1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver 4 * 5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/of_device.h> 10 #include <linux/delay.h> 11 #include <linux/mmc/mmc.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/pm_opp.h> 14 #include <linux/slab.h> 15 #include <linux/iopoll.h> 16 #include <linux/regulator/consumer.h> 17 #include <linux/interconnect.h> 18 #include <linux/pinctrl/consumer.h> 19 20 #include "sdhci-pltfm.h" 21 #include "cqhci.h" 22 23 #define CORE_MCI_VERSION 0x50 24 #define CORE_VERSION_MAJOR_SHIFT 28 25 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT) 26 #define CORE_VERSION_MINOR_MASK 0xff 27 28 #define CORE_MCI_GENERICS 0x70 29 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29) 30 31 #define HC_MODE_EN 0x1 32 #define CORE_POWER 0x0 33 #define CORE_SW_RST BIT(7) 34 #define FF_CLK_SW_RST_DIS BIT(13) 35 36 #define CORE_PWRCTL_BUS_OFF BIT(0) 37 #define CORE_PWRCTL_BUS_ON BIT(1) 38 #define CORE_PWRCTL_IO_LOW BIT(2) 39 #define CORE_PWRCTL_IO_HIGH BIT(3) 40 #define CORE_PWRCTL_BUS_SUCCESS BIT(0) 41 #define CORE_PWRCTL_BUS_FAIL BIT(1) 42 #define CORE_PWRCTL_IO_SUCCESS BIT(2) 43 #define CORE_PWRCTL_IO_FAIL BIT(3) 44 #define REQ_BUS_OFF BIT(0) 45 #define REQ_BUS_ON BIT(1) 46 #define REQ_IO_LOW BIT(2) 47 #define REQ_IO_HIGH BIT(3) 48 #define INT_MASK 0xf 49 #define MAX_PHASES 16 50 #define CORE_DLL_LOCK BIT(7) 51 #define CORE_DDR_DLL_LOCK BIT(11) 52 #define CORE_DLL_EN BIT(16) 53 #define CORE_CDR_EN BIT(17) 54 #define CORE_CK_OUT_EN BIT(18) 55 #define CORE_CDR_EXT_EN BIT(19) 56 #define CORE_DLL_PDN BIT(29) 57 #define CORE_DLL_RST BIT(30) 58 #define CORE_CMD_DAT_TRACK_SEL BIT(0) 59 60 #define CORE_DDR_CAL_EN BIT(0) 61 #define CORE_FLL_CYCLE_CNT BIT(18) 62 #define CORE_DLL_CLOCK_DISABLE BIT(21) 63 64 #define DLL_USR_CTL_POR_VAL 0x10800 65 #define ENABLE_DLL_LOCK_STATUS BIT(26) 66 #define FINE_TUNE_MODE_EN BIT(27) 67 #define BIAS_OK_SIGNAL BIT(29) 68 69 #define DLL_CONFIG_3_LOW_FREQ_VAL 0x08 70 #define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10 71 72 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c 73 #define CORE_CLK_PWRSAVE BIT(1) 74 #define CORE_HC_MCLK_SEL_DFLT (2 << 8) 75 #define CORE_HC_MCLK_SEL_HS400 (3 << 8) 76 #define CORE_HC_MCLK_SEL_MASK (3 << 8) 77 #define CORE_IO_PAD_PWR_SWITCH_EN BIT(15) 78 #define CORE_IO_PAD_PWR_SWITCH BIT(16) 79 #define CORE_HC_SELECT_IN_EN BIT(18) 80 #define CORE_HC_SELECT_IN_HS400 (6 << 19) 81 #define CORE_HC_SELECT_IN_MASK (7 << 19) 82 83 #define CORE_3_0V_SUPPORT BIT(25) 84 #define CORE_1_8V_SUPPORT BIT(26) 85 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT) 86 87 #define CORE_CSR_CDC_CTLR_CFG0 0x130 88 #define CORE_SW_TRIG_FULL_CALIB BIT(16) 89 #define CORE_HW_AUTOCAL_ENA BIT(17) 90 91 #define CORE_CSR_CDC_CTLR_CFG1 0x134 92 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138 93 #define CORE_TIMER_ENA BIT(16) 94 95 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C 96 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140 97 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144 98 #define CORE_CDC_OFFSET_CFG 0x14C 99 #define CORE_CSR_CDC_DELAY_CFG 0x150 100 #define CORE_CDC_SLAVE_DDA_CFG 0x160 101 #define CORE_CSR_CDC_STATUS0 0x164 102 #define CORE_CALIBRATION_DONE BIT(0) 103 104 #define CORE_CDC_ERROR_CODE_MASK 0x7000000 105 106 #define CORE_CSR_CDC_GEN_CFG 0x178 107 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0) 108 #define CORE_CDC_SWITCH_RC_EN BIT(1) 109 110 #define CORE_CDC_T4_DLY_SEL BIT(0) 111 #define CORE_CMDIN_RCLK_EN BIT(1) 112 #define CORE_START_CDC_TRAFFIC BIT(6) 113 114 #define CORE_PWRSAVE_DLL BIT(3) 115 116 #define DDR_CONFIG_POR_VAL 0x80040873 117 118 119 #define INVALID_TUNING_PHASE -1 120 #define SDHCI_MSM_MIN_CLOCK 400000 121 #define CORE_FREQ_100MHZ (100 * 1000 * 1000) 122 123 #define CDR_SELEXT_SHIFT 20 124 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT) 125 #define CMUX_SHIFT_PHASE_SHIFT 24 126 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT) 127 128 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50 129 130 /* Timeout value to avoid infinite waiting for pwr_irq */ 131 #define MSM_PWR_IRQ_TIMEOUT_MS 5000 132 133 /* Max load for eMMC Vdd-io supply */ 134 #define MMC_VQMMC_MAX_LOAD_UA 325000 135 136 #define msm_host_readl(msm_host, host, offset) \ 137 msm_host->var_ops->msm_readl_relaxed(host, offset) 138 139 #define msm_host_writel(msm_host, val, host, offset) \ 140 msm_host->var_ops->msm_writel_relaxed(val, host, offset) 141 142 /* CQHCI vendor specific registers */ 143 #define CQHCI_VENDOR_CFG1 0xA00 144 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13) 145 146 struct sdhci_msm_offset { 147 u32 core_hc_mode; 148 u32 core_mci_data_cnt; 149 u32 core_mci_status; 150 u32 core_mci_fifo_cnt; 151 u32 core_mci_version; 152 u32 core_generics; 153 u32 core_testbus_config; 154 u32 core_testbus_sel2_bit; 155 u32 core_testbus_ena; 156 u32 core_testbus_sel2; 157 u32 core_pwrctl_status; 158 u32 core_pwrctl_mask; 159 u32 core_pwrctl_clear; 160 u32 core_pwrctl_ctl; 161 u32 core_sdcc_debug_reg; 162 u32 core_dll_config; 163 u32 core_dll_status; 164 u32 core_vendor_spec; 165 u32 core_vendor_spec_adma_err_addr0; 166 u32 core_vendor_spec_adma_err_addr1; 167 u32 core_vendor_spec_func2; 168 u32 core_vendor_spec_capabilities0; 169 u32 core_ddr_200_cfg; 170 u32 core_vendor_spec3; 171 u32 core_dll_config_2; 172 u32 core_dll_config_3; 173 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */ 174 u32 core_ddr_config; 175 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */ 176 }; 177 178 static const struct sdhci_msm_offset sdhci_msm_v5_offset = { 179 .core_mci_data_cnt = 0x35c, 180 .core_mci_status = 0x324, 181 .core_mci_fifo_cnt = 0x308, 182 .core_mci_version = 0x318, 183 .core_generics = 0x320, 184 .core_testbus_config = 0x32c, 185 .core_testbus_sel2_bit = 3, 186 .core_testbus_ena = (1 << 31), 187 .core_testbus_sel2 = (1 << 3), 188 .core_pwrctl_status = 0x240, 189 .core_pwrctl_mask = 0x244, 190 .core_pwrctl_clear = 0x248, 191 .core_pwrctl_ctl = 0x24c, 192 .core_sdcc_debug_reg = 0x358, 193 .core_dll_config = 0x200, 194 .core_dll_status = 0x208, 195 .core_vendor_spec = 0x20c, 196 .core_vendor_spec_adma_err_addr0 = 0x214, 197 .core_vendor_spec_adma_err_addr1 = 0x218, 198 .core_vendor_spec_func2 = 0x210, 199 .core_vendor_spec_capabilities0 = 0x21c, 200 .core_ddr_200_cfg = 0x224, 201 .core_vendor_spec3 = 0x250, 202 .core_dll_config_2 = 0x254, 203 .core_dll_config_3 = 0x258, 204 .core_ddr_config = 0x25c, 205 .core_dll_usr_ctl = 0x388, 206 }; 207 208 static const struct sdhci_msm_offset sdhci_msm_mci_offset = { 209 .core_hc_mode = 0x78, 210 .core_mci_data_cnt = 0x30, 211 .core_mci_status = 0x34, 212 .core_mci_fifo_cnt = 0x44, 213 .core_mci_version = 0x050, 214 .core_generics = 0x70, 215 .core_testbus_config = 0x0cc, 216 .core_testbus_sel2_bit = 4, 217 .core_testbus_ena = (1 << 3), 218 .core_testbus_sel2 = (1 << 4), 219 .core_pwrctl_status = 0xdc, 220 .core_pwrctl_mask = 0xe0, 221 .core_pwrctl_clear = 0xe4, 222 .core_pwrctl_ctl = 0xe8, 223 .core_sdcc_debug_reg = 0x124, 224 .core_dll_config = 0x100, 225 .core_dll_status = 0x108, 226 .core_vendor_spec = 0x10c, 227 .core_vendor_spec_adma_err_addr0 = 0x114, 228 .core_vendor_spec_adma_err_addr1 = 0x118, 229 .core_vendor_spec_func2 = 0x110, 230 .core_vendor_spec_capabilities0 = 0x11c, 231 .core_ddr_200_cfg = 0x184, 232 .core_vendor_spec3 = 0x1b0, 233 .core_dll_config_2 = 0x1b4, 234 .core_ddr_config_old = 0x1b8, 235 .core_ddr_config = 0x1bc, 236 }; 237 238 struct sdhci_msm_variant_ops { 239 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset); 240 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host, 241 u32 offset); 242 }; 243 244 /* 245 * From V5, register spaces have changed. Wrap this info in a structure 246 * and choose the data_structure based on version info mentioned in DT. 247 */ 248 struct sdhci_msm_variant_info { 249 bool mci_removed; 250 bool restore_dll_config; 251 bool uses_tassadar_dll; 252 const struct sdhci_msm_variant_ops *var_ops; 253 const struct sdhci_msm_offset *offset; 254 }; 255 256 struct sdhci_msm_host { 257 struct platform_device *pdev; 258 void __iomem *core_mem; /* MSM SDCC mapped address */ 259 int pwr_irq; /* power irq */ 260 struct clk *bus_clk; /* SDHC bus voter clock */ 261 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/ 262 struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */ 263 unsigned long clk_rate; 264 struct mmc_host *mmc; 265 struct opp_table *opp_table; 266 bool has_opp_table; 267 bool use_14lpp_dll_reset; 268 bool tuning_done; 269 bool calibration_done; 270 u8 saved_tuning_phase; 271 bool use_cdclp533; 272 u32 curr_pwr_state; 273 u32 curr_io_level; 274 wait_queue_head_t pwr_irq_wait; 275 bool pwr_irq_flag; 276 u32 caps_0; 277 bool mci_removed; 278 bool restore_dll_config; 279 const struct sdhci_msm_variant_ops *var_ops; 280 const struct sdhci_msm_offset *offset; 281 bool use_cdr; 282 u32 transfer_mode; 283 bool updated_ddr_cfg; 284 bool uses_tassadar_dll; 285 u32 dll_config; 286 u32 ddr_config; 287 bool vqmmc_enabled; 288 }; 289 290 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host) 291 { 292 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 293 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 294 295 return msm_host->offset; 296 } 297 298 /* 299 * APIs to read/write to vendor specific registers which were there in the 300 * core_mem region before MCI was removed. 301 */ 302 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host, 303 u32 offset) 304 { 305 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 306 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 307 308 return readl_relaxed(msm_host->core_mem + offset); 309 } 310 311 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host, 312 u32 offset) 313 { 314 return readl_relaxed(host->ioaddr + offset); 315 } 316 317 static void sdhci_msm_mci_variant_writel_relaxed(u32 val, 318 struct sdhci_host *host, u32 offset) 319 { 320 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 321 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 322 323 writel_relaxed(val, msm_host->core_mem + offset); 324 } 325 326 static void sdhci_msm_v5_variant_writel_relaxed(u32 val, 327 struct sdhci_host *host, u32 offset) 328 { 329 writel_relaxed(val, host->ioaddr + offset); 330 } 331 332 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host, 333 unsigned int clock) 334 { 335 struct mmc_ios ios = host->mmc->ios; 336 /* 337 * The SDHC requires internal clock frequency to be double the 338 * actual clock that will be set for DDR mode. The controller 339 * uses the faster clock(100/400MHz) for some of its parts and 340 * send the actual required clock (50/200MHz) to the card. 341 */ 342 if (ios.timing == MMC_TIMING_UHS_DDR50 || 343 ios.timing == MMC_TIMING_MMC_DDR52 || 344 ios.timing == MMC_TIMING_MMC_HS400 || 345 host->flags & SDHCI_HS400_TUNING) 346 clock *= 2; 347 return clock; 348 } 349 350 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host, 351 unsigned int clock) 352 { 353 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 354 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 355 struct mmc_ios curr_ios = host->mmc->ios; 356 struct clk *core_clk = msm_host->bulk_clks[0].clk; 357 int rc; 358 359 clock = msm_get_clock_rate_for_bus_mode(host, clock); 360 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), clock); 361 if (rc) { 362 pr_err("%s: Failed to set clock at rate %u at timing %d\n", 363 mmc_hostname(host->mmc), clock, 364 curr_ios.timing); 365 return; 366 } 367 msm_host->clk_rate = clock; 368 pr_debug("%s: Setting clock at rate %lu at timing %d\n", 369 mmc_hostname(host->mmc), clk_get_rate(core_clk), 370 curr_ios.timing); 371 } 372 373 /* Platform specific tuning */ 374 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll) 375 { 376 u32 wait_cnt = 50; 377 u8 ck_out_en; 378 struct mmc_host *mmc = host->mmc; 379 const struct sdhci_msm_offset *msm_offset = 380 sdhci_priv_msm_offset(host); 381 382 /* Poll for CK_OUT_EN bit. max. poll time = 50us */ 383 ck_out_en = !!(readl_relaxed(host->ioaddr + 384 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 385 386 while (ck_out_en != poll) { 387 if (--wait_cnt == 0) { 388 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n", 389 mmc_hostname(mmc), poll); 390 return -ETIMEDOUT; 391 } 392 udelay(1); 393 394 ck_out_en = !!(readl_relaxed(host->ioaddr + 395 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 396 } 397 398 return 0; 399 } 400 401 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase) 402 { 403 int rc; 404 static const u8 grey_coded_phase_table[] = { 405 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 406 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8 407 }; 408 unsigned long flags; 409 u32 config; 410 struct mmc_host *mmc = host->mmc; 411 const struct sdhci_msm_offset *msm_offset = 412 sdhci_priv_msm_offset(host); 413 414 if (phase > 0xf) 415 return -EINVAL; 416 417 spin_lock_irqsave(&host->lock, flags); 418 419 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 420 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN); 421 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN); 422 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 423 424 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */ 425 rc = msm_dll_poll_ck_out_en(host, 0); 426 if (rc) 427 goto err_out; 428 429 /* 430 * Write the selected DLL clock output phase (0 ... 15) 431 * to CDR_SELEXT bit field of DLL_CONFIG register. 432 */ 433 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 434 config &= ~CDR_SELEXT_MASK; 435 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT; 436 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 437 438 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 439 config |= CORE_CK_OUT_EN; 440 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 441 442 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */ 443 rc = msm_dll_poll_ck_out_en(host, 1); 444 if (rc) 445 goto err_out; 446 447 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 448 config |= CORE_CDR_EN; 449 config &= ~CORE_CDR_EXT_EN; 450 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 451 goto out; 452 453 err_out: 454 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n", 455 mmc_hostname(mmc), phase); 456 out: 457 spin_unlock_irqrestore(&host->lock, flags); 458 return rc; 459 } 460 461 /* 462 * Find out the greatest range of consecuitive selected 463 * DLL clock output phases that can be used as sampling 464 * setting for SD3.0 UHS-I card read operation (in SDR104 465 * timing mode) or for eMMC4.5 card read operation (in 466 * HS400/HS200 timing mode). 467 * Select the 3/4 of the range and configure the DLL with the 468 * selected DLL clock output phase. 469 */ 470 471 static int msm_find_most_appropriate_phase(struct sdhci_host *host, 472 u8 *phase_table, u8 total_phases) 473 { 474 int ret; 475 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} }; 476 u8 phases_per_row[MAX_PHASES] = { 0 }; 477 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0; 478 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0; 479 bool phase_0_found = false, phase_15_found = false; 480 struct mmc_host *mmc = host->mmc; 481 482 if (!total_phases || (total_phases > MAX_PHASES)) { 483 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n", 484 mmc_hostname(mmc), total_phases); 485 return -EINVAL; 486 } 487 488 for (cnt = 0; cnt < total_phases; cnt++) { 489 ranges[row_index][col_index] = phase_table[cnt]; 490 phases_per_row[row_index] += 1; 491 col_index++; 492 493 if ((cnt + 1) == total_phases) { 494 continue; 495 /* check if next phase in phase_table is consecutive or not */ 496 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) { 497 row_index++; 498 col_index = 0; 499 } 500 } 501 502 if (row_index >= MAX_PHASES) 503 return -EINVAL; 504 505 /* Check if phase-0 is present in first valid window? */ 506 if (!ranges[0][0]) { 507 phase_0_found = true; 508 phase_0_raw_index = 0; 509 /* Check if cycle exist between 2 valid windows */ 510 for (cnt = 1; cnt <= row_index; cnt++) { 511 if (phases_per_row[cnt]) { 512 for (i = 0; i < phases_per_row[cnt]; i++) { 513 if (ranges[cnt][i] == 15) { 514 phase_15_found = true; 515 phase_15_raw_index = cnt; 516 break; 517 } 518 } 519 } 520 } 521 } 522 523 /* If 2 valid windows form cycle then merge them as single window */ 524 if (phase_0_found && phase_15_found) { 525 /* number of phases in raw where phase 0 is present */ 526 u8 phases_0 = phases_per_row[phase_0_raw_index]; 527 /* number of phases in raw where phase 15 is present */ 528 u8 phases_15 = phases_per_row[phase_15_raw_index]; 529 530 if (phases_0 + phases_15 >= MAX_PHASES) 531 /* 532 * If there are more than 1 phase windows then total 533 * number of phases in both the windows should not be 534 * more than or equal to MAX_PHASES. 535 */ 536 return -EINVAL; 537 538 /* Merge 2 cyclic windows */ 539 i = phases_15; 540 for (cnt = 0; cnt < phases_0; cnt++) { 541 ranges[phase_15_raw_index][i] = 542 ranges[phase_0_raw_index][cnt]; 543 if (++i >= MAX_PHASES) 544 break; 545 } 546 547 phases_per_row[phase_0_raw_index] = 0; 548 phases_per_row[phase_15_raw_index] = phases_15 + phases_0; 549 } 550 551 for (cnt = 0; cnt <= row_index; cnt++) { 552 if (phases_per_row[cnt] > curr_max) { 553 curr_max = phases_per_row[cnt]; 554 selected_row_index = cnt; 555 } 556 } 557 558 i = (curr_max * 3) / 4; 559 if (i) 560 i--; 561 562 ret = ranges[selected_row_index][i]; 563 564 if (ret >= MAX_PHASES) { 565 ret = -EINVAL; 566 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n", 567 mmc_hostname(mmc), ret); 568 } 569 570 return ret; 571 } 572 573 static inline void msm_cm_dll_set_freq(struct sdhci_host *host) 574 { 575 u32 mclk_freq = 0, config; 576 const struct sdhci_msm_offset *msm_offset = 577 sdhci_priv_msm_offset(host); 578 579 /* Program the MCLK value to MCLK_FREQ bit field */ 580 if (host->clock <= 112000000) 581 mclk_freq = 0; 582 else if (host->clock <= 125000000) 583 mclk_freq = 1; 584 else if (host->clock <= 137000000) 585 mclk_freq = 2; 586 else if (host->clock <= 150000000) 587 mclk_freq = 3; 588 else if (host->clock <= 162000000) 589 mclk_freq = 4; 590 else if (host->clock <= 175000000) 591 mclk_freq = 5; 592 else if (host->clock <= 187000000) 593 mclk_freq = 6; 594 else if (host->clock <= 200000000) 595 mclk_freq = 7; 596 597 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 598 config &= ~CMUX_SHIFT_PHASE_MASK; 599 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT; 600 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 601 } 602 603 /* Initialize the DLL (Programmable Delay Line) */ 604 static int msm_init_cm_dll(struct sdhci_host *host) 605 { 606 struct mmc_host *mmc = host->mmc; 607 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 608 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 609 int wait_cnt = 50; 610 unsigned long flags, xo_clk = 0; 611 u32 config; 612 const struct sdhci_msm_offset *msm_offset = 613 msm_host->offset; 614 615 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk)) 616 xo_clk = clk_get_rate(msm_host->xo_clk); 617 618 spin_lock_irqsave(&host->lock, flags); 619 620 /* 621 * Make sure that clock is always enabled when DLL 622 * tuning is in progress. Keeping PWRSAVE ON may 623 * turn off the clock. 624 */ 625 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 626 config &= ~CORE_CLK_PWRSAVE; 627 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 628 629 if (msm_host->dll_config) 630 writel_relaxed(msm_host->dll_config, 631 host->ioaddr + msm_offset->core_dll_config); 632 633 if (msm_host->use_14lpp_dll_reset) { 634 config = readl_relaxed(host->ioaddr + 635 msm_offset->core_dll_config); 636 config &= ~CORE_CK_OUT_EN; 637 writel_relaxed(config, host->ioaddr + 638 msm_offset->core_dll_config); 639 640 config = readl_relaxed(host->ioaddr + 641 msm_offset->core_dll_config_2); 642 config |= CORE_DLL_CLOCK_DISABLE; 643 writel_relaxed(config, host->ioaddr + 644 msm_offset->core_dll_config_2); 645 } 646 647 config = readl_relaxed(host->ioaddr + 648 msm_offset->core_dll_config); 649 config |= CORE_DLL_RST; 650 writel_relaxed(config, host->ioaddr + 651 msm_offset->core_dll_config); 652 653 config = readl_relaxed(host->ioaddr + 654 msm_offset->core_dll_config); 655 config |= CORE_DLL_PDN; 656 writel_relaxed(config, host->ioaddr + 657 msm_offset->core_dll_config); 658 659 if (!msm_host->dll_config) 660 msm_cm_dll_set_freq(host); 661 662 if (msm_host->use_14lpp_dll_reset && 663 !IS_ERR_OR_NULL(msm_host->xo_clk)) { 664 u32 mclk_freq = 0; 665 666 config = readl_relaxed(host->ioaddr + 667 msm_offset->core_dll_config_2); 668 config &= CORE_FLL_CYCLE_CNT; 669 if (config) 670 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8), 671 xo_clk); 672 else 673 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4), 674 xo_clk); 675 676 config = readl_relaxed(host->ioaddr + 677 msm_offset->core_dll_config_2); 678 config &= ~(0xFF << 10); 679 config |= mclk_freq << 10; 680 681 writel_relaxed(config, host->ioaddr + 682 msm_offset->core_dll_config_2); 683 /* wait for 5us before enabling DLL clock */ 684 udelay(5); 685 } 686 687 config = readl_relaxed(host->ioaddr + 688 msm_offset->core_dll_config); 689 config &= ~CORE_DLL_RST; 690 writel_relaxed(config, host->ioaddr + 691 msm_offset->core_dll_config); 692 693 config = readl_relaxed(host->ioaddr + 694 msm_offset->core_dll_config); 695 config &= ~CORE_DLL_PDN; 696 writel_relaxed(config, host->ioaddr + 697 msm_offset->core_dll_config); 698 699 if (msm_host->use_14lpp_dll_reset) { 700 if (!msm_host->dll_config) 701 msm_cm_dll_set_freq(host); 702 config = readl_relaxed(host->ioaddr + 703 msm_offset->core_dll_config_2); 704 config &= ~CORE_DLL_CLOCK_DISABLE; 705 writel_relaxed(config, host->ioaddr + 706 msm_offset->core_dll_config_2); 707 } 708 709 /* 710 * Configure DLL user control register to enable DLL status. 711 * This setting is applicable to SDCC v5.1 onwards only. 712 */ 713 if (msm_host->uses_tassadar_dll) { 714 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN | 715 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL; 716 writel_relaxed(config, host->ioaddr + 717 msm_offset->core_dll_usr_ctl); 718 719 config = readl_relaxed(host->ioaddr + 720 msm_offset->core_dll_config_3); 721 config &= ~0xFF; 722 if (msm_host->clk_rate < 150000000) 723 config |= DLL_CONFIG_3_LOW_FREQ_VAL; 724 else 725 config |= DLL_CONFIG_3_HIGH_FREQ_VAL; 726 writel_relaxed(config, host->ioaddr + 727 msm_offset->core_dll_config_3); 728 } 729 730 config = readl_relaxed(host->ioaddr + 731 msm_offset->core_dll_config); 732 config |= CORE_DLL_EN; 733 writel_relaxed(config, host->ioaddr + 734 msm_offset->core_dll_config); 735 736 config = readl_relaxed(host->ioaddr + 737 msm_offset->core_dll_config); 738 config |= CORE_CK_OUT_EN; 739 writel_relaxed(config, host->ioaddr + 740 msm_offset->core_dll_config); 741 742 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */ 743 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) & 744 CORE_DLL_LOCK)) { 745 /* max. wait for 50us sec for LOCK bit to be set */ 746 if (--wait_cnt == 0) { 747 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n", 748 mmc_hostname(mmc)); 749 spin_unlock_irqrestore(&host->lock, flags); 750 return -ETIMEDOUT; 751 } 752 udelay(1); 753 } 754 755 spin_unlock_irqrestore(&host->lock, flags); 756 return 0; 757 } 758 759 static void msm_hc_select_default(struct sdhci_host *host) 760 { 761 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 762 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 763 u32 config; 764 const struct sdhci_msm_offset *msm_offset = 765 msm_host->offset; 766 767 if (!msm_host->use_cdclp533) { 768 config = readl_relaxed(host->ioaddr + 769 msm_offset->core_vendor_spec3); 770 config &= ~CORE_PWRSAVE_DLL; 771 writel_relaxed(config, host->ioaddr + 772 msm_offset->core_vendor_spec3); 773 } 774 775 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 776 config &= ~CORE_HC_MCLK_SEL_MASK; 777 config |= CORE_HC_MCLK_SEL_DFLT; 778 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 779 780 /* 781 * Disable HC_SELECT_IN to be able to use the UHS mode select 782 * configuration from Host Control2 register for all other 783 * modes. 784 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field 785 * in VENDOR_SPEC_FUNC 786 */ 787 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 788 config &= ~CORE_HC_SELECT_IN_EN; 789 config &= ~CORE_HC_SELECT_IN_MASK; 790 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 791 792 /* 793 * Make sure above writes impacting free running MCLK are completed 794 * before changing the clk_rate at GCC. 795 */ 796 wmb(); 797 } 798 799 static void msm_hc_select_hs400(struct sdhci_host *host) 800 { 801 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 802 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 803 struct mmc_ios ios = host->mmc->ios; 804 u32 config, dll_lock; 805 int rc; 806 const struct sdhci_msm_offset *msm_offset = 807 msm_host->offset; 808 809 /* Select the divided clock (free running MCLK/2) */ 810 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 811 config &= ~CORE_HC_MCLK_SEL_MASK; 812 config |= CORE_HC_MCLK_SEL_HS400; 813 814 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 815 /* 816 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC 817 * register 818 */ 819 if ((msm_host->tuning_done || ios.enhanced_strobe) && 820 !msm_host->calibration_done) { 821 config = readl_relaxed(host->ioaddr + 822 msm_offset->core_vendor_spec); 823 config |= CORE_HC_SELECT_IN_HS400; 824 config |= CORE_HC_SELECT_IN_EN; 825 writel_relaxed(config, host->ioaddr + 826 msm_offset->core_vendor_spec); 827 } 828 if (!msm_host->clk_rate && !msm_host->use_cdclp533) { 829 /* 830 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in 831 * core_dll_status to be set. This should get set 832 * within 15 us at 200 MHz. 833 */ 834 rc = readl_relaxed_poll_timeout(host->ioaddr + 835 msm_offset->core_dll_status, 836 dll_lock, 837 (dll_lock & 838 (CORE_DLL_LOCK | 839 CORE_DDR_DLL_LOCK)), 10, 840 1000); 841 if (rc == -ETIMEDOUT) 842 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n", 843 mmc_hostname(host->mmc), dll_lock); 844 } 845 /* 846 * Make sure above writes impacting free running MCLK are completed 847 * before changing the clk_rate at GCC. 848 */ 849 wmb(); 850 } 851 852 /* 853 * sdhci_msm_hc_select_mode :- In general all timing modes are 854 * controlled via UHS mode select in Host Control2 register. 855 * eMMC specific HS200/HS400 doesn't have their respective modes 856 * defined here, hence we use these values. 857 * 858 * HS200 - SDR104 (Since they both are equivalent in functionality) 859 * HS400 - This involves multiple configurations 860 * Initially SDR104 - when tuning is required as HS200 861 * Then when switching to DDR @ 400MHz (HS400) we use 862 * the vendor specific HC_SELECT_IN to control the mode. 863 * 864 * In addition to controlling the modes we also need to select the 865 * correct input clock for DLL depending on the mode. 866 * 867 * HS400 - divided clock (free running MCLK/2) 868 * All other modes - default (free running MCLK) 869 */ 870 static void sdhci_msm_hc_select_mode(struct sdhci_host *host) 871 { 872 struct mmc_ios ios = host->mmc->ios; 873 874 if (ios.timing == MMC_TIMING_MMC_HS400 || 875 host->flags & SDHCI_HS400_TUNING) 876 msm_hc_select_hs400(host); 877 else 878 msm_hc_select_default(host); 879 } 880 881 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host) 882 { 883 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 884 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 885 u32 config, calib_done; 886 int ret; 887 const struct sdhci_msm_offset *msm_offset = 888 msm_host->offset; 889 890 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 891 892 /* 893 * Retuning in HS400 (DDR mode) will fail, just reset the 894 * tuning block and restore the saved tuning phase. 895 */ 896 ret = msm_init_cm_dll(host); 897 if (ret) 898 goto out; 899 900 /* Set the selected phase in delay line hw block */ 901 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 902 if (ret) 903 goto out; 904 905 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 906 config |= CORE_CMD_DAT_TRACK_SEL; 907 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 908 909 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 910 config &= ~CORE_CDC_T4_DLY_SEL; 911 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 912 913 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 914 config &= ~CORE_CDC_SWITCH_BYPASS_OFF; 915 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 916 917 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 918 config |= CORE_CDC_SWITCH_RC_EN; 919 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 920 921 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 922 config &= ~CORE_START_CDC_TRAFFIC; 923 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 924 925 /* Perform CDC Register Initialization Sequence */ 926 927 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 928 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1); 929 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 930 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1); 931 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG); 932 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG); 933 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG); 934 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG); 935 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG); 936 937 /* CDC HW Calibration */ 938 939 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 940 config |= CORE_SW_TRIG_FULL_CALIB; 941 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 942 943 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 944 config &= ~CORE_SW_TRIG_FULL_CALIB; 945 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 946 947 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 948 config |= CORE_HW_AUTOCAL_ENA; 949 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 950 951 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 952 config |= CORE_TIMER_ENA; 953 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 954 955 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0, 956 calib_done, 957 (calib_done & CORE_CALIBRATION_DONE), 958 1, 50); 959 960 if (ret == -ETIMEDOUT) { 961 pr_err("%s: %s: CDC calibration was not completed\n", 962 mmc_hostname(host->mmc), __func__); 963 goto out; 964 } 965 966 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0) 967 & CORE_CDC_ERROR_CODE_MASK; 968 if (ret) { 969 pr_err("%s: %s: CDC error code %d\n", 970 mmc_hostname(host->mmc), __func__, ret); 971 ret = -EINVAL; 972 goto out; 973 } 974 975 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 976 config |= CORE_START_CDC_TRAFFIC; 977 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 978 out: 979 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 980 __func__, ret); 981 return ret; 982 } 983 984 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host) 985 { 986 struct mmc_host *mmc = host->mmc; 987 u32 dll_status, config, ddr_cfg_offset; 988 int ret; 989 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 990 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 991 const struct sdhci_msm_offset *msm_offset = 992 sdhci_priv_msm_offset(host); 993 994 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 995 996 /* 997 * Currently the core_ddr_config register defaults to desired 998 * configuration on reset. Currently reprogramming the power on 999 * reset (POR) value in case it might have been modified by 1000 * bootloaders. In the future, if this changes, then the desired 1001 * values will need to be programmed appropriately. 1002 */ 1003 if (msm_host->updated_ddr_cfg) 1004 ddr_cfg_offset = msm_offset->core_ddr_config; 1005 else 1006 ddr_cfg_offset = msm_offset->core_ddr_config_old; 1007 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset); 1008 1009 if (mmc->ios.enhanced_strobe) { 1010 config = readl_relaxed(host->ioaddr + 1011 msm_offset->core_ddr_200_cfg); 1012 config |= CORE_CMDIN_RCLK_EN; 1013 writel_relaxed(config, host->ioaddr + 1014 msm_offset->core_ddr_200_cfg); 1015 } 1016 1017 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2); 1018 config |= CORE_DDR_CAL_EN; 1019 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2); 1020 1021 ret = readl_relaxed_poll_timeout(host->ioaddr + 1022 msm_offset->core_dll_status, 1023 dll_status, 1024 (dll_status & CORE_DDR_DLL_LOCK), 1025 10, 1000); 1026 1027 if (ret == -ETIMEDOUT) { 1028 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n", 1029 mmc_hostname(host->mmc), __func__); 1030 goto out; 1031 } 1032 1033 /* 1034 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3. 1035 * When MCLK is gated OFF, it is not gated for less than 0.5us 1036 * and MCLK must be switched on for at-least 1us before DATA 1037 * starts coming. Controllers with 14lpp and later tech DLL cannot 1038 * guarantee above requirement. So PWRSAVE_DLL should not be 1039 * turned on for host controllers using this DLL. 1040 */ 1041 if (!msm_host->use_14lpp_dll_reset) { 1042 config = readl_relaxed(host->ioaddr + 1043 msm_offset->core_vendor_spec3); 1044 config |= CORE_PWRSAVE_DLL; 1045 writel_relaxed(config, host->ioaddr + 1046 msm_offset->core_vendor_spec3); 1047 } 1048 1049 /* 1050 * Drain writebuffer to ensure above DLL calibration 1051 * and PWRSAVE DLL is enabled. 1052 */ 1053 wmb(); 1054 out: 1055 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1056 __func__, ret); 1057 return ret; 1058 } 1059 1060 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host) 1061 { 1062 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1063 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1064 struct mmc_host *mmc = host->mmc; 1065 int ret; 1066 u32 config; 1067 const struct sdhci_msm_offset *msm_offset = 1068 msm_host->offset; 1069 1070 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 1071 1072 /* 1073 * Retuning in HS400 (DDR mode) will fail, just reset the 1074 * tuning block and restore the saved tuning phase. 1075 */ 1076 ret = msm_init_cm_dll(host); 1077 if (ret) 1078 goto out; 1079 1080 if (!mmc->ios.enhanced_strobe) { 1081 /* Set the selected phase in delay line hw block */ 1082 ret = msm_config_cm_dll_phase(host, 1083 msm_host->saved_tuning_phase); 1084 if (ret) 1085 goto out; 1086 config = readl_relaxed(host->ioaddr + 1087 msm_offset->core_dll_config); 1088 config |= CORE_CMD_DAT_TRACK_SEL; 1089 writel_relaxed(config, host->ioaddr + 1090 msm_offset->core_dll_config); 1091 } 1092 1093 if (msm_host->use_cdclp533) 1094 ret = sdhci_msm_cdclp533_calibration(host); 1095 else 1096 ret = sdhci_msm_cm_dll_sdc4_calibration(host); 1097 out: 1098 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1099 __func__, ret); 1100 return ret; 1101 } 1102 1103 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host) 1104 { 1105 struct mmc_ios *ios = &host->mmc->ios; 1106 1107 /* 1108 * Tuning is required for SDR104, HS200 and HS400 cards and 1109 * if clock frequency is greater than 100MHz in these modes. 1110 */ 1111 if (host->clock <= CORE_FREQ_100MHZ || 1112 !(ios->timing == MMC_TIMING_MMC_HS400 || 1113 ios->timing == MMC_TIMING_MMC_HS200 || 1114 ios->timing == MMC_TIMING_UHS_SDR104) || 1115 ios->enhanced_strobe) 1116 return false; 1117 1118 return true; 1119 } 1120 1121 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host) 1122 { 1123 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1124 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1125 int ret; 1126 1127 /* 1128 * SDR DLL comes into picture only for timing modes which needs 1129 * tuning. 1130 */ 1131 if (!sdhci_msm_is_tuning_needed(host)) 1132 return 0; 1133 1134 /* Reset the tuning block */ 1135 ret = msm_init_cm_dll(host); 1136 if (ret) 1137 return ret; 1138 1139 /* Restore the tuning block */ 1140 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 1141 1142 return ret; 1143 } 1144 1145 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable) 1146 { 1147 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host); 1148 u32 config, oldconfig = readl_relaxed(host->ioaddr + 1149 msm_offset->core_dll_config); 1150 1151 config = oldconfig; 1152 if (enable) { 1153 config |= CORE_CDR_EN; 1154 config &= ~CORE_CDR_EXT_EN; 1155 } else { 1156 config &= ~CORE_CDR_EN; 1157 config |= CORE_CDR_EXT_EN; 1158 } 1159 1160 if (config != oldconfig) { 1161 writel_relaxed(config, host->ioaddr + 1162 msm_offset->core_dll_config); 1163 } 1164 } 1165 1166 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode) 1167 { 1168 struct sdhci_host *host = mmc_priv(mmc); 1169 int tuning_seq_cnt = 10; 1170 u8 phase, tuned_phases[16], tuned_phase_cnt = 0; 1171 int rc; 1172 struct mmc_ios ios = host->mmc->ios; 1173 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1174 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1175 1176 if (!sdhci_msm_is_tuning_needed(host)) { 1177 msm_host->use_cdr = false; 1178 sdhci_msm_set_cdr(host, false); 1179 return 0; 1180 } 1181 1182 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */ 1183 msm_host->use_cdr = true; 1184 1185 /* 1186 * Clear tuning_done flag before tuning to ensure proper 1187 * HS400 settings. 1188 */ 1189 msm_host->tuning_done = 0; 1190 1191 /* 1192 * For HS400 tuning in HS200 timing requires: 1193 * - select MCLK/2 in VENDOR_SPEC 1194 * - program MCLK to 400MHz (or nearest supported) in GCC 1195 */ 1196 if (host->flags & SDHCI_HS400_TUNING) { 1197 sdhci_msm_hc_select_mode(host); 1198 msm_set_clock_rate_for_bus_mode(host, ios.clock); 1199 host->flags &= ~SDHCI_HS400_TUNING; 1200 } 1201 1202 retry: 1203 /* First of all reset the tuning block */ 1204 rc = msm_init_cm_dll(host); 1205 if (rc) 1206 return rc; 1207 1208 phase = 0; 1209 do { 1210 /* Set the phase in delay line hw block */ 1211 rc = msm_config_cm_dll_phase(host, phase); 1212 if (rc) 1213 return rc; 1214 1215 rc = mmc_send_tuning(mmc, opcode, NULL); 1216 if (!rc) { 1217 /* Tuning is successful at this tuning point */ 1218 tuned_phases[tuned_phase_cnt++] = phase; 1219 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n", 1220 mmc_hostname(mmc), phase); 1221 } 1222 } while (++phase < ARRAY_SIZE(tuned_phases)); 1223 1224 if (tuned_phase_cnt) { 1225 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) { 1226 /* 1227 * All phases valid is _almost_ as bad as no phases 1228 * valid. Probably all phases are not really reliable 1229 * but we didn't detect where the unreliable place is. 1230 * That means we'll essentially be guessing and hoping 1231 * we get a good phase. Better to try a few times. 1232 */ 1233 dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n", 1234 mmc_hostname(mmc)); 1235 if (--tuning_seq_cnt) { 1236 tuned_phase_cnt = 0; 1237 goto retry; 1238 } 1239 } 1240 1241 rc = msm_find_most_appropriate_phase(host, tuned_phases, 1242 tuned_phase_cnt); 1243 if (rc < 0) 1244 return rc; 1245 else 1246 phase = rc; 1247 1248 /* 1249 * Finally set the selected phase in delay 1250 * line hw block. 1251 */ 1252 rc = msm_config_cm_dll_phase(host, phase); 1253 if (rc) 1254 return rc; 1255 msm_host->saved_tuning_phase = phase; 1256 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n", 1257 mmc_hostname(mmc), phase); 1258 } else { 1259 if (--tuning_seq_cnt) 1260 goto retry; 1261 /* Tuning failed */ 1262 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n", 1263 mmc_hostname(mmc)); 1264 rc = -EIO; 1265 } 1266 1267 if (!rc) 1268 msm_host->tuning_done = true; 1269 return rc; 1270 } 1271 1272 /* 1273 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation. 1274 * This needs to be done for both tuning and enhanced_strobe mode. 1275 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz 1276 * fixed feedback clock is used. 1277 */ 1278 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios) 1279 { 1280 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1281 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1282 int ret; 1283 1284 if (host->clock > CORE_FREQ_100MHZ && 1285 (msm_host->tuning_done || ios->enhanced_strobe) && 1286 !msm_host->calibration_done) { 1287 ret = sdhci_msm_hs400_dll_calibration(host); 1288 if (!ret) 1289 msm_host->calibration_done = true; 1290 else 1291 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n", 1292 mmc_hostname(host->mmc), ret); 1293 } 1294 } 1295 1296 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host, 1297 unsigned int uhs) 1298 { 1299 struct mmc_host *mmc = host->mmc; 1300 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1301 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1302 u16 ctrl_2; 1303 u32 config; 1304 const struct sdhci_msm_offset *msm_offset = 1305 msm_host->offset; 1306 1307 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); 1308 /* Select Bus Speed Mode for host */ 1309 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1310 switch (uhs) { 1311 case MMC_TIMING_UHS_SDR12: 1312 ctrl_2 |= SDHCI_CTRL_UHS_SDR12; 1313 break; 1314 case MMC_TIMING_UHS_SDR25: 1315 ctrl_2 |= SDHCI_CTRL_UHS_SDR25; 1316 break; 1317 case MMC_TIMING_UHS_SDR50: 1318 ctrl_2 |= SDHCI_CTRL_UHS_SDR50; 1319 break; 1320 case MMC_TIMING_MMC_HS400: 1321 case MMC_TIMING_MMC_HS200: 1322 case MMC_TIMING_UHS_SDR104: 1323 ctrl_2 |= SDHCI_CTRL_UHS_SDR104; 1324 break; 1325 case MMC_TIMING_UHS_DDR50: 1326 case MMC_TIMING_MMC_DDR52: 1327 ctrl_2 |= SDHCI_CTRL_UHS_DDR50; 1328 break; 1329 } 1330 1331 /* 1332 * When clock frequency is less than 100MHz, the feedback clock must be 1333 * provided and DLL must not be used so that tuning can be skipped. To 1334 * provide feedback clock, the mode selection can be any value less 1335 * than 3'b011 in bits [2:0] of HOST CONTROL2 register. 1336 */ 1337 if (host->clock <= CORE_FREQ_100MHZ) { 1338 if (uhs == MMC_TIMING_MMC_HS400 || 1339 uhs == MMC_TIMING_MMC_HS200 || 1340 uhs == MMC_TIMING_UHS_SDR104) 1341 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1342 /* 1343 * DLL is not required for clock <= 100MHz 1344 * Thus, make sure DLL it is disabled when not required 1345 */ 1346 config = readl_relaxed(host->ioaddr + 1347 msm_offset->core_dll_config); 1348 config |= CORE_DLL_RST; 1349 writel_relaxed(config, host->ioaddr + 1350 msm_offset->core_dll_config); 1351 1352 config = readl_relaxed(host->ioaddr + 1353 msm_offset->core_dll_config); 1354 config |= CORE_DLL_PDN; 1355 writel_relaxed(config, host->ioaddr + 1356 msm_offset->core_dll_config); 1357 1358 /* 1359 * The DLL needs to be restored and CDCLP533 recalibrated 1360 * when the clock frequency is set back to 400MHz. 1361 */ 1362 msm_host->calibration_done = false; 1363 } 1364 1365 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n", 1366 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2); 1367 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); 1368 1369 if (mmc->ios.timing == MMC_TIMING_MMC_HS400) 1370 sdhci_msm_hs400(host, &mmc->ios); 1371 } 1372 1373 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level) 1374 { 1375 struct platform_device *pdev = msm_host->pdev; 1376 int ret; 1377 1378 if (level) 1379 ret = pinctrl_pm_select_default_state(&pdev->dev); 1380 else 1381 ret = pinctrl_pm_select_sleep_state(&pdev->dev); 1382 1383 return ret; 1384 } 1385 1386 static int sdhci_msm_set_vmmc(struct mmc_host *mmc) 1387 { 1388 if (IS_ERR(mmc->supply.vmmc)) 1389 return 0; 1390 1391 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd); 1392 } 1393 1394 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host, 1395 struct mmc_host *mmc, bool level) 1396 { 1397 int ret; 1398 struct mmc_ios ios; 1399 1400 if (msm_host->vqmmc_enabled == level) 1401 return 0; 1402 1403 if (level) { 1404 /* Set the IO voltage regulator to default voltage level */ 1405 if (msm_host->caps_0 & CORE_3_0V_SUPPORT) 1406 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330; 1407 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT) 1408 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180; 1409 1410 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1411 ret = mmc_regulator_set_vqmmc(mmc, &ios); 1412 if (ret < 0) { 1413 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n", 1414 mmc_hostname(mmc), ret); 1415 goto out; 1416 } 1417 } 1418 ret = regulator_enable(mmc->supply.vqmmc); 1419 } else { 1420 ret = regulator_disable(mmc->supply.vqmmc); 1421 } 1422 1423 if (ret) 1424 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n", 1425 mmc_hostname(mmc), level ? "en":"dis", ret); 1426 else 1427 msm_host->vqmmc_enabled = level; 1428 out: 1429 return ret; 1430 } 1431 1432 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host, 1433 struct mmc_host *mmc, bool hpm) 1434 { 1435 int load, ret; 1436 1437 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0; 1438 ret = regulator_set_load(mmc->supply.vqmmc, load); 1439 if (ret) 1440 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n", 1441 mmc_hostname(mmc), ret); 1442 return ret; 1443 } 1444 1445 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host, 1446 struct mmc_host *mmc, bool level) 1447 { 1448 int ret; 1449 bool always_on; 1450 1451 if (IS_ERR(mmc->supply.vqmmc) || 1452 (mmc->ios.power_mode == MMC_POWER_UNDEFINED)) 1453 return 0; 1454 /* 1455 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM 1456 * and HPM modes by setting the corresponding load. 1457 * 1458 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off 1459 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off 1460 * gets invoked. Once eMMC is initialized (i.e. always_on == 1), 1461 * Vqmmc should remain ON, So just set the load instead of turning it 1462 * off/on. 1463 */ 1464 always_on = !mmc_card_is_removable(mmc) && 1465 mmc->card && mmc_card_mmc(mmc->card); 1466 1467 if (always_on) 1468 ret = msm_config_vqmmc_mode(msm_host, mmc, level); 1469 else 1470 ret = msm_toggle_vqmmc(msm_host, mmc, level); 1471 1472 return ret; 1473 } 1474 1475 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host) 1476 { 1477 init_waitqueue_head(&msm_host->pwr_irq_wait); 1478 } 1479 1480 static inline void sdhci_msm_complete_pwr_irq_wait( 1481 struct sdhci_msm_host *msm_host) 1482 { 1483 wake_up(&msm_host->pwr_irq_wait); 1484 } 1485 1486 /* 1487 * sdhci_msm_check_power_status API should be called when registers writes 1488 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens. 1489 * To what state the register writes will change the IO lines should be passed 1490 * as the argument req_type. This API will check whether the IO line's state 1491 * is already the expected state and will wait for power irq only if 1492 * power irq is expected to be triggered based on the current IO line state 1493 * and expected IO line state. 1494 */ 1495 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type) 1496 { 1497 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1498 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1499 bool done = false; 1500 u32 val = SWITCHABLE_SIGNALING_VOLTAGE; 1501 const struct sdhci_msm_offset *msm_offset = 1502 msm_host->offset; 1503 1504 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n", 1505 mmc_hostname(host->mmc), __func__, req_type, 1506 msm_host->curr_pwr_state, msm_host->curr_io_level); 1507 1508 /* 1509 * The power interrupt will not be generated for signal voltage 1510 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set. 1511 * Since sdhci-msm-v5, this bit has been removed and SW must consider 1512 * it as always set. 1513 */ 1514 if (!msm_host->mci_removed) 1515 val = msm_host_readl(msm_host, host, 1516 msm_offset->core_generics); 1517 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) && 1518 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) { 1519 return; 1520 } 1521 1522 /* 1523 * The IRQ for request type IO High/LOW will be generated when - 1524 * there is a state change in 1.8V enable bit (bit 3) of 1525 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0 1526 * which indicates 3.3V IO voltage. So, when MMC core layer tries 1527 * to set it to 3.3V before card detection happens, the 1528 * IRQ doesn't get triggered as there is no state change in this bit. 1529 * The driver already handles this case by changing the IO voltage 1530 * level to high as part of controller power up sequence. Hence, check 1531 * for host->pwr to handle a case where IO voltage high request is 1532 * issued even before controller power up. 1533 */ 1534 if ((req_type & REQ_IO_HIGH) && !host->pwr) { 1535 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n", 1536 mmc_hostname(host->mmc), req_type); 1537 return; 1538 } 1539 if ((req_type & msm_host->curr_pwr_state) || 1540 (req_type & msm_host->curr_io_level)) 1541 done = true; 1542 /* 1543 * This is needed here to handle cases where register writes will 1544 * not change the current bus state or io level of the controller. 1545 * In this case, no power irq will be triggerred and we should 1546 * not wait. 1547 */ 1548 if (!done) { 1549 if (!wait_event_timeout(msm_host->pwr_irq_wait, 1550 msm_host->pwr_irq_flag, 1551 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS))) 1552 dev_warn(&msm_host->pdev->dev, 1553 "%s: pwr_irq for req: (%d) timed out\n", 1554 mmc_hostname(host->mmc), req_type); 1555 } 1556 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc), 1557 __func__, req_type); 1558 } 1559 1560 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host) 1561 { 1562 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1563 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1564 const struct sdhci_msm_offset *msm_offset = 1565 msm_host->offset; 1566 1567 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n", 1568 mmc_hostname(host->mmc), 1569 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status), 1570 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask), 1571 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl)); 1572 } 1573 1574 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq) 1575 { 1576 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1577 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1578 struct mmc_host *mmc = host->mmc; 1579 u32 irq_status, irq_ack = 0; 1580 int retry = 10, ret; 1581 u32 pwr_state = 0, io_level = 0; 1582 u32 config; 1583 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1584 1585 irq_status = msm_host_readl(msm_host, host, 1586 msm_offset->core_pwrctl_status); 1587 irq_status &= INT_MASK; 1588 1589 msm_host_writel(msm_host, irq_status, host, 1590 msm_offset->core_pwrctl_clear); 1591 1592 /* 1593 * There is a rare HW scenario where the first clear pulse could be 1594 * lost when actual reset and clear/read of status register is 1595 * happening at a time. Hence, retry for at least 10 times to make 1596 * sure status register is cleared. Otherwise, this will result in 1597 * a spurious power IRQ resulting in system instability. 1598 */ 1599 while (irq_status & msm_host_readl(msm_host, host, 1600 msm_offset->core_pwrctl_status)) { 1601 if (retry == 0) { 1602 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n", 1603 mmc_hostname(host->mmc), irq_status); 1604 sdhci_msm_dump_pwr_ctrl_regs(host); 1605 WARN_ON(1); 1606 break; 1607 } 1608 msm_host_writel(msm_host, irq_status, host, 1609 msm_offset->core_pwrctl_clear); 1610 retry--; 1611 udelay(10); 1612 } 1613 1614 /* Handle BUS ON/OFF*/ 1615 if (irq_status & CORE_PWRCTL_BUS_ON) { 1616 pwr_state = REQ_BUS_ON; 1617 io_level = REQ_IO_HIGH; 1618 } 1619 if (irq_status & CORE_PWRCTL_BUS_OFF) { 1620 pwr_state = REQ_BUS_OFF; 1621 io_level = REQ_IO_LOW; 1622 } 1623 1624 if (pwr_state) { 1625 ret = sdhci_msm_set_vmmc(mmc); 1626 if (!ret) 1627 ret = sdhci_msm_set_vqmmc(msm_host, mmc, 1628 pwr_state & REQ_BUS_ON); 1629 if (!ret) 1630 ret = sdhci_msm_set_pincfg(msm_host, 1631 pwr_state & REQ_BUS_ON); 1632 if (!ret) 1633 irq_ack |= CORE_PWRCTL_BUS_SUCCESS; 1634 else 1635 irq_ack |= CORE_PWRCTL_BUS_FAIL; 1636 } 1637 1638 /* Handle IO LOW/HIGH */ 1639 if (irq_status & CORE_PWRCTL_IO_LOW) 1640 io_level = REQ_IO_LOW; 1641 1642 if (irq_status & CORE_PWRCTL_IO_HIGH) 1643 io_level = REQ_IO_HIGH; 1644 1645 if (io_level) 1646 irq_ack |= CORE_PWRCTL_IO_SUCCESS; 1647 1648 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) { 1649 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios); 1650 if (ret < 0) { 1651 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n", 1652 mmc_hostname(mmc), ret, 1653 mmc->ios.signal_voltage, mmc->ios.vdd, 1654 irq_status); 1655 irq_ack |= CORE_PWRCTL_IO_FAIL; 1656 } 1657 } 1658 1659 /* 1660 * The driver has to acknowledge the interrupt, switch voltages and 1661 * report back if it succeded or not to this register. The voltage 1662 * switches are handled by the sdhci core, so just report success. 1663 */ 1664 msm_host_writel(msm_host, irq_ack, host, 1665 msm_offset->core_pwrctl_ctl); 1666 1667 /* 1668 * If we don't have info regarding the voltage levels supported by 1669 * regulators, don't change the IO PAD PWR SWITCH. 1670 */ 1671 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1672 u32 new_config; 1673 /* 1674 * We should unset IO PAD PWR switch only if the register write 1675 * can set IO lines high and the regulator also switches to 3 V. 1676 * Else, we should keep the IO PAD PWR switch set. 1677 * This is applicable to certain targets where eMMC vccq supply 1678 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the 1679 * IO PAD PWR switch must be kept set to reflect actual 1680 * regulator voltage. This way, during initialization of 1681 * controllers with only 1.8V, we will set the IO PAD bit 1682 * without waiting for a REQ_IO_LOW. 1683 */ 1684 config = readl_relaxed(host->ioaddr + 1685 msm_offset->core_vendor_spec); 1686 new_config = config; 1687 1688 if ((io_level & REQ_IO_HIGH) && 1689 (msm_host->caps_0 & CORE_3_0V_SUPPORT)) 1690 new_config &= ~CORE_IO_PAD_PWR_SWITCH; 1691 else if ((io_level & REQ_IO_LOW) || 1692 (msm_host->caps_0 & CORE_1_8V_SUPPORT)) 1693 new_config |= CORE_IO_PAD_PWR_SWITCH; 1694 1695 if (config ^ new_config) 1696 writel_relaxed(new_config, host->ioaddr + 1697 msm_offset->core_vendor_spec); 1698 } 1699 1700 if (pwr_state) 1701 msm_host->curr_pwr_state = pwr_state; 1702 if (io_level) 1703 msm_host->curr_io_level = io_level; 1704 1705 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n", 1706 mmc_hostname(msm_host->mmc), __func__, irq, irq_status, 1707 irq_ack); 1708 } 1709 1710 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data) 1711 { 1712 struct sdhci_host *host = (struct sdhci_host *)data; 1713 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1714 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1715 1716 sdhci_msm_handle_pwr_irq(host, irq); 1717 msm_host->pwr_irq_flag = 1; 1718 sdhci_msm_complete_pwr_irq_wait(msm_host); 1719 1720 1721 return IRQ_HANDLED; 1722 } 1723 1724 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host) 1725 { 1726 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1727 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1728 struct clk *core_clk = msm_host->bulk_clks[0].clk; 1729 1730 return clk_round_rate(core_clk, ULONG_MAX); 1731 } 1732 1733 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host) 1734 { 1735 return SDHCI_MSM_MIN_CLOCK; 1736 } 1737 1738 /* 1739 * __sdhci_msm_set_clock - sdhci_msm clock control. 1740 * 1741 * Description: 1742 * MSM controller does not use internal divider and 1743 * instead directly control the GCC clock as per 1744 * HW recommendation. 1745 **/ 1746 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1747 { 1748 u16 clk; 1749 /* 1750 * Keep actual_clock as zero - 1751 * - since there is no divider used so no need of having actual_clock. 1752 * - MSM controller uses SDCLK for data timeout calculation. If 1753 * actual_clock is zero, host->clock is taken for calculation. 1754 */ 1755 host->mmc->actual_clock = 0; 1756 1757 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); 1758 1759 if (clock == 0) 1760 return; 1761 1762 /* 1763 * MSM controller do not use clock divider. 1764 * Thus read SDHCI_CLOCK_CONTROL and only enable 1765 * clock with no divider value programmed. 1766 */ 1767 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); 1768 sdhci_enable_clk(host, clk); 1769 } 1770 1771 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */ 1772 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1773 { 1774 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1775 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1776 1777 if (!clock) { 1778 msm_host->clk_rate = clock; 1779 goto out; 1780 } 1781 1782 sdhci_msm_hc_select_mode(host); 1783 1784 msm_set_clock_rate_for_bus_mode(host, clock); 1785 out: 1786 __sdhci_msm_set_clock(host, clock); 1787 } 1788 1789 /*****************************************************************************\ 1790 * * 1791 * MSM Command Queue Engine (CQE) * 1792 * * 1793 \*****************************************************************************/ 1794 1795 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask) 1796 { 1797 int cmd_error = 0; 1798 int data_error = 0; 1799 1800 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error)) 1801 return intmask; 1802 1803 cqhci_irq(host->mmc, intmask, cmd_error, data_error); 1804 return 0; 1805 } 1806 1807 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery) 1808 { 1809 struct sdhci_host *host = mmc_priv(mmc); 1810 unsigned long flags; 1811 u32 ctrl; 1812 1813 /* 1814 * When CQE is halted, the legacy SDHCI path operates only 1815 * on 16-byte descriptors in 64bit mode. 1816 */ 1817 if (host->flags & SDHCI_USE_64_BIT_DMA) 1818 host->desc_sz = 16; 1819 1820 spin_lock_irqsave(&host->lock, flags); 1821 1822 /* 1823 * During CQE command transfers, command complete bit gets latched. 1824 * So s/w should clear command complete interrupt status when CQE is 1825 * either halted or disabled. Otherwise unexpected SDCHI legacy 1826 * interrupt gets triggered when CQE is halted/disabled. 1827 */ 1828 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE); 1829 ctrl |= SDHCI_INT_RESPONSE; 1830 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE); 1831 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS); 1832 1833 spin_unlock_irqrestore(&host->lock, flags); 1834 1835 sdhci_cqe_disable(mmc, recovery); 1836 } 1837 1838 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = { 1839 .enable = sdhci_cqe_enable, 1840 .disable = sdhci_msm_cqe_disable, 1841 }; 1842 1843 static int sdhci_msm_cqe_add_host(struct sdhci_host *host, 1844 struct platform_device *pdev) 1845 { 1846 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1847 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1848 struct cqhci_host *cq_host; 1849 bool dma64; 1850 u32 cqcfg; 1851 int ret; 1852 1853 /* 1854 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors. 1855 * So ensure ADMA table is allocated for 16byte descriptors. 1856 */ 1857 if (host->caps & SDHCI_CAN_64BIT) 1858 host->alloc_desc_sz = 16; 1859 1860 ret = sdhci_setup_host(host); 1861 if (ret) 1862 return ret; 1863 1864 cq_host = cqhci_pltfm_init(pdev); 1865 if (IS_ERR(cq_host)) { 1866 ret = PTR_ERR(cq_host); 1867 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret); 1868 goto cleanup; 1869 } 1870 1871 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD; 1872 cq_host->ops = &sdhci_msm_cqhci_ops; 1873 1874 dma64 = host->flags & SDHCI_USE_64_BIT_DMA; 1875 1876 ret = cqhci_init(cq_host, host->mmc, dma64); 1877 if (ret) { 1878 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n", 1879 mmc_hostname(host->mmc), ret); 1880 goto cleanup; 1881 } 1882 1883 /* Disable cqe reset due to cqe enable signal */ 1884 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1); 1885 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN; 1886 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1); 1887 1888 /* 1889 * SDHC expects 12byte ADMA descriptors till CQE is enabled. 1890 * So limit desc_sz to 12 so that the data commands that are sent 1891 * during card initialization (before CQE gets enabled) would 1892 * get executed without any issues. 1893 */ 1894 if (host->flags & SDHCI_USE_64_BIT_DMA) 1895 host->desc_sz = 12; 1896 1897 ret = __sdhci_add_host(host); 1898 if (ret) 1899 goto cleanup; 1900 1901 dev_info(&pdev->dev, "%s: CQE init: success\n", 1902 mmc_hostname(host->mmc)); 1903 return ret; 1904 1905 cleanup: 1906 sdhci_cleanup_host(host); 1907 return ret; 1908 } 1909 1910 /* 1911 * Platform specific register write functions. This is so that, if any 1912 * register write needs to be followed up by platform specific actions, 1913 * they can be added here. These functions can go to sleep when writes 1914 * to certain registers are done. 1915 * These functions are relying on sdhci_set_ios not using spinlock. 1916 */ 1917 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg) 1918 { 1919 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1920 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1921 u32 req_type = 0; 1922 1923 switch (reg) { 1924 case SDHCI_HOST_CONTROL2: 1925 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW : 1926 REQ_IO_HIGH; 1927 break; 1928 case SDHCI_SOFTWARE_RESET: 1929 if (host->pwr && (val & SDHCI_RESET_ALL)) 1930 req_type = REQ_BUS_OFF; 1931 break; 1932 case SDHCI_POWER_CONTROL: 1933 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON; 1934 break; 1935 case SDHCI_TRANSFER_MODE: 1936 msm_host->transfer_mode = val; 1937 break; 1938 case SDHCI_COMMAND: 1939 if (!msm_host->use_cdr) 1940 break; 1941 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) && 1942 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 && 1943 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK) 1944 sdhci_msm_set_cdr(host, true); 1945 else 1946 sdhci_msm_set_cdr(host, false); 1947 break; 1948 } 1949 1950 if (req_type) { 1951 msm_host->pwr_irq_flag = 0; 1952 /* 1953 * Since this register write may trigger a power irq, ensure 1954 * all previous register writes are complete by this point. 1955 */ 1956 mb(); 1957 } 1958 return req_type; 1959 } 1960 1961 /* This function may sleep*/ 1962 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg) 1963 { 1964 u32 req_type = 0; 1965 1966 req_type = __sdhci_msm_check_write(host, val, reg); 1967 writew_relaxed(val, host->ioaddr + reg); 1968 1969 if (req_type) 1970 sdhci_msm_check_power_status(host, req_type); 1971 } 1972 1973 /* This function may sleep*/ 1974 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg) 1975 { 1976 u32 req_type = 0; 1977 1978 req_type = __sdhci_msm_check_write(host, val, reg); 1979 1980 writeb_relaxed(val, host->ioaddr + reg); 1981 1982 if (req_type) 1983 sdhci_msm_check_power_status(host, req_type); 1984 } 1985 1986 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host) 1987 { 1988 struct mmc_host *mmc = msm_host->mmc; 1989 struct regulator *supply = mmc->supply.vqmmc; 1990 u32 caps = 0, config; 1991 struct sdhci_host *host = mmc_priv(mmc); 1992 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1993 1994 if (!IS_ERR(mmc->supply.vqmmc)) { 1995 if (regulator_is_supported_voltage(supply, 1700000, 1950000)) 1996 caps |= CORE_1_8V_SUPPORT; 1997 if (regulator_is_supported_voltage(supply, 2700000, 3600000)) 1998 caps |= CORE_3_0V_SUPPORT; 1999 2000 if (!caps) 2001 pr_warn("%s: 1.8/3V not supported for vqmmc\n", 2002 mmc_hostname(mmc)); 2003 } 2004 2005 if (caps) { 2006 /* 2007 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH 2008 * bit can be used as required later on. 2009 */ 2010 u32 io_level = msm_host->curr_io_level; 2011 2012 config = readl_relaxed(host->ioaddr + 2013 msm_offset->core_vendor_spec); 2014 config |= CORE_IO_PAD_PWR_SWITCH_EN; 2015 2016 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT)) 2017 config &= ~CORE_IO_PAD_PWR_SWITCH; 2018 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT)) 2019 config |= CORE_IO_PAD_PWR_SWITCH; 2020 2021 writel_relaxed(config, 2022 host->ioaddr + msm_offset->core_vendor_spec); 2023 } 2024 msm_host->caps_0 |= caps; 2025 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps); 2026 } 2027 2028 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask) 2029 { 2030 if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL)) 2031 cqhci_deactivate(host->mmc); 2032 sdhci_reset(host, mask); 2033 } 2034 2035 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host) 2036 { 2037 int ret; 2038 2039 ret = mmc_regulator_get_supply(msm_host->mmc); 2040 if (ret) 2041 return ret; 2042 2043 sdhci_msm_set_regulator_caps(msm_host); 2044 2045 return 0; 2046 } 2047 2048 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc, 2049 struct mmc_ios *ios) 2050 { 2051 struct sdhci_host *host = mmc_priv(mmc); 2052 u16 ctrl, status; 2053 2054 /* 2055 * Signal Voltage Switching is only applicable for Host Controllers 2056 * v3.00 and above. 2057 */ 2058 if (host->version < SDHCI_SPEC_300) 2059 return 0; 2060 2061 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2062 2063 switch (ios->signal_voltage) { 2064 case MMC_SIGNAL_VOLTAGE_330: 2065 if (!(host->flags & SDHCI_SIGNALING_330)) 2066 return -EINVAL; 2067 2068 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */ 2069 ctrl &= ~SDHCI_CTRL_VDD_180; 2070 break; 2071 case MMC_SIGNAL_VOLTAGE_180: 2072 if (!(host->flags & SDHCI_SIGNALING_180)) 2073 return -EINVAL; 2074 2075 /* Enable 1.8V Signal Enable in the Host Control2 register */ 2076 ctrl |= SDHCI_CTRL_VDD_180; 2077 break; 2078 2079 default: 2080 return -EINVAL; 2081 } 2082 2083 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); 2084 2085 /* Wait for 5ms */ 2086 usleep_range(5000, 5500); 2087 2088 /* regulator output should be stable within 5 ms */ 2089 status = ctrl & SDHCI_CTRL_VDD_180; 2090 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2091 if ((ctrl & SDHCI_CTRL_VDD_180) == status) 2092 return 0; 2093 2094 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n", 2095 mmc_hostname(mmc)); 2096 2097 return -EAGAIN; 2098 } 2099 2100 #define DRIVER_NAME "sdhci_msm" 2101 #define SDHCI_MSM_DUMP(f, x...) \ 2102 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x) 2103 2104 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host) 2105 { 2106 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2107 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2108 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 2109 2110 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n"); 2111 2112 SDHCI_MSM_DUMP( 2113 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n", 2114 readl_relaxed(host->ioaddr + msm_offset->core_dll_status), 2115 readl_relaxed(host->ioaddr + msm_offset->core_dll_config), 2116 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2)); 2117 SDHCI_MSM_DUMP( 2118 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n", 2119 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3), 2120 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl), 2121 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config)); 2122 SDHCI_MSM_DUMP( 2123 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n", 2124 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec), 2125 readl_relaxed(host->ioaddr + 2126 msm_offset->core_vendor_spec_func2), 2127 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3)); 2128 } 2129 2130 static const struct sdhci_msm_variant_ops mci_var_ops = { 2131 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed, 2132 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed, 2133 }; 2134 2135 static const struct sdhci_msm_variant_ops v5_var_ops = { 2136 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed, 2137 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed, 2138 }; 2139 2140 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = { 2141 .var_ops = &mci_var_ops, 2142 .offset = &sdhci_msm_mci_offset, 2143 }; 2144 2145 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = { 2146 .mci_removed = true, 2147 .var_ops = &v5_var_ops, 2148 .offset = &sdhci_msm_v5_offset, 2149 }; 2150 2151 static const struct sdhci_msm_variant_info sdm845_sdhci_var = { 2152 .mci_removed = true, 2153 .restore_dll_config = true, 2154 .var_ops = &v5_var_ops, 2155 .offset = &sdhci_msm_v5_offset, 2156 }; 2157 2158 static const struct sdhci_msm_variant_info sm8250_sdhci_var = { 2159 .mci_removed = true, 2160 .uses_tassadar_dll = true, 2161 .var_ops = &v5_var_ops, 2162 .offset = &sdhci_msm_v5_offset, 2163 }; 2164 2165 static const struct of_device_id sdhci_msm_dt_match[] = { 2166 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var}, 2167 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var}, 2168 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var}, 2169 {.compatible = "qcom,sm8250-sdhci", .data = &sm8250_sdhci_var}, 2170 {}, 2171 }; 2172 2173 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match); 2174 2175 static const struct sdhci_ops sdhci_msm_ops = { 2176 .reset = sdhci_msm_reset, 2177 .set_clock = sdhci_msm_set_clock, 2178 .get_min_clock = sdhci_msm_get_min_clock, 2179 .get_max_clock = sdhci_msm_get_max_clock, 2180 .set_bus_width = sdhci_set_bus_width, 2181 .set_uhs_signaling = sdhci_msm_set_uhs_signaling, 2182 .write_w = sdhci_msm_writew, 2183 .write_b = sdhci_msm_writeb, 2184 .irq = sdhci_msm_cqe_irq, 2185 .dump_vendor_regs = sdhci_msm_dump_vendor_regs, 2186 .set_power = sdhci_set_power_noreg, 2187 }; 2188 2189 static const struct sdhci_pltfm_data sdhci_msm_pdata = { 2190 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION | 2191 SDHCI_QUIRK_SINGLE_POWER_WRITE | 2192 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN | 2193 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12, 2194 2195 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, 2196 .ops = &sdhci_msm_ops, 2197 }; 2198 2199 static inline void sdhci_msm_get_of_property(struct platform_device *pdev, 2200 struct sdhci_host *host) 2201 { 2202 struct device_node *node = pdev->dev.of_node; 2203 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2204 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2205 2206 if (of_property_read_u32(node, "qcom,ddr-config", 2207 &msm_host->ddr_config)) 2208 msm_host->ddr_config = DDR_CONFIG_POR_VAL; 2209 2210 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config); 2211 } 2212 2213 2214 static int sdhci_msm_probe(struct platform_device *pdev) 2215 { 2216 struct sdhci_host *host; 2217 struct sdhci_pltfm_host *pltfm_host; 2218 struct sdhci_msm_host *msm_host; 2219 struct clk *clk; 2220 int ret; 2221 u16 host_version, core_minor; 2222 u32 core_version, config; 2223 u8 core_major; 2224 const struct sdhci_msm_offset *msm_offset; 2225 const struct sdhci_msm_variant_info *var_info; 2226 struct device_node *node = pdev->dev.of_node; 2227 2228 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host)); 2229 if (IS_ERR(host)) 2230 return PTR_ERR(host); 2231 2232 host->sdma_boundary = 0; 2233 pltfm_host = sdhci_priv(host); 2234 msm_host = sdhci_pltfm_priv(pltfm_host); 2235 msm_host->mmc = host->mmc; 2236 msm_host->pdev = pdev; 2237 2238 ret = mmc_of_parse(host->mmc); 2239 if (ret) 2240 goto pltfm_free; 2241 2242 /* 2243 * Based on the compatible string, load the required msm host info from 2244 * the data associated with the version info. 2245 */ 2246 var_info = of_device_get_match_data(&pdev->dev); 2247 2248 msm_host->mci_removed = var_info->mci_removed; 2249 msm_host->restore_dll_config = var_info->restore_dll_config; 2250 msm_host->var_ops = var_info->var_ops; 2251 msm_host->offset = var_info->offset; 2252 msm_host->uses_tassadar_dll = var_info->uses_tassadar_dll; 2253 2254 msm_offset = msm_host->offset; 2255 2256 sdhci_get_of_property(pdev); 2257 sdhci_msm_get_of_property(pdev, host); 2258 2259 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE; 2260 2261 /* Setup SDCC bus voter clock. */ 2262 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus"); 2263 if (!IS_ERR(msm_host->bus_clk)) { 2264 /* Vote for max. clk rate for max. performance */ 2265 ret = clk_set_rate(msm_host->bus_clk, INT_MAX); 2266 if (ret) 2267 goto pltfm_free; 2268 ret = clk_prepare_enable(msm_host->bus_clk); 2269 if (ret) 2270 goto pltfm_free; 2271 } 2272 2273 /* Setup main peripheral bus clock */ 2274 clk = devm_clk_get(&pdev->dev, "iface"); 2275 if (IS_ERR(clk)) { 2276 ret = PTR_ERR(clk); 2277 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret); 2278 goto bus_clk_disable; 2279 } 2280 msm_host->bulk_clks[1].clk = clk; 2281 2282 /* Setup SDC MMC clock */ 2283 clk = devm_clk_get(&pdev->dev, "core"); 2284 if (IS_ERR(clk)) { 2285 ret = PTR_ERR(clk); 2286 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret); 2287 goto bus_clk_disable; 2288 } 2289 msm_host->bulk_clks[0].clk = clk; 2290 2291 /* Check for optional interconnect paths */ 2292 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL); 2293 if (ret) 2294 goto bus_clk_disable; 2295 2296 msm_host->opp_table = dev_pm_opp_set_clkname(&pdev->dev, "core"); 2297 if (IS_ERR(msm_host->opp_table)) { 2298 ret = PTR_ERR(msm_host->opp_table); 2299 goto bus_clk_disable; 2300 } 2301 2302 /* OPP table is optional */ 2303 ret = dev_pm_opp_of_add_table(&pdev->dev); 2304 if (!ret) { 2305 msm_host->has_opp_table = true; 2306 } else if (ret != -ENODEV) { 2307 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n"); 2308 goto opp_cleanup; 2309 } 2310 2311 /* Vote for maximum clock rate for maximum performance */ 2312 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX); 2313 if (ret) 2314 dev_warn(&pdev->dev, "core clock boost failed\n"); 2315 2316 clk = devm_clk_get(&pdev->dev, "cal"); 2317 if (IS_ERR(clk)) 2318 clk = NULL; 2319 msm_host->bulk_clks[2].clk = clk; 2320 2321 clk = devm_clk_get(&pdev->dev, "sleep"); 2322 if (IS_ERR(clk)) 2323 clk = NULL; 2324 msm_host->bulk_clks[3].clk = clk; 2325 2326 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2327 msm_host->bulk_clks); 2328 if (ret) 2329 goto opp_cleanup; 2330 2331 /* 2332 * xo clock is needed for FLL feature of cm_dll. 2333 * In case if xo clock is not mentioned in DT, warn and proceed. 2334 */ 2335 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo"); 2336 if (IS_ERR(msm_host->xo_clk)) { 2337 ret = PTR_ERR(msm_host->xo_clk); 2338 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret); 2339 } 2340 2341 if (!msm_host->mci_removed) { 2342 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1); 2343 if (IS_ERR(msm_host->core_mem)) { 2344 ret = PTR_ERR(msm_host->core_mem); 2345 goto clk_disable; 2346 } 2347 } 2348 2349 /* Reset the vendor spec register to power on reset state */ 2350 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL, 2351 host->ioaddr + msm_offset->core_vendor_spec); 2352 2353 if (!msm_host->mci_removed) { 2354 /* Set HC_MODE_EN bit in HC_MODE register */ 2355 msm_host_writel(msm_host, HC_MODE_EN, host, 2356 msm_offset->core_hc_mode); 2357 config = msm_host_readl(msm_host, host, 2358 msm_offset->core_hc_mode); 2359 config |= FF_CLK_SW_RST_DIS; 2360 msm_host_writel(msm_host, config, host, 2361 msm_offset->core_hc_mode); 2362 } 2363 2364 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION)); 2365 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n", 2366 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >> 2367 SDHCI_VENDOR_VER_SHIFT)); 2368 2369 core_version = msm_host_readl(msm_host, host, 2370 msm_offset->core_mci_version); 2371 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >> 2372 CORE_VERSION_MAJOR_SHIFT; 2373 core_minor = core_version & CORE_VERSION_MINOR_MASK; 2374 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n", 2375 core_version, core_major, core_minor); 2376 2377 if (core_major == 1 && core_minor >= 0x42) 2378 msm_host->use_14lpp_dll_reset = true; 2379 2380 /* 2381 * SDCC 5 controller with major version 1, minor version 0x34 and later 2382 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL. 2383 */ 2384 if (core_major == 1 && core_minor < 0x34) 2385 msm_host->use_cdclp533 = true; 2386 2387 /* 2388 * Support for some capabilities is not advertised by newer 2389 * controller versions and must be explicitly enabled. 2390 */ 2391 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) { 2392 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES); 2393 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT; 2394 writel_relaxed(config, host->ioaddr + 2395 msm_offset->core_vendor_spec_capabilities0); 2396 } 2397 2398 if (core_major == 1 && core_minor >= 0x49) 2399 msm_host->updated_ddr_cfg = true; 2400 2401 ret = sdhci_msm_register_vreg(msm_host); 2402 if (ret) 2403 goto clk_disable; 2404 2405 /* 2406 * Power on reset state may trigger power irq if previous status of 2407 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq 2408 * interrupt in GIC, any pending power irq interrupt should be 2409 * acknowledged. Otherwise power irq interrupt handler would be 2410 * fired prematurely. 2411 */ 2412 sdhci_msm_handle_pwr_irq(host, 0); 2413 2414 /* 2415 * Ensure that above writes are propogated before interrupt enablement 2416 * in GIC. 2417 */ 2418 mb(); 2419 2420 /* Setup IRQ for handling power/voltage tasks with PMIC */ 2421 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq"); 2422 if (msm_host->pwr_irq < 0) { 2423 ret = msm_host->pwr_irq; 2424 goto clk_disable; 2425 } 2426 2427 sdhci_msm_init_pwr_irq_wait(msm_host); 2428 /* Enable pwr irq interrupts */ 2429 msm_host_writel(msm_host, INT_MASK, host, 2430 msm_offset->core_pwrctl_mask); 2431 2432 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL, 2433 sdhci_msm_pwr_irq, IRQF_ONESHOT, 2434 dev_name(&pdev->dev), host); 2435 if (ret) { 2436 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret); 2437 goto clk_disable; 2438 } 2439 2440 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY; 2441 2442 pm_runtime_get_noresume(&pdev->dev); 2443 pm_runtime_set_active(&pdev->dev); 2444 pm_runtime_enable(&pdev->dev); 2445 pm_runtime_set_autosuspend_delay(&pdev->dev, 2446 MSM_MMC_AUTOSUSPEND_DELAY_MS); 2447 pm_runtime_use_autosuspend(&pdev->dev); 2448 2449 host->mmc_host_ops.start_signal_voltage_switch = 2450 sdhci_msm_start_signal_voltage_switch; 2451 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning; 2452 if (of_property_read_bool(node, "supports-cqe")) 2453 ret = sdhci_msm_cqe_add_host(host, pdev); 2454 else 2455 ret = sdhci_add_host(host); 2456 if (ret) 2457 goto pm_runtime_disable; 2458 2459 pm_runtime_mark_last_busy(&pdev->dev); 2460 pm_runtime_put_autosuspend(&pdev->dev); 2461 2462 return 0; 2463 2464 pm_runtime_disable: 2465 pm_runtime_disable(&pdev->dev); 2466 pm_runtime_set_suspended(&pdev->dev); 2467 pm_runtime_put_noidle(&pdev->dev); 2468 clk_disable: 2469 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2470 msm_host->bulk_clks); 2471 opp_cleanup: 2472 if (msm_host->has_opp_table) 2473 dev_pm_opp_of_remove_table(&pdev->dev); 2474 dev_pm_opp_put_clkname(msm_host->opp_table); 2475 bus_clk_disable: 2476 if (!IS_ERR(msm_host->bus_clk)) 2477 clk_disable_unprepare(msm_host->bus_clk); 2478 pltfm_free: 2479 sdhci_pltfm_free(pdev); 2480 return ret; 2481 } 2482 2483 static int sdhci_msm_remove(struct platform_device *pdev) 2484 { 2485 struct sdhci_host *host = platform_get_drvdata(pdev); 2486 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2487 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2488 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) == 2489 0xffffffff); 2490 2491 sdhci_remove_host(host, dead); 2492 2493 if (msm_host->has_opp_table) 2494 dev_pm_opp_of_remove_table(&pdev->dev); 2495 dev_pm_opp_put_clkname(msm_host->opp_table); 2496 pm_runtime_get_sync(&pdev->dev); 2497 pm_runtime_disable(&pdev->dev); 2498 pm_runtime_put_noidle(&pdev->dev); 2499 2500 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2501 msm_host->bulk_clks); 2502 if (!IS_ERR(msm_host->bus_clk)) 2503 clk_disable_unprepare(msm_host->bus_clk); 2504 sdhci_pltfm_free(pdev); 2505 return 0; 2506 } 2507 2508 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev) 2509 { 2510 struct sdhci_host *host = dev_get_drvdata(dev); 2511 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2512 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2513 2514 /* Drop the performance vote */ 2515 dev_pm_opp_set_rate(dev, 0); 2516 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2517 msm_host->bulk_clks); 2518 2519 return 0; 2520 } 2521 2522 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev) 2523 { 2524 struct sdhci_host *host = dev_get_drvdata(dev); 2525 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2526 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2527 int ret; 2528 2529 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2530 msm_host->bulk_clks); 2531 if (ret) 2532 return ret; 2533 /* 2534 * Whenever core-clock is gated dynamically, it's needed to 2535 * restore the SDR DLL settings when the clock is ungated. 2536 */ 2537 if (msm_host->restore_dll_config && msm_host->clk_rate) 2538 ret = sdhci_msm_restore_sdr_dll_config(host); 2539 2540 dev_pm_opp_set_rate(dev, msm_host->clk_rate); 2541 2542 return ret; 2543 } 2544 2545 static const struct dev_pm_ops sdhci_msm_pm_ops = { 2546 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 2547 pm_runtime_force_resume) 2548 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend, 2549 sdhci_msm_runtime_resume, 2550 NULL) 2551 }; 2552 2553 static struct platform_driver sdhci_msm_driver = { 2554 .probe = sdhci_msm_probe, 2555 .remove = sdhci_msm_remove, 2556 .driver = { 2557 .name = "sdhci_msm", 2558 .of_match_table = sdhci_msm_dt_match, 2559 .pm = &sdhci_msm_pm_ops, 2560 }, 2561 }; 2562 2563 module_platform_driver(sdhci_msm_driver); 2564 2565 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver"); 2566 MODULE_LICENSE("GPL v2"); 2567