0)
47 #define REQ_BUS_ON		BIT(1)
48 #define REQ_IO_LOW		BIT(2)
49 #define REQ_IO_HIGH		BIT(3)
50 #define INT_MASK		0xf
51 #define MAX_PHASES		16
52 #define CORE_DLL_LOCK		BIT(7)
53 #define CORE_DDR_DLL_LOCK	BIT(11)
54 #define CORE_DLL_EN		BIT(16)
55 #define CORE_CDR_EN		BIT(17)
56 #define CORE_CK_OUT_EN		BIT(18)
57 #define CORE_CDR_EXT_EN		BIT(19)
58 #define CORE_DLL_PDN		BIT(29)
59 #define CORE_DLL_RST		BIT(30)
60 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
61 
62 #define CORE_DDR_CAL_EN		BIT(0)
63 #define CORE_FLL_CYCLE_CNT	BIT(18)
64 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
65 
66 #define DLL_USR_CTL_POR_VAL	0x10800
67 #define ENABLE_DLL_LOCK_STATUS	BIT(26)
68 #define FINE_TUNE_MODE_EN	BIT(27)
69 #define BIAS_OK_SIGNAL		BIT(29)
70 
71 #define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
72 #define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
73 
74 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c
75 #define CORE_CLK_PWRSAVE	BIT(1)
76 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
77 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
78 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
79 #define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
80 #define CORE_IO_PAD_PWR_SWITCH	BIT(16)
81 #define CORE_HC_SELECT_IN_EN	BIT(18)
82 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
83 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
84 
85 #define CORE_3_0V_SUPPORT	BIT(25)
86 #define CORE_1_8V_SUPPORT	BIT(26)
87 #define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
88 
89 #define CORE_CSR_CDC_CTLR_CFG0		0x130
90 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
91 #define CORE_HW_AUTOCAL_ENA		BIT(17)
92 
93 #define CORE_CSR_CDC_CTLR_CFG1		0x134
94 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
95 #define CORE_TIMER_ENA			BIT(16)
96 
97 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
98 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
99 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
100 #define CORE_CDC_OFFSET_CFG		0x14C
101 #define CORE_CSR_CDC_DELAY_CFG		0x150
102 #define CORE_CDC_SLAVE_DDA_CFG		0x160
103 #define CORE_CSR_CDC_STATUS0		0x164
104 #define CORE_CALIBRATION_DONE		BIT(0)
105 
106 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
107 
108 #define CORE_CSR_CDC_GEN_CFG		0x178
109 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
110 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
111 
112 #define CORE_CDC_T4_DLY_SEL		BIT(0)
113 #define CORE_CMDIN_RCLK_EN		BIT(1)
114 #define CORE_START_CDC_TRAFFIC		BIT(6)
115 
116 #define CORE_PWRSAVE_DLL	BIT(3)
117 
118 #define DDR_CONFIG_POR_VAL	0x80040873
119 
120 
121 #define INVALID_TUNING_PHASE	-1
122 #define SDHCI_MSM_MIN_CLOCK	400000
123 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
124 
125 #define CDR_SELEXT_SHIFT	20
126 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
127 #define CMUX_SHIFT_PHASE_SHIFT	24
128 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
129 
130 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
131 
132 /* Timeout value to avoid infinite waiting for pwr_irq */
133 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
134 
135 /* Max load for eMMC Vdd-io supply */
136 #define MMC_VQMMC_MAX_LOAD_UA	325000
137 
138 #define msm_host_readl(msm_host, host, offset) \
139 	msm_host->var_ops->msm_readl_relaxed(host, offset)
140 
141 #define msm_host_writel(msm_host, val, host, offset) \
142 	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
143 
144 /* CQHCI vendor specific registers */
145 #define CQHCI_VENDOR_CFG1	0xA00
146 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
147 
148 struct sdhci_msm_offset {
149 	u32 core_hc_mode;
150 	u32 core_mci_data_cnt;
151 	u32 core_mci_status;
152 	u32 core_mci_fifo_cnt;
153 	u32 core_mci_version;
154 	u32 core_generics;
155 	u32 core_testbus_config;
156 	u32 core_testbus_sel2_bit;
157 	u32 core_testbus_ena;
158 	u32 core_testbus_sel2;
159 	u32 core_pwrctl_status;
160 	u32 core_pwrctl_mask;
161 	u32 core_pwrctl_clear;
162 	u32 core_pwrctl_ctl;
163 	u32 core_sdcc_debug_reg;
164 	u32 core_dll_config;
165 	u32 core_dll_status;
166 	u32 core_vendor_spec;
167 	u32 core_vendor_spec_adma_err_addr0;
168 	u32 core_vendor_spec_adma_err_addr1;
169 	u32 core_vendor_spec_func2;
170 	u32 core_vendor_spec_capabilities0;
171 	u32 core_ddr_200_cfg;
172 	u32 core_vendor_spec3;
173 	u32 core_dll_config_2;
174 	u32 core_dll_config_3;
175 	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
176 	u32 core_ddr_config;
177 	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
178 };
179 
180 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
181 	.core_mci_data_cnt = 0x35c,
182 	.core_mci_status = 0x324,
183 	.core_mci_fifo_cnt = 0x308,
184 	.core_mci_version = 0x318,
185 	.core_generics = 0x320,
186 	.core_testbus_config = 0x32c,
187 	.core_testbus_sel2_bit = 3,
188 	.core_testbus_ena = (1 << 31),
189 	.core_testbus_sel2 = (1 << 3),
190 	.core_pwrctl_status = 0x240,
191 	.core_pwrctl_mask = 0x244,
192 	.core_pwrctl_clear = 0x248,
193 	.core_pwrctl_ctl = 0x24c,
194 	.core_sdcc_debug_reg = 0x358,
195 	.core_dll_config = 0x200,
196 	.core_dll_status = 0x208,
197 	.core_vendor_spec = 0x20c,
198 	.core_vendor_spec_adma_err_addr0 = 0x214,
199 	.core_vendor_spec_adma_err_addr1 = 0x218,
200 	.core_vendor_spec_func2 = 0x210,
201 	.core_vendor_spec_capabilities0 = 0x21c,
202 	.core_ddr_200_cfg = 0x224,
203 	.core_vendor_spec3 = 0x250,
204 	.core_dll_config_2 = 0x254,
205 	.core_dll_config_3 = 0x258,
206 	.core_ddr_config = 0x25c,
207 	.core_dll_usr_ctl = 0x388,
208 };
209 
210 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
211 	.core_hc_mode = 0x78,
212 	.core_mci_data_cnt = 0x30,
213 	.core_mci_status = 0x34,
214 	.core_mci_fifo_cnt = 0x44,
215 	.core_mci_version = 0x050,
216 	.core_generics = 0x70,
217 	.core_testbus_config = 0x0cc,
218 	.core_testbus_sel2_bit = 4,
219 	.core_testbus_ena = (1 << 3),
220 	.core_testbus_sel2 = (1 << 4),
221 	.core_pwrctl_status = 0xdc,
222 	.core_pwrctl_mask = 0xe0,
223 	.core_pwrctl_clear = 0xe4,
224 	.core_pwrctl_ctl = 0xe8,
225 	.core_sdcc_debug_reg = 0x124,
226 	.core_dll_config = 0x100,
227 	.core_dll_status = 0x108,
228 	.core_vendor_spec = 0x10c,
229 	.core_vendor_spec_adma_err_addr0 = 0x114,
230 	.core_vendor_spec_adma_err_addr1 = 0x118,
231 	.core_vendor_spec_func2 = 0x110,
232 	.core_vendor_spec_capabilities0 = 0x11c,
233 	.core_ddr_200_cfg = 0x184,
234 	.core_vendor_spec3 = 0x1b0,
235 	.core_dll_config_2 = 0x1b4,
236 	.core_ddr_config_old = 0x1b8,
237 	.core_ddr_config = 0x1bc,
238 };
239 
240 struct sdhci_msm_variant_ops {
241 	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
242 	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
243 			u32 offset);
244 };
245 
246 /*
247  * From V5, register spaces have changed. Wrap this info in a structure
248  * and choose the data_structure based on version info mentioned in DT.
249  */
250 struct sdhci_msm_variant_info {
251 	bool mci_removed;
252 	bool restore_dll_config;
253 	const struct sdhci_msm_variant_ops *var_ops;
254 	const struct sdhci_msm_offset *offset;
255 };
256 
257 struct sdhci_msm_host {
258 	struct platform_device *pdev;
259 	void __iomem *core_mem;	/* MSM SDCC mapped address */
260 	void __iomem *ice_mem;	/* MSM ICE mapped address (if available) */
261 	int pwr_irq;		/* power irq */
262 	struct clk *bus_clk;	/* SDHC bus voter clock */
263 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
264 	/* core, iface, cal, sleep, and ice clocks */
265 	struct clk_bulk_data bulk_clks[5];
266 	unsigned long clk_rate;
267 	struct mmc_host *mmc;
268 	bool use_14lpp_dll_reset;
269 	bool tuning_done;
270 	bool calibration_done;
271 	u8 saved_tuning_phase;
272 	bool use_cdclp533;
273 	u32 curr_pwr_state;
274 	u32 curr_io_level;
275 	wait_queue_head_t pwr_irq_wait;
276 	bool pwr_irq_flag;
277 	u32 caps_0;
278 	bool mci_removed;
279 	bool restore_dll_config;
280 	const struct sdhci_msm_variant_ops *var_ops;
281 	const struct sdhci_msm_offset *offset;
282 	bool use_cdr;
283 	u32 transfer_mode;
284 	bool updated_ddr_cfg;
285 	bool uses_tassadar_dll;
286 	u32 dll_config;
287 	u32 ddr_config;
288 	bool vqmmc_enabled;
289 };
290 
291 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
292 {
293 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
294 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
295 
296 	return msm_host->offset;
297 }
298 
299 /*
300  * APIs to read/write to vendor specific registers which were there in the
301  * core_mem region before MCI was removed.
302  */
303 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
304 		u32 offset)
305 {
306 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
307 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
308 
309 	return readl_relaxed(msm_host->core_mem + offset);
310 }
311 
312 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
313 		u32 offset)
314 {
315 	return readl_relaxed(host->ioaddr + offset);
316 }
317 
318 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
319 		struct sdhci_host *host, u32 offset)
320 {
321 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
322 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
323 
324 	writel_relaxed(val, msm_host->core_mem + offset);
325 }
326 
327 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
328 		struct sdhci_host *host, u32 offset)
329 {
330 	writel_relaxed(val, host->ioaddr + offset);
331 }
332 
333 static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
334 {
335 	struct mmc_ios ios = host->mmc->ios;
336 	/*
337 	 * The SDHC requires internal clock frequency to be double the
338 	 * actual clock that will be set for DDR mode. The controller
339 	 * uses the faster clock(100/400MHz) for some of its parts and
340 	 * send the actual required clock (50/200MHz) to the card.
341 	 */
342 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
343 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
344 	    ios.timing == MMC_TIMING_MMC_HS400 ||
345 	    host->flags & SDHCI_HS400_TUNING)
346 		return 2;
347 	return 1;
348 }
349 
350 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
351 					    unsigned int clock)
352 {
353 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
354 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
355 	struct mmc_ios curr_ios = host->mmc->ios;
356 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
357 	unsigned long achieved_rate;
358 	unsigned int desired_rate;
359 	unsigned int mult;
360 	int rc;
361 
362 	mult = msm_get_clock_mult_for_bus_mode(host);
363 	desired_rate = clock * mult;
364 	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
365 	if (rc) {
366 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
367 		       mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
368 		return;
369 	}
370 
371 	/*
372 	 * Qualcomm clock drivers by default round clock _up_ if they can't
373 	 * make the requested rate.  This is not good for SD.  Yell if we
374 	 * encounter it.
375 	 */
376 	achieved_rate = clk_get_rate(core_clk);
377 	if (achieved_rate > desired_rate)
378 		pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
379 			mmc_hostname(host->mmc), desired_rate, achieved_rate);
380 	host->mmc->actual_clock = achieved_rate / mult;
381 
382 	/* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
383 	msm_host->clk_rate = desired_rate;
384 
385 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
386 		 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
387 }
388 
389 /* Platform specific tuning */
390 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
391 {
392 	u32 wait_cnt = 50;
393 	u8 ck_out_en;
394 	struct mmc_host *mmc = host->mmc;
395 	const struct sdhci_msm_offset *msm_offset =
396 					sdhci_priv_msm_offset(host);
397 
398 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
399 	ck_out_en = !!(readl_relaxed(host->ioaddr +
400 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
401 
402 	while (ck_out_en != poll) {
403 		if (--wait_cnt == 0) {
404 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
405 			       mmc_hostname(mmc), poll);
406 			return -ETIMEDOUT;
407 		}
408 		udelay(1);
409 
410 		ck_out_en = !!(readl_relaxed(host->ioaddr +
411 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
412 	}
413 
414 	return 0;
415 }
416 
417 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
418 {
419 	int rc;
420 	static const u8 grey_coded_phase_table[] = {
421 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
422 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
423 	};
424 	unsigned long flags;
425 	u32 config;
426 	struct mmc_host *mmc = host->mmc;
427 	const struct sdhci_msm_offset *msm_offset =
428 					sdhci_priv_msm_offset(host);
429 
430 	if (phase > 0xf)
431 		return -EINVAL;
432 
433 	spin_lock_irqsave(&host->lock, flags);
434 
435 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
436 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
437 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
438 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
439 
440 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
441 	rc = msm_dll_poll_ck_out_en(host, 0);
442 	if (rc)
443 		goto err_out;
444 
445 	/*
446 	 * Write the selected DLL clock output phase (0 ... 15)
447 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
448 	 */
449 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
450 	config &= ~CDR_SELEXT_MASK;
451 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
452 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
453 
454 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
455 	config |= CORE_CK_OUT_EN;
456 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
457 
458 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
459 	rc = msm_dll_poll_ck_out_en(host, 1);
460 	if (rc)
461 		goto err_out;
462 
463 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
464 	config |= CORE_CDR_EN;
465 	config &= ~CORE_CDR_EXT_EN;
466 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
467 	goto out;
468 
469 err_out:
470 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
471 	       mmc_hostname(mmc), phase);
472 out:
473 	spin_unlock_irqrestore(&host->lock, flags);
474 	return rc;
475 }
476 
477 /*
478  * Find out the greatest range of consecuitive selected
479  * DLL clock output phases that can be used as sampling
480  * setting for SD3.0 UHS-I card read operation (in SDR104
481  * timing mode) or for eMMC4.5 card read operation (in
482  * HS400/HS200 timing mode).
483  * Select the 3/4 of the range and configure the DLL with the
484  * selected DLL clock output phase.
485  */
486 
487 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
488 					   u8 *phase_table, u8 total_phases)
489 {
490 	int ret;
491 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
492 	u8 phases_per_row[MAX_PHASES] = { 0 };
493 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
494 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
495 	bool phase_0_found = false, phase_15_found = false;
496 	struct mmc_host *mmc = host->mmc;
497 
498 	if (!total_phases || (total_phases > MAX_PHASES)) {
499 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
500 		       mmc_hostname(mmc), total_phases);
501 		return -EINVAL;
502 	}
503 
504 	for (cnt = 0; cnt < total_phases; cnt++) {
505 		ranges[row_index][col_index] = phase_table[cnt];
506 		phases_per_row[row_index] += 1;
507 		col_index++;
508 
509 		if ((cnt + 1) == total_phases) {
510 			continue;
511 		/* check if next phase in phase_table is consecutive or not */
512 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
513 			row_index++;
514 			col_index = 0;
515 		}
516 	}
517 
518 	if (row_index >= MAX_PHASES)
519 		return -EINVAL;
520 
521 	/* Check if phase-0 is present in first valid window? */
522 	if (!ranges[0][0]) {
523 		phase_0_found = true;
524 		phase_0_raw_index = 0;
525 		/* Check if cycle exist between 2 valid windows */
526 		for (cnt = 1; cnt <= row_index; cnt++) {
527 			if (phases_per_row[cnt]) {
528 				for (i = 0; i < phases_per_row[cnt]; i++) {
529 					if (ranges[cnt][i] == 15) {
530 						phase_15_found = true;
531 						phase_15_raw_index = cnt;
532 						break;
533 					}
534 				}
535 			}
536 		}
537 	}
538 
539 	/* If 2 valid windows form cycle then merge them as single window */
540 	if (phase_0_found && phase_15_found) {
541 		/* number of phases in raw where phase 0 is present */
542 		u8 phases_0 = phases_per_row[phase_0_raw_index];
543 		/* number of phases in raw where phase 15 is present */
544 		u8 phases_15 = phases_per_row[phase_15_raw_index];
545 
546 		if (phases_0 + phases_15 >= MAX_PHASES)
547 			/*
548 			 * If there are more than 1 phase windows then total
549 			 * number of phases in both the windows should not be
550 			 * more than or equal to MAX_PHASES.
551 			 */
552 			return -EINVAL;
553 
554 		/* Merge 2 cyclic windows */
555 		i = phases_15;
556 		for (cnt = 0; cnt < phases_0; cnt++) {
557 			ranges[phase_15_raw_index][i] =
558 			    ranges[phase_0_raw_index][cnt];
559 			if (++i >= MAX_PHASES)
560 				break;
561 		}
562 
563 		phases_per_row[phase_0_raw_index] = 0;
564 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
565 	}
566 
567 	for (cnt = 0; cnt <= row_index; cnt++) {
568 		if (phases_per_row[cnt] > curr_max) {
569 			curr_max = phases_per_row[cnt];
570 			selected_row_index = cnt;
571 		}
572 	}
573 
574 	i = (curr_max * 3) / 4;
575 	if (i)
576 		i--;
577 
578 	ret = ranges[selected_row_index][i];
579 
580 	if (ret >= MAX_PHASES) {
581 		ret = -EINVAL;
582 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
583 		       mmc_hostname(mmc), ret);
584 	}
585 
586 	return ret;
587 }
588 
589 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
590 {
591 	u32 mclk_freq = 0, config;
592 	const struct sdhci_msm_offset *msm_offset =
593 					sdhci_priv_msm_offset(host);
594 
595 	/* Program the MCLK value to MCLK_FREQ bit field */
596 	if (host->clock <= 112000000)
597 		mclk_freq = 0;
598 	else if (host->clock <= 125000000)
599 		mclk_freq = 1;
600 	else if (host->clock <= 137000000)
601 		mclk_freq = 2;
602 	else if (host->clock <= 150000000)
603 		mclk_freq = 3;
604 	else if (host->clock <= 162000000)
605 		mclk_freq = 4;
606 	else if (host->clock <= 175000000)
607 		mclk_freq = 5;
608 	else if (host->clock <= 187000000)
609 		mclk_freq = 6;
610 	else if (host->clock <= 200000000)
611 		mclk_freq = 7;
612 
613 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
614 	config &= ~CMUX_SHIFT_PHASE_MASK;
615 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
616 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
617 }
618 
619 /* Initialize the DLL (Programmable Delay Line) */
620 static int msm_init_cm_dll(struct sdhci_host *host)
621 {
622 	struct mmc_host *mmc = host->mmc;
623 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
624 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
625 	int wait_cnt = 50;
626 	unsigned long flags, xo_clk = 0;
627 	u32 config;
628 	const struct sdhci_msm_offset *msm_offset =
629 					msm_host->offset;
630 
631 	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
632 		xo_clk = clk_get_rate(msm_host->xo_clk);
633 
634 	spin_lock_irqsave(&host->lock, flags);
635 
636 	/*
637 	 * Make sure that clock is always enabled when DLL
638 	 * tuning is in progress. Keeping PWRSAVE ON may
639 	 * turn off the clock.
640 	 */
641 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
642 	config &= ~CORE_CLK_PWRSAVE;
643 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
644 
645 	if (msm_host->dll_config)
646 		writel_relaxed(msm_host->dll_config,
647 				host->ioaddr + msm_offset->core_dll_config);
648 
649 	if (msm_host->use_14lpp_dll_reset) {
650 		config = readl_relaxed(host->ioaddr +
651 				msm_offset->core_dll_config);
652 		config &= ~CORE_CK_OUT_EN;
653 		writel_relaxed(config, host->ioaddr +
654 				msm_offset->core_dll_config);
655 
656 		config = readl_relaxed(host->ioaddr +
657 				msm_offset->core_dll_config_2);
658 		config |= CORE_DLL_CLOCK_DISABLE;
659 		writel_relaxed(config, host->ioaddr +
660 				msm_offset->core_dll_config_2);
661 	}
662 
663 	config = readl_relaxed(host->ioaddr +
664 			msm_offset->core_dll_config);
665 	config |= CORE_DLL_RST;
666 	writel_relaxed(config, host->ioaddr +
667 			msm_offset->core_dll_config);
668 
669 	config = readl_relaxed(host->ioaddr +
670 			msm_offset->core_dll_config);
671 	config |= CORE_DLL_PDN;
672 	writel_relaxed(config, host->ioaddr +
673 			msm_offset->core_dll_config);
674 
675 	if (!msm_host->dll_config)
676 		msm_cm_dll_set_freq(host);
677 
678 	if (msm_host->use_14lpp_dll_reset &&
679 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
680 		u32 mclk_freq = 0;
681 
682 		config = readl_relaxed(host->ioaddr +
683 				msm_offset->core_dll_config_2);
684 		config &= CORE_FLL_CYCLE_CNT;
685 		if (config)
686 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
687 					xo_clk);
688 		else
689 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
690 					xo_clk);
691 
692 		config = readl_relaxed(host->ioaddr +
693 				msm_offset->core_dll_config_2);
694 		config &= ~(0xFF << 10);
695 		config |= mclk_freq << 10;
696 
697 		writel_relaxed(config, host->ioaddr +
698 				msm_offset->core_dll_config_2);
699 		/* wait for 5us before enabling DLL clock */
700 		udelay(5);
701 	}
702 
703 	config = readl_relaxed(host->ioaddr +
704 			msm_offset->core_dll_config);
705 	config &= ~CORE_DLL_RST;
706 	writel_relaxed(config, host->ioaddr +
707 			msm_offset->core_dll_config);
708 
709 	config = readl_relaxed(host->ioaddr +
710 			msm_offset->core_dll_config);
711 	config &= ~CORE_DLL_PDN;
712 	writel_relaxed(config, host->ioaddr +
713 			msm_offset->core_dll_config);
714 
715 	if (msm_host->use_14lpp_dll_reset) {
716 		if (!msm_host->dll_config)
717 			msm_cm_dll_set_freq(host);
718 		config = readl_relaxed(host->ioaddr +
719 				msm_offset->core_dll_config_2);
720 		config &= ~CORE_DLL_CLOCK_DISABLE;
721 		writel_relaxed(config, host->ioaddr +
722 				msm_offset->core_dll_config_2);
723 	}
724 
725 	/*
726 	 * Configure DLL user control register to enable DLL status.
727 	 * This setting is applicable to SDCC v5.1 onwards only.
728 	 */
729 	if (msm_host->uses_tassadar_dll) {
730 		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
731 			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
732 		writel_relaxed(config, host->ioaddr +
733 				msm_offset->core_dll_usr_ctl);
734 
735 		config = readl_relaxed(host->ioaddr +
736 				msm_offset->core_dll_config_3);
737 		config &= ~0xFF;
738 		if (msm_host->clk_rate < 150000000)
739 			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
740 		else
741 			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
742 		writel_relaxed(config, host->ioaddr +
743 			msm_offset->core_dll_config_3);
744 	}
745 
746 	config = readl_relaxed(host->ioaddr +
747 			msm_offset->core_dll_config);
748 	config |= CORE_DLL_EN;
749 	writel_relaxed(config, host->ioaddr +
750 			msm_offset->core_dll_config);
751 
752 	config = readl_relaxed(host->ioaddr +
753 			msm_offset->core_dll_config);
754 	config |= CORE_CK_OUT_EN;
755 	writel_relaxed(config, host->ioaddr +
756 			msm_offset->core_dll_config);
757 
758 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
759 	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
760 		 CORE_DLL_LOCK)) {
761 		/* max. wait for 50us sec for LOCK bit to be set */
762 		if (--wait_cnt == 0) {
763 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
764 			       mmc_hostname(mmc));
765 			spin_unlock_irqrestore(&host->lock, flags);
766 			return -ETIMEDOUT;
767 		}
768 		udelay(1);
769 	}
770 
771 	spin_unlock_irqrestore(&host->lock, flags);
772 	return 0;
773 }
774 
775 static void msm_hc_select_default(struct sdhci_host *host)
776 {
777 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
778 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
779 	u32 config;
780 	const struct sdhci_msm_offset *msm_offset =
781 					msm_host->offset;
782 
783 	if (!msm_host->use_cdclp533) {
784 		config = readl_relaxed(host->ioaddr +
785 				msm_offset->core_vendor_spec3);
786 		config &= ~CORE_PWRSAVE_DLL;
787 		writel_relaxed(config, host->ioaddr +
788 				msm_offset->core_vendor_spec3);
789 	}
790 
791 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
792 	config &= ~CORE_HC_MCLK_SEL_MASK;
793 	config |= CORE_HC_MCLK_SEL_DFLT;
794 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
795 
796 	/*
797 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
798 	 * configuration from Host Control2 register for all other
799 	 * modes.
800 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
801 	 * in VENDOR_SPEC_FUNC
802 	 */
803 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
804 	config &= ~CORE_HC_SELECT_IN_EN;
805 	config &= ~CORE_HC_SELECT_IN_MASK;
806 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
807 
808 	/*
809 	 * Make sure above writes impacting free running MCLK are completed
810 	 * before changing the clk_rate at GCC.
811 	 */
812 	wmb();
813 }
814 
815 static void msm_hc_select_hs400(struct sdhci_host *host)
816 {
817 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
818 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
819 	struct mmc_ios ios = host->mmc->ios;
820 	u32 config, dll_lock;
821 	int rc;
822 	const struct sdhci_msm_offset *msm_offset =
823 					msm_host->offset;
824 
825 	/* Select the divided clock (free running MCLK/2) */
826 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
827 	config &= ~CORE_HC_MCLK_SEL_MASK;
828 	config |= CORE_HC_MCLK_SEL_HS400;
829 
830 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
831 	/*
832 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
833 	 * register
834 	 */
835 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
836 	    !msm_host->calibration_done) {
837 		config = readl_relaxed(host->ioaddr +
838 				msm_offset->core_vendor_spec);
839 		config |= CORE_HC_SELECT_IN_HS400;
840 		config |= CORE_HC_SELECT_IN_EN;
841 		writel_relaxed(config, host->ioaddr +
842 				msm_offset->core_vendor_spec);
843 	}
844 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
845 		/*
846 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
847 		 * core_dll_status to be set. This should get set
848 		 * within 15 us at 200 MHz.
849 		 */
850 		rc = readl_relaxed_poll_timeout(host->ioaddr +
851 						msm_offset->core_dll_status,
852 						dll_lock,
853 						(dll_lock &
854 						(CORE_DLL_LOCK |
855 						CORE_DDR_DLL_LOCK)), 10,
856 						1000);
857 		if (rc == -ETIMEDOUT)
858 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
859 			       mmc_hostname(host->mmc), dll_lock);
860 	}
861 	/*
862 	 * Make sure above writes impacting free running MCLK are completed
863 	 * before changing the clk_rate at GCC.
864 	 */
865 	wmb();
866 }
867 
868 /*
869  * sdhci_msm_hc_select_mode :- In general all timing modes are
870  * controlled via UHS mode select in Host Control2 register.
871  * eMMC specific HS200/HS400 doesn't have their respective modes
872  * defined here, hence we use these values.
873  *
874  * HS200 - SDR104 (Since they both are equivalent in functionality)
875  * HS400 - This involves multiple configurations
876  *		Initially SDR104 - when tuning is required as HS200
877  *		Then when switching to DDR @ 400MHz (HS400) we use
878  *		the vendor specific HC_SELECT_IN to control the mode.
879  *
880  * In addition to controlling the modes we also need to select the
881  * correct input clock for DLL depending on the mode.
882  *
883  * HS400 - divided clock (free running MCLK/2)
884  * All other modes - default (free running MCLK)
885  */
886 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
887 {
888 	struct mmc_ios ios = host->mmc->ios;
889 
890 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
891 	    host->flags & SDHCI_HS400_TUNING)
892 		msm_hc_select_hs400(host);
893 	else
894 		msm_hc_select_default(host);
895 }
896 
897 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
898 {
899 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
900 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
901 	u32 config, calib_done;
902 	int ret;
903 	const struct sdhci_msm_offset *msm_offset =
904 					msm_host->offset;
905 
906 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
907 
908 	/*
909 	 * Retuning in HS400 (DDR mode) will fail, just reset the
910 	 * tuning block and restore the saved tuning phase.
911 	 */
912 	ret = msm_init_cm_dll(host);
913 	if (ret)
914 		goto out;
915 
916 	/* Set the selected phase in delay line hw block */
917 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
918 	if (ret)
919 		goto out;
920 
921 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
922 	config |= CORE_CMD_DAT_TRACK_SEL;
923 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
924 
925 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
926 	config &= ~CORE_CDC_T4_DLY_SEL;
927 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
928 
929 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
930 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
931 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
932 
933 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
934 	config |= CORE_CDC_SWITCH_RC_EN;
935 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
936 
937 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
938 	config &= ~CORE_START_CDC_TRAFFIC;
939 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
940 
941 	/* Perform CDC Register Initialization Sequence */
942 
943 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
944 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
945 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
946 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
947 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
948 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
949 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
950 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
951 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
952 
953 	/* CDC HW Calibration */
954 
955 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
956 	config |= CORE_SW_TRIG_FULL_CALIB;
957 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
958 
959 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
960 	config &= ~CORE_SW_TRIG_FULL_CALIB;
961 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
962 
963 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
964 	config |= CORE_HW_AUTOCAL_ENA;
965 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
966 
967 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
968 	config |= CORE_TIMER_ENA;
969 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
970 
971 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
972 					 calib_done,
973 					 (calib_done & CORE_CALIBRATION_DONE),
974 					 1, 50);
975 
976 	if (ret == -ETIMEDOUT) {
977 		pr_err("%s: %s: CDC calibration was not completed\n",
978 		       mmc_hostname(host->mmc), __func__);
979 		goto out;
980 	}
981 
982 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
983 			& CORE_CDC_ERROR_CODE_MASK;
984 	if (ret) {
985 		pr_err("%s: %s: CDC error code %d\n",
986 		       mmc_hostname(host->mmc), __func__, ret);
987 		ret = -EINVAL;
988 		goto out;
989 	}
990 
991 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
992 	config |= CORE_START_CDC_TRAFFIC;
993 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
994 out:
995 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
996 		 __func__, ret);
997 	return ret;
998 }
999 
1000 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1001 {
1002 	struct mmc_host *mmc = host->mmc;
1003 	u32 dll_status, config, ddr_cfg_offset;
1004 	int ret;
1005 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1006 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1007 	const struct sdhci_msm_offset *msm_offset =
1008 					sdhci_priv_msm_offset(host);
1009 
1010 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1011 
1012 	/*
1013 	 * Currently the core_ddr_config register defaults to desired
1014 	 * configuration on reset. Currently reprogramming the power on
1015 	 * reset (POR) value in case it might have been modified by
1016 	 * bootloaders. In the future, if this changes, then the desired
1017 	 * values will need to be programmed appropriately.
1018 	 */
1019 	if (msm_host->updated_ddr_cfg)
1020 		ddr_cfg_offset = msm_offset->core_ddr_config;
1021 	else
1022 		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1023 	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1024 
1025 	if (mmc->ios.enhanced_strobe) {
1026 		config = readl_relaxed(host->ioaddr +
1027 				msm_offset->core_ddr_200_cfg);
1028 		config |= CORE_CMDIN_RCLK_EN;
1029 		writel_relaxed(config, host->ioaddr +
1030 				msm_offset->core_ddr_200_cfg);
1031 	}
1032 
1033 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1034 	config |= CORE_DDR_CAL_EN;
1035 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1036 
1037 	ret = readl_relaxed_poll_timeout(host->ioaddr +
1038 					msm_offset->core_dll_status,
1039 					dll_status,
1040 					(dll_status & CORE_DDR_DLL_LOCK),
1041 					10, 1000);
1042 
1043 	if (ret == -ETIMEDOUT) {
1044 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1045 		       mmc_hostname(host->mmc), __func__);
1046 		goto out;
1047 	}
1048 
1049 	/*
1050 	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1051 	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1052 	 * and MCLK must be switched on for at-least 1us before DATA
1053 	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1054 	 * guarantee above requirement. So PWRSAVE_DLL should not be
1055 	 * turned on for host controllers using this DLL.
1056 	 */
1057 	if (!msm_host->use_14lpp_dll_reset) {
1058 		config = readl_relaxed(host->ioaddr +
1059 				msm_offset->core_vendor_spec3);
1060 		config |= CORE_PWRSAVE_DLL;
1061 		writel_relaxed(config, host->ioaddr +
1062 				msm_offset->core_vendor_spec3);
1063 	}
1064 
1065 	/*
1066 	 * Drain writebuffer to ensure above DLL calibration
1067 	 * and PWRSAVE DLL is enabled.
1068 	 */
1069 	wmb();
1070 out:
1071 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1072 		 __func__, ret);
1073 	return ret;
1074 }
1075 
1076 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1077 {
1078 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1079 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1080 	struct mmc_host *mmc = host->mmc;
1081 	int ret;
1082 	u32 config;
1083 	const struct sdhci_msm_offset *msm_offset =
1084 					msm_host->offset;
1085 
1086 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1087 
1088 	/*
1089 	 * Retuning in HS400 (DDR mode) will fail, just reset the
1090 	 * tuning block and restore the saved tuning phase.
1091 	 */
1092 	ret = msm_init_cm_dll(host);
1093 	if (ret)
1094 		goto out;
1095 
1096 	if (!mmc->ios.enhanced_strobe) {
1097 		/* Set the selected phase in delay line hw block */
1098 		ret = msm_config_cm_dll_phase(host,
1099 					      msm_host->saved_tuning_phase);
1100 		if (ret)
1101 			goto out;
1102 		config = readl_relaxed(host->ioaddr +
1103 				msm_offset->core_dll_config);
1104 		config |= CORE_CMD_DAT_TRACK_SEL;
1105 		writel_relaxed(config, host->ioaddr +
1106 				msm_offset->core_dll_config);
1107 	}
1108 
1109 	if (msm_host->use_cdclp533)
1110 		ret = sdhci_msm_cdclp533_calibration(host);
1111 	else
1112 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1113 out:
1114 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1115 		 __func__, ret);
1116 	return ret;
1117 }
1118 
1119 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1120 {
1121 	struct mmc_ios *ios = &host->mmc->ios;
1122 
1123 	/*
1124 	 * Tuning is required for SDR104, HS200 and HS400 cards and
1125 	 * if clock frequency is greater than 100MHz in these modes.
1126 	 */
1127 	if (host->clock <= CORE_FREQ_100MHZ ||
1128 	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1129 	    ios->timing == MMC_TIMING_MMC_HS200 ||
1130 	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1131 	    ios->enhanced_strobe)
1132 		return false;
1133 
1134 	return true;
1135 }
1136 
1137 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1138 {
1139 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1140 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1141 	int ret;
1142 
1143 	/*
1144 	 * SDR DLL comes into picture only for timing modes which needs
1145 	 * tuning.
1146 	 */
1147 	if (!sdhci_msm_is_tuning_needed(host))
1148 		return 0;
1149 
1150 	/* Reset the tuning block */
1151 	ret = msm_init_cm_dll(host);
1152 	if (ret)
1153 		return ret;
1154 
1155 	/* Restore the tuning block */
1156 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1157 
1158 	return ret;
1159 }
1160 
1161 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1162 {
1163 	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1164 	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1165 					      msm_offset->core_dll_config);
1166 
1167 	config = oldconfig;
1168 	if (enable) {
1169 		config |= CORE_CDR_EN;
1170 		config &= ~CORE_CDR_EXT_EN;
1171 	} else {
1172 		config &= ~CORE_CDR_EN;
1173 		config |= CORE_CDR_EXT_EN;
1174 	}
1175 
1176 	if (config != oldconfig) {
1177 		writel_relaxed(config, host->ioaddr +
1178 			       msm_offset->core_dll_config);
1179 	}
1180 }
1181 
1182 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1183 {
1184 	struct sdhci_host *host = mmc_priv(mmc);
1185 	int tuning_seq_cnt = 10;
1186 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1187 	int rc;
1188 	struct mmc_ios ios = host->mmc->ios;
1189 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1190 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1191 
1192 	if (!sdhci_msm_is_tuning_needed(host)) {
1193 		msm_host->use_cdr = false;
1194 		sdhci_msm_set_cdr(host, false);
1195 		return 0;
1196 	}
1197 
1198 	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1199 	msm_host->use_cdr = true;
1200 
1201 	/*
1202 	 * Clear tuning_done flag before tuning to ensure proper
1203 	 * HS400 settings.
1204 	 */
1205 	msm_host->tuning_done = 0;
1206 
1207 	/*
1208 	 * For HS400 tuning in HS200 timing requires:
1209 	 * - select MCLK/2 in VENDOR_SPEC
1210 	 * - program MCLK to 400MHz (or nearest supported) in GCC
1211 	 */
1212 	if (host->flags & SDHCI_HS400_TUNING) {
1213 		sdhci_msm_hc_select_mode(host);
1214 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1215 		host->flags &= ~SDHCI_HS400_TUNING;
1216 	}
1217 
1218 retry:
1219 	/* First of all reset the tuning block */
1220 	rc = msm_init_cm_dll(host);
1221 	if (rc)
1222 		return rc;
1223 
1224 	phase = 0;
1225 	do {
1226 		/* Set the phase in delay line hw block */
1227 		rc = msm_config_cm_dll_phase(host, phase);
1228 		if (rc)
1229 			return rc;
1230 
1231 		rc = mmc_send_tuning(mmc, opcode, NULL);
1232 		if (!rc) {
1233 			/* Tuning is successful at this tuning point */
1234 			tuned_phases[tuned_phase_cnt++] = phase;
1235 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1236 				 mmc_hostname(mmc), phase);
1237 		}
1238 	} while (++phase < ARRAY_SIZE(tuned_phases));
1239 
1240 	if (tuned_phase_cnt) {
1241 		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1242 			/*
1243 			 * All phases valid is _almost_ as bad as no phases
1244 			 * valid.  Probably all phases are not really reliable
1245 			 * but we didn't detect where the unreliable place is.
1246 			 * That means we'll essentially be guessing and hoping
1247 			 * we get a good phase.  Better to try a few times.
1248 			 */
1249 			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1250 				mmc_hostname(mmc));
1251 			if (--tuning_seq_cnt) {
1252 				tuned_phase_cnt = 0;
1253 				goto retry;
1254 			}
1255 		}
1256 
1257 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1258 						     tuned_phase_cnt);
1259 		if (rc < 0)
1260 			return rc;
1261 		else
1262 			phase = rc;
1263 
1264 		/*
1265 		 * Finally set the selected phase in delay
1266 		 * line hw block.
1267 		 */
1268 		rc = msm_config_cm_dll_phase(host, phase);
1269 		if (rc)
1270 			return rc;
1271 		msm_host->saved_tuning_phase = phase;
1272 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1273 			 mmc_hostname(mmc), phase);
1274 	} else {
1275 		if (--tuning_seq_cnt)
1276 			goto retry;
1277 		/* Tuning failed */
1278 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1279 		       mmc_hostname(mmc));
1280 		rc = -EIO;
1281 	}
1282 
1283 	if (!rc)
1284 		msm_host->tuning_done = true;
1285 	return rc;
1286 }
1287 
1288 /*
1289  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1290  * This needs to be done for both tuning and enhanced_strobe mode.
1291  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1292  * fixed feedback clock is used.
1293  */
1294 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1295 {
1296 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1297 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1298 	int ret;
1299 
1300 	if (host->clock > CORE_FREQ_100MHZ &&
1301 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1302 	    !msm_host->calibration_done) {
1303 		ret = sdhci_msm_hs400_dll_calibration(host);
1304 		if (!ret)
1305 			msm_host->calibration_done = true;
1306 		else
1307 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1308 			       mmc_hostname(host->mmc), ret);
1309 	}
1310 }
1311 
1312 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1313 					unsigned int uhs)
1314 {
1315 	struct mmc_host *mmc = host->mmc;
1316 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1317 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1318 	u16 ctrl_2;
1319 	u32 config;
1320 	const struct sdhci_msm_offset *msm_offset =
1321 					msm_host->offset;
1322 
1323 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1324 	/* Select Bus Speed Mode for host */
1325 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1326 	switch (uhs) {
1327 	case MMC_TIMING_UHS_SDR12:
1328 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1329 		break;
1330 	case MMC_TIMING_UHS_SDR25:
1331 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1332 		break;
1333 	case MMC_TIMING_UHS_SDR50:
1334 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1335 		break;
1336 	case MMC_TIMING_MMC_HS400:
1337 	case MMC_TIMING_MMC_HS200:
1338 	case MMC_TIMING_UHS_SDR104:
1339 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1340 		break;
1341 	case MMC_TIMING_UHS_DDR50:
1342 	case MMC_TIMING_MMC_DDR52:
1343 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1344 		break;
1345 	}
1346 
1347 	/*
1348 	 * When clock frequency is less than 100MHz, the feedback clock must be
1349 	 * provided and DLL must not be used so that tuning can be skipped. To
1350 	 * provide feedback clock, the mode selection can be any value less
1351 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1352 	 */
1353 	if (host->clock <= CORE_FREQ_100MHZ) {
1354 		if (uhs == MMC_TIMING_MMC_HS400 ||
1355 		    uhs == MMC_TIMING_MMC_HS200 ||
1356 		    uhs == MMC_TIMING_UHS_SDR104)
1357 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1358 		/*
1359 		 * DLL is not required for clock <= 100MHz
1360 		 * Thus, make sure DLL it is disabled when not required
1361 		 */
1362 		config = readl_relaxed(host->ioaddr +
1363 				msm_offset->core_dll_config);
1364 		config |= CORE_DLL_RST;
1365 		writel_relaxed(config, host->ioaddr +
1366 				msm_offset->core_dll_config);
1367 
1368 		config = readl_relaxed(host->ioaddr +
1369 				msm_offset->core_dll_config);
1370 		config |= CORE_DLL_PDN;
1371 		writel_relaxed(config, host->ioaddr +
1372 				msm_offset->core_dll_config);
1373 
1374 		/*
1375 		 * The DLL needs to be restored and CDCLP533 recalibrated
1376 		 * when the clock frequency is set back to 400MHz.
1377 		 */
1378 		msm_host->calibration_done = false;
1379 	}
1380 
1381 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1382 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1383 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1384 
1385 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1386 		sdhci_msm_hs400(host, &mmc->ios);
1387 }
1388 
1389 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1390 {
1391 	struct platform_device *pdev = msm_host->pdev;
1392 	int ret;
1393 
1394 	if (level)
1395 		ret = pinctrl_pm_select_default_state(&pdev->dev);
1396 	else
1397 		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1398 
1399 	return ret;
1400 }
1401 
1402 static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1403 {
1404 	if (IS_ERR(mmc->supply.vmmc))
1405 		return 0;
1406 
1407 	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1408 }
1409 
1410 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1411 			      struct mmc_host *mmc, bool level)
1412 {
1413 	int ret;
1414 	struct mmc_ios ios;
1415 
1416 	if (msm_host->vqmmc_enabled == level)
1417 		return 0;
1418 
1419 	if (level) {
1420 		/* Set the IO voltage regulator to default voltage level */
1421 		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1422 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1423 		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1424 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1425 
1426 		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1427 			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1428 			if (ret < 0) {
1429 				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1430 					mmc_hostname(mmc), ret);
1431 				goto out;
1432 			}
1433 		}
1434 		ret = regulator_enable(mmc->supply.vqmmc);
1435 	} else {
1436 		ret = regulator_disable(mmc->supply.vqmmc);
1437 	}
1438 
1439 	if (ret)
1440 		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1441 			mmc_hostname(mmc), level ? "en":"dis", ret);
1442 	else
1443 		msm_host->vqmmc_enabled = level;
1444 out:
1445 	return ret;
1446 }
1447 
1448 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1449 			      struct mmc_host *mmc, bool hpm)
1450 {
1451 	int load, ret;
1452 
1453 	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1454 	ret = regulator_set_load(mmc->supply.vqmmc, load);
1455 	if (ret)
1456 		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1457 			mmc_hostname(mmc), ret);
1458 	return ret;
1459 }
1460 
1461 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1462 			      struct mmc_host *mmc, bool level)
1463 {
1464 	int ret;
1465 	bool always_on;
1466 
1467 	if (IS_ERR(mmc->supply.vqmmc) ||
1468 			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1469 		return 0;
1470 	/*
1471 	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1472 	 * and HPM modes by setting the corresponding load.
1473 	 *
1474 	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1475 	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1476 	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1477 	 * Vqmmc should remain ON, So just set the load instead of turning it
1478 	 * off/on.
1479 	 */
1480 	always_on = !mmc_card_is_removable(mmc) &&
1481 			mmc->card && mmc_card_mmc(mmc->card);
1482 
1483 	if (always_on)
1484 		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1485 	else
1486 		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1487 
1488 	return ret;
1489 }
1490 
1491 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1492 {
1493 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1494 }
1495 
1496 static inline void sdhci_msm_complete_pwr_irq_wait(
1497 		struct sdhci_msm_host *msm_host)
1498 {
1499 	wake_up(&msm_host->pwr_irq_wait);
1500 }
1501 
1502 /*
1503  * sdhci_msm_check_power_status API should be called when registers writes
1504  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1505  * To what state the register writes will change the IO lines should be passed
1506  * as the argument req_type. This API will check whether the IO line's state
1507  * is already the expected state and will wait for power irq only if
1508  * power irq is expected to be triggered based on the current IO line state
1509  * and expected IO line state.
1510  */
1511 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1512 {
1513 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1514 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1515 	bool done = false;
1516 	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1517 	const struct sdhci_msm_offset *msm_offset =
1518 					msm_host->offset;
1519 
1520 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1521 			mmc_hostname(host->mmc), __func__, req_type,
1522 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1523 
1524 	/*
1525 	 * The power interrupt will not be generated for signal voltage
1526 	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1527 	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1528 	 * it as always set.
1529 	 */
1530 	if (!msm_host->mci_removed)
1531 		val = msm_host_readl(msm_host, host,
1532 				msm_offset->core_generics);
1533 	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1534 	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1535 		return;
1536 	}
1537 
1538 	/*
1539 	 * The IRQ for request type IO High/LOW will be generated when -
1540 	 * there is a state change in 1.8V enable bit (bit 3) of
1541 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1542 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1543 	 * to set it to 3.3V before card detection happens, the
1544 	 * IRQ doesn't get triggered as there is no state change in this bit.
1545 	 * The driver already handles this case by changing the IO voltage
1546 	 * level to high as part of controller power up sequence. Hence, check
1547 	 * for host->pwr to handle a case where IO voltage high request is
1548 	 * issued even before controller power up.
1549 	 */
1550 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1551 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1552 				mmc_hostname(host->mmc), req_type);
1553 		return;
1554 	}
1555 	if ((req_type & msm_host->curr_pwr_state) ||
1556 			(req_type & msm_host->curr_io_level))
1557 		done = true;
1558 	/*
1559 	 * This is needed here to handle cases where register writes will
1560 	 * not change the current bus state or io level of the controller.
1561 	 * In this case, no power irq will be triggerred and we should
1562 	 * not wait.
1563 	 */
1564 	if (!done) {
1565 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1566 				msm_host->pwr_irq_flag,
1567 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1568 			dev_warn(&msm_host->pdev->dev,
1569 				 "%s: pwr_irq for req: (%d) timed out\n",
1570 				 mmc_hostname(host->mmc), req_type);
1571 	}
1572 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1573 			__func__, req_type);
1574 }
1575 
1576 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1577 {
1578 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1579 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1580 	const struct sdhci_msm_offset *msm_offset =
1581 					msm_host->offset;
1582 
1583 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1584 		mmc_hostname(host->mmc),
1585 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1586 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1587 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1588 }
1589 
1590 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1591 {
1592 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1593 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1594 	struct mmc_host *mmc = host->mmc;
1595 	u32 irq_status, irq_ack = 0;
1596 	int retry = 10, ret;
1597 	u32 pwr_state = 0, io_level = 0;
1598 	u32 config;
1599 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1600 
1601 	irq_status = msm_host_readl(msm_host, host,
1602 			msm_offset->core_pwrctl_status);
1603 	irq_status &= INT_MASK;
1604 
1605 	msm_host_writel(msm_host, irq_status, host,
1606 			msm_offset->core_pwrctl_clear);
1607 
1608 	/*
1609 	 * There is a rare HW scenario where the first clear pulse could be
1610 	 * lost when actual reset and clear/read of status register is
1611 	 * happening at a time. Hence, retry for at least 10 times to make
1612 	 * sure status register is cleared. Otherwise, this will result in
1613 	 * a spurious power IRQ resulting in system instability.
1614 	 */
1615 	while (irq_status & msm_host_readl(msm_host, host,
1616 				msm_offset->core_pwrctl_status)) {
1617 		if (retry == 0) {
1618 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1619 					mmc_hostname(host->mmc), irq_status);
1620 			sdhci_msm_dump_pwr_ctrl_regs(host);
1621 			WARN_ON(1);
1622 			break;
1623 		}
1624 		msm_host_writel(msm_host, irq_status, host,
1625 			msm_offset->core_pwrctl_clear);
1626 		retry--;
1627 		udelay(10);
1628 	}
1629 
1630 	/* Handle BUS ON/OFF*/
1631 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1632 		pwr_state = REQ_BUS_ON;
1633 		io_level = REQ_IO_HIGH;
1634 	}
1635 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1636 		pwr_state = REQ_BUS_OFF;
1637 		io_level = REQ_IO_LOW;
1638 	}
1639 
1640 	if (pwr_state) {
1641 		ret = sdhci_msm_set_vmmc(mmc);
1642 		if (!ret)
1643 			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1644 					pwr_state & REQ_BUS_ON);
1645 		if (!ret)
1646 			ret = sdhci_msm_set_pincfg(msm_host,
1647 					pwr_state & REQ_BUS_ON);
1648 		if (!ret)
1649 			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1650 		else
1651 			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1652 	}
1653 
1654 	/* Handle IO LOW/HIGH */
1655 	if (irq_status & CORE_PWRCTL_IO_LOW)
1656 		io_level = REQ_IO_LOW;
1657 
1658 	if (irq_status & CORE_PWRCTL_IO_HIGH)
1659 		io_level = REQ_IO_HIGH;
1660 
1661 	if (io_level)
1662 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1663 
1664 	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1665 		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1666 		if (ret < 0) {
1667 			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1668 					mmc_hostname(mmc), ret,
1669 					mmc->ios.signal_voltage, mmc->ios.vdd,
1670 					irq_status);
1671 			irq_ack |= CORE_PWRCTL_IO_FAIL;
1672 		}
1673 	}
1674 
1675 	/*
1676 	 * The driver has to acknowledge the interrupt, switch voltages and
1677 	 * report back if it succeded or not to this register. The voltage
1678 	 * switches are handled by the sdhci core, so just report success.
1679 	 */
1680 	msm_host_writel(msm_host, irq_ack, host,
1681 			msm_offset->core_pwrctl_ctl);
1682 
1683 	/*
1684 	 * If we don't have info regarding the voltage levels supported by
1685 	 * regulators, don't change the IO PAD PWR SWITCH.
1686 	 */
1687 	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1688 		u32 new_config;
1689 		/*
1690 		 * We should unset IO PAD PWR switch only if the register write
1691 		 * can set IO lines high and the regulator also switches to 3 V.
1692 		 * Else, we should keep the IO PAD PWR switch set.
1693 		 * This is applicable to certain targets where eMMC vccq supply
1694 		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1695 		 * IO PAD PWR switch must be kept set to reflect actual
1696 		 * regulator voltage. This way, during initialization of
1697 		 * controllers with only 1.8V, we will set the IO PAD bit
1698 		 * without waiting for a REQ_IO_LOW.
1699 		 */
1700 		config = readl_relaxed(host->ioaddr +
1701 				msm_offset->core_vendor_spec);
1702 		new_config = config;
1703 
1704 		if ((io_level & REQ_IO_HIGH) &&
1705 				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1706 			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1707 		else if ((io_level & REQ_IO_LOW) ||
1708 				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1709 			new_config |= CORE_IO_PAD_PWR_SWITCH;
1710 
1711 		if (config ^ new_config)
1712 			writel_relaxed(new_config, host->ioaddr +
1713 					msm_offset->core_vendor_spec);
1714 	}
1715 
1716 	if (pwr_state)
1717 		msm_host->curr_pwr_state = pwr_state;
1718 	if (io_level)
1719 		msm_host->curr_io_level = io_level;
1720 
1721 	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1722 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1723 		irq_ack);
1724 }
1725 
1726 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1727 {
1728 	struct sdhci_host *host = (struct sdhci_host *)data;
1729 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1730 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1731 
1732 	sdhci_msm_handle_pwr_irq(host, irq);
1733 	msm_host->pwr_irq_flag = 1;
1734 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1735 
1736 
1737 	return IRQ_HANDLED;
1738 }
1739 
1740 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1741 {
1742 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1743 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1744 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1745 
1746 	return clk_round_rate(core_clk, ULONG_MAX);
1747 }
1748 
1749 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1750 {
1751 	return SDHCI_MSM_MIN_CLOCK;
1752 }
1753 
1754 /*
1755  * __sdhci_msm_set_clock - sdhci_msm clock control.
1756  *
1757  * Description:
1758  * MSM controller does not use internal divider and
1759  * instead directly control the GCC clock as per
1760  * HW recommendation.
1761  **/
1762 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1763 {
1764 	u16 clk;
1765 
1766 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1767 
1768 	if (clock == 0)
1769 		return;
1770 
1771 	/*
1772 	 * MSM controller do not use clock divider.
1773 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1774 	 * clock with no divider value programmed.
1775 	 */
1776 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1777 	sdhci_enable_clk(host, clk);
1778 }
1779 
1780 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1781 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1782 {
1783 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1784 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1785 
1786 	if (!clock) {
1787 		host->mmc->actual_clock = msm_host->clk_rate = 0;
1788 		goto out;
1789 	}
1790 
1791 	sdhci_msm_hc_select_mode(host);
1792 
1793 	msm_set_clock_rate_for_bus_mode(host, clock);
1794 out:
1795 	__sdhci_msm_set_clock(host, clock);
1796 }
1797 
1798 /*****************************************************************************\
1799  *                                                                           *
1800  * Inline Crypto Engine (ICE) support                                        *
1801  *                                                                           *
1802 \*****************************************************************************/
1803 
1804 #ifdef CONFIG_MMC_CRYPTO
1805 
1806 #define AES_256_XTS_KEY_SIZE			64
1807 
1808 /* QCOM ICE registers */
1809 
1810 #define QCOM_ICE_REG_VERSION			0x0008
1811 
1812 #define QCOM_ICE_REG_FUSE_SETTING		0x0010
1813 #define QCOM_ICE_FUSE_SETTING_MASK		0x1
1814 #define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK	0x2
1815 #define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK	0x4
1816 
1817 #define QCOM_ICE_REG_BIST_STATUS		0x0070
1818 #define QCOM_ICE_BIST_STATUS_MASK		0xF0000000
1819 
1820 #define QCOM_ICE_REG_ADVANCED_CONTROL		0x1000
1821 
1822 #define sdhci_msm_ice_writel(host, val, reg)	\
1823 	writel((val), (host)->ice_mem + (reg))
1824 #define sdhci_msm_ice_readl(host, reg)	\
1825 	readl((host)->ice_mem + (reg))
1826 
1827 static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
1828 {
1829 	struct device *dev = mmc_dev(msm_host->mmc);
1830 	u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
1831 	int major = regval >> 24;
1832 	int minor = (regval >> 16) & 0xFF;
1833 	int step = regval & 0xFFFF;
1834 
1835 	/* For now this driver only supports ICE version 3. */
1836 	if (major != 3) {
1837 		dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
1838 			 major, minor, step);
1839 		return false;
1840 	}
1841 
1842 	dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
1843 		 major, minor, step);
1844 
1845 	/* If fuses are blown, ICE might not work in the standard way. */
1846 	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
1847 	if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
1848 		      QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
1849 		      QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
1850 		dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
1851 		return false;
1852 	}
1853 	return true;
1854 }
1855 
1856 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
1857 {
1858 	return devm_clk_get(dev, "ice");
1859 }
1860 
1861 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1862 			      struct cqhci_host *cq_host)
1863 {
1864 	struct mmc_host *mmc = msm_host->mmc;
1865 	struct device *dev = mmc_dev(mmc);
1866 	struct resource *res;
1867 
1868 	if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1869 		return 0;
1870 
1871 	res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
1872 					   "ice");
1873 	if (!res) {
1874 		dev_warn(dev, "ICE registers not found\n");
1875 		goto disable;
1876 	}
1877 
1878 	if (!qcom_scm_ice_available()) {
1879 		dev_warn(dev, "ICE SCM interface not found\n");
1880 		goto disable;
1881 	}
1882 
1883 	msm_host->ice_mem = devm_ioremap_resource(dev, res);
1884 	if (IS_ERR(msm_host->ice_mem))
1885 		return PTR_ERR(msm_host->ice_mem);
1886 
1887 	if (!sdhci_msm_ice_supported(msm_host))
1888 		goto disable;
1889 
1890 	mmc->caps2 |= MMC_CAP2_CRYPTO;
1891 	return 0;
1892 
1893 disable:
1894 	dev_warn(dev, "Disabling inline encryption support\n");
1895 	return 0;
1896 }
1897 
1898 static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
1899 {
1900 	u32 regval;
1901 
1902 	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1903 	/*
1904 	 * Enable low power mode sequence
1905 	 * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
1906 	 */
1907 	regval |= 0x7000;
1908 	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1909 }
1910 
1911 static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
1912 {
1913 	u32 regval;
1914 
1915 	/* ICE Optimizations Enable Sequence */
1916 	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1917 	regval |= 0xD807100;
1918 	/* ICE HPG requires delay before writing */
1919 	udelay(5);
1920 	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1921 	udelay(5);
1922 }
1923 
1924 /*
1925  * Wait until the ICE BIST (built-in self-test) has completed.
1926  *
1927  * This may be necessary before ICE can be used.
1928  *
1929  * Note that we don't really care whether the BIST passed or failed; we really
1930  * just want to make sure that it isn't still running.  This is because (a) the
1931  * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
1932  * documented to reject crypto requests if the BIST fails, so we needn't do it
1933  * in software too, and (c) properly testing storage encryption requires testing
1934  * the full storage stack anyway, and not relying on hardware-level self-tests.
1935  */
1936 static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
1937 {
1938 	u32 regval;
1939 	int err;
1940 
1941 	err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
1942 				 regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
1943 				 50, 5000);
1944 	if (err)
1945 		dev_err(mmc_dev(msm_host->mmc),
1946 			"Timed out waiting for ICE self-test to complete\n");
1947 	return err;
1948 }
1949 
1950 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1951 {
1952 	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1953 		return;
1954 	sdhci_msm_ice_low_power_mode_enable(msm_host);
1955 	sdhci_msm_ice_optimization_enable(msm_host);
1956 	sdhci_msm_ice_wait_bist_status(msm_host);
1957 }
1958 
1959 static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1960 {
1961 	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1962 		return 0;
1963 	return sdhci_msm_ice_wait_bist_status(msm_host);
1964 }
1965 
1966 /*
1967  * Program a key into a QC ICE keyslot, or evict a keyslot.  QC ICE requires
1968  * vendor-specific SCM calls for this; it doesn't support the standard way.
1969  */
1970 static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1971 				 const union cqhci_crypto_cfg_entry *cfg,
1972 				 int slot)
1973 {
1974 	struct device *dev = mmc_dev(cq_host->mmc);
1975 	union cqhci_crypto_cap_entry cap;
1976 	union {
1977 		u8 bytes[AES_256_XTS_KEY_SIZE];
1978 		u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
1979 	} key;
1980 	int i;
1981 	int err;
1982 
1983 	if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
1984 		return qcom_scm_ice_invalidate_key(slot);
1985 
1986 	/* Only AES-256-XTS has been tested so far. */
1987 	cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1988 	if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1989 	    cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
1990 		dev_err_ratelimited(dev,
1991 				    "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
1992 				    cap.algorithm_id, cap.key_size);
1993 		return -EINVAL;
1994 	}
1995 
1996 	memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
1997 
1998 	/*
1999 	 * The SCM call byte-swaps the 32-bit words of the key.  So we have to
2000 	 * do the same, in order for the final key be correct.
2001 	 */
2002 	for (i = 0; i < ARRAY_SIZE(key.words); i++)
2003 		__cpu_to_be32s(&key.words[i]);
2004 
2005 	err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
2006 				   QCOM_SCM_ICE_CIPHER_AES_256_XTS,
2007 				   cfg->data_unit_size);
2008 	memzero_explicit(&key, sizeof(key));
2009 	return err;
2010 }
2011 #else /* CONFIG_MMC_CRYPTO */
2012 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
2013 {
2014 	return NULL;
2015 }
2016 
2017 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
2018 				     struct cqhci_host *cq_host)
2019 {
2020 	return 0;
2021 }
2022 
2023 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
2024 {
2025 }
2026 
2027 static inline int __maybe_unused
2028 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
2029 {
2030 	return 0;
2031 }
2032 #endif /* !CONFIG_MMC_CRYPTO */
2033 
2034 /*****************************************************************************\
2035  *                                                                           *
2036  * MSM Command Queue Engine (CQE)                                            *
2037  *                                                                           *
2038 \*****************************************************************************/
2039 
2040 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
2041 {
2042 	int cmd_error = 0;
2043 	int data_error = 0;
2044 
2045 	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
2046 		return intmask;
2047 
2048 	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
2049 	return 0;
2050 }
2051 
2052 static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
2053 {
2054 	struct sdhci_host *host = mmc_priv(mmc);
2055 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2056 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2057 
2058 	sdhci_cqe_enable(mmc);
2059 	sdhci_msm_ice_enable(msm_host);
2060 }
2061 
2062 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
2063 {
2064 	struct sdhci_host *host = mmc_priv(mmc);
2065 	unsigned long flags;
2066 	u32 ctrl;
2067 
2068 	/*
2069 	 * When CQE is halted, the legacy SDHCI path operates only
2070 	 * on 16-byte descriptors in 64bit mode.
2071 	 */
2072 	if (host->flags & SDHCI_USE_64_BIT_DMA)
2073 		host->desc_sz = 16;
2074 
2075 	spin_lock_irqsave(&host->lock, flags);
2076 
2077 	/*
2078 	 * During CQE command transfers, command complete bit gets latched.
2079 	 * So s/w should clear command complete interrupt status when CQE is
2080 	 * either halted or disabled. Otherwise unexpected SDCHI legacy
2081 	 * interrupt gets triggered when CQE is halted/disabled.
2082 	 */
2083 	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2084 	ctrl |= SDHCI_INT_RESPONSE;
2085 	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
2086 	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2087 
2088 	spin_unlock_irqrestore(&host->lock, flags);
2089 
2090 	sdhci_cqe_disable(mmc, recovery);
2091 }
2092 
2093 static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
2094 {
2095 	u32 count, start = 15;
2096 
2097 	__sdhci_set_timeout(host, cmd);
2098 	count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
2099 	/*
2100 	 * Update software timeout value if its value is less than hardware data
2101 	 * timeout value. Qcom SoC hardware data timeout value was calculated
2102 	 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
2103 	 */
2104 	if (cmd && cmd->data && host->clock > 400000 &&
2105 	    host->clock <= 50000000 &&
2106 	    ((1 << (count + start)) > (10 * host->clock)))
2107 		host->data_timeout = 22LL * NSEC_PER_SEC;
2108 }
2109 
2110 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2111 	.enable		= sdhci_msm_cqe_enable,
2112 	.disable	= sdhci_msm_cqe_disable,
2113 #ifdef CONFIG_MMC_CRYPTO
2114 	.program_key	= sdhci_msm_program_key,
2115 #endif
2116 };
2117 
2118 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2119 				struct platform_device *pdev)
2120 {
2121 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2122 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2123 	struct cqhci_host *cq_host;
2124 	bool dma64;
2125 	u32 cqcfg;
2126 	int ret;
2127 
2128 	/*
2129 	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2130 	 * So ensure ADMA table is allocated for 16byte descriptors.
2131 	 */
2132 	if (host->caps & SDHCI_CAN_64BIT)
2133 		host->alloc_desc_sz = 16;
2134 
2135 	ret = sdhci_setup_host(host);
2136 	if (ret)
2137 		return ret;
2138 
2139 	cq_host = cqhci_pltfm_init(pdev);
2140 	if (IS_ERR(cq_host)) {
2141 		ret = PTR_ERR(cq_host);
2142 		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2143 		goto cleanup;
2144 	}
2145 
2146 	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2147 	cq_host->ops = &sdhci_msm_cqhci_ops;
2148 
2149 	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2150 
2151 	ret = sdhci_msm_ice_init(msm_host, cq_host);
2152 	if (ret)
2153 		goto cleanup;
2154 
2155 	ret = cqhci_init(cq_host, host->mmc, dma64);
2156 	if (ret) {
2157 		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2158 				mmc_hostname(host->mmc), ret);
2159 		goto cleanup;
2160 	}
2161 
2162 	/* Disable cqe reset due to cqe enable signal */
2163 	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2164 	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2165 	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2166 
2167 	/*
2168 	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2169 	 * So limit desc_sz to 12 so that the data commands that are sent
2170 	 * during card initialization (before CQE gets enabled) would
2171 	 * get executed without any issues.
2172 	 */
2173 	if (host->flags & SDHCI_USE_64_BIT_DMA)
2174 		host->desc_sz = 12;
2175 
2176 	ret = __sdhci_add_host(host);
2177 	if (ret)
2178 		goto cleanup;
2179 
2180 	dev_info(&pdev->dev, "%s: CQE init: success\n",
2181 			mmc_hostname(host->mmc));
2182 	return ret;
2183 
2184 cleanup:
2185 	sdhci_cleanup_host(host);
2186 	return ret;
2187 }
2188 
2189 /*
2190  * Platform specific register write functions. This is so that, if any
2191  * register write needs to be followed up by platform specific actions,
2192  * they can be added here. These functions can go to sleep when writes
2193  * to certain registers are done.
2194  * These functions are relying on sdhci_set_ios not using spinlock.
2195  */
2196 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2197 {
2198 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2199 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2200 	u32 req_type = 0;
2201 
2202 	switch (reg) {
2203 	case SDHCI_HOST_CONTROL2:
2204 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2205 			REQ_IO_HIGH;
2206 		break;
2207 	case SDHCI_SOFTWARE_RESET:
2208 		if (host->pwr && (val & SDHCI_RESET_ALL))
2209 			req_type = REQ_BUS_OFF;
2210 		break;
2211 	case SDHCI_POWER_CONTROL:
2212 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2213 		break;
2214 	case SDHCI_TRANSFER_MODE:
2215 		msm_host->transfer_mode = val;
2216 		break;
2217 	case SDHCI_COMMAND:
2218 		if (!msm_host->use_cdr)
2219 			break;
2220 		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2221 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
2222 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
2223 			sdhci_msm_set_cdr(host, true);
2224 		else
2225 			sdhci_msm_set_cdr(host, false);
2226 		break;
2227 	}
2228 
2229 	if (req_type) {
2230 		msm_host->pwr_irq_flag = 0;
2231 		/*
2232 		 * Since this register write may trigger a power irq, ensure
2233 		 * all previous register writes are complete by this point.
2234 		 */
2235 		mb();
2236 	}
2237 	return req_type;
2238 }
2239 
2240 /* This function may sleep*/
2241 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2242 {
2243 	u32 req_type = 0;
2244 
2245 	req_type = __sdhci_msm_check_write(host, val, reg);
2246 	writew_relaxed(val, host->ioaddr + reg);
2247 
2248 	if (req_type)
2249 		sdhci_msm_check_power_status(host, req_type);
2250 }
2251 
2252 /* This function may sleep*/
2253 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2254 {
2255 	u32 req_type = 0;
2256 
2257 	req_type = __sdhci_msm_check_write(host, val, reg);
2258 
2259 	writeb_relaxed(val, host->ioaddr + reg);
2260 
2261 	if (req_type)
2262 		sdhci_msm_check_power_status(host, req_type);
2263 }
2264 
2265 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2266 {
2267 	struct mmc_host *mmc = msm_host->mmc;
2268 	struct regulator *supply = mmc->supply.vqmmc;
2269 	u32 caps = 0, config;
2270 	struct sdhci_host *host = mmc_priv(mmc);
2271 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2272 
2273 	if (!IS_ERR(mmc->supply.vqmmc)) {
2274 		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2275 			caps |= CORE_1_8V_SUPPORT;
2276 		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2277 			caps |= CORE_3_0V_SUPPORT;
2278 
2279 		if (!caps)
2280 			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2281 					mmc_hostname(mmc));
2282 	}
2283 
2284 	if (caps) {
2285 		/*
2286 		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2287 		 * bit can be used as required later on.
2288 		 */
2289 		u32 io_level = msm_host->curr_io_level;
2290 
2291 		config = readl_relaxed(host->ioaddr +
2292 				msm_offset->core_vendor_spec);
2293 		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2294 
2295 		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2296 			config &= ~CORE_IO_PAD_PWR_SWITCH;
2297 		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2298 			config |= CORE_IO_PAD_PWR_SWITCH;
2299 
2300 		writel_relaxed(config,
2301 				host->ioaddr + msm_offset->core_vendor_spec);
2302 	}
2303 	msm_host->caps_0 |= caps;
2304 	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2305 }
2306 
2307 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
2308 {
2309 	if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
2310 		cqhci_deactivate(host->mmc);
2311 	sdhci_reset(host, mask);
2312 }
2313 
2314 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2315 {
2316 	int ret;
2317 
2318 	ret = mmc_regulator_get_supply(msm_host->mmc);
2319 	if (ret)
2320 		return ret;
2321 
2322 	sdhci_msm_set_regulator_caps(msm_host);
2323 
2324 	return 0;
2325 }
2326 
2327 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2328 				      struct mmc_ios *ios)
2329 {
2330 	struct sdhci_host *host = mmc_priv(mmc);
2331 	u16 ctrl, status;
2332 
2333 	/*
2334 	 * Signal Voltage Switching is only applicable for Host Controllers
2335 	 * v3.00 and above.
2336 	 */
2337 	if (host->version < SDHCI_SPEC_300)
2338 		return 0;
2339 
2340 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2341 
2342 	switch (ios->signal_voltage) {
2343 	case MMC_SIGNAL_VOLTAGE_330:
2344 		if (!(host->flags & SDHCI_SIGNALING_330))
2345 			return -EINVAL;
2346 
2347 		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2348 		ctrl &= ~SDHCI_CTRL_VDD_180;
2349 		break;
2350 	case MMC_SIGNAL_VOLTAGE_180:
2351 		if (!(host->flags & SDHCI_SIGNALING_180))
2352 			return -EINVAL;
2353 
2354 		/* Enable 1.8V Signal Enable in the Host Control2 register */
2355 		ctrl |= SDHCI_CTRL_VDD_180;
2356 		break;
2357 
2358 	default:
2359 		return -EINVAL;
2360 	}
2361 
2362 	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2363 
2364 	/* Wait for 5ms */
2365 	usleep_range(5000, 5500);
2366 
2367 	/* regulator output should be stable within 5 ms */
2368 	status = ctrl & SDHCI_CTRL_VDD_180;
2369 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2370 	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2371 		return 0;
2372 
2373 	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2374 		mmc_hostname(mmc));
2375 
2376 	return -EAGAIN;
2377 }
2378 
2379 #define DRIVER_NAME "sdhci_msm"
2380 #define SDHCI_MSM_DUMP(f, x...) \
2381 	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2382 
2383 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2384 {
2385 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2386 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2387 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2388 
2389 	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2390 
2391 	SDHCI_MSM_DUMP(
2392 			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2393 		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2394 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2395 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2396 	SDHCI_MSM_DUMP(
2397 			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2398 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2399 		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2400 		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2401 	SDHCI_MSM_DUMP(
2402 			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2403 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2404 		readl_relaxed(host->ioaddr +
2405 			msm_offset->core_vendor_spec_func2),
2406 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2407 }
2408 
2409 static const struct sdhci_msm_variant_ops mci_var_ops = {
2410 	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2411 	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2412 };
2413 
2414 static const struct sdhci_msm_variant_ops v5_var_ops = {
2415 	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2416 	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2417 };
2418 
2419 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2420 	.var_ops = &mci_var_ops,
2421 	.offset = &sdhci_msm_mci_offset,
2422 };
2423 
2424 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2425 	.mci_removed = true,
2426 	.var_ops = &v5_var_ops,
2427 	.offset = &sdhci_msm_v5_offset,
2428 };
2429 
2430 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2431 	.mci_removed = true,
2432 	.restore_dll_config = true,
2433 	.var_ops = &v5_var_ops,
2434 	.offset = &sdhci_msm_v5_offset,
2435 };
2436 
2437 static const struct of_device_id sdhci_msm_dt_match[] = {
2438 	/*
2439 	 * Do not add new variants to the driver which are compatible with
2440 	 * generic ones, unless they need customization.
2441 	 */
2442 	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2443 	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2444 	{.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2445 	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2446 	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2447 	{},
2448 };
2449 
2450 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2451 
2452 static const struct sdhci_ops sdhci_msm_ops = {
2453 	.reset = sdhci_msm_reset,
2454 	.set_clock = sdhci_msm_set_clock,
2455 	.get_min_clock = sdhci_msm_get_min_clock,
2456 	.get_max_clock = sdhci_msm_get_max_clock,
2457 	.set_bus_width = sdhci_set_bus_width,
2458 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2459 	.write_w = sdhci_msm_writew,
2460 	.write_b = sdhci_msm_writeb,
2461 	.irq	= sdhci_msm_cqe_irq,
2462 	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2463 	.set_power = sdhci_set_power_noreg,
2464 	.set_timeout = sdhci_msm_set_timeout,
2465 };
2466 
2467 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2468 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2469 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2470 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2471 		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2472 
2473 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2474 	.ops = &sdhci_msm_ops,
2475 };
2476 
2477 static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2478 		struct sdhci_host *host)
2479 {
2480 	struct device_node *node = pdev->dev.of_node;
2481 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2482 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2483 
2484 	if (of_property_read_u32(node, "qcom,ddr-config",
2485 				&msm_host->ddr_config))
2486 		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2487 
2488 	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2489 }
2490 
2491 static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2492 {
2493 	struct reset_control *reset;
2494 	int ret = 0;
2495 
2496 	reset = reset_control_get_optional_exclusive(dev, NULL);
2497 	if (IS_ERR(reset))
2498 		return dev_err_probe(dev, PTR_ERR(reset),
2499 				"unable to acquire core_reset\n");
2500 
2501 	if (!reset)
2502 		return ret;
2503 
2504 	ret = reset_control_assert(reset);
2505 	if (ret) {
2506 		reset_control_put(reset);
2507 		return dev_err_probe(dev, ret, "core_reset assert failed\n");
2508 	}
2509 
2510 	/*
2511 	 * The hardware requirement for delay between assert/deassert
2512 	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2513 	 * ~125us (4/32768). To be on the safe side add 200us delay.
2514 	 */
2515 	usleep_range(200, 210);
2516 
2517 	ret = reset_control_deassert(reset);
2518 	if (ret) {
2519 		reset_control_put(reset);
2520 		return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2521 	}
2522 
2523 	usleep_range(200, 210);
2524 	reset_control_put(reset);
2525 
2526 	return ret;
2527 }
2528 
2529 static int sdhci_msm_probe(struct platform_device *pdev)
2530 {
2531 	struct sdhci_host *host;
2532 	struct sdhci_pltfm_host *pltfm_host;
2533 	struct sdhci_msm_host *msm_host;
2534 	struct clk *clk;
2535 	int ret;
2536 	u16 host_version, core_minor;
2537 	u32 core_version, config;
2538 	u8 core_major;
2539 	const struct sdhci_msm_offset *msm_offset;
2540 	const struct sdhci_msm_variant_info *var_info;
2541 	struct device_node *node = pdev->dev.of_node;
2542 
2543 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2544 	if (IS_ERR(host))
2545 		return PTR_ERR(host);
2546 
2547 	host->sdma_boundary = 0;
2548 	pltfm_host = sdhci_priv(host);
2549 	msm_host = sdhci_pltfm_priv(pltfm_host);
2550 	msm_host->mmc = host->mmc;
2551 	msm_host->pdev = pdev;
2552 
2553 	ret = mmc_of_parse(host->mmc);
2554 	if (ret)
2555 		goto pltfm_free;
2556 
2557 	/*
2558 	 * Based on the compatible string, load the required msm host info from
2559 	 * the data associated with the version info.
2560 	 */
2561 	var_info = of_device_get_match_data(&pdev->dev);
2562 
2563 	msm_host->mci_removed = var_info->mci_removed;
2564 	msm_host->restore_dll_config = var_info->restore_dll_config;
2565 	msm_host->var_ops = var_info->var_ops;
2566 	msm_host->offset = var_info->offset;
2567 
2568 	msm_offset = msm_host->offset;
2569 
2570 	sdhci_get_of_property(pdev);
2571 	sdhci_msm_get_of_property(pdev, host);
2572 
2573 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2574 
2575 	ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2576 	if (ret)
2577 		goto pltfm_free;
2578 
2579 	/* Setup SDCC bus voter clock. */
2580 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2581 	if (!IS_ERR(msm_host->bus_clk)) {
2582 		/* Vote for max. clk rate for max. performance */
2583 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2584 		if (ret)
2585 			goto pltfm_free;
2586 		ret = clk_prepare_enable(msm_host->bus_clk);
2587 		if (ret)
2588 			goto pltfm_free;
2589 	}
2590 
2591 	/* Setup main peripheral bus clock */
2592 	clk = devm_clk_get(&pdev->dev, "iface");
2593 	if (IS_ERR(clk)) {
2594 		ret = PTR_ERR(clk);
2595 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2596 		goto bus_clk_disable;
2597 	}
2598 	msm_host->bulk_clks[1].clk = clk;
2599 
2600 	/* Setup SDC MMC clock */
2601 	clk = devm_clk_get(&pdev->dev, "core");
2602 	if (IS_ERR(clk)) {
2603 		ret = PTR_ERR(clk);
2604 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2605 		goto bus_clk_disable;
2606 	}
2607 	msm_host->bulk_clks[0].clk = clk;
2608 
2609 	 /* Check for optional interconnect paths */
2610 	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2611 	if (ret)
2612 		goto bus_clk_disable;
2613 
2614 	ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2615 	if (ret)
2616 		goto bus_clk_disable;
2617 
2618 	/* OPP table is optional */
2619 	ret = devm_pm_opp_of_add_table(&pdev->dev);
2620 	if (ret && ret != -ENODEV) {
2621 		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2622 		goto bus_clk_disable;
2623 	}
2624 
2625 	/* Vote for maximum clock rate for maximum performance */
2626 	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2627 	if (ret)
2628 		dev_warn(&pdev->dev, "core clock boost failed\n");
2629 
2630 	clk = devm_clk_get(&pdev->dev, "cal");
2631 	if (IS_ERR(clk))
2632 		clk = NULL;
2633 	msm_host->bulk_clks[2].clk = clk;
2634 
2635 	clk = devm_clk_get(&pdev->dev, "sleep");
2636 	if (IS_ERR(clk))
2637 		clk = NULL;
2638 	msm_host->bulk_clks[3].clk = clk;
2639 
2640 	clk = sdhci_msm_ice_get_clk(&pdev->dev);
2641 	if (IS_ERR(clk))
2642 		clk = NULL;
2643 	msm_host->bulk_clks[4].clk = clk;
2644 
2645 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2646 				      msm_host->bulk_clks);
2647 	if (ret)
2648 		goto bus_clk_disable;
2649 
2650 	/*
2651 	 * xo clock is needed for FLL feature of cm_dll.
2652 	 * In case if xo clock is not mentioned in DT, warn and proceed.
2653 	 */
2654 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2655 	if (IS_ERR(msm_host->xo_clk)) {
2656 		ret = PTR_ERR(msm_host->xo_clk);
2657 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2658 	}
2659 
2660 	if (!msm_host->mci_removed) {
2661 		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2662 		if (IS_ERR(msm_host->core_mem)) {
2663 			ret = PTR_ERR(msm_host->core_mem);
2664 			goto clk_disable;
2665 		}
2666 	}
2667 
2668 	/* Reset the vendor spec register to power on reset state */
2669 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2670 			host->ioaddr + msm_offset->core_vendor_spec);
2671 
2672 	if (!msm_host->mci_removed) {
2673 		/* Set HC_MODE_EN bit in HC_MODE register */
2674 		msm_host_writel(msm_host, HC_MODE_EN, host,
2675 				msm_offset->core_hc_mode);
2676 		config = msm_host_readl(msm_host, host,
2677 				msm_offset->core_hc_mode);
2678 		config |= FF_CLK_SW_RST_DIS;
2679 		msm_host_writel(msm_host, config, host,
2680 				msm_offset->core_hc_mode);
2681 	}
2682 
2683 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2684 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2685 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2686 			       SDHCI_VENDOR_VER_SHIFT));
2687 
2688 	core_version = msm_host_readl(msm_host, host,
2689 			msm_offset->core_mci_version);
2690 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2691 		      CORE_VERSION_MAJOR_SHIFT;
2692 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2693 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2694 		core_version, core_major, core_minor);
2695 
2696 	if (core_major == 1 && core_minor >= 0x42)
2697 		msm_host->use_14lpp_dll_reset = true;
2698 
2699 	/*
2700 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2701 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2702 	 */
2703 	if (core_major == 1 && core_minor < 0x34)
2704 		msm_host->use_cdclp533 = true;
2705 
2706 	/*
2707 	 * Support for some capabilities is not advertised by newer
2708 	 * controller versions and must be explicitly enabled.
2709 	 */
2710 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2711 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2712 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2713 		writel_relaxed(config, host->ioaddr +
2714 				msm_offset->core_vendor_spec_capabilities0);
2715 	}
2716 
2717 	if (core_major == 1 && core_minor >= 0x49)
2718 		msm_host->updated_ddr_cfg = true;
2719 
2720 	if (core_major == 1 && core_minor >= 0x71)
2721 		msm_host->uses_tassadar_dll = true;
2722 
2723 	ret = sdhci_msm_register_vreg(msm_host);
2724 	if (ret)
2725 		goto clk_disable;
2726 
2727 	/*
2728 	 * Power on reset state may trigger power irq if previous status of
2729 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2730 	 * interrupt in GIC, any pending power irq interrupt should be
2731 	 * acknowledged. Otherwise power irq interrupt handler would be
2732 	 * fired prematurely.
2733 	 */
2734 	sdhci_msm_handle_pwr_irq(host, 0);
2735 
2736 	/*
2737 	 * Ensure that above writes are propogated before interrupt enablement
2738 	 * in GIC.
2739 	 */
2740 	mb();
2741 
2742 	/* Setup IRQ for handling power/voltage tasks with PMIC */
2743 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2744 	if (msm_host->pwr_irq < 0) {
2745 		ret = msm_host->pwr_irq;
2746 		goto clk_disable;
2747 	}
2748 
2749 	sdhci_msm_init_pwr_irq_wait(msm_host);
2750 	/* Enable pwr irq interrupts */
2751 	msm_host_writel(msm_host, INT_MASK, host,
2752 		msm_offset->core_pwrctl_mask);
2753 
2754 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2755 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2756 					dev_name(&pdev->dev), host);
2757 	if (ret) {
2758 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2759 		goto clk_disable;
2760 	}
2761 
2762 	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2763 
2764 	/* Set the timeout value to max possible */
2765 	host->max_timeout_count = 0xF;
2766 
2767 	pm_runtime_get_noresume(&pdev->dev);
2768 	pm_runtime_set_active(&pdev->dev);
2769 	pm_runtime_enable(&pdev->dev);
2770 	pm_runtime_set_autosuspend_delay(&pdev->dev,
2771 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2772 	pm_runtime_use_autosuspend(&pdev->dev);
2773 
2774 	host->mmc_host_ops.start_signal_voltage_switch =
2775 		sdhci_msm_start_signal_voltage_switch;
2776 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2777 	if (of_property_read_bool(node, "supports-cqe"))
2778 		ret = sdhci_msm_cqe_add_host(host, pdev);
2779 	else
2780 		ret = sdhci_add_host(host);
2781 	if (ret)
2782 		goto pm_runtime_disable;
2783 
2784 	pm_runtime_mark_last_busy(&pdev->dev);
2785 	pm_runtime_put_autosuspend(&pdev->dev);
2786 
2787 	return 0;
2788 
2789 pm_runtime_disable:
2790 	pm_runtime_disable(&pdev->dev);
2791 	pm_runtime_set_suspended(&pdev->dev);
2792 	pm_runtime_put_noidle(&pdev->dev);
2793 clk_disable:
2794 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2795 				   msm_host->bulk_clks);
2796 bus_clk_disable:
2797 	if (!IS_ERR(msm_host->bus_clk))
2798 		clk_disable_unprepare(msm_host->bus_clk);
2799 pltfm_free:
2800 	sdhci_pltfm_free(pdev);
2801 	return ret;
2802 }
2803 
2804 static int sdhci_msm_remove(struct platform_device *pdev)
2805 {
2806 	struct sdhci_host *host = platform_get_drvdata(pdev);
2807 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2808 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2809 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2810 		    0xffffffff);
2811 
2812 	sdhci_remove_host(host, dead);
2813 
2814 	pm_runtime_get_sync(&pdev->dev);
2815 	pm_runtime_disable(&pdev->dev);
2816 	pm_runtime_put_noidle(&pdev->dev);
2817 
2818 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2819 				   msm_host->bulk_clks);
2820 	if (!IS_ERR(msm_host->bus_clk))
2821 		clk_disable_unprepare(msm_host->bus_clk);
2822 	sdhci_pltfm_free(pdev);
2823 	return 0;
2824 }
2825 
2826 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2827 {
2828 	struct sdhci_host *host = dev_get_drvdata(dev);
2829 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2830 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2831 
2832 	/* Drop the performance vote */
2833 	dev_pm_opp_set_rate(dev, 0);
2834 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2835 				   msm_host->bulk_clks);
2836 
2837 	return 0;
2838 }
2839 
2840 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2841 {
2842 	struct sdhci_host *host = dev_get_drvdata(dev);
2843 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2844 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2845 	int ret;
2846 
2847 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2848 				       msm_host->bulk_clks);
2849 	if (ret)
2850 		return ret;
2851 	/*
2852 	 * Whenever core-clock is gated dynamically, it's needed to
2853 	 * restore the SDR DLL settings when the clock is ungated.
2854 	 */
2855 	if (msm_host->restore_dll_config && msm_host->clk_rate) {
2856 		ret = sdhci_msm_restore_sdr_dll_config(host);
2857 		if (ret)
2858 			return ret;
2859 	}
2860 
2861 	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2862 
2863 	return sdhci_msm_ice_resume(msm_host);
2864 }
2865 
2866 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2867 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2868 				pm_runtime_force_resume)
2869 	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2870 			   sdhci_msm_runtime_resume,
2871 			   NULL)
2872 };
2873 
2874 static struct platform_driver sdhci_msm_driver = {
2875 	.probe = sdhci_msm_probe,
2876 	.remove = sdhci_msm_remove,
2877 	.driver = {
2878 		   .name = "sdhci_msm",
2879 		   .of_match_table = sdhci_msm_dt_match,
2880 		   .pm = &sdhci_msm_pm_ops,
2881 		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2882 	},
2883 };
2884 
2885 module_platform_driver(sdhci_msm_driver);
2886 
2887 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2888 MODULE_LICENSE("GPL v2");
2889