xref: /openbmc/linux/drivers/mmc/host/sdhci-msm.c (revision b2058cd9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4  *
5  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/delay.h>
11 #include <linux/mmc/mmc.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/pm_opp.h>
14 #include <linux/slab.h>
15 #include <linux/iopoll.h>
16 #include <linux/regulator/consumer.h>
17 #include <linux/interconnect.h>
18 #include <linux/pinctrl/consumer.h>
19 
20 #include "sdhci-pltfm.h"
21 #include "cqhci.h"
22 
23 #define CORE_MCI_VERSION		0x50
24 #define CORE_VERSION_MAJOR_SHIFT	28
25 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
26 #define CORE_VERSION_MINOR_MASK		0xff
27 
28 #define CORE_MCI_GENERICS		0x70
29 #define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
30 
31 #define HC_MODE_EN		0x1
32 #define CORE_POWER		0x0
33 #define CORE_SW_RST		BIT(7)
34 #define FF_CLK_SW_RST_DIS	BIT(13)
35 
36 #define CORE_PWRCTL_BUS_OFF	BIT(0)
37 #define CORE_PWRCTL_BUS_ON	BIT(1)
38 #define CORE_PWRCTL_IO_LOW	BIT(2)
39 #define CORE_PWRCTL_IO_HIGH	BIT(3)
40 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
41 #define CORE_PWRCTL_BUS_FAIL    BIT(1)
42 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
43 #define CORE_PWRCTL_IO_FAIL     BIT(3)
44 #define REQ_BUS_OFF		BIT(0)
45 #define REQ_BUS_ON		BIT(1)
46 #define REQ_IO_LOW		BIT(2)
47 #define REQ_IO_HIGH		BIT(3)
48 #define INT_MASK		0xf
49 #define MAX_PHASES		16
50 #define CORE_DLL_LOCK		BIT(7)
51 #define CORE_DDR_DLL_LOCK	BIT(11)
52 #define CORE_DLL_EN		BIT(16)
53 #define CORE_CDR_EN		BIT(17)
54 #define CORE_CK_OUT_EN		BIT(18)
55 #define CORE_CDR_EXT_EN		BIT(19)
56 #define CORE_DLL_PDN		BIT(29)
57 #define CORE_DLL_RST		BIT(30)
58 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
59 
60 #define CORE_DDR_CAL_EN		BIT(0)
61 #define CORE_FLL_CYCLE_CNT	BIT(18)
62 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
63 
64 #define DLL_USR_CTL_POR_VAL	0x10800
65 #define ENABLE_DLL_LOCK_STATUS	BIT(26)
66 #define FINE_TUNE_MODE_EN	BIT(27)
67 #define BIAS_OK_SIGNAL		BIT(29)
68 
69 #define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
70 #define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
71 
72 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c
73 #define CORE_CLK_PWRSAVE	BIT(1)
74 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
75 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
76 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
77 #define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
78 #define CORE_IO_PAD_PWR_SWITCH	BIT(16)
79 #define CORE_HC_SELECT_IN_EN	BIT(18)
80 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
81 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
82 
83 #define CORE_3_0V_SUPPORT	BIT(25)
84 #define CORE_1_8V_SUPPORT	BIT(26)
85 #define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
86 
87 #define CORE_CSR_CDC_CTLR_CFG0		0x130
88 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
89 #define CORE_HW_AUTOCAL_ENA		BIT(17)
90 
91 #define CORE_CSR_CDC_CTLR_CFG1		0x134
92 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
93 #define CORE_TIMER_ENA			BIT(16)
94 
95 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
96 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
97 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
98 #define CORE_CDC_OFFSET_CFG		0x14C
99 #define CORE_CSR_CDC_DELAY_CFG		0x150
100 #define CORE_CDC_SLAVE_DDA_CFG		0x160
101 #define CORE_CSR_CDC_STATUS0		0x164
102 #define CORE_CALIBRATION_DONE		BIT(0)
103 
104 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
105 
106 #define CORE_CSR_CDC_GEN_CFG		0x178
107 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
108 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
109 
110 #define CORE_CDC_T4_DLY_SEL		BIT(0)
111 #define CORE_CMDIN_RCLK_EN		BIT(1)
112 #define CORE_START_CDC_TRAFFIC		BIT(6)
113 
114 #define CORE_PWRSAVE_DLL	BIT(3)
115 
116 #define DDR_CONFIG_POR_VAL	0x80040873
117 
118 
119 #define INVALID_TUNING_PHASE	-1
120 #define SDHCI_MSM_MIN_CLOCK	400000
121 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
122 
123 #define CDR_SELEXT_SHIFT	20
124 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
125 #define CMUX_SHIFT_PHASE_SHIFT	24
126 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
127 
128 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
129 
130 /* Timeout value to avoid infinite waiting for pwr_irq */
131 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
132 
133 /* Max load for eMMC Vdd-io supply */
134 #define MMC_VQMMC_MAX_LOAD_UA	325000
135 
136 #define msm_host_readl(msm_host, host, offset) \
137 	msm_host->var_ops->msm_readl_relaxed(host, offset)
138 
139 #define msm_host_writel(msm_host, val, host, offset) \
140 	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
141 
142 /* CQHCI vendor specific registers */
143 #define CQHCI_VENDOR_CFG1	0xA00
144 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
145 
146 struct sdhci_msm_offset {
147 	u32 core_hc_mode;
148 	u32 core_mci_data_cnt;
149 	u32 core_mci_status;
150 	u32 core_mci_fifo_cnt;
151 	u32 core_mci_version;
152 	u32 core_generics;
153 	u32 core_testbus_config;
154 	u32 core_testbus_sel2_bit;
155 	u32 core_testbus_ena;
156 	u32 core_testbus_sel2;
157 	u32 core_pwrctl_status;
158 	u32 core_pwrctl_mask;
159 	u32 core_pwrctl_clear;
160 	u32 core_pwrctl_ctl;
161 	u32 core_sdcc_debug_reg;
162 	u32 core_dll_config;
163 	u32 core_dll_status;
164 	u32 core_vendor_spec;
165 	u32 core_vendor_spec_adma_err_addr0;
166 	u32 core_vendor_spec_adma_err_addr1;
167 	u32 core_vendor_spec_func2;
168 	u32 core_vendor_spec_capabilities0;
169 	u32 core_ddr_200_cfg;
170 	u32 core_vendor_spec3;
171 	u32 core_dll_config_2;
172 	u32 core_dll_config_3;
173 	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
174 	u32 core_ddr_config;
175 	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
176 };
177 
178 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
179 	.core_mci_data_cnt = 0x35c,
180 	.core_mci_status = 0x324,
181 	.core_mci_fifo_cnt = 0x308,
182 	.core_mci_version = 0x318,
183 	.core_generics = 0x320,
184 	.core_testbus_config = 0x32c,
185 	.core_testbus_sel2_bit = 3,
186 	.core_testbus_ena = (1 << 31),
187 	.core_testbus_sel2 = (1 << 3),
188 	.core_pwrctl_status = 0x240,
189 	.core_pwrctl_mask = 0x244,
190 	.core_pwrctl_clear = 0x248,
191 	.core_pwrctl_ctl = 0x24c,
192 	.core_sdcc_debug_reg = 0x358,
193 	.core_dll_config = 0x200,
194 	.core_dll_status = 0x208,
195 	.core_vendor_spec = 0x20c,
196 	.core_vendor_spec_adma_err_addr0 = 0x214,
197 	.core_vendor_spec_adma_err_addr1 = 0x218,
198 	.core_vendor_spec_func2 = 0x210,
199 	.core_vendor_spec_capabilities0 = 0x21c,
200 	.core_ddr_200_cfg = 0x224,
201 	.core_vendor_spec3 = 0x250,
202 	.core_dll_config_2 = 0x254,
203 	.core_dll_config_3 = 0x258,
204 	.core_ddr_config = 0x25c,
205 	.core_dll_usr_ctl = 0x388,
206 };
207 
208 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
209 	.core_hc_mode = 0x78,
210 	.core_mci_data_cnt = 0x30,
211 	.core_mci_status = 0x34,
212 	.core_mci_fifo_cnt = 0x44,
213 	.core_mci_version = 0x050,
214 	.core_generics = 0x70,
215 	.core_testbus_config = 0x0cc,
216 	.core_testbus_sel2_bit = 4,
217 	.core_testbus_ena = (1 << 3),
218 	.core_testbus_sel2 = (1 << 4),
219 	.core_pwrctl_status = 0xdc,
220 	.core_pwrctl_mask = 0xe0,
221 	.core_pwrctl_clear = 0xe4,
222 	.core_pwrctl_ctl = 0xe8,
223 	.core_sdcc_debug_reg = 0x124,
224 	.core_dll_config = 0x100,
225 	.core_dll_status = 0x108,
226 	.core_vendor_spec = 0x10c,
227 	.core_vendor_spec_adma_err_addr0 = 0x114,
228 	.core_vendor_spec_adma_err_addr1 = 0x118,
229 	.core_vendor_spec_func2 = 0x110,
230 	.core_vendor_spec_capabilities0 = 0x11c,
231 	.core_ddr_200_cfg = 0x184,
232 	.core_vendor_spec3 = 0x1b0,
233 	.core_dll_config_2 = 0x1b4,
234 	.core_ddr_config_old = 0x1b8,
235 	.core_ddr_config = 0x1bc,
236 };
237 
238 struct sdhci_msm_variant_ops {
239 	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
240 	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
241 			u32 offset);
242 };
243 
244 /*
245  * From V5, register spaces have changed. Wrap this info in a structure
246  * and choose the data_structure based on version info mentioned in DT.
247  */
248 struct sdhci_msm_variant_info {
249 	bool mci_removed;
250 	bool restore_dll_config;
251 	bool uses_tassadar_dll;
252 	const struct sdhci_msm_variant_ops *var_ops;
253 	const struct sdhci_msm_offset *offset;
254 };
255 
256 struct sdhci_msm_host {
257 	struct platform_device *pdev;
258 	void __iomem *core_mem;	/* MSM SDCC mapped address */
259 	int pwr_irq;		/* power irq */
260 	struct clk *bus_clk;	/* SDHC bus voter clock */
261 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
262 	struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
263 	unsigned long clk_rate;
264 	struct mmc_host *mmc;
265 	struct opp_table *opp_table;
266 	bool has_opp_table;
267 	bool use_14lpp_dll_reset;
268 	bool tuning_done;
269 	bool calibration_done;
270 	u8 saved_tuning_phase;
271 	bool use_cdclp533;
272 	u32 curr_pwr_state;
273 	u32 curr_io_level;
274 	wait_queue_head_t pwr_irq_wait;
275 	bool pwr_irq_flag;
276 	u32 caps_0;
277 	bool mci_removed;
278 	bool restore_dll_config;
279 	const struct sdhci_msm_variant_ops *var_ops;
280 	const struct sdhci_msm_offset *offset;
281 	bool use_cdr;
282 	u32 transfer_mode;
283 	bool updated_ddr_cfg;
284 	bool uses_tassadar_dll;
285 	u32 dll_config;
286 	u32 ddr_config;
287 	bool vqmmc_enabled;
288 };
289 
290 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
291 {
292 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
293 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
294 
295 	return msm_host->offset;
296 }
297 
298 /*
299  * APIs to read/write to vendor specific registers which were there in the
300  * core_mem region before MCI was removed.
301  */
302 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
303 		u32 offset)
304 {
305 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
306 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
307 
308 	return readl_relaxed(msm_host->core_mem + offset);
309 }
310 
311 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
312 		u32 offset)
313 {
314 	return readl_relaxed(host->ioaddr + offset);
315 }
316 
317 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
318 		struct sdhci_host *host, u32 offset)
319 {
320 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
321 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
322 
323 	writel_relaxed(val, msm_host->core_mem + offset);
324 }
325 
326 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
327 		struct sdhci_host *host, u32 offset)
328 {
329 	writel_relaxed(val, host->ioaddr + offset);
330 }
331 
332 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
333 						    unsigned int clock)
334 {
335 	struct mmc_ios ios = host->mmc->ios;
336 	/*
337 	 * The SDHC requires internal clock frequency to be double the
338 	 * actual clock that will be set for DDR mode. The controller
339 	 * uses the faster clock(100/400MHz) for some of its parts and
340 	 * send the actual required clock (50/200MHz) to the card.
341 	 */
342 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
343 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
344 	    ios.timing == MMC_TIMING_MMC_HS400 ||
345 	    host->flags & SDHCI_HS400_TUNING)
346 		clock *= 2;
347 	return clock;
348 }
349 
350 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
351 					    unsigned int clock)
352 {
353 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
354 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
355 	struct mmc_ios curr_ios = host->mmc->ios;
356 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
357 	int rc;
358 
359 	clock = msm_get_clock_rate_for_bus_mode(host, clock);
360 	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), clock);
361 	if (rc) {
362 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
363 		       mmc_hostname(host->mmc), clock,
364 		       curr_ios.timing);
365 		return;
366 	}
367 	msm_host->clk_rate = clock;
368 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
369 		 mmc_hostname(host->mmc), clk_get_rate(core_clk),
370 		 curr_ios.timing);
371 }
372 
373 /* Platform specific tuning */
374 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
375 {
376 	u32 wait_cnt = 50;
377 	u8 ck_out_en;
378 	struct mmc_host *mmc = host->mmc;
379 	const struct sdhci_msm_offset *msm_offset =
380 					sdhci_priv_msm_offset(host);
381 
382 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
383 	ck_out_en = !!(readl_relaxed(host->ioaddr +
384 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
385 
386 	while (ck_out_en != poll) {
387 		if (--wait_cnt == 0) {
388 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
389 			       mmc_hostname(mmc), poll);
390 			return -ETIMEDOUT;
391 		}
392 		udelay(1);
393 
394 		ck_out_en = !!(readl_relaxed(host->ioaddr +
395 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
396 	}
397 
398 	return 0;
399 }
400 
401 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
402 {
403 	int rc;
404 	static const u8 grey_coded_phase_table[] = {
405 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
406 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
407 	};
408 	unsigned long flags;
409 	u32 config;
410 	struct mmc_host *mmc = host->mmc;
411 	const struct sdhci_msm_offset *msm_offset =
412 					sdhci_priv_msm_offset(host);
413 
414 	if (phase > 0xf)
415 		return -EINVAL;
416 
417 	spin_lock_irqsave(&host->lock, flags);
418 
419 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
420 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
421 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
422 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
423 
424 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
425 	rc = msm_dll_poll_ck_out_en(host, 0);
426 	if (rc)
427 		goto err_out;
428 
429 	/*
430 	 * Write the selected DLL clock output phase (0 ... 15)
431 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
432 	 */
433 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
434 	config &= ~CDR_SELEXT_MASK;
435 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
436 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
437 
438 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
439 	config |= CORE_CK_OUT_EN;
440 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
441 
442 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
443 	rc = msm_dll_poll_ck_out_en(host, 1);
444 	if (rc)
445 		goto err_out;
446 
447 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
448 	config |= CORE_CDR_EN;
449 	config &= ~CORE_CDR_EXT_EN;
450 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
451 	goto out;
452 
453 err_out:
454 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
455 	       mmc_hostname(mmc), phase);
456 out:
457 	spin_unlock_irqrestore(&host->lock, flags);
458 	return rc;
459 }
460 
461 /*
462  * Find out the greatest range of consecuitive selected
463  * DLL clock output phases that can be used as sampling
464  * setting for SD3.0 UHS-I card read operation (in SDR104
465  * timing mode) or for eMMC4.5 card read operation (in
466  * HS400/HS200 timing mode).
467  * Select the 3/4 of the range and configure the DLL with the
468  * selected DLL clock output phase.
469  */
470 
471 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
472 					   u8 *phase_table, u8 total_phases)
473 {
474 	int ret;
475 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
476 	u8 phases_per_row[MAX_PHASES] = { 0 };
477 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
478 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
479 	bool phase_0_found = false, phase_15_found = false;
480 	struct mmc_host *mmc = host->mmc;
481 
482 	if (!total_phases || (total_phases > MAX_PHASES)) {
483 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
484 		       mmc_hostname(mmc), total_phases);
485 		return -EINVAL;
486 	}
487 
488 	for (cnt = 0; cnt < total_phases; cnt++) {
489 		ranges[row_index][col_index] = phase_table[cnt];
490 		phases_per_row[row_index] += 1;
491 		col_index++;
492 
493 		if ((cnt + 1) == total_phases) {
494 			continue;
495 		/* check if next phase in phase_table is consecutive or not */
496 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
497 			row_index++;
498 			col_index = 0;
499 		}
500 	}
501 
502 	if (row_index >= MAX_PHASES)
503 		return -EINVAL;
504 
505 	/* Check if phase-0 is present in first valid window? */
506 	if (!ranges[0][0]) {
507 		phase_0_found = true;
508 		phase_0_raw_index = 0;
509 		/* Check if cycle exist between 2 valid windows */
510 		for (cnt = 1; cnt <= row_index; cnt++) {
511 			if (phases_per_row[cnt]) {
512 				for (i = 0; i < phases_per_row[cnt]; i++) {
513 					if (ranges[cnt][i] == 15) {
514 						phase_15_found = true;
515 						phase_15_raw_index = cnt;
516 						break;
517 					}
518 				}
519 			}
520 		}
521 	}
522 
523 	/* If 2 valid windows form cycle then merge them as single window */
524 	if (phase_0_found && phase_15_found) {
525 		/* number of phases in raw where phase 0 is present */
526 		u8 phases_0 = phases_per_row[phase_0_raw_index];
527 		/* number of phases in raw where phase 15 is present */
528 		u8 phases_15 = phases_per_row[phase_15_raw_index];
529 
530 		if (phases_0 + phases_15 >= MAX_PHASES)
531 			/*
532 			 * If there are more than 1 phase windows then total
533 			 * number of phases in both the windows should not be
534 			 * more than or equal to MAX_PHASES.
535 			 */
536 			return -EINVAL;
537 
538 		/* Merge 2 cyclic windows */
539 		i = phases_15;
540 		for (cnt = 0; cnt < phases_0; cnt++) {
541 			ranges[phase_15_raw_index][i] =
542 			    ranges[phase_0_raw_index][cnt];
543 			if (++i >= MAX_PHASES)
544 				break;
545 		}
546 
547 		phases_per_row[phase_0_raw_index] = 0;
548 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
549 	}
550 
551 	for (cnt = 0; cnt <= row_index; cnt++) {
552 		if (phases_per_row[cnt] > curr_max) {
553 			curr_max = phases_per_row[cnt];
554 			selected_row_index = cnt;
555 		}
556 	}
557 
558 	i = (curr_max * 3) / 4;
559 	if (i)
560 		i--;
561 
562 	ret = ranges[selected_row_index][i];
563 
564 	if (ret >= MAX_PHASES) {
565 		ret = -EINVAL;
566 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
567 		       mmc_hostname(mmc), ret);
568 	}
569 
570 	return ret;
571 }
572 
573 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
574 {
575 	u32 mclk_freq = 0, config;
576 	const struct sdhci_msm_offset *msm_offset =
577 					sdhci_priv_msm_offset(host);
578 
579 	/* Program the MCLK value to MCLK_FREQ bit field */
580 	if (host->clock <= 112000000)
581 		mclk_freq = 0;
582 	else if (host->clock <= 125000000)
583 		mclk_freq = 1;
584 	else if (host->clock <= 137000000)
585 		mclk_freq = 2;
586 	else if (host->clock <= 150000000)
587 		mclk_freq = 3;
588 	else if (host->clock <= 162000000)
589 		mclk_freq = 4;
590 	else if (host->clock <= 175000000)
591 		mclk_freq = 5;
592 	else if (host->clock <= 187000000)
593 		mclk_freq = 6;
594 	else if (host->clock <= 200000000)
595 		mclk_freq = 7;
596 
597 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
598 	config &= ~CMUX_SHIFT_PHASE_MASK;
599 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
600 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
601 }
602 
603 /* Initialize the DLL (Programmable Delay Line) */
604 static int msm_init_cm_dll(struct sdhci_host *host)
605 {
606 	struct mmc_host *mmc = host->mmc;
607 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
608 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
609 	int wait_cnt = 50;
610 	unsigned long flags, xo_clk = 0;
611 	u32 config;
612 	const struct sdhci_msm_offset *msm_offset =
613 					msm_host->offset;
614 
615 	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
616 		xo_clk = clk_get_rate(msm_host->xo_clk);
617 
618 	spin_lock_irqsave(&host->lock, flags);
619 
620 	/*
621 	 * Make sure that clock is always enabled when DLL
622 	 * tuning is in progress. Keeping PWRSAVE ON may
623 	 * turn off the clock.
624 	 */
625 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
626 	config &= ~CORE_CLK_PWRSAVE;
627 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
628 
629 	if (msm_host->dll_config)
630 		writel_relaxed(msm_host->dll_config,
631 				host->ioaddr + msm_offset->core_dll_config);
632 
633 	if (msm_host->use_14lpp_dll_reset) {
634 		config = readl_relaxed(host->ioaddr +
635 				msm_offset->core_dll_config);
636 		config &= ~CORE_CK_OUT_EN;
637 		writel_relaxed(config, host->ioaddr +
638 				msm_offset->core_dll_config);
639 
640 		config = readl_relaxed(host->ioaddr +
641 				msm_offset->core_dll_config_2);
642 		config |= CORE_DLL_CLOCK_DISABLE;
643 		writel_relaxed(config, host->ioaddr +
644 				msm_offset->core_dll_config_2);
645 	}
646 
647 	config = readl_relaxed(host->ioaddr +
648 			msm_offset->core_dll_config);
649 	config |= CORE_DLL_RST;
650 	writel_relaxed(config, host->ioaddr +
651 			msm_offset->core_dll_config);
652 
653 	config = readl_relaxed(host->ioaddr +
654 			msm_offset->core_dll_config);
655 	config |= CORE_DLL_PDN;
656 	writel_relaxed(config, host->ioaddr +
657 			msm_offset->core_dll_config);
658 
659 	if (!msm_host->dll_config)
660 		msm_cm_dll_set_freq(host);
661 
662 	if (msm_host->use_14lpp_dll_reset &&
663 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
664 		u32 mclk_freq = 0;
665 
666 		config = readl_relaxed(host->ioaddr +
667 				msm_offset->core_dll_config_2);
668 		config &= CORE_FLL_CYCLE_CNT;
669 		if (config)
670 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
671 					xo_clk);
672 		else
673 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
674 					xo_clk);
675 
676 		config = readl_relaxed(host->ioaddr +
677 				msm_offset->core_dll_config_2);
678 		config &= ~(0xFF << 10);
679 		config |= mclk_freq << 10;
680 
681 		writel_relaxed(config, host->ioaddr +
682 				msm_offset->core_dll_config_2);
683 		/* wait for 5us before enabling DLL clock */
684 		udelay(5);
685 	}
686 
687 	config = readl_relaxed(host->ioaddr +
688 			msm_offset->core_dll_config);
689 	config &= ~CORE_DLL_RST;
690 	writel_relaxed(config, host->ioaddr +
691 			msm_offset->core_dll_config);
692 
693 	config = readl_relaxed(host->ioaddr +
694 			msm_offset->core_dll_config);
695 	config &= ~CORE_DLL_PDN;
696 	writel_relaxed(config, host->ioaddr +
697 			msm_offset->core_dll_config);
698 
699 	if (msm_host->use_14lpp_dll_reset) {
700 		if (!msm_host->dll_config)
701 			msm_cm_dll_set_freq(host);
702 		config = readl_relaxed(host->ioaddr +
703 				msm_offset->core_dll_config_2);
704 		config &= ~CORE_DLL_CLOCK_DISABLE;
705 		writel_relaxed(config, host->ioaddr +
706 				msm_offset->core_dll_config_2);
707 	}
708 
709 	/*
710 	 * Configure DLL user control register to enable DLL status.
711 	 * This setting is applicable to SDCC v5.1 onwards only.
712 	 */
713 	if (msm_host->uses_tassadar_dll) {
714 		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
715 			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
716 		writel_relaxed(config, host->ioaddr +
717 				msm_offset->core_dll_usr_ctl);
718 
719 		config = readl_relaxed(host->ioaddr +
720 				msm_offset->core_dll_config_3);
721 		config &= ~0xFF;
722 		if (msm_host->clk_rate < 150000000)
723 			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
724 		else
725 			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
726 		writel_relaxed(config, host->ioaddr +
727 			msm_offset->core_dll_config_3);
728 	}
729 
730 	config = readl_relaxed(host->ioaddr +
731 			msm_offset->core_dll_config);
732 	config |= CORE_DLL_EN;
733 	writel_relaxed(config, host->ioaddr +
734 			msm_offset->core_dll_config);
735 
736 	config = readl_relaxed(host->ioaddr +
737 			msm_offset->core_dll_config);
738 	config |= CORE_CK_OUT_EN;
739 	writel_relaxed(config, host->ioaddr +
740 			msm_offset->core_dll_config);
741 
742 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
743 	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
744 		 CORE_DLL_LOCK)) {
745 		/* max. wait for 50us sec for LOCK bit to be set */
746 		if (--wait_cnt == 0) {
747 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
748 			       mmc_hostname(mmc));
749 			spin_unlock_irqrestore(&host->lock, flags);
750 			return -ETIMEDOUT;
751 		}
752 		udelay(1);
753 	}
754 
755 	spin_unlock_irqrestore(&host->lock, flags);
756 	return 0;
757 }
758 
759 static void msm_hc_select_default(struct sdhci_host *host)
760 {
761 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
762 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
763 	u32 config;
764 	const struct sdhci_msm_offset *msm_offset =
765 					msm_host->offset;
766 
767 	if (!msm_host->use_cdclp533) {
768 		config = readl_relaxed(host->ioaddr +
769 				msm_offset->core_vendor_spec3);
770 		config &= ~CORE_PWRSAVE_DLL;
771 		writel_relaxed(config, host->ioaddr +
772 				msm_offset->core_vendor_spec3);
773 	}
774 
775 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
776 	config &= ~CORE_HC_MCLK_SEL_MASK;
777 	config |= CORE_HC_MCLK_SEL_DFLT;
778 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
779 
780 	/*
781 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
782 	 * configuration from Host Control2 register for all other
783 	 * modes.
784 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
785 	 * in VENDOR_SPEC_FUNC
786 	 */
787 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
788 	config &= ~CORE_HC_SELECT_IN_EN;
789 	config &= ~CORE_HC_SELECT_IN_MASK;
790 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
791 
792 	/*
793 	 * Make sure above writes impacting free running MCLK are completed
794 	 * before changing the clk_rate at GCC.
795 	 */
796 	wmb();
797 }
798 
799 static void msm_hc_select_hs400(struct sdhci_host *host)
800 {
801 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
802 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
803 	struct mmc_ios ios = host->mmc->ios;
804 	u32 config, dll_lock;
805 	int rc;
806 	const struct sdhci_msm_offset *msm_offset =
807 					msm_host->offset;
808 
809 	/* Select the divided clock (free running MCLK/2) */
810 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
811 	config &= ~CORE_HC_MCLK_SEL_MASK;
812 	config |= CORE_HC_MCLK_SEL_HS400;
813 
814 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
815 	/*
816 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
817 	 * register
818 	 */
819 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
820 	    !msm_host->calibration_done) {
821 		config = readl_relaxed(host->ioaddr +
822 				msm_offset->core_vendor_spec);
823 		config |= CORE_HC_SELECT_IN_HS400;
824 		config |= CORE_HC_SELECT_IN_EN;
825 		writel_relaxed(config, host->ioaddr +
826 				msm_offset->core_vendor_spec);
827 	}
828 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
829 		/*
830 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
831 		 * core_dll_status to be set. This should get set
832 		 * within 15 us at 200 MHz.
833 		 */
834 		rc = readl_relaxed_poll_timeout(host->ioaddr +
835 						msm_offset->core_dll_status,
836 						dll_lock,
837 						(dll_lock &
838 						(CORE_DLL_LOCK |
839 						CORE_DDR_DLL_LOCK)), 10,
840 						1000);
841 		if (rc == -ETIMEDOUT)
842 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
843 			       mmc_hostname(host->mmc), dll_lock);
844 	}
845 	/*
846 	 * Make sure above writes impacting free running MCLK are completed
847 	 * before changing the clk_rate at GCC.
848 	 */
849 	wmb();
850 }
851 
852 /*
853  * sdhci_msm_hc_select_mode :- In general all timing modes are
854  * controlled via UHS mode select in Host Control2 register.
855  * eMMC specific HS200/HS400 doesn't have their respective modes
856  * defined here, hence we use these values.
857  *
858  * HS200 - SDR104 (Since they both are equivalent in functionality)
859  * HS400 - This involves multiple configurations
860  *		Initially SDR104 - when tuning is required as HS200
861  *		Then when switching to DDR @ 400MHz (HS400) we use
862  *		the vendor specific HC_SELECT_IN to control the mode.
863  *
864  * In addition to controlling the modes we also need to select the
865  * correct input clock for DLL depending on the mode.
866  *
867  * HS400 - divided clock (free running MCLK/2)
868  * All other modes - default (free running MCLK)
869  */
870 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
871 {
872 	struct mmc_ios ios = host->mmc->ios;
873 
874 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
875 	    host->flags & SDHCI_HS400_TUNING)
876 		msm_hc_select_hs400(host);
877 	else
878 		msm_hc_select_default(host);
879 }
880 
881 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
882 {
883 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
884 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
885 	u32 config, calib_done;
886 	int ret;
887 	const struct sdhci_msm_offset *msm_offset =
888 					msm_host->offset;
889 
890 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
891 
892 	/*
893 	 * Retuning in HS400 (DDR mode) will fail, just reset the
894 	 * tuning block and restore the saved tuning phase.
895 	 */
896 	ret = msm_init_cm_dll(host);
897 	if (ret)
898 		goto out;
899 
900 	/* Set the selected phase in delay line hw block */
901 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
902 	if (ret)
903 		goto out;
904 
905 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
906 	config |= CORE_CMD_DAT_TRACK_SEL;
907 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
908 
909 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
910 	config &= ~CORE_CDC_T4_DLY_SEL;
911 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
912 
913 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
914 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
915 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
916 
917 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
918 	config |= CORE_CDC_SWITCH_RC_EN;
919 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
920 
921 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
922 	config &= ~CORE_START_CDC_TRAFFIC;
923 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
924 
925 	/* Perform CDC Register Initialization Sequence */
926 
927 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
928 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
929 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
930 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
931 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
932 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
933 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
934 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
935 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
936 
937 	/* CDC HW Calibration */
938 
939 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
940 	config |= CORE_SW_TRIG_FULL_CALIB;
941 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
942 
943 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
944 	config &= ~CORE_SW_TRIG_FULL_CALIB;
945 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
946 
947 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
948 	config |= CORE_HW_AUTOCAL_ENA;
949 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
950 
951 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
952 	config |= CORE_TIMER_ENA;
953 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
954 
955 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
956 					 calib_done,
957 					 (calib_done & CORE_CALIBRATION_DONE),
958 					 1, 50);
959 
960 	if (ret == -ETIMEDOUT) {
961 		pr_err("%s: %s: CDC calibration was not completed\n",
962 		       mmc_hostname(host->mmc), __func__);
963 		goto out;
964 	}
965 
966 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
967 			& CORE_CDC_ERROR_CODE_MASK;
968 	if (ret) {
969 		pr_err("%s: %s: CDC error code %d\n",
970 		       mmc_hostname(host->mmc), __func__, ret);
971 		ret = -EINVAL;
972 		goto out;
973 	}
974 
975 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
976 	config |= CORE_START_CDC_TRAFFIC;
977 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
978 out:
979 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
980 		 __func__, ret);
981 	return ret;
982 }
983 
984 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
985 {
986 	struct mmc_host *mmc = host->mmc;
987 	u32 dll_status, config, ddr_cfg_offset;
988 	int ret;
989 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
990 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
991 	const struct sdhci_msm_offset *msm_offset =
992 					sdhci_priv_msm_offset(host);
993 
994 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
995 
996 	/*
997 	 * Currently the core_ddr_config register defaults to desired
998 	 * configuration on reset. Currently reprogramming the power on
999 	 * reset (POR) value in case it might have been modified by
1000 	 * bootloaders. In the future, if this changes, then the desired
1001 	 * values will need to be programmed appropriately.
1002 	 */
1003 	if (msm_host->updated_ddr_cfg)
1004 		ddr_cfg_offset = msm_offset->core_ddr_config;
1005 	else
1006 		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1007 	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1008 
1009 	if (mmc->ios.enhanced_strobe) {
1010 		config = readl_relaxed(host->ioaddr +
1011 				msm_offset->core_ddr_200_cfg);
1012 		config |= CORE_CMDIN_RCLK_EN;
1013 		writel_relaxed(config, host->ioaddr +
1014 				msm_offset->core_ddr_200_cfg);
1015 	}
1016 
1017 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1018 	config |= CORE_DDR_CAL_EN;
1019 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1020 
1021 	ret = readl_relaxed_poll_timeout(host->ioaddr +
1022 					msm_offset->core_dll_status,
1023 					dll_status,
1024 					(dll_status & CORE_DDR_DLL_LOCK),
1025 					10, 1000);
1026 
1027 	if (ret == -ETIMEDOUT) {
1028 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1029 		       mmc_hostname(host->mmc), __func__);
1030 		goto out;
1031 	}
1032 
1033 	/*
1034 	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1035 	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1036 	 * and MCLK must be switched on for at-least 1us before DATA
1037 	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1038 	 * guarantee above requirement. So PWRSAVE_DLL should not be
1039 	 * turned on for host controllers using this DLL.
1040 	 */
1041 	if (!msm_host->use_14lpp_dll_reset) {
1042 		config = readl_relaxed(host->ioaddr +
1043 				msm_offset->core_vendor_spec3);
1044 		config |= CORE_PWRSAVE_DLL;
1045 		writel_relaxed(config, host->ioaddr +
1046 				msm_offset->core_vendor_spec3);
1047 	}
1048 
1049 	/*
1050 	 * Drain writebuffer to ensure above DLL calibration
1051 	 * and PWRSAVE DLL is enabled.
1052 	 */
1053 	wmb();
1054 out:
1055 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1056 		 __func__, ret);
1057 	return ret;
1058 }
1059 
1060 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1061 {
1062 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1063 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1064 	struct mmc_host *mmc = host->mmc;
1065 	int ret;
1066 	u32 config;
1067 	const struct sdhci_msm_offset *msm_offset =
1068 					msm_host->offset;
1069 
1070 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1071 
1072 	/*
1073 	 * Retuning in HS400 (DDR mode) will fail, just reset the
1074 	 * tuning block and restore the saved tuning phase.
1075 	 */
1076 	ret = msm_init_cm_dll(host);
1077 	if (ret)
1078 		goto out;
1079 
1080 	if (!mmc->ios.enhanced_strobe) {
1081 		/* Set the selected phase in delay line hw block */
1082 		ret = msm_config_cm_dll_phase(host,
1083 					      msm_host->saved_tuning_phase);
1084 		if (ret)
1085 			goto out;
1086 		config = readl_relaxed(host->ioaddr +
1087 				msm_offset->core_dll_config);
1088 		config |= CORE_CMD_DAT_TRACK_SEL;
1089 		writel_relaxed(config, host->ioaddr +
1090 				msm_offset->core_dll_config);
1091 	}
1092 
1093 	if (msm_host->use_cdclp533)
1094 		ret = sdhci_msm_cdclp533_calibration(host);
1095 	else
1096 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1097 out:
1098 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1099 		 __func__, ret);
1100 	return ret;
1101 }
1102 
1103 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1104 {
1105 	struct mmc_ios *ios = &host->mmc->ios;
1106 
1107 	/*
1108 	 * Tuning is required for SDR104, HS200 and HS400 cards and
1109 	 * if clock frequency is greater than 100MHz in these modes.
1110 	 */
1111 	if (host->clock <= CORE_FREQ_100MHZ ||
1112 	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1113 	    ios->timing == MMC_TIMING_MMC_HS200 ||
1114 	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1115 	    ios->enhanced_strobe)
1116 		return false;
1117 
1118 	return true;
1119 }
1120 
1121 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1122 {
1123 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1124 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1125 	int ret;
1126 
1127 	/*
1128 	 * SDR DLL comes into picture only for timing modes which needs
1129 	 * tuning.
1130 	 */
1131 	if (!sdhci_msm_is_tuning_needed(host))
1132 		return 0;
1133 
1134 	/* Reset the tuning block */
1135 	ret = msm_init_cm_dll(host);
1136 	if (ret)
1137 		return ret;
1138 
1139 	/* Restore the tuning block */
1140 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1141 
1142 	return ret;
1143 }
1144 
1145 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1146 {
1147 	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1148 	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1149 					      msm_offset->core_dll_config);
1150 
1151 	config = oldconfig;
1152 	if (enable) {
1153 		config |= CORE_CDR_EN;
1154 		config &= ~CORE_CDR_EXT_EN;
1155 	} else {
1156 		config &= ~CORE_CDR_EN;
1157 		config |= CORE_CDR_EXT_EN;
1158 	}
1159 
1160 	if (config != oldconfig) {
1161 		writel_relaxed(config, host->ioaddr +
1162 			       msm_offset->core_dll_config);
1163 	}
1164 }
1165 
1166 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1167 {
1168 	struct sdhci_host *host = mmc_priv(mmc);
1169 	int tuning_seq_cnt = 10;
1170 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1171 	int rc;
1172 	struct mmc_ios ios = host->mmc->ios;
1173 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1174 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1175 
1176 	if (!sdhci_msm_is_tuning_needed(host)) {
1177 		msm_host->use_cdr = false;
1178 		sdhci_msm_set_cdr(host, false);
1179 		return 0;
1180 	}
1181 
1182 	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1183 	msm_host->use_cdr = true;
1184 
1185 	/*
1186 	 * Clear tuning_done flag before tuning to ensure proper
1187 	 * HS400 settings.
1188 	 */
1189 	msm_host->tuning_done = 0;
1190 
1191 	/*
1192 	 * For HS400 tuning in HS200 timing requires:
1193 	 * - select MCLK/2 in VENDOR_SPEC
1194 	 * - program MCLK to 400MHz (or nearest supported) in GCC
1195 	 */
1196 	if (host->flags & SDHCI_HS400_TUNING) {
1197 		sdhci_msm_hc_select_mode(host);
1198 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1199 		host->flags &= ~SDHCI_HS400_TUNING;
1200 	}
1201 
1202 retry:
1203 	/* First of all reset the tuning block */
1204 	rc = msm_init_cm_dll(host);
1205 	if (rc)
1206 		return rc;
1207 
1208 	phase = 0;
1209 	do {
1210 		/* Set the phase in delay line hw block */
1211 		rc = msm_config_cm_dll_phase(host, phase);
1212 		if (rc)
1213 			return rc;
1214 
1215 		rc = mmc_send_tuning(mmc, opcode, NULL);
1216 		if (!rc) {
1217 			/* Tuning is successful at this tuning point */
1218 			tuned_phases[tuned_phase_cnt++] = phase;
1219 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1220 				 mmc_hostname(mmc), phase);
1221 		}
1222 	} while (++phase < ARRAY_SIZE(tuned_phases));
1223 
1224 	if (tuned_phase_cnt) {
1225 		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1226 			/*
1227 			 * All phases valid is _almost_ as bad as no phases
1228 			 * valid.  Probably all phases are not really reliable
1229 			 * but we didn't detect where the unreliable place is.
1230 			 * That means we'll essentially be guessing and hoping
1231 			 * we get a good phase.  Better to try a few times.
1232 			 */
1233 			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1234 				mmc_hostname(mmc));
1235 			if (--tuning_seq_cnt) {
1236 				tuned_phase_cnt = 0;
1237 				goto retry;
1238 			}
1239 		}
1240 
1241 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1242 						     tuned_phase_cnt);
1243 		if (rc < 0)
1244 			return rc;
1245 		else
1246 			phase = rc;
1247 
1248 		/*
1249 		 * Finally set the selected phase in delay
1250 		 * line hw block.
1251 		 */
1252 		rc = msm_config_cm_dll_phase(host, phase);
1253 		if (rc)
1254 			return rc;
1255 		msm_host->saved_tuning_phase = phase;
1256 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1257 			 mmc_hostname(mmc), phase);
1258 	} else {
1259 		if (--tuning_seq_cnt)
1260 			goto retry;
1261 		/* Tuning failed */
1262 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1263 		       mmc_hostname(mmc));
1264 		rc = -EIO;
1265 	}
1266 
1267 	if (!rc)
1268 		msm_host->tuning_done = true;
1269 	return rc;
1270 }
1271 
1272 /*
1273  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1274  * This needs to be done for both tuning and enhanced_strobe mode.
1275  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1276  * fixed feedback clock is used.
1277  */
1278 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1279 {
1280 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1281 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1282 	int ret;
1283 
1284 	if (host->clock > CORE_FREQ_100MHZ &&
1285 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1286 	    !msm_host->calibration_done) {
1287 		ret = sdhci_msm_hs400_dll_calibration(host);
1288 		if (!ret)
1289 			msm_host->calibration_done = true;
1290 		else
1291 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1292 			       mmc_hostname(host->mmc), ret);
1293 	}
1294 }
1295 
1296 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1297 					unsigned int uhs)
1298 {
1299 	struct mmc_host *mmc = host->mmc;
1300 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1301 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1302 	u16 ctrl_2;
1303 	u32 config;
1304 	const struct sdhci_msm_offset *msm_offset =
1305 					msm_host->offset;
1306 
1307 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1308 	/* Select Bus Speed Mode for host */
1309 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1310 	switch (uhs) {
1311 	case MMC_TIMING_UHS_SDR12:
1312 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1313 		break;
1314 	case MMC_TIMING_UHS_SDR25:
1315 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1316 		break;
1317 	case MMC_TIMING_UHS_SDR50:
1318 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1319 		break;
1320 	case MMC_TIMING_MMC_HS400:
1321 	case MMC_TIMING_MMC_HS200:
1322 	case MMC_TIMING_UHS_SDR104:
1323 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1324 		break;
1325 	case MMC_TIMING_UHS_DDR50:
1326 	case MMC_TIMING_MMC_DDR52:
1327 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1328 		break;
1329 	}
1330 
1331 	/*
1332 	 * When clock frequency is less than 100MHz, the feedback clock must be
1333 	 * provided and DLL must not be used so that tuning can be skipped. To
1334 	 * provide feedback clock, the mode selection can be any value less
1335 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1336 	 */
1337 	if (host->clock <= CORE_FREQ_100MHZ) {
1338 		if (uhs == MMC_TIMING_MMC_HS400 ||
1339 		    uhs == MMC_TIMING_MMC_HS200 ||
1340 		    uhs == MMC_TIMING_UHS_SDR104)
1341 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1342 		/*
1343 		 * DLL is not required for clock <= 100MHz
1344 		 * Thus, make sure DLL it is disabled when not required
1345 		 */
1346 		config = readl_relaxed(host->ioaddr +
1347 				msm_offset->core_dll_config);
1348 		config |= CORE_DLL_RST;
1349 		writel_relaxed(config, host->ioaddr +
1350 				msm_offset->core_dll_config);
1351 
1352 		config = readl_relaxed(host->ioaddr +
1353 				msm_offset->core_dll_config);
1354 		config |= CORE_DLL_PDN;
1355 		writel_relaxed(config, host->ioaddr +
1356 				msm_offset->core_dll_config);
1357 
1358 		/*
1359 		 * The DLL needs to be restored and CDCLP533 recalibrated
1360 		 * when the clock frequency is set back to 400MHz.
1361 		 */
1362 		msm_host->calibration_done = false;
1363 	}
1364 
1365 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1366 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1367 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1368 
1369 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1370 		sdhci_msm_hs400(host, &mmc->ios);
1371 }
1372 
1373 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1374 {
1375 	struct platform_device *pdev = msm_host->pdev;
1376 	int ret;
1377 
1378 	if (level)
1379 		ret = pinctrl_pm_select_default_state(&pdev->dev);
1380 	else
1381 		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1382 
1383 	return ret;
1384 }
1385 
1386 static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1387 {
1388 	if (IS_ERR(mmc->supply.vmmc))
1389 		return 0;
1390 
1391 	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1392 }
1393 
1394 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1395 			      struct mmc_host *mmc, bool level)
1396 {
1397 	int ret;
1398 	struct mmc_ios ios;
1399 
1400 	if (msm_host->vqmmc_enabled == level)
1401 		return 0;
1402 
1403 	if (level) {
1404 		/* Set the IO voltage regulator to default voltage level */
1405 		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1406 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1407 		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1408 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1409 
1410 		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1411 			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1412 			if (ret < 0) {
1413 				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1414 					mmc_hostname(mmc), ret);
1415 				goto out;
1416 			}
1417 		}
1418 		ret = regulator_enable(mmc->supply.vqmmc);
1419 	} else {
1420 		ret = regulator_disable(mmc->supply.vqmmc);
1421 	}
1422 
1423 	if (ret)
1424 		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1425 			mmc_hostname(mmc), level ? "en":"dis", ret);
1426 	else
1427 		msm_host->vqmmc_enabled = level;
1428 out:
1429 	return ret;
1430 }
1431 
1432 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1433 			      struct mmc_host *mmc, bool hpm)
1434 {
1435 	int load, ret;
1436 
1437 	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1438 	ret = regulator_set_load(mmc->supply.vqmmc, load);
1439 	if (ret)
1440 		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1441 			mmc_hostname(mmc), ret);
1442 	return ret;
1443 }
1444 
1445 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1446 			      struct mmc_host *mmc, bool level)
1447 {
1448 	int ret;
1449 	bool always_on;
1450 
1451 	if (IS_ERR(mmc->supply.vqmmc) ||
1452 			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1453 		return 0;
1454 	/*
1455 	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1456 	 * and HPM modes by setting the corresponding load.
1457 	 *
1458 	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1459 	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1460 	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1461 	 * Vqmmc should remain ON, So just set the load instead of turning it
1462 	 * off/on.
1463 	 */
1464 	always_on = !mmc_card_is_removable(mmc) &&
1465 			mmc->card && mmc_card_mmc(mmc->card);
1466 
1467 	if (always_on)
1468 		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1469 	else
1470 		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1471 
1472 	return ret;
1473 }
1474 
1475 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1476 {
1477 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1478 }
1479 
1480 static inline void sdhci_msm_complete_pwr_irq_wait(
1481 		struct sdhci_msm_host *msm_host)
1482 {
1483 	wake_up(&msm_host->pwr_irq_wait);
1484 }
1485 
1486 /*
1487  * sdhci_msm_check_power_status API should be called when registers writes
1488  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1489  * To what state the register writes will change the IO lines should be passed
1490  * as the argument req_type. This API will check whether the IO line's state
1491  * is already the expected state and will wait for power irq only if
1492  * power irq is expected to be triggered based on the current IO line state
1493  * and expected IO line state.
1494  */
1495 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1496 {
1497 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1498 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1499 	bool done = false;
1500 	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1501 	const struct sdhci_msm_offset *msm_offset =
1502 					msm_host->offset;
1503 
1504 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1505 			mmc_hostname(host->mmc), __func__, req_type,
1506 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1507 
1508 	/*
1509 	 * The power interrupt will not be generated for signal voltage
1510 	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1511 	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1512 	 * it as always set.
1513 	 */
1514 	if (!msm_host->mci_removed)
1515 		val = msm_host_readl(msm_host, host,
1516 				msm_offset->core_generics);
1517 	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1518 	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1519 		return;
1520 	}
1521 
1522 	/*
1523 	 * The IRQ for request type IO High/LOW will be generated when -
1524 	 * there is a state change in 1.8V enable bit (bit 3) of
1525 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1526 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1527 	 * to set it to 3.3V before card detection happens, the
1528 	 * IRQ doesn't get triggered as there is no state change in this bit.
1529 	 * The driver already handles this case by changing the IO voltage
1530 	 * level to high as part of controller power up sequence. Hence, check
1531 	 * for host->pwr to handle a case where IO voltage high request is
1532 	 * issued even before controller power up.
1533 	 */
1534 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1535 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1536 				mmc_hostname(host->mmc), req_type);
1537 		return;
1538 	}
1539 	if ((req_type & msm_host->curr_pwr_state) ||
1540 			(req_type & msm_host->curr_io_level))
1541 		done = true;
1542 	/*
1543 	 * This is needed here to handle cases where register writes will
1544 	 * not change the current bus state or io level of the controller.
1545 	 * In this case, no power irq will be triggerred and we should
1546 	 * not wait.
1547 	 */
1548 	if (!done) {
1549 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1550 				msm_host->pwr_irq_flag,
1551 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1552 			dev_warn(&msm_host->pdev->dev,
1553 				 "%s: pwr_irq for req: (%d) timed out\n",
1554 				 mmc_hostname(host->mmc), req_type);
1555 	}
1556 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1557 			__func__, req_type);
1558 }
1559 
1560 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1561 {
1562 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1563 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1564 	const struct sdhci_msm_offset *msm_offset =
1565 					msm_host->offset;
1566 
1567 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1568 		mmc_hostname(host->mmc),
1569 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1570 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1571 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1572 }
1573 
1574 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1575 {
1576 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1577 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1578 	struct mmc_host *mmc = host->mmc;
1579 	u32 irq_status, irq_ack = 0;
1580 	int retry = 10, ret;
1581 	u32 pwr_state = 0, io_level = 0;
1582 	u32 config;
1583 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1584 
1585 	irq_status = msm_host_readl(msm_host, host,
1586 			msm_offset->core_pwrctl_status);
1587 	irq_status &= INT_MASK;
1588 
1589 	msm_host_writel(msm_host, irq_status, host,
1590 			msm_offset->core_pwrctl_clear);
1591 
1592 	/*
1593 	 * There is a rare HW scenario where the first clear pulse could be
1594 	 * lost when actual reset and clear/read of status register is
1595 	 * happening at a time. Hence, retry for at least 10 times to make
1596 	 * sure status register is cleared. Otherwise, this will result in
1597 	 * a spurious power IRQ resulting in system instability.
1598 	 */
1599 	while (irq_status & msm_host_readl(msm_host, host,
1600 				msm_offset->core_pwrctl_status)) {
1601 		if (retry == 0) {
1602 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1603 					mmc_hostname(host->mmc), irq_status);
1604 			sdhci_msm_dump_pwr_ctrl_regs(host);
1605 			WARN_ON(1);
1606 			break;
1607 		}
1608 		msm_host_writel(msm_host, irq_status, host,
1609 			msm_offset->core_pwrctl_clear);
1610 		retry--;
1611 		udelay(10);
1612 	}
1613 
1614 	/* Handle BUS ON/OFF*/
1615 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1616 		pwr_state = REQ_BUS_ON;
1617 		io_level = REQ_IO_HIGH;
1618 	}
1619 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1620 		pwr_state = REQ_BUS_OFF;
1621 		io_level = REQ_IO_LOW;
1622 	}
1623 
1624 	if (pwr_state) {
1625 		ret = sdhci_msm_set_vmmc(mmc);
1626 		if (!ret)
1627 			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1628 					pwr_state & REQ_BUS_ON);
1629 		if (!ret)
1630 			ret = sdhci_msm_set_pincfg(msm_host,
1631 					pwr_state & REQ_BUS_ON);
1632 		if (!ret)
1633 			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1634 		else
1635 			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1636 	}
1637 
1638 	/* Handle IO LOW/HIGH */
1639 	if (irq_status & CORE_PWRCTL_IO_LOW)
1640 		io_level = REQ_IO_LOW;
1641 
1642 	if (irq_status & CORE_PWRCTL_IO_HIGH)
1643 		io_level = REQ_IO_HIGH;
1644 
1645 	if (io_level)
1646 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1647 
1648 	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1649 		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1650 		if (ret < 0) {
1651 			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1652 					mmc_hostname(mmc), ret,
1653 					mmc->ios.signal_voltage, mmc->ios.vdd,
1654 					irq_status);
1655 			irq_ack |= CORE_PWRCTL_IO_FAIL;
1656 		}
1657 	}
1658 
1659 	/*
1660 	 * The driver has to acknowledge the interrupt, switch voltages and
1661 	 * report back if it succeded or not to this register. The voltage
1662 	 * switches are handled by the sdhci core, so just report success.
1663 	 */
1664 	msm_host_writel(msm_host, irq_ack, host,
1665 			msm_offset->core_pwrctl_ctl);
1666 
1667 	/*
1668 	 * If we don't have info regarding the voltage levels supported by
1669 	 * regulators, don't change the IO PAD PWR SWITCH.
1670 	 */
1671 	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1672 		u32 new_config;
1673 		/*
1674 		 * We should unset IO PAD PWR switch only if the register write
1675 		 * can set IO lines high and the regulator also switches to 3 V.
1676 		 * Else, we should keep the IO PAD PWR switch set.
1677 		 * This is applicable to certain targets where eMMC vccq supply
1678 		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1679 		 * IO PAD PWR switch must be kept set to reflect actual
1680 		 * regulator voltage. This way, during initialization of
1681 		 * controllers with only 1.8V, we will set the IO PAD bit
1682 		 * without waiting for a REQ_IO_LOW.
1683 		 */
1684 		config = readl_relaxed(host->ioaddr +
1685 				msm_offset->core_vendor_spec);
1686 		new_config = config;
1687 
1688 		if ((io_level & REQ_IO_HIGH) &&
1689 				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1690 			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1691 		else if ((io_level & REQ_IO_LOW) ||
1692 				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1693 			new_config |= CORE_IO_PAD_PWR_SWITCH;
1694 
1695 		if (config ^ new_config)
1696 			writel_relaxed(new_config, host->ioaddr +
1697 					msm_offset->core_vendor_spec);
1698 	}
1699 
1700 	if (pwr_state)
1701 		msm_host->curr_pwr_state = pwr_state;
1702 	if (io_level)
1703 		msm_host->curr_io_level = io_level;
1704 
1705 	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1706 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1707 		irq_ack);
1708 }
1709 
1710 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1711 {
1712 	struct sdhci_host *host = (struct sdhci_host *)data;
1713 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1714 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1715 
1716 	sdhci_msm_handle_pwr_irq(host, irq);
1717 	msm_host->pwr_irq_flag = 1;
1718 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1719 
1720 
1721 	return IRQ_HANDLED;
1722 }
1723 
1724 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1725 {
1726 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1727 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1728 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1729 
1730 	return clk_round_rate(core_clk, ULONG_MAX);
1731 }
1732 
1733 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1734 {
1735 	return SDHCI_MSM_MIN_CLOCK;
1736 }
1737 
1738 /*
1739  * __sdhci_msm_set_clock - sdhci_msm clock control.
1740  *
1741  * Description:
1742  * MSM controller does not use internal divider and
1743  * instead directly control the GCC clock as per
1744  * HW recommendation.
1745  **/
1746 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1747 {
1748 	u16 clk;
1749 	/*
1750 	 * Keep actual_clock as zero -
1751 	 * - since there is no divider used so no need of having actual_clock.
1752 	 * - MSM controller uses SDCLK for data timeout calculation. If
1753 	 *   actual_clock is zero, host->clock is taken for calculation.
1754 	 */
1755 	host->mmc->actual_clock = 0;
1756 
1757 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1758 
1759 	if (clock == 0)
1760 		return;
1761 
1762 	/*
1763 	 * MSM controller do not use clock divider.
1764 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1765 	 * clock with no divider value programmed.
1766 	 */
1767 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1768 	sdhci_enable_clk(host, clk);
1769 }
1770 
1771 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1772 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1773 {
1774 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1775 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1776 
1777 	if (!clock) {
1778 		msm_host->clk_rate = clock;
1779 		goto out;
1780 	}
1781 
1782 	sdhci_msm_hc_select_mode(host);
1783 
1784 	msm_set_clock_rate_for_bus_mode(host, clock);
1785 out:
1786 	__sdhci_msm_set_clock(host, clock);
1787 }
1788 
1789 /*****************************************************************************\
1790  *                                                                           *
1791  * MSM Command Queue Engine (CQE)                                            *
1792  *                                                                           *
1793 \*****************************************************************************/
1794 
1795 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
1796 {
1797 	int cmd_error = 0;
1798 	int data_error = 0;
1799 
1800 	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
1801 		return intmask;
1802 
1803 	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
1804 	return 0;
1805 }
1806 
1807 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
1808 {
1809 	struct sdhci_host *host = mmc_priv(mmc);
1810 	unsigned long flags;
1811 	u32 ctrl;
1812 
1813 	/*
1814 	 * When CQE is halted, the legacy SDHCI path operates only
1815 	 * on 16-byte descriptors in 64bit mode.
1816 	 */
1817 	if (host->flags & SDHCI_USE_64_BIT_DMA)
1818 		host->desc_sz = 16;
1819 
1820 	spin_lock_irqsave(&host->lock, flags);
1821 
1822 	/*
1823 	 * During CQE command transfers, command complete bit gets latched.
1824 	 * So s/w should clear command complete interrupt status when CQE is
1825 	 * either halted or disabled. Otherwise unexpected SDCHI legacy
1826 	 * interrupt gets triggered when CQE is halted/disabled.
1827 	 */
1828 	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
1829 	ctrl |= SDHCI_INT_RESPONSE;
1830 	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
1831 	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
1832 
1833 	spin_unlock_irqrestore(&host->lock, flags);
1834 
1835 	sdhci_cqe_disable(mmc, recovery);
1836 }
1837 
1838 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
1839 	.enable		= sdhci_cqe_enable,
1840 	.disable	= sdhci_msm_cqe_disable,
1841 };
1842 
1843 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
1844 				struct platform_device *pdev)
1845 {
1846 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1847 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1848 	struct cqhci_host *cq_host;
1849 	bool dma64;
1850 	u32 cqcfg;
1851 	int ret;
1852 
1853 	/*
1854 	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
1855 	 * So ensure ADMA table is allocated for 16byte descriptors.
1856 	 */
1857 	if (host->caps & SDHCI_CAN_64BIT)
1858 		host->alloc_desc_sz = 16;
1859 
1860 	ret = sdhci_setup_host(host);
1861 	if (ret)
1862 		return ret;
1863 
1864 	cq_host = cqhci_pltfm_init(pdev);
1865 	if (IS_ERR(cq_host)) {
1866 		ret = PTR_ERR(cq_host);
1867 		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
1868 		goto cleanup;
1869 	}
1870 
1871 	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
1872 	cq_host->ops = &sdhci_msm_cqhci_ops;
1873 
1874 	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
1875 
1876 	ret = cqhci_init(cq_host, host->mmc, dma64);
1877 	if (ret) {
1878 		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
1879 				mmc_hostname(host->mmc), ret);
1880 		goto cleanup;
1881 	}
1882 
1883 	/* Disable cqe reset due to cqe enable signal */
1884 	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
1885 	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
1886 	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
1887 
1888 	/*
1889 	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
1890 	 * So limit desc_sz to 12 so that the data commands that are sent
1891 	 * during card initialization (before CQE gets enabled) would
1892 	 * get executed without any issues.
1893 	 */
1894 	if (host->flags & SDHCI_USE_64_BIT_DMA)
1895 		host->desc_sz = 12;
1896 
1897 	ret = __sdhci_add_host(host);
1898 	if (ret)
1899 		goto cleanup;
1900 
1901 	dev_info(&pdev->dev, "%s: CQE init: success\n",
1902 			mmc_hostname(host->mmc));
1903 	return ret;
1904 
1905 cleanup:
1906 	sdhci_cleanup_host(host);
1907 	return ret;
1908 }
1909 
1910 /*
1911  * Platform specific register write functions. This is so that, if any
1912  * register write needs to be followed up by platform specific actions,
1913  * they can be added here. These functions can go to sleep when writes
1914  * to certain registers are done.
1915  * These functions are relying on sdhci_set_ios not using spinlock.
1916  */
1917 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
1918 {
1919 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1920 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1921 	u32 req_type = 0;
1922 
1923 	switch (reg) {
1924 	case SDHCI_HOST_CONTROL2:
1925 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
1926 			REQ_IO_HIGH;
1927 		break;
1928 	case SDHCI_SOFTWARE_RESET:
1929 		if (host->pwr && (val & SDHCI_RESET_ALL))
1930 			req_type = REQ_BUS_OFF;
1931 		break;
1932 	case SDHCI_POWER_CONTROL:
1933 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
1934 		break;
1935 	case SDHCI_TRANSFER_MODE:
1936 		msm_host->transfer_mode = val;
1937 		break;
1938 	case SDHCI_COMMAND:
1939 		if (!msm_host->use_cdr)
1940 			break;
1941 		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
1942 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
1943 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
1944 			sdhci_msm_set_cdr(host, true);
1945 		else
1946 			sdhci_msm_set_cdr(host, false);
1947 		break;
1948 	}
1949 
1950 	if (req_type) {
1951 		msm_host->pwr_irq_flag = 0;
1952 		/*
1953 		 * Since this register write may trigger a power irq, ensure
1954 		 * all previous register writes are complete by this point.
1955 		 */
1956 		mb();
1957 	}
1958 	return req_type;
1959 }
1960 
1961 /* This function may sleep*/
1962 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
1963 {
1964 	u32 req_type = 0;
1965 
1966 	req_type = __sdhci_msm_check_write(host, val, reg);
1967 	writew_relaxed(val, host->ioaddr + reg);
1968 
1969 	if (req_type)
1970 		sdhci_msm_check_power_status(host, req_type);
1971 }
1972 
1973 /* This function may sleep*/
1974 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
1975 {
1976 	u32 req_type = 0;
1977 
1978 	req_type = __sdhci_msm_check_write(host, val, reg);
1979 
1980 	writeb_relaxed(val, host->ioaddr + reg);
1981 
1982 	if (req_type)
1983 		sdhci_msm_check_power_status(host, req_type);
1984 }
1985 
1986 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
1987 {
1988 	struct mmc_host *mmc = msm_host->mmc;
1989 	struct regulator *supply = mmc->supply.vqmmc;
1990 	u32 caps = 0, config;
1991 	struct sdhci_host *host = mmc_priv(mmc);
1992 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1993 
1994 	if (!IS_ERR(mmc->supply.vqmmc)) {
1995 		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
1996 			caps |= CORE_1_8V_SUPPORT;
1997 		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
1998 			caps |= CORE_3_0V_SUPPORT;
1999 
2000 		if (!caps)
2001 			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2002 					mmc_hostname(mmc));
2003 	}
2004 
2005 	if (caps) {
2006 		/*
2007 		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2008 		 * bit can be used as required later on.
2009 		 */
2010 		u32 io_level = msm_host->curr_io_level;
2011 
2012 		config = readl_relaxed(host->ioaddr +
2013 				msm_offset->core_vendor_spec);
2014 		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2015 
2016 		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2017 			config &= ~CORE_IO_PAD_PWR_SWITCH;
2018 		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2019 			config |= CORE_IO_PAD_PWR_SWITCH;
2020 
2021 		writel_relaxed(config,
2022 				host->ioaddr + msm_offset->core_vendor_spec);
2023 	}
2024 	msm_host->caps_0 |= caps;
2025 	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2026 }
2027 
2028 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
2029 {
2030 	if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
2031 		cqhci_deactivate(host->mmc);
2032 	sdhci_reset(host, mask);
2033 }
2034 
2035 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2036 {
2037 	int ret;
2038 
2039 	ret = mmc_regulator_get_supply(msm_host->mmc);
2040 	if (ret)
2041 		return ret;
2042 
2043 	sdhci_msm_set_regulator_caps(msm_host);
2044 
2045 	return 0;
2046 }
2047 
2048 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2049 				      struct mmc_ios *ios)
2050 {
2051 	struct sdhci_host *host = mmc_priv(mmc);
2052 	u16 ctrl, status;
2053 
2054 	/*
2055 	 * Signal Voltage Switching is only applicable for Host Controllers
2056 	 * v3.00 and above.
2057 	 */
2058 	if (host->version < SDHCI_SPEC_300)
2059 		return 0;
2060 
2061 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2062 
2063 	switch (ios->signal_voltage) {
2064 	case MMC_SIGNAL_VOLTAGE_330:
2065 		if (!(host->flags & SDHCI_SIGNALING_330))
2066 			return -EINVAL;
2067 
2068 		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2069 		ctrl &= ~SDHCI_CTRL_VDD_180;
2070 		break;
2071 	case MMC_SIGNAL_VOLTAGE_180:
2072 		if (!(host->flags & SDHCI_SIGNALING_180))
2073 			return -EINVAL;
2074 
2075 		/* Enable 1.8V Signal Enable in the Host Control2 register */
2076 		ctrl |= SDHCI_CTRL_VDD_180;
2077 		break;
2078 
2079 	default:
2080 		return -EINVAL;
2081 	}
2082 
2083 	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2084 
2085 	/* Wait for 5ms */
2086 	usleep_range(5000, 5500);
2087 
2088 	/* regulator output should be stable within 5 ms */
2089 	status = ctrl & SDHCI_CTRL_VDD_180;
2090 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2091 	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2092 		return 0;
2093 
2094 	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2095 		mmc_hostname(mmc));
2096 
2097 	return -EAGAIN;
2098 }
2099 
2100 #define DRIVER_NAME "sdhci_msm"
2101 #define SDHCI_MSM_DUMP(f, x...) \
2102 	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2103 
2104 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2105 {
2106 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2107 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2108 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2109 
2110 	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2111 
2112 	SDHCI_MSM_DUMP(
2113 			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2114 		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2115 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2116 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2117 	SDHCI_MSM_DUMP(
2118 			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2119 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2120 		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2121 		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2122 	SDHCI_MSM_DUMP(
2123 			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2124 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2125 		readl_relaxed(host->ioaddr +
2126 			msm_offset->core_vendor_spec_func2),
2127 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2128 }
2129 
2130 static const struct sdhci_msm_variant_ops mci_var_ops = {
2131 	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2132 	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2133 };
2134 
2135 static const struct sdhci_msm_variant_ops v5_var_ops = {
2136 	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2137 	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2138 };
2139 
2140 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2141 	.var_ops = &mci_var_ops,
2142 	.offset = &sdhci_msm_mci_offset,
2143 };
2144 
2145 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2146 	.mci_removed = true,
2147 	.var_ops = &v5_var_ops,
2148 	.offset = &sdhci_msm_v5_offset,
2149 };
2150 
2151 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2152 	.mci_removed = true,
2153 	.restore_dll_config = true,
2154 	.var_ops = &v5_var_ops,
2155 	.offset = &sdhci_msm_v5_offset,
2156 };
2157 
2158 static const struct sdhci_msm_variant_info sm8250_sdhci_var = {
2159 	.mci_removed = true,
2160 	.uses_tassadar_dll = true,
2161 	.var_ops = &v5_var_ops,
2162 	.offset = &sdhci_msm_v5_offset,
2163 };
2164 
2165 static const struct of_device_id sdhci_msm_dt_match[] = {
2166 	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2167 	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2168 	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2169 	{.compatible = "qcom,sm8250-sdhci", .data = &sm8250_sdhci_var},
2170 	{},
2171 };
2172 
2173 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2174 
2175 static const struct sdhci_ops sdhci_msm_ops = {
2176 	.reset = sdhci_msm_reset,
2177 	.set_clock = sdhci_msm_set_clock,
2178 	.get_min_clock = sdhci_msm_get_min_clock,
2179 	.get_max_clock = sdhci_msm_get_max_clock,
2180 	.set_bus_width = sdhci_set_bus_width,
2181 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2182 	.write_w = sdhci_msm_writew,
2183 	.write_b = sdhci_msm_writeb,
2184 	.irq	= sdhci_msm_cqe_irq,
2185 	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2186 	.set_power = sdhci_set_power_noreg,
2187 };
2188 
2189 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2190 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2191 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2192 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2193 		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2194 
2195 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2196 	.ops = &sdhci_msm_ops,
2197 };
2198 
2199 static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2200 		struct sdhci_host *host)
2201 {
2202 	struct device_node *node = pdev->dev.of_node;
2203 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2204 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2205 
2206 	if (of_property_read_u32(node, "qcom,ddr-config",
2207 				&msm_host->ddr_config))
2208 		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2209 
2210 	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2211 }
2212 
2213 
2214 static int sdhci_msm_probe(struct platform_device *pdev)
2215 {
2216 	struct sdhci_host *host;
2217 	struct sdhci_pltfm_host *pltfm_host;
2218 	struct sdhci_msm_host *msm_host;
2219 	struct clk *clk;
2220 	int ret;
2221 	u16 host_version, core_minor;
2222 	u32 core_version, config;
2223 	u8 core_major;
2224 	const struct sdhci_msm_offset *msm_offset;
2225 	const struct sdhci_msm_variant_info *var_info;
2226 	struct device_node *node = pdev->dev.of_node;
2227 
2228 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2229 	if (IS_ERR(host))
2230 		return PTR_ERR(host);
2231 
2232 	host->sdma_boundary = 0;
2233 	pltfm_host = sdhci_priv(host);
2234 	msm_host = sdhci_pltfm_priv(pltfm_host);
2235 	msm_host->mmc = host->mmc;
2236 	msm_host->pdev = pdev;
2237 
2238 	ret = mmc_of_parse(host->mmc);
2239 	if (ret)
2240 		goto pltfm_free;
2241 
2242 	/*
2243 	 * Based on the compatible string, load the required msm host info from
2244 	 * the data associated with the version info.
2245 	 */
2246 	var_info = of_device_get_match_data(&pdev->dev);
2247 
2248 	msm_host->mci_removed = var_info->mci_removed;
2249 	msm_host->restore_dll_config = var_info->restore_dll_config;
2250 	msm_host->var_ops = var_info->var_ops;
2251 	msm_host->offset = var_info->offset;
2252 	msm_host->uses_tassadar_dll = var_info->uses_tassadar_dll;
2253 
2254 	msm_offset = msm_host->offset;
2255 
2256 	sdhci_get_of_property(pdev);
2257 	sdhci_msm_get_of_property(pdev, host);
2258 
2259 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2260 
2261 	/* Setup SDCC bus voter clock. */
2262 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2263 	if (!IS_ERR(msm_host->bus_clk)) {
2264 		/* Vote for max. clk rate for max. performance */
2265 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2266 		if (ret)
2267 			goto pltfm_free;
2268 		ret = clk_prepare_enable(msm_host->bus_clk);
2269 		if (ret)
2270 			goto pltfm_free;
2271 	}
2272 
2273 	/* Setup main peripheral bus clock */
2274 	clk = devm_clk_get(&pdev->dev, "iface");
2275 	if (IS_ERR(clk)) {
2276 		ret = PTR_ERR(clk);
2277 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2278 		goto bus_clk_disable;
2279 	}
2280 	msm_host->bulk_clks[1].clk = clk;
2281 
2282 	/* Setup SDC MMC clock */
2283 	clk = devm_clk_get(&pdev->dev, "core");
2284 	if (IS_ERR(clk)) {
2285 		ret = PTR_ERR(clk);
2286 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2287 		goto bus_clk_disable;
2288 	}
2289 	msm_host->bulk_clks[0].clk = clk;
2290 
2291 	 /* Check for optional interconnect paths */
2292 	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2293 	if (ret)
2294 		goto bus_clk_disable;
2295 
2296 	msm_host->opp_table = dev_pm_opp_set_clkname(&pdev->dev, "core");
2297 	if (IS_ERR(msm_host->opp_table)) {
2298 		ret = PTR_ERR(msm_host->opp_table);
2299 		goto bus_clk_disable;
2300 	}
2301 
2302 	/* OPP table is optional */
2303 	ret = dev_pm_opp_of_add_table(&pdev->dev);
2304 	if (!ret) {
2305 		msm_host->has_opp_table = true;
2306 	} else if (ret != -ENODEV) {
2307 		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2308 		goto opp_cleanup;
2309 	}
2310 
2311 	/* Vote for maximum clock rate for maximum performance */
2312 	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2313 	if (ret)
2314 		dev_warn(&pdev->dev, "core clock boost failed\n");
2315 
2316 	clk = devm_clk_get(&pdev->dev, "cal");
2317 	if (IS_ERR(clk))
2318 		clk = NULL;
2319 	msm_host->bulk_clks[2].clk = clk;
2320 
2321 	clk = devm_clk_get(&pdev->dev, "sleep");
2322 	if (IS_ERR(clk))
2323 		clk = NULL;
2324 	msm_host->bulk_clks[3].clk = clk;
2325 
2326 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2327 				      msm_host->bulk_clks);
2328 	if (ret)
2329 		goto opp_cleanup;
2330 
2331 	/*
2332 	 * xo clock is needed for FLL feature of cm_dll.
2333 	 * In case if xo clock is not mentioned in DT, warn and proceed.
2334 	 */
2335 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2336 	if (IS_ERR(msm_host->xo_clk)) {
2337 		ret = PTR_ERR(msm_host->xo_clk);
2338 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2339 	}
2340 
2341 	if (!msm_host->mci_removed) {
2342 		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2343 		if (IS_ERR(msm_host->core_mem)) {
2344 			ret = PTR_ERR(msm_host->core_mem);
2345 			goto clk_disable;
2346 		}
2347 	}
2348 
2349 	/* Reset the vendor spec register to power on reset state */
2350 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2351 			host->ioaddr + msm_offset->core_vendor_spec);
2352 
2353 	if (!msm_host->mci_removed) {
2354 		/* Set HC_MODE_EN bit in HC_MODE register */
2355 		msm_host_writel(msm_host, HC_MODE_EN, host,
2356 				msm_offset->core_hc_mode);
2357 		config = msm_host_readl(msm_host, host,
2358 				msm_offset->core_hc_mode);
2359 		config |= FF_CLK_SW_RST_DIS;
2360 		msm_host_writel(msm_host, config, host,
2361 				msm_offset->core_hc_mode);
2362 	}
2363 
2364 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2365 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2366 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2367 			       SDHCI_VENDOR_VER_SHIFT));
2368 
2369 	core_version = msm_host_readl(msm_host, host,
2370 			msm_offset->core_mci_version);
2371 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2372 		      CORE_VERSION_MAJOR_SHIFT;
2373 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2374 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2375 		core_version, core_major, core_minor);
2376 
2377 	if (core_major == 1 && core_minor >= 0x42)
2378 		msm_host->use_14lpp_dll_reset = true;
2379 
2380 	/*
2381 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2382 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2383 	 */
2384 	if (core_major == 1 && core_minor < 0x34)
2385 		msm_host->use_cdclp533 = true;
2386 
2387 	/*
2388 	 * Support for some capabilities is not advertised by newer
2389 	 * controller versions and must be explicitly enabled.
2390 	 */
2391 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2392 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2393 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2394 		writel_relaxed(config, host->ioaddr +
2395 				msm_offset->core_vendor_spec_capabilities0);
2396 	}
2397 
2398 	if (core_major == 1 && core_minor >= 0x49)
2399 		msm_host->updated_ddr_cfg = true;
2400 
2401 	ret = sdhci_msm_register_vreg(msm_host);
2402 	if (ret)
2403 		goto clk_disable;
2404 
2405 	/*
2406 	 * Power on reset state may trigger power irq if previous status of
2407 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2408 	 * interrupt in GIC, any pending power irq interrupt should be
2409 	 * acknowledged. Otherwise power irq interrupt handler would be
2410 	 * fired prematurely.
2411 	 */
2412 	sdhci_msm_handle_pwr_irq(host, 0);
2413 
2414 	/*
2415 	 * Ensure that above writes are propogated before interrupt enablement
2416 	 * in GIC.
2417 	 */
2418 	mb();
2419 
2420 	/* Setup IRQ for handling power/voltage tasks with PMIC */
2421 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2422 	if (msm_host->pwr_irq < 0) {
2423 		ret = msm_host->pwr_irq;
2424 		goto clk_disable;
2425 	}
2426 
2427 	sdhci_msm_init_pwr_irq_wait(msm_host);
2428 	/* Enable pwr irq interrupts */
2429 	msm_host_writel(msm_host, INT_MASK, host,
2430 		msm_offset->core_pwrctl_mask);
2431 
2432 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2433 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2434 					dev_name(&pdev->dev), host);
2435 	if (ret) {
2436 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2437 		goto clk_disable;
2438 	}
2439 
2440 	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2441 
2442 	pm_runtime_get_noresume(&pdev->dev);
2443 	pm_runtime_set_active(&pdev->dev);
2444 	pm_runtime_enable(&pdev->dev);
2445 	pm_runtime_set_autosuspend_delay(&pdev->dev,
2446 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2447 	pm_runtime_use_autosuspend(&pdev->dev);
2448 
2449 	host->mmc_host_ops.start_signal_voltage_switch =
2450 		sdhci_msm_start_signal_voltage_switch;
2451 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2452 	if (of_property_read_bool(node, "supports-cqe"))
2453 		ret = sdhci_msm_cqe_add_host(host, pdev);
2454 	else
2455 		ret = sdhci_add_host(host);
2456 	if (ret)
2457 		goto pm_runtime_disable;
2458 
2459 	pm_runtime_mark_last_busy(&pdev->dev);
2460 	pm_runtime_put_autosuspend(&pdev->dev);
2461 
2462 	return 0;
2463 
2464 pm_runtime_disable:
2465 	pm_runtime_disable(&pdev->dev);
2466 	pm_runtime_set_suspended(&pdev->dev);
2467 	pm_runtime_put_noidle(&pdev->dev);
2468 clk_disable:
2469 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2470 				   msm_host->bulk_clks);
2471 opp_cleanup:
2472 	if (msm_host->has_opp_table)
2473 		dev_pm_opp_of_remove_table(&pdev->dev);
2474 	dev_pm_opp_put_clkname(msm_host->opp_table);
2475 bus_clk_disable:
2476 	if (!IS_ERR(msm_host->bus_clk))
2477 		clk_disable_unprepare(msm_host->bus_clk);
2478 pltfm_free:
2479 	sdhci_pltfm_free(pdev);
2480 	return ret;
2481 }
2482 
2483 static int sdhci_msm_remove(struct platform_device *pdev)
2484 {
2485 	struct sdhci_host *host = platform_get_drvdata(pdev);
2486 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2487 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2488 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2489 		    0xffffffff);
2490 
2491 	sdhci_remove_host(host, dead);
2492 
2493 	if (msm_host->has_opp_table)
2494 		dev_pm_opp_of_remove_table(&pdev->dev);
2495 	dev_pm_opp_put_clkname(msm_host->opp_table);
2496 	pm_runtime_get_sync(&pdev->dev);
2497 	pm_runtime_disable(&pdev->dev);
2498 	pm_runtime_put_noidle(&pdev->dev);
2499 
2500 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2501 				   msm_host->bulk_clks);
2502 	if (!IS_ERR(msm_host->bus_clk))
2503 		clk_disable_unprepare(msm_host->bus_clk);
2504 	sdhci_pltfm_free(pdev);
2505 	return 0;
2506 }
2507 
2508 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2509 {
2510 	struct sdhci_host *host = dev_get_drvdata(dev);
2511 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2512 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2513 
2514 	/* Drop the performance vote */
2515 	dev_pm_opp_set_rate(dev, 0);
2516 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2517 				   msm_host->bulk_clks);
2518 
2519 	return 0;
2520 }
2521 
2522 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2523 {
2524 	struct sdhci_host *host = dev_get_drvdata(dev);
2525 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2526 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2527 	int ret;
2528 
2529 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2530 				       msm_host->bulk_clks);
2531 	if (ret)
2532 		return ret;
2533 	/*
2534 	 * Whenever core-clock is gated dynamically, it's needed to
2535 	 * restore the SDR DLL settings when the clock is ungated.
2536 	 */
2537 	if (msm_host->restore_dll_config && msm_host->clk_rate)
2538 		ret = sdhci_msm_restore_sdr_dll_config(host);
2539 
2540 	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2541 
2542 	return ret;
2543 }
2544 
2545 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2546 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2547 				pm_runtime_force_resume)
2548 	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2549 			   sdhci_msm_runtime_resume,
2550 			   NULL)
2551 };
2552 
2553 static struct platform_driver sdhci_msm_driver = {
2554 	.probe = sdhci_msm_probe,
2555 	.remove = sdhci_msm_remove,
2556 	.driver = {
2557 		   .name = "sdhci_msm",
2558 		   .of_match_table = sdhci_msm_dt_match,
2559 		   .pm = &sdhci_msm_pm_ops,
2560 	},
2561 };
2562 
2563 module_platform_driver(sdhci_msm_driver);
2564 
2565 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2566 MODULE_LICENSE("GPL v2");
2567