xref: /openbmc/linux/drivers/mmc/host/sdhci-msm.c (revision abe9af53)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4  *
5  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/delay.h>
11 #include <linux/mmc/mmc.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/pm_opp.h>
14 #include <linux/slab.h>
15 #include <linux/iopoll.h>
16 #include <linux/regulator/consumer.h>
17 #include <linux/interconnect.h>
18 #include <linux/pinctrl/consumer.h>
19 
20 #include "sdhci-pltfm.h"
21 #include "cqhci.h"
22 
23 #define CORE_MCI_VERSION		0x50
24 #define CORE_VERSION_MAJOR_SHIFT	28
25 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
26 #define CORE_VERSION_MINOR_MASK		0xff
27 
28 #define CORE_MCI_GENERICS		0x70
29 #define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
30 
31 #define HC_MODE_EN		0x1
32 #define CORE_POWER		0x0
33 #define CORE_SW_RST		BIT(7)
34 #define FF_CLK_SW_RST_DIS	BIT(13)
35 
36 #define CORE_PWRCTL_BUS_OFF	BIT(0)
37 #define CORE_PWRCTL_BUS_ON	BIT(1)
38 #define CORE_PWRCTL_IO_LOW	BIT(2)
39 #define CORE_PWRCTL_IO_HIGH	BIT(3)
40 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
41 #define CORE_PWRCTL_BUS_FAIL    BIT(1)
42 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
43 #define CORE_PWRCTL_IO_FAIL     BIT(3)
44 #define REQ_BUS_OFF		BIT(0)
45 #define REQ_BUS_ON		BIT(1)
46 #define REQ_IO_LOW		BIT(2)
47 #define REQ_IO_HIGH		BIT(3)
48 #define INT_MASK		0xf
49 #define MAX_PHASES		16
50 #define CORE_DLL_LOCK		BIT(7)
51 #define CORE_DDR_DLL_LOCK	BIT(11)
52 #define CORE_DLL_EN		BIT(16)
53 #define CORE_CDR_EN		BIT(17)
54 #define CORE_CK_OUT_EN		BIT(18)
55 #define CORE_CDR_EXT_EN		BIT(19)
56 #define CORE_DLL_PDN		BIT(29)
57 #define CORE_DLL_RST		BIT(30)
58 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
59 
60 #define CORE_DDR_CAL_EN		BIT(0)
61 #define CORE_FLL_CYCLE_CNT	BIT(18)
62 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
63 
64 #define DLL_USR_CTL_POR_VAL	0x10800
65 #define ENABLE_DLL_LOCK_STATUS	BIT(26)
66 #define FINE_TUNE_MODE_EN	BIT(27)
67 #define BIAS_OK_SIGNAL		BIT(29)
68 
69 #define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
70 #define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
71 
72 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c
73 #define CORE_CLK_PWRSAVE	BIT(1)
74 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
75 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
76 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
77 #define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
78 #define CORE_IO_PAD_PWR_SWITCH	BIT(16)
79 #define CORE_HC_SELECT_IN_EN	BIT(18)
80 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
81 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
82 
83 #define CORE_3_0V_SUPPORT	BIT(25)
84 #define CORE_1_8V_SUPPORT	BIT(26)
85 #define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
86 
87 #define CORE_CSR_CDC_CTLR_CFG0		0x130
88 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
89 #define CORE_HW_AUTOCAL_ENA		BIT(17)
90 
91 #define CORE_CSR_CDC_CTLR_CFG1		0x134
92 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
93 #define CORE_TIMER_ENA			BIT(16)
94 
95 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
96 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
97 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
98 #define CORE_CDC_OFFSET_CFG		0x14C
99 #define CORE_CSR_CDC_DELAY_CFG		0x150
100 #define CORE_CDC_SLAVE_DDA_CFG		0x160
101 #define CORE_CSR_CDC_STATUS0		0x164
102 #define CORE_CALIBRATION_DONE		BIT(0)
103 
104 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
105 
106 #define CORE_CSR_CDC_GEN_CFG		0x178
107 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
108 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
109 
110 #define CORE_CDC_T4_DLY_SEL		BIT(0)
111 #define CORE_CMDIN_RCLK_EN		BIT(1)
112 #define CORE_START_CDC_TRAFFIC		BIT(6)
113 
114 #define CORE_PWRSAVE_DLL	BIT(3)
115 
116 #define DDR_CONFIG_POR_VAL	0x80040873
117 
118 
119 #define INVALID_TUNING_PHASE	-1
120 #define SDHCI_MSM_MIN_CLOCK	400000
121 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
122 
123 #define CDR_SELEXT_SHIFT	20
124 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
125 #define CMUX_SHIFT_PHASE_SHIFT	24
126 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
127 
128 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
129 
130 /* Timeout value to avoid infinite waiting for pwr_irq */
131 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
132 
133 /* Max load for eMMC Vdd-io supply */
134 #define MMC_VQMMC_MAX_LOAD_UA	325000
135 
136 #define msm_host_readl(msm_host, host, offset) \
137 	msm_host->var_ops->msm_readl_relaxed(host, offset)
138 
139 #define msm_host_writel(msm_host, val, host, offset) \
140 	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
141 
142 /* CQHCI vendor specific registers */
143 #define CQHCI_VENDOR_CFG1	0xA00
144 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
145 
146 struct sdhci_msm_offset {
147 	u32 core_hc_mode;
148 	u32 core_mci_data_cnt;
149 	u32 core_mci_status;
150 	u32 core_mci_fifo_cnt;
151 	u32 core_mci_version;
152 	u32 core_generics;
153 	u32 core_testbus_config;
154 	u32 core_testbus_sel2_bit;
155 	u32 core_testbus_ena;
156 	u32 core_testbus_sel2;
157 	u32 core_pwrctl_status;
158 	u32 core_pwrctl_mask;
159 	u32 core_pwrctl_clear;
160 	u32 core_pwrctl_ctl;
161 	u32 core_sdcc_debug_reg;
162 	u32 core_dll_config;
163 	u32 core_dll_status;
164 	u32 core_vendor_spec;
165 	u32 core_vendor_spec_adma_err_addr0;
166 	u32 core_vendor_spec_adma_err_addr1;
167 	u32 core_vendor_spec_func2;
168 	u32 core_vendor_spec_capabilities0;
169 	u32 core_ddr_200_cfg;
170 	u32 core_vendor_spec3;
171 	u32 core_dll_config_2;
172 	u32 core_dll_config_3;
173 	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
174 	u32 core_ddr_config;
175 	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
176 };
177 
178 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
179 	.core_mci_data_cnt = 0x35c,
180 	.core_mci_status = 0x324,
181 	.core_mci_fifo_cnt = 0x308,
182 	.core_mci_version = 0x318,
183 	.core_generics = 0x320,
184 	.core_testbus_config = 0x32c,
185 	.core_testbus_sel2_bit = 3,
186 	.core_testbus_ena = (1 << 31),
187 	.core_testbus_sel2 = (1 << 3),
188 	.core_pwrctl_status = 0x240,
189 	.core_pwrctl_mask = 0x244,
190 	.core_pwrctl_clear = 0x248,
191 	.core_pwrctl_ctl = 0x24c,
192 	.core_sdcc_debug_reg = 0x358,
193 	.core_dll_config = 0x200,
194 	.core_dll_status = 0x208,
195 	.core_vendor_spec = 0x20c,
196 	.core_vendor_spec_adma_err_addr0 = 0x214,
197 	.core_vendor_spec_adma_err_addr1 = 0x218,
198 	.core_vendor_spec_func2 = 0x210,
199 	.core_vendor_spec_capabilities0 = 0x21c,
200 	.core_ddr_200_cfg = 0x224,
201 	.core_vendor_spec3 = 0x250,
202 	.core_dll_config_2 = 0x254,
203 	.core_dll_config_3 = 0x258,
204 	.core_ddr_config = 0x25c,
205 	.core_dll_usr_ctl = 0x388,
206 };
207 
208 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
209 	.core_hc_mode = 0x78,
210 	.core_mci_data_cnt = 0x30,
211 	.core_mci_status = 0x34,
212 	.core_mci_fifo_cnt = 0x44,
213 	.core_mci_version = 0x050,
214 	.core_generics = 0x70,
215 	.core_testbus_config = 0x0cc,
216 	.core_testbus_sel2_bit = 4,
217 	.core_testbus_ena = (1 << 3),
218 	.core_testbus_sel2 = (1 << 4),
219 	.core_pwrctl_status = 0xdc,
220 	.core_pwrctl_mask = 0xe0,
221 	.core_pwrctl_clear = 0xe4,
222 	.core_pwrctl_ctl = 0xe8,
223 	.core_sdcc_debug_reg = 0x124,
224 	.core_dll_config = 0x100,
225 	.core_dll_status = 0x108,
226 	.core_vendor_spec = 0x10c,
227 	.core_vendor_spec_adma_err_addr0 = 0x114,
228 	.core_vendor_spec_adma_err_addr1 = 0x118,
229 	.core_vendor_spec_func2 = 0x110,
230 	.core_vendor_spec_capabilities0 = 0x11c,
231 	.core_ddr_200_cfg = 0x184,
232 	.core_vendor_spec3 = 0x1b0,
233 	.core_dll_config_2 = 0x1b4,
234 	.core_ddr_config_old = 0x1b8,
235 	.core_ddr_config = 0x1bc,
236 };
237 
238 struct sdhci_msm_variant_ops {
239 	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
240 	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
241 			u32 offset);
242 };
243 
244 /*
245  * From V5, register spaces have changed. Wrap this info in a structure
246  * and choose the data_structure based on version info mentioned in DT.
247  */
248 struct sdhci_msm_variant_info {
249 	bool mci_removed;
250 	bool restore_dll_config;
251 	bool uses_tassadar_dll;
252 	const struct sdhci_msm_variant_ops *var_ops;
253 	const struct sdhci_msm_offset *offset;
254 };
255 
256 struct sdhci_msm_host {
257 	struct platform_device *pdev;
258 	void __iomem *core_mem;	/* MSM SDCC mapped address */
259 	int pwr_irq;		/* power irq */
260 	struct clk *bus_clk;	/* SDHC bus voter clock */
261 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
262 	struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
263 	unsigned long clk_rate;
264 	struct mmc_host *mmc;
265 	struct opp_table *opp_table;
266 	bool use_14lpp_dll_reset;
267 	bool tuning_done;
268 	bool calibration_done;
269 	u8 saved_tuning_phase;
270 	bool use_cdclp533;
271 	u32 curr_pwr_state;
272 	u32 curr_io_level;
273 	wait_queue_head_t pwr_irq_wait;
274 	bool pwr_irq_flag;
275 	u32 caps_0;
276 	bool mci_removed;
277 	bool restore_dll_config;
278 	const struct sdhci_msm_variant_ops *var_ops;
279 	const struct sdhci_msm_offset *offset;
280 	bool use_cdr;
281 	u32 transfer_mode;
282 	bool updated_ddr_cfg;
283 	bool uses_tassadar_dll;
284 	u32 dll_config;
285 	u32 ddr_config;
286 	bool vqmmc_enabled;
287 };
288 
289 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
290 {
291 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
292 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
293 
294 	return msm_host->offset;
295 }
296 
297 /*
298  * APIs to read/write to vendor specific registers which were there in the
299  * core_mem region before MCI was removed.
300  */
301 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
302 		u32 offset)
303 {
304 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
305 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
306 
307 	return readl_relaxed(msm_host->core_mem + offset);
308 }
309 
310 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
311 		u32 offset)
312 {
313 	return readl_relaxed(host->ioaddr + offset);
314 }
315 
316 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
317 		struct sdhci_host *host, u32 offset)
318 {
319 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
320 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
321 
322 	writel_relaxed(val, msm_host->core_mem + offset);
323 }
324 
325 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
326 		struct sdhci_host *host, u32 offset)
327 {
328 	writel_relaxed(val, host->ioaddr + offset);
329 }
330 
331 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
332 						    unsigned int clock)
333 {
334 	struct mmc_ios ios = host->mmc->ios;
335 	/*
336 	 * The SDHC requires internal clock frequency to be double the
337 	 * actual clock that will be set for DDR mode. The controller
338 	 * uses the faster clock(100/400MHz) for some of its parts and
339 	 * send the actual required clock (50/200MHz) to the card.
340 	 */
341 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
342 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
343 	    ios.timing == MMC_TIMING_MMC_HS400 ||
344 	    host->flags & SDHCI_HS400_TUNING)
345 		clock *= 2;
346 	return clock;
347 }
348 
349 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
350 					    unsigned int clock)
351 {
352 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
353 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
354 	struct mmc_ios curr_ios = host->mmc->ios;
355 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
356 	int rc;
357 
358 	clock = msm_get_clock_rate_for_bus_mode(host, clock);
359 	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), clock);
360 	if (rc) {
361 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
362 		       mmc_hostname(host->mmc), clock,
363 		       curr_ios.timing);
364 		return;
365 	}
366 	msm_host->clk_rate = clock;
367 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
368 		 mmc_hostname(host->mmc), clk_get_rate(core_clk),
369 		 curr_ios.timing);
370 }
371 
372 /* Platform specific tuning */
373 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
374 {
375 	u32 wait_cnt = 50;
376 	u8 ck_out_en;
377 	struct mmc_host *mmc = host->mmc;
378 	const struct sdhci_msm_offset *msm_offset =
379 					sdhci_priv_msm_offset(host);
380 
381 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
382 	ck_out_en = !!(readl_relaxed(host->ioaddr +
383 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
384 
385 	while (ck_out_en != poll) {
386 		if (--wait_cnt == 0) {
387 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
388 			       mmc_hostname(mmc), poll);
389 			return -ETIMEDOUT;
390 		}
391 		udelay(1);
392 
393 		ck_out_en = !!(readl_relaxed(host->ioaddr +
394 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
395 	}
396 
397 	return 0;
398 }
399 
400 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
401 {
402 	int rc;
403 	static const u8 grey_coded_phase_table[] = {
404 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
405 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
406 	};
407 	unsigned long flags;
408 	u32 config;
409 	struct mmc_host *mmc = host->mmc;
410 	const struct sdhci_msm_offset *msm_offset =
411 					sdhci_priv_msm_offset(host);
412 
413 	if (phase > 0xf)
414 		return -EINVAL;
415 
416 	spin_lock_irqsave(&host->lock, flags);
417 
418 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
419 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
420 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
421 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
422 
423 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
424 	rc = msm_dll_poll_ck_out_en(host, 0);
425 	if (rc)
426 		goto err_out;
427 
428 	/*
429 	 * Write the selected DLL clock output phase (0 ... 15)
430 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
431 	 */
432 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
433 	config &= ~CDR_SELEXT_MASK;
434 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
435 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
436 
437 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
438 	config |= CORE_CK_OUT_EN;
439 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
440 
441 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
442 	rc = msm_dll_poll_ck_out_en(host, 1);
443 	if (rc)
444 		goto err_out;
445 
446 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
447 	config |= CORE_CDR_EN;
448 	config &= ~CORE_CDR_EXT_EN;
449 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
450 	goto out;
451 
452 err_out:
453 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
454 	       mmc_hostname(mmc), phase);
455 out:
456 	spin_unlock_irqrestore(&host->lock, flags);
457 	return rc;
458 }
459 
460 /*
461  * Find out the greatest range of consecuitive selected
462  * DLL clock output phases that can be used as sampling
463  * setting for SD3.0 UHS-I card read operation (in SDR104
464  * timing mode) or for eMMC4.5 card read operation (in
465  * HS400/HS200 timing mode).
466  * Select the 3/4 of the range and configure the DLL with the
467  * selected DLL clock output phase.
468  */
469 
470 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
471 					   u8 *phase_table, u8 total_phases)
472 {
473 	int ret;
474 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
475 	u8 phases_per_row[MAX_PHASES] = { 0 };
476 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
477 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
478 	bool phase_0_found = false, phase_15_found = false;
479 	struct mmc_host *mmc = host->mmc;
480 
481 	if (!total_phases || (total_phases > MAX_PHASES)) {
482 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
483 		       mmc_hostname(mmc), total_phases);
484 		return -EINVAL;
485 	}
486 
487 	for (cnt = 0; cnt < total_phases; cnt++) {
488 		ranges[row_index][col_index] = phase_table[cnt];
489 		phases_per_row[row_index] += 1;
490 		col_index++;
491 
492 		if ((cnt + 1) == total_phases) {
493 			continue;
494 		/* check if next phase in phase_table is consecutive or not */
495 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
496 			row_index++;
497 			col_index = 0;
498 		}
499 	}
500 
501 	if (row_index >= MAX_PHASES)
502 		return -EINVAL;
503 
504 	/* Check if phase-0 is present in first valid window? */
505 	if (!ranges[0][0]) {
506 		phase_0_found = true;
507 		phase_0_raw_index = 0;
508 		/* Check if cycle exist between 2 valid windows */
509 		for (cnt = 1; cnt <= row_index; cnt++) {
510 			if (phases_per_row[cnt]) {
511 				for (i = 0; i < phases_per_row[cnt]; i++) {
512 					if (ranges[cnt][i] == 15) {
513 						phase_15_found = true;
514 						phase_15_raw_index = cnt;
515 						break;
516 					}
517 				}
518 			}
519 		}
520 	}
521 
522 	/* If 2 valid windows form cycle then merge them as single window */
523 	if (phase_0_found && phase_15_found) {
524 		/* number of phases in raw where phase 0 is present */
525 		u8 phases_0 = phases_per_row[phase_0_raw_index];
526 		/* number of phases in raw where phase 15 is present */
527 		u8 phases_15 = phases_per_row[phase_15_raw_index];
528 
529 		if (phases_0 + phases_15 >= MAX_PHASES)
530 			/*
531 			 * If there are more than 1 phase windows then total
532 			 * number of phases in both the windows should not be
533 			 * more than or equal to MAX_PHASES.
534 			 */
535 			return -EINVAL;
536 
537 		/* Merge 2 cyclic windows */
538 		i = phases_15;
539 		for (cnt = 0; cnt < phases_0; cnt++) {
540 			ranges[phase_15_raw_index][i] =
541 			    ranges[phase_0_raw_index][cnt];
542 			if (++i >= MAX_PHASES)
543 				break;
544 		}
545 
546 		phases_per_row[phase_0_raw_index] = 0;
547 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
548 	}
549 
550 	for (cnt = 0; cnt <= row_index; cnt++) {
551 		if (phases_per_row[cnt] > curr_max) {
552 			curr_max = phases_per_row[cnt];
553 			selected_row_index = cnt;
554 		}
555 	}
556 
557 	i = (curr_max * 3) / 4;
558 	if (i)
559 		i--;
560 
561 	ret = ranges[selected_row_index][i];
562 
563 	if (ret >= MAX_PHASES) {
564 		ret = -EINVAL;
565 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
566 		       mmc_hostname(mmc), ret);
567 	}
568 
569 	return ret;
570 }
571 
572 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
573 {
574 	u32 mclk_freq = 0, config;
575 	const struct sdhci_msm_offset *msm_offset =
576 					sdhci_priv_msm_offset(host);
577 
578 	/* Program the MCLK value to MCLK_FREQ bit field */
579 	if (host->clock <= 112000000)
580 		mclk_freq = 0;
581 	else if (host->clock <= 125000000)
582 		mclk_freq = 1;
583 	else if (host->clock <= 137000000)
584 		mclk_freq = 2;
585 	else if (host->clock <= 150000000)
586 		mclk_freq = 3;
587 	else if (host->clock <= 162000000)
588 		mclk_freq = 4;
589 	else if (host->clock <= 175000000)
590 		mclk_freq = 5;
591 	else if (host->clock <= 187000000)
592 		mclk_freq = 6;
593 	else if (host->clock <= 200000000)
594 		mclk_freq = 7;
595 
596 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
597 	config &= ~CMUX_SHIFT_PHASE_MASK;
598 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
599 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
600 }
601 
602 /* Initialize the DLL (Programmable Delay Line) */
603 static int msm_init_cm_dll(struct sdhci_host *host)
604 {
605 	struct mmc_host *mmc = host->mmc;
606 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
607 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
608 	int wait_cnt = 50;
609 	unsigned long flags, xo_clk = 0;
610 	u32 config;
611 	const struct sdhci_msm_offset *msm_offset =
612 					msm_host->offset;
613 
614 	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
615 		xo_clk = clk_get_rate(msm_host->xo_clk);
616 
617 	spin_lock_irqsave(&host->lock, flags);
618 
619 	/*
620 	 * Make sure that clock is always enabled when DLL
621 	 * tuning is in progress. Keeping PWRSAVE ON may
622 	 * turn off the clock.
623 	 */
624 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
625 	config &= ~CORE_CLK_PWRSAVE;
626 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
627 
628 	if (msm_host->dll_config)
629 		writel_relaxed(msm_host->dll_config,
630 				host->ioaddr + msm_offset->core_dll_config);
631 
632 	if (msm_host->use_14lpp_dll_reset) {
633 		config = readl_relaxed(host->ioaddr +
634 				msm_offset->core_dll_config);
635 		config &= ~CORE_CK_OUT_EN;
636 		writel_relaxed(config, host->ioaddr +
637 				msm_offset->core_dll_config);
638 
639 		config = readl_relaxed(host->ioaddr +
640 				msm_offset->core_dll_config_2);
641 		config |= CORE_DLL_CLOCK_DISABLE;
642 		writel_relaxed(config, host->ioaddr +
643 				msm_offset->core_dll_config_2);
644 	}
645 
646 	config = readl_relaxed(host->ioaddr +
647 			msm_offset->core_dll_config);
648 	config |= CORE_DLL_RST;
649 	writel_relaxed(config, host->ioaddr +
650 			msm_offset->core_dll_config);
651 
652 	config = readl_relaxed(host->ioaddr +
653 			msm_offset->core_dll_config);
654 	config |= CORE_DLL_PDN;
655 	writel_relaxed(config, host->ioaddr +
656 			msm_offset->core_dll_config);
657 
658 	if (!msm_host->dll_config)
659 		msm_cm_dll_set_freq(host);
660 
661 	if (msm_host->use_14lpp_dll_reset &&
662 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
663 		u32 mclk_freq = 0;
664 
665 		config = readl_relaxed(host->ioaddr +
666 				msm_offset->core_dll_config_2);
667 		config &= CORE_FLL_CYCLE_CNT;
668 		if (config)
669 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
670 					xo_clk);
671 		else
672 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
673 					xo_clk);
674 
675 		config = readl_relaxed(host->ioaddr +
676 				msm_offset->core_dll_config_2);
677 		config &= ~(0xFF << 10);
678 		config |= mclk_freq << 10;
679 
680 		writel_relaxed(config, host->ioaddr +
681 				msm_offset->core_dll_config_2);
682 		/* wait for 5us before enabling DLL clock */
683 		udelay(5);
684 	}
685 
686 	config = readl_relaxed(host->ioaddr +
687 			msm_offset->core_dll_config);
688 	config &= ~CORE_DLL_RST;
689 	writel_relaxed(config, host->ioaddr +
690 			msm_offset->core_dll_config);
691 
692 	config = readl_relaxed(host->ioaddr +
693 			msm_offset->core_dll_config);
694 	config &= ~CORE_DLL_PDN;
695 	writel_relaxed(config, host->ioaddr +
696 			msm_offset->core_dll_config);
697 
698 	if (msm_host->use_14lpp_dll_reset) {
699 		if (!msm_host->dll_config)
700 			msm_cm_dll_set_freq(host);
701 		config = readl_relaxed(host->ioaddr +
702 				msm_offset->core_dll_config_2);
703 		config &= ~CORE_DLL_CLOCK_DISABLE;
704 		writel_relaxed(config, host->ioaddr +
705 				msm_offset->core_dll_config_2);
706 	}
707 
708 	/*
709 	 * Configure DLL user control register to enable DLL status.
710 	 * This setting is applicable to SDCC v5.1 onwards only.
711 	 */
712 	if (msm_host->uses_tassadar_dll) {
713 		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
714 			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
715 		writel_relaxed(config, host->ioaddr +
716 				msm_offset->core_dll_usr_ctl);
717 
718 		config = readl_relaxed(host->ioaddr +
719 				msm_offset->core_dll_config_3);
720 		config &= ~0xFF;
721 		if (msm_host->clk_rate < 150000000)
722 			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
723 		else
724 			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
725 		writel_relaxed(config, host->ioaddr +
726 			msm_offset->core_dll_config_3);
727 	}
728 
729 	config = readl_relaxed(host->ioaddr +
730 			msm_offset->core_dll_config);
731 	config |= CORE_DLL_EN;
732 	writel_relaxed(config, host->ioaddr +
733 			msm_offset->core_dll_config);
734 
735 	config = readl_relaxed(host->ioaddr +
736 			msm_offset->core_dll_config);
737 	config |= CORE_CK_OUT_EN;
738 	writel_relaxed(config, host->ioaddr +
739 			msm_offset->core_dll_config);
740 
741 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
742 	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
743 		 CORE_DLL_LOCK)) {
744 		/* max. wait for 50us sec for LOCK bit to be set */
745 		if (--wait_cnt == 0) {
746 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
747 			       mmc_hostname(mmc));
748 			spin_unlock_irqrestore(&host->lock, flags);
749 			return -ETIMEDOUT;
750 		}
751 		udelay(1);
752 	}
753 
754 	spin_unlock_irqrestore(&host->lock, flags);
755 	return 0;
756 }
757 
758 static void msm_hc_select_default(struct sdhci_host *host)
759 {
760 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
761 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
762 	u32 config;
763 	const struct sdhci_msm_offset *msm_offset =
764 					msm_host->offset;
765 
766 	if (!msm_host->use_cdclp533) {
767 		config = readl_relaxed(host->ioaddr +
768 				msm_offset->core_vendor_spec3);
769 		config &= ~CORE_PWRSAVE_DLL;
770 		writel_relaxed(config, host->ioaddr +
771 				msm_offset->core_vendor_spec3);
772 	}
773 
774 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
775 	config &= ~CORE_HC_MCLK_SEL_MASK;
776 	config |= CORE_HC_MCLK_SEL_DFLT;
777 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
778 
779 	/*
780 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
781 	 * configuration from Host Control2 register for all other
782 	 * modes.
783 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
784 	 * in VENDOR_SPEC_FUNC
785 	 */
786 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
787 	config &= ~CORE_HC_SELECT_IN_EN;
788 	config &= ~CORE_HC_SELECT_IN_MASK;
789 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
790 
791 	/*
792 	 * Make sure above writes impacting free running MCLK are completed
793 	 * before changing the clk_rate at GCC.
794 	 */
795 	wmb();
796 }
797 
798 static void msm_hc_select_hs400(struct sdhci_host *host)
799 {
800 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
801 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
802 	struct mmc_ios ios = host->mmc->ios;
803 	u32 config, dll_lock;
804 	int rc;
805 	const struct sdhci_msm_offset *msm_offset =
806 					msm_host->offset;
807 
808 	/* Select the divided clock (free running MCLK/2) */
809 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
810 	config &= ~CORE_HC_MCLK_SEL_MASK;
811 	config |= CORE_HC_MCLK_SEL_HS400;
812 
813 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
814 	/*
815 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
816 	 * register
817 	 */
818 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
819 	    !msm_host->calibration_done) {
820 		config = readl_relaxed(host->ioaddr +
821 				msm_offset->core_vendor_spec);
822 		config |= CORE_HC_SELECT_IN_HS400;
823 		config |= CORE_HC_SELECT_IN_EN;
824 		writel_relaxed(config, host->ioaddr +
825 				msm_offset->core_vendor_spec);
826 	}
827 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
828 		/*
829 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
830 		 * core_dll_status to be set. This should get set
831 		 * within 15 us at 200 MHz.
832 		 */
833 		rc = readl_relaxed_poll_timeout(host->ioaddr +
834 						msm_offset->core_dll_status,
835 						dll_lock,
836 						(dll_lock &
837 						(CORE_DLL_LOCK |
838 						CORE_DDR_DLL_LOCK)), 10,
839 						1000);
840 		if (rc == -ETIMEDOUT)
841 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
842 			       mmc_hostname(host->mmc), dll_lock);
843 	}
844 	/*
845 	 * Make sure above writes impacting free running MCLK are completed
846 	 * before changing the clk_rate at GCC.
847 	 */
848 	wmb();
849 }
850 
851 /*
852  * sdhci_msm_hc_select_mode :- In general all timing modes are
853  * controlled via UHS mode select in Host Control2 register.
854  * eMMC specific HS200/HS400 doesn't have their respective modes
855  * defined here, hence we use these values.
856  *
857  * HS200 - SDR104 (Since they both are equivalent in functionality)
858  * HS400 - This involves multiple configurations
859  *		Initially SDR104 - when tuning is required as HS200
860  *		Then when switching to DDR @ 400MHz (HS400) we use
861  *		the vendor specific HC_SELECT_IN to control the mode.
862  *
863  * In addition to controlling the modes we also need to select the
864  * correct input clock for DLL depending on the mode.
865  *
866  * HS400 - divided clock (free running MCLK/2)
867  * All other modes - default (free running MCLK)
868  */
869 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
870 {
871 	struct mmc_ios ios = host->mmc->ios;
872 
873 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
874 	    host->flags & SDHCI_HS400_TUNING)
875 		msm_hc_select_hs400(host);
876 	else
877 		msm_hc_select_default(host);
878 }
879 
880 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
881 {
882 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
883 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
884 	u32 config, calib_done;
885 	int ret;
886 	const struct sdhci_msm_offset *msm_offset =
887 					msm_host->offset;
888 
889 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
890 
891 	/*
892 	 * Retuning in HS400 (DDR mode) will fail, just reset the
893 	 * tuning block and restore the saved tuning phase.
894 	 */
895 	ret = msm_init_cm_dll(host);
896 	if (ret)
897 		goto out;
898 
899 	/* Set the selected phase in delay line hw block */
900 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
901 	if (ret)
902 		goto out;
903 
904 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
905 	config |= CORE_CMD_DAT_TRACK_SEL;
906 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
907 
908 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
909 	config &= ~CORE_CDC_T4_DLY_SEL;
910 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
911 
912 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
913 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
914 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
915 
916 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
917 	config |= CORE_CDC_SWITCH_RC_EN;
918 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
919 
920 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
921 	config &= ~CORE_START_CDC_TRAFFIC;
922 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
923 
924 	/* Perform CDC Register Initialization Sequence */
925 
926 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
927 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
928 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
929 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
930 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
931 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
932 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
933 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
934 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
935 
936 	/* CDC HW Calibration */
937 
938 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
939 	config |= CORE_SW_TRIG_FULL_CALIB;
940 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
941 
942 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
943 	config &= ~CORE_SW_TRIG_FULL_CALIB;
944 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
945 
946 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
947 	config |= CORE_HW_AUTOCAL_ENA;
948 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
949 
950 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
951 	config |= CORE_TIMER_ENA;
952 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
953 
954 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
955 					 calib_done,
956 					 (calib_done & CORE_CALIBRATION_DONE),
957 					 1, 50);
958 
959 	if (ret == -ETIMEDOUT) {
960 		pr_err("%s: %s: CDC calibration was not completed\n",
961 		       mmc_hostname(host->mmc), __func__);
962 		goto out;
963 	}
964 
965 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
966 			& CORE_CDC_ERROR_CODE_MASK;
967 	if (ret) {
968 		pr_err("%s: %s: CDC error code %d\n",
969 		       mmc_hostname(host->mmc), __func__, ret);
970 		ret = -EINVAL;
971 		goto out;
972 	}
973 
974 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
975 	config |= CORE_START_CDC_TRAFFIC;
976 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
977 out:
978 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
979 		 __func__, ret);
980 	return ret;
981 }
982 
983 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
984 {
985 	struct mmc_host *mmc = host->mmc;
986 	u32 dll_status, config, ddr_cfg_offset;
987 	int ret;
988 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
989 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
990 	const struct sdhci_msm_offset *msm_offset =
991 					sdhci_priv_msm_offset(host);
992 
993 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
994 
995 	/*
996 	 * Currently the core_ddr_config register defaults to desired
997 	 * configuration on reset. Currently reprogramming the power on
998 	 * reset (POR) value in case it might have been modified by
999 	 * bootloaders. In the future, if this changes, then the desired
1000 	 * values will need to be programmed appropriately.
1001 	 */
1002 	if (msm_host->updated_ddr_cfg)
1003 		ddr_cfg_offset = msm_offset->core_ddr_config;
1004 	else
1005 		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1006 	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1007 
1008 	if (mmc->ios.enhanced_strobe) {
1009 		config = readl_relaxed(host->ioaddr +
1010 				msm_offset->core_ddr_200_cfg);
1011 		config |= CORE_CMDIN_RCLK_EN;
1012 		writel_relaxed(config, host->ioaddr +
1013 				msm_offset->core_ddr_200_cfg);
1014 	}
1015 
1016 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1017 	config |= CORE_DDR_CAL_EN;
1018 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1019 
1020 	ret = readl_relaxed_poll_timeout(host->ioaddr +
1021 					msm_offset->core_dll_status,
1022 					dll_status,
1023 					(dll_status & CORE_DDR_DLL_LOCK),
1024 					10, 1000);
1025 
1026 	if (ret == -ETIMEDOUT) {
1027 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1028 		       mmc_hostname(host->mmc), __func__);
1029 		goto out;
1030 	}
1031 
1032 	/*
1033 	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1034 	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1035 	 * and MCLK must be switched on for at-least 1us before DATA
1036 	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1037 	 * guarantee above requirement. So PWRSAVE_DLL should not be
1038 	 * turned on for host controllers using this DLL.
1039 	 */
1040 	if (!msm_host->use_14lpp_dll_reset) {
1041 		config = readl_relaxed(host->ioaddr +
1042 				msm_offset->core_vendor_spec3);
1043 		config |= CORE_PWRSAVE_DLL;
1044 		writel_relaxed(config, host->ioaddr +
1045 				msm_offset->core_vendor_spec3);
1046 	}
1047 
1048 	/*
1049 	 * Drain writebuffer to ensure above DLL calibration
1050 	 * and PWRSAVE DLL is enabled.
1051 	 */
1052 	wmb();
1053 out:
1054 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1055 		 __func__, ret);
1056 	return ret;
1057 }
1058 
1059 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1060 {
1061 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1062 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1063 	struct mmc_host *mmc = host->mmc;
1064 	int ret;
1065 	u32 config;
1066 	const struct sdhci_msm_offset *msm_offset =
1067 					msm_host->offset;
1068 
1069 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1070 
1071 	/*
1072 	 * Retuning in HS400 (DDR mode) will fail, just reset the
1073 	 * tuning block and restore the saved tuning phase.
1074 	 */
1075 	ret = msm_init_cm_dll(host);
1076 	if (ret)
1077 		goto out;
1078 
1079 	if (!mmc->ios.enhanced_strobe) {
1080 		/* Set the selected phase in delay line hw block */
1081 		ret = msm_config_cm_dll_phase(host,
1082 					      msm_host->saved_tuning_phase);
1083 		if (ret)
1084 			goto out;
1085 		config = readl_relaxed(host->ioaddr +
1086 				msm_offset->core_dll_config);
1087 		config |= CORE_CMD_DAT_TRACK_SEL;
1088 		writel_relaxed(config, host->ioaddr +
1089 				msm_offset->core_dll_config);
1090 	}
1091 
1092 	if (msm_host->use_cdclp533)
1093 		ret = sdhci_msm_cdclp533_calibration(host);
1094 	else
1095 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1096 out:
1097 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1098 		 __func__, ret);
1099 	return ret;
1100 }
1101 
1102 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1103 {
1104 	struct mmc_ios *ios = &host->mmc->ios;
1105 
1106 	/*
1107 	 * Tuning is required for SDR104, HS200 and HS400 cards and
1108 	 * if clock frequency is greater than 100MHz in these modes.
1109 	 */
1110 	if (host->clock <= CORE_FREQ_100MHZ ||
1111 	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1112 	    ios->timing == MMC_TIMING_MMC_HS200 ||
1113 	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1114 	    ios->enhanced_strobe)
1115 		return false;
1116 
1117 	return true;
1118 }
1119 
1120 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1121 {
1122 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1123 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1124 	int ret;
1125 
1126 	/*
1127 	 * SDR DLL comes into picture only for timing modes which needs
1128 	 * tuning.
1129 	 */
1130 	if (!sdhci_msm_is_tuning_needed(host))
1131 		return 0;
1132 
1133 	/* Reset the tuning block */
1134 	ret = msm_init_cm_dll(host);
1135 	if (ret)
1136 		return ret;
1137 
1138 	/* Restore the tuning block */
1139 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1140 
1141 	return ret;
1142 }
1143 
1144 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1145 {
1146 	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1147 	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1148 					      msm_offset->core_dll_config);
1149 
1150 	config = oldconfig;
1151 	if (enable) {
1152 		config |= CORE_CDR_EN;
1153 		config &= ~CORE_CDR_EXT_EN;
1154 	} else {
1155 		config &= ~CORE_CDR_EN;
1156 		config |= CORE_CDR_EXT_EN;
1157 	}
1158 
1159 	if (config != oldconfig) {
1160 		writel_relaxed(config, host->ioaddr +
1161 			       msm_offset->core_dll_config);
1162 	}
1163 }
1164 
1165 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1166 {
1167 	struct sdhci_host *host = mmc_priv(mmc);
1168 	int tuning_seq_cnt = 10;
1169 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1170 	int rc;
1171 	struct mmc_ios ios = host->mmc->ios;
1172 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1173 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1174 
1175 	if (!sdhci_msm_is_tuning_needed(host)) {
1176 		msm_host->use_cdr = false;
1177 		sdhci_msm_set_cdr(host, false);
1178 		return 0;
1179 	}
1180 
1181 	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1182 	msm_host->use_cdr = true;
1183 
1184 	/*
1185 	 * Clear tuning_done flag before tuning to ensure proper
1186 	 * HS400 settings.
1187 	 */
1188 	msm_host->tuning_done = 0;
1189 
1190 	/*
1191 	 * For HS400 tuning in HS200 timing requires:
1192 	 * - select MCLK/2 in VENDOR_SPEC
1193 	 * - program MCLK to 400MHz (or nearest supported) in GCC
1194 	 */
1195 	if (host->flags & SDHCI_HS400_TUNING) {
1196 		sdhci_msm_hc_select_mode(host);
1197 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1198 		host->flags &= ~SDHCI_HS400_TUNING;
1199 	}
1200 
1201 retry:
1202 	/* First of all reset the tuning block */
1203 	rc = msm_init_cm_dll(host);
1204 	if (rc)
1205 		return rc;
1206 
1207 	phase = 0;
1208 	do {
1209 		/* Set the phase in delay line hw block */
1210 		rc = msm_config_cm_dll_phase(host, phase);
1211 		if (rc)
1212 			return rc;
1213 
1214 		rc = mmc_send_tuning(mmc, opcode, NULL);
1215 		if (!rc) {
1216 			/* Tuning is successful at this tuning point */
1217 			tuned_phases[tuned_phase_cnt++] = phase;
1218 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1219 				 mmc_hostname(mmc), phase);
1220 		}
1221 	} while (++phase < ARRAY_SIZE(tuned_phases));
1222 
1223 	if (tuned_phase_cnt) {
1224 		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1225 			/*
1226 			 * All phases valid is _almost_ as bad as no phases
1227 			 * valid.  Probably all phases are not really reliable
1228 			 * but we didn't detect where the unreliable place is.
1229 			 * That means we'll essentially be guessing and hoping
1230 			 * we get a good phase.  Better to try a few times.
1231 			 */
1232 			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1233 				mmc_hostname(mmc));
1234 			if (--tuning_seq_cnt) {
1235 				tuned_phase_cnt = 0;
1236 				goto retry;
1237 			}
1238 		}
1239 
1240 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1241 						     tuned_phase_cnt);
1242 		if (rc < 0)
1243 			return rc;
1244 		else
1245 			phase = rc;
1246 
1247 		/*
1248 		 * Finally set the selected phase in delay
1249 		 * line hw block.
1250 		 */
1251 		rc = msm_config_cm_dll_phase(host, phase);
1252 		if (rc)
1253 			return rc;
1254 		msm_host->saved_tuning_phase = phase;
1255 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1256 			 mmc_hostname(mmc), phase);
1257 	} else {
1258 		if (--tuning_seq_cnt)
1259 			goto retry;
1260 		/* Tuning failed */
1261 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1262 		       mmc_hostname(mmc));
1263 		rc = -EIO;
1264 	}
1265 
1266 	if (!rc)
1267 		msm_host->tuning_done = true;
1268 	return rc;
1269 }
1270 
1271 /*
1272  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1273  * This needs to be done for both tuning and enhanced_strobe mode.
1274  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1275  * fixed feedback clock is used.
1276  */
1277 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1278 {
1279 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1280 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1281 	int ret;
1282 
1283 	if (host->clock > CORE_FREQ_100MHZ &&
1284 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1285 	    !msm_host->calibration_done) {
1286 		ret = sdhci_msm_hs400_dll_calibration(host);
1287 		if (!ret)
1288 			msm_host->calibration_done = true;
1289 		else
1290 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1291 			       mmc_hostname(host->mmc), ret);
1292 	}
1293 }
1294 
1295 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1296 					unsigned int uhs)
1297 {
1298 	struct mmc_host *mmc = host->mmc;
1299 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1300 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1301 	u16 ctrl_2;
1302 	u32 config;
1303 	const struct sdhci_msm_offset *msm_offset =
1304 					msm_host->offset;
1305 
1306 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1307 	/* Select Bus Speed Mode for host */
1308 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1309 	switch (uhs) {
1310 	case MMC_TIMING_UHS_SDR12:
1311 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1312 		break;
1313 	case MMC_TIMING_UHS_SDR25:
1314 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1315 		break;
1316 	case MMC_TIMING_UHS_SDR50:
1317 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1318 		break;
1319 	case MMC_TIMING_MMC_HS400:
1320 	case MMC_TIMING_MMC_HS200:
1321 	case MMC_TIMING_UHS_SDR104:
1322 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1323 		break;
1324 	case MMC_TIMING_UHS_DDR50:
1325 	case MMC_TIMING_MMC_DDR52:
1326 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1327 		break;
1328 	}
1329 
1330 	/*
1331 	 * When clock frequency is less than 100MHz, the feedback clock must be
1332 	 * provided and DLL must not be used so that tuning can be skipped. To
1333 	 * provide feedback clock, the mode selection can be any value less
1334 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1335 	 */
1336 	if (host->clock <= CORE_FREQ_100MHZ) {
1337 		if (uhs == MMC_TIMING_MMC_HS400 ||
1338 		    uhs == MMC_TIMING_MMC_HS200 ||
1339 		    uhs == MMC_TIMING_UHS_SDR104)
1340 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1341 		/*
1342 		 * DLL is not required for clock <= 100MHz
1343 		 * Thus, make sure DLL it is disabled when not required
1344 		 */
1345 		config = readl_relaxed(host->ioaddr +
1346 				msm_offset->core_dll_config);
1347 		config |= CORE_DLL_RST;
1348 		writel_relaxed(config, host->ioaddr +
1349 				msm_offset->core_dll_config);
1350 
1351 		config = readl_relaxed(host->ioaddr +
1352 				msm_offset->core_dll_config);
1353 		config |= CORE_DLL_PDN;
1354 		writel_relaxed(config, host->ioaddr +
1355 				msm_offset->core_dll_config);
1356 
1357 		/*
1358 		 * The DLL needs to be restored and CDCLP533 recalibrated
1359 		 * when the clock frequency is set back to 400MHz.
1360 		 */
1361 		msm_host->calibration_done = false;
1362 	}
1363 
1364 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1365 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1366 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1367 
1368 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1369 		sdhci_msm_hs400(host, &mmc->ios);
1370 }
1371 
1372 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1373 {
1374 	struct platform_device *pdev = msm_host->pdev;
1375 	int ret;
1376 
1377 	if (level)
1378 		ret = pinctrl_pm_select_default_state(&pdev->dev);
1379 	else
1380 		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1381 
1382 	return ret;
1383 }
1384 
1385 static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1386 {
1387 	if (IS_ERR(mmc->supply.vmmc))
1388 		return 0;
1389 
1390 	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1391 }
1392 
1393 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1394 			      struct mmc_host *mmc, bool level)
1395 {
1396 	int ret;
1397 	struct mmc_ios ios;
1398 
1399 	if (msm_host->vqmmc_enabled == level)
1400 		return 0;
1401 
1402 	if (level) {
1403 		/* Set the IO voltage regulator to default voltage level */
1404 		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1405 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1406 		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1407 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1408 
1409 		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1410 			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1411 			if (ret < 0) {
1412 				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1413 					mmc_hostname(mmc), ret);
1414 				goto out;
1415 			}
1416 		}
1417 		ret = regulator_enable(mmc->supply.vqmmc);
1418 	} else {
1419 		ret = regulator_disable(mmc->supply.vqmmc);
1420 	}
1421 
1422 	if (ret)
1423 		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1424 			mmc_hostname(mmc), level ? "en":"dis", ret);
1425 	else
1426 		msm_host->vqmmc_enabled = level;
1427 out:
1428 	return ret;
1429 }
1430 
1431 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1432 			      struct mmc_host *mmc, bool hpm)
1433 {
1434 	int load, ret;
1435 
1436 	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1437 	ret = regulator_set_load(mmc->supply.vqmmc, load);
1438 	if (ret)
1439 		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1440 			mmc_hostname(mmc), ret);
1441 	return ret;
1442 }
1443 
1444 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1445 			      struct mmc_host *mmc, bool level)
1446 {
1447 	int ret;
1448 	bool always_on;
1449 
1450 	if (IS_ERR(mmc->supply.vqmmc) ||
1451 			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1452 		return 0;
1453 	/*
1454 	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1455 	 * and HPM modes by setting the corresponding load.
1456 	 *
1457 	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1458 	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1459 	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1460 	 * Vqmmc should remain ON, So just set the load instead of turning it
1461 	 * off/on.
1462 	 */
1463 	always_on = !mmc_card_is_removable(mmc) &&
1464 			mmc->card && mmc_card_mmc(mmc->card);
1465 
1466 	if (always_on)
1467 		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1468 	else
1469 		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1470 
1471 	return ret;
1472 }
1473 
1474 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1475 {
1476 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1477 }
1478 
1479 static inline void sdhci_msm_complete_pwr_irq_wait(
1480 		struct sdhci_msm_host *msm_host)
1481 {
1482 	wake_up(&msm_host->pwr_irq_wait);
1483 }
1484 
1485 /*
1486  * sdhci_msm_check_power_status API should be called when registers writes
1487  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1488  * To what state the register writes will change the IO lines should be passed
1489  * as the argument req_type. This API will check whether the IO line's state
1490  * is already the expected state and will wait for power irq only if
1491  * power irq is expected to be triggered based on the current IO line state
1492  * and expected IO line state.
1493  */
1494 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1495 {
1496 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1497 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1498 	bool done = false;
1499 	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1500 	const struct sdhci_msm_offset *msm_offset =
1501 					msm_host->offset;
1502 
1503 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1504 			mmc_hostname(host->mmc), __func__, req_type,
1505 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1506 
1507 	/*
1508 	 * The power interrupt will not be generated for signal voltage
1509 	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1510 	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1511 	 * it as always set.
1512 	 */
1513 	if (!msm_host->mci_removed)
1514 		val = msm_host_readl(msm_host, host,
1515 				msm_offset->core_generics);
1516 	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1517 	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1518 		return;
1519 	}
1520 
1521 	/*
1522 	 * The IRQ for request type IO High/LOW will be generated when -
1523 	 * there is a state change in 1.8V enable bit (bit 3) of
1524 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1525 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1526 	 * to set it to 3.3V before card detection happens, the
1527 	 * IRQ doesn't get triggered as there is no state change in this bit.
1528 	 * The driver already handles this case by changing the IO voltage
1529 	 * level to high as part of controller power up sequence. Hence, check
1530 	 * for host->pwr to handle a case where IO voltage high request is
1531 	 * issued even before controller power up.
1532 	 */
1533 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1534 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1535 				mmc_hostname(host->mmc), req_type);
1536 		return;
1537 	}
1538 	if ((req_type & msm_host->curr_pwr_state) ||
1539 			(req_type & msm_host->curr_io_level))
1540 		done = true;
1541 	/*
1542 	 * This is needed here to handle cases where register writes will
1543 	 * not change the current bus state or io level of the controller.
1544 	 * In this case, no power irq will be triggerred and we should
1545 	 * not wait.
1546 	 */
1547 	if (!done) {
1548 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1549 				msm_host->pwr_irq_flag,
1550 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1551 			dev_warn(&msm_host->pdev->dev,
1552 				 "%s: pwr_irq for req: (%d) timed out\n",
1553 				 mmc_hostname(host->mmc), req_type);
1554 	}
1555 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1556 			__func__, req_type);
1557 }
1558 
1559 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1560 {
1561 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1562 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1563 	const struct sdhci_msm_offset *msm_offset =
1564 					msm_host->offset;
1565 
1566 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1567 		mmc_hostname(host->mmc),
1568 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1569 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1570 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1571 }
1572 
1573 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1574 {
1575 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1576 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1577 	struct mmc_host *mmc = host->mmc;
1578 	u32 irq_status, irq_ack = 0;
1579 	int retry = 10, ret;
1580 	u32 pwr_state = 0, io_level = 0;
1581 	u32 config;
1582 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1583 
1584 	irq_status = msm_host_readl(msm_host, host,
1585 			msm_offset->core_pwrctl_status);
1586 	irq_status &= INT_MASK;
1587 
1588 	msm_host_writel(msm_host, irq_status, host,
1589 			msm_offset->core_pwrctl_clear);
1590 
1591 	/*
1592 	 * There is a rare HW scenario where the first clear pulse could be
1593 	 * lost when actual reset and clear/read of status register is
1594 	 * happening at a time. Hence, retry for at least 10 times to make
1595 	 * sure status register is cleared. Otherwise, this will result in
1596 	 * a spurious power IRQ resulting in system instability.
1597 	 */
1598 	while (irq_status & msm_host_readl(msm_host, host,
1599 				msm_offset->core_pwrctl_status)) {
1600 		if (retry == 0) {
1601 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1602 					mmc_hostname(host->mmc), irq_status);
1603 			sdhci_msm_dump_pwr_ctrl_regs(host);
1604 			WARN_ON(1);
1605 			break;
1606 		}
1607 		msm_host_writel(msm_host, irq_status, host,
1608 			msm_offset->core_pwrctl_clear);
1609 		retry--;
1610 		udelay(10);
1611 	}
1612 
1613 	/* Handle BUS ON/OFF*/
1614 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1615 		pwr_state = REQ_BUS_ON;
1616 		io_level = REQ_IO_HIGH;
1617 	}
1618 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1619 		pwr_state = REQ_BUS_OFF;
1620 		io_level = REQ_IO_LOW;
1621 	}
1622 
1623 	if (pwr_state) {
1624 		ret = sdhci_msm_set_vmmc(mmc);
1625 		if (!ret)
1626 			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1627 					pwr_state & REQ_BUS_ON);
1628 		if (!ret)
1629 			ret = sdhci_msm_set_pincfg(msm_host,
1630 					pwr_state & REQ_BUS_ON);
1631 		if (!ret)
1632 			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1633 		else
1634 			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1635 	}
1636 
1637 	/* Handle IO LOW/HIGH */
1638 	if (irq_status & CORE_PWRCTL_IO_LOW)
1639 		io_level = REQ_IO_LOW;
1640 
1641 	if (irq_status & CORE_PWRCTL_IO_HIGH)
1642 		io_level = REQ_IO_HIGH;
1643 
1644 	if (io_level)
1645 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1646 
1647 	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1648 		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1649 		if (ret < 0) {
1650 			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1651 					mmc_hostname(mmc), ret,
1652 					mmc->ios.signal_voltage, mmc->ios.vdd,
1653 					irq_status);
1654 			irq_ack |= CORE_PWRCTL_IO_FAIL;
1655 		}
1656 	}
1657 
1658 	/*
1659 	 * The driver has to acknowledge the interrupt, switch voltages and
1660 	 * report back if it succeded or not to this register. The voltage
1661 	 * switches are handled by the sdhci core, so just report success.
1662 	 */
1663 	msm_host_writel(msm_host, irq_ack, host,
1664 			msm_offset->core_pwrctl_ctl);
1665 
1666 	/*
1667 	 * If we don't have info regarding the voltage levels supported by
1668 	 * regulators, don't change the IO PAD PWR SWITCH.
1669 	 */
1670 	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1671 		u32 new_config;
1672 		/*
1673 		 * We should unset IO PAD PWR switch only if the register write
1674 		 * can set IO lines high and the regulator also switches to 3 V.
1675 		 * Else, we should keep the IO PAD PWR switch set.
1676 		 * This is applicable to certain targets where eMMC vccq supply
1677 		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1678 		 * IO PAD PWR switch must be kept set to reflect actual
1679 		 * regulator voltage. This way, during initialization of
1680 		 * controllers with only 1.8V, we will set the IO PAD bit
1681 		 * without waiting for a REQ_IO_LOW.
1682 		 */
1683 		config = readl_relaxed(host->ioaddr +
1684 				msm_offset->core_vendor_spec);
1685 		new_config = config;
1686 
1687 		if ((io_level & REQ_IO_HIGH) &&
1688 				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1689 			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1690 		else if ((io_level & REQ_IO_LOW) ||
1691 				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1692 			new_config |= CORE_IO_PAD_PWR_SWITCH;
1693 
1694 		if (config ^ new_config)
1695 			writel_relaxed(new_config, host->ioaddr +
1696 					msm_offset->core_vendor_spec);
1697 	}
1698 
1699 	if (pwr_state)
1700 		msm_host->curr_pwr_state = pwr_state;
1701 	if (io_level)
1702 		msm_host->curr_io_level = io_level;
1703 
1704 	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1705 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1706 		irq_ack);
1707 }
1708 
1709 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1710 {
1711 	struct sdhci_host *host = (struct sdhci_host *)data;
1712 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1713 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1714 
1715 	sdhci_msm_handle_pwr_irq(host, irq);
1716 	msm_host->pwr_irq_flag = 1;
1717 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1718 
1719 
1720 	return IRQ_HANDLED;
1721 }
1722 
1723 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1724 {
1725 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1726 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1727 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1728 
1729 	return clk_round_rate(core_clk, ULONG_MAX);
1730 }
1731 
1732 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1733 {
1734 	return SDHCI_MSM_MIN_CLOCK;
1735 }
1736 
1737 /*
1738  * __sdhci_msm_set_clock - sdhci_msm clock control.
1739  *
1740  * Description:
1741  * MSM controller does not use internal divider and
1742  * instead directly control the GCC clock as per
1743  * HW recommendation.
1744  **/
1745 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1746 {
1747 	u16 clk;
1748 	/*
1749 	 * Keep actual_clock as zero -
1750 	 * - since there is no divider used so no need of having actual_clock.
1751 	 * - MSM controller uses SDCLK for data timeout calculation. If
1752 	 *   actual_clock is zero, host->clock is taken for calculation.
1753 	 */
1754 	host->mmc->actual_clock = 0;
1755 
1756 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1757 
1758 	if (clock == 0)
1759 		return;
1760 
1761 	/*
1762 	 * MSM controller do not use clock divider.
1763 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1764 	 * clock with no divider value programmed.
1765 	 */
1766 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1767 	sdhci_enable_clk(host, clk);
1768 }
1769 
1770 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1771 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1772 {
1773 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1774 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1775 
1776 	if (!clock) {
1777 		msm_host->clk_rate = clock;
1778 		goto out;
1779 	}
1780 
1781 	sdhci_msm_hc_select_mode(host);
1782 
1783 	msm_set_clock_rate_for_bus_mode(host, clock);
1784 out:
1785 	__sdhci_msm_set_clock(host, clock);
1786 }
1787 
1788 /*****************************************************************************\
1789  *                                                                           *
1790  * MSM Command Queue Engine (CQE)                                            *
1791  *                                                                           *
1792 \*****************************************************************************/
1793 
1794 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
1795 {
1796 	int cmd_error = 0;
1797 	int data_error = 0;
1798 
1799 	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
1800 		return intmask;
1801 
1802 	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
1803 	return 0;
1804 }
1805 
1806 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
1807 {
1808 	struct sdhci_host *host = mmc_priv(mmc);
1809 	unsigned long flags;
1810 	u32 ctrl;
1811 
1812 	/*
1813 	 * When CQE is halted, the legacy SDHCI path operates only
1814 	 * on 16-byte descriptors in 64bit mode.
1815 	 */
1816 	if (host->flags & SDHCI_USE_64_BIT_DMA)
1817 		host->desc_sz = 16;
1818 
1819 	spin_lock_irqsave(&host->lock, flags);
1820 
1821 	/*
1822 	 * During CQE command transfers, command complete bit gets latched.
1823 	 * So s/w should clear command complete interrupt status when CQE is
1824 	 * either halted or disabled. Otherwise unexpected SDCHI legacy
1825 	 * interrupt gets triggered when CQE is halted/disabled.
1826 	 */
1827 	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
1828 	ctrl |= SDHCI_INT_RESPONSE;
1829 	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
1830 	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
1831 
1832 	spin_unlock_irqrestore(&host->lock, flags);
1833 
1834 	sdhci_cqe_disable(mmc, recovery);
1835 }
1836 
1837 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
1838 	.enable		= sdhci_cqe_enable,
1839 	.disable	= sdhci_msm_cqe_disable,
1840 };
1841 
1842 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
1843 				struct platform_device *pdev)
1844 {
1845 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1846 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1847 	struct cqhci_host *cq_host;
1848 	bool dma64;
1849 	u32 cqcfg;
1850 	int ret;
1851 
1852 	/*
1853 	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
1854 	 * So ensure ADMA table is allocated for 16byte descriptors.
1855 	 */
1856 	if (host->caps & SDHCI_CAN_64BIT)
1857 		host->alloc_desc_sz = 16;
1858 
1859 	ret = sdhci_setup_host(host);
1860 	if (ret)
1861 		return ret;
1862 
1863 	cq_host = cqhci_pltfm_init(pdev);
1864 	if (IS_ERR(cq_host)) {
1865 		ret = PTR_ERR(cq_host);
1866 		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
1867 		goto cleanup;
1868 	}
1869 
1870 	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
1871 	cq_host->ops = &sdhci_msm_cqhci_ops;
1872 
1873 	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
1874 
1875 	ret = cqhci_init(cq_host, host->mmc, dma64);
1876 	if (ret) {
1877 		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
1878 				mmc_hostname(host->mmc), ret);
1879 		goto cleanup;
1880 	}
1881 
1882 	/* Disable cqe reset due to cqe enable signal */
1883 	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
1884 	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
1885 	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
1886 
1887 	/*
1888 	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
1889 	 * So limit desc_sz to 12 so that the data commands that are sent
1890 	 * during card initialization (before CQE gets enabled) would
1891 	 * get executed without any issues.
1892 	 */
1893 	if (host->flags & SDHCI_USE_64_BIT_DMA)
1894 		host->desc_sz = 12;
1895 
1896 	ret = __sdhci_add_host(host);
1897 	if (ret)
1898 		goto cleanup;
1899 
1900 	dev_info(&pdev->dev, "%s: CQE init: success\n",
1901 			mmc_hostname(host->mmc));
1902 	return ret;
1903 
1904 cleanup:
1905 	sdhci_cleanup_host(host);
1906 	return ret;
1907 }
1908 
1909 /*
1910  * Platform specific register write functions. This is so that, if any
1911  * register write needs to be followed up by platform specific actions,
1912  * they can be added here. These functions can go to sleep when writes
1913  * to certain registers are done.
1914  * These functions are relying on sdhci_set_ios not using spinlock.
1915  */
1916 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
1917 {
1918 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1919 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1920 	u32 req_type = 0;
1921 
1922 	switch (reg) {
1923 	case SDHCI_HOST_CONTROL2:
1924 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
1925 			REQ_IO_HIGH;
1926 		break;
1927 	case SDHCI_SOFTWARE_RESET:
1928 		if (host->pwr && (val & SDHCI_RESET_ALL))
1929 			req_type = REQ_BUS_OFF;
1930 		break;
1931 	case SDHCI_POWER_CONTROL:
1932 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
1933 		break;
1934 	case SDHCI_TRANSFER_MODE:
1935 		msm_host->transfer_mode = val;
1936 		break;
1937 	case SDHCI_COMMAND:
1938 		if (!msm_host->use_cdr)
1939 			break;
1940 		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
1941 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
1942 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
1943 			sdhci_msm_set_cdr(host, true);
1944 		else
1945 			sdhci_msm_set_cdr(host, false);
1946 		break;
1947 	}
1948 
1949 	if (req_type) {
1950 		msm_host->pwr_irq_flag = 0;
1951 		/*
1952 		 * Since this register write may trigger a power irq, ensure
1953 		 * all previous register writes are complete by this point.
1954 		 */
1955 		mb();
1956 	}
1957 	return req_type;
1958 }
1959 
1960 /* This function may sleep*/
1961 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
1962 {
1963 	u32 req_type = 0;
1964 
1965 	req_type = __sdhci_msm_check_write(host, val, reg);
1966 	writew_relaxed(val, host->ioaddr + reg);
1967 
1968 	if (req_type)
1969 		sdhci_msm_check_power_status(host, req_type);
1970 }
1971 
1972 /* This function may sleep*/
1973 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
1974 {
1975 	u32 req_type = 0;
1976 
1977 	req_type = __sdhci_msm_check_write(host, val, reg);
1978 
1979 	writeb_relaxed(val, host->ioaddr + reg);
1980 
1981 	if (req_type)
1982 		sdhci_msm_check_power_status(host, req_type);
1983 }
1984 
1985 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
1986 {
1987 	struct mmc_host *mmc = msm_host->mmc;
1988 	struct regulator *supply = mmc->supply.vqmmc;
1989 	u32 caps = 0, config;
1990 	struct sdhci_host *host = mmc_priv(mmc);
1991 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1992 
1993 	if (!IS_ERR(mmc->supply.vqmmc)) {
1994 		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
1995 			caps |= CORE_1_8V_SUPPORT;
1996 		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
1997 			caps |= CORE_3_0V_SUPPORT;
1998 
1999 		if (!caps)
2000 			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2001 					mmc_hostname(mmc));
2002 	}
2003 
2004 	if (caps) {
2005 		/*
2006 		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2007 		 * bit can be used as required later on.
2008 		 */
2009 		u32 io_level = msm_host->curr_io_level;
2010 
2011 		config = readl_relaxed(host->ioaddr +
2012 				msm_offset->core_vendor_spec);
2013 		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2014 
2015 		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2016 			config &= ~CORE_IO_PAD_PWR_SWITCH;
2017 		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2018 			config |= CORE_IO_PAD_PWR_SWITCH;
2019 
2020 		writel_relaxed(config,
2021 				host->ioaddr + msm_offset->core_vendor_spec);
2022 	}
2023 	msm_host->caps_0 |= caps;
2024 	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2025 }
2026 
2027 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
2028 {
2029 	if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
2030 		cqhci_deactivate(host->mmc);
2031 	sdhci_reset(host, mask);
2032 }
2033 
2034 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2035 {
2036 	int ret;
2037 
2038 	ret = mmc_regulator_get_supply(msm_host->mmc);
2039 	if (ret)
2040 		return ret;
2041 
2042 	sdhci_msm_set_regulator_caps(msm_host);
2043 
2044 	return 0;
2045 }
2046 
2047 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2048 				      struct mmc_ios *ios)
2049 {
2050 	struct sdhci_host *host = mmc_priv(mmc);
2051 	u16 ctrl, status;
2052 
2053 	/*
2054 	 * Signal Voltage Switching is only applicable for Host Controllers
2055 	 * v3.00 and above.
2056 	 */
2057 	if (host->version < SDHCI_SPEC_300)
2058 		return 0;
2059 
2060 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2061 
2062 	switch (ios->signal_voltage) {
2063 	case MMC_SIGNAL_VOLTAGE_330:
2064 		if (!(host->flags & SDHCI_SIGNALING_330))
2065 			return -EINVAL;
2066 
2067 		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2068 		ctrl &= ~SDHCI_CTRL_VDD_180;
2069 		break;
2070 	case MMC_SIGNAL_VOLTAGE_180:
2071 		if (!(host->flags & SDHCI_SIGNALING_180))
2072 			return -EINVAL;
2073 
2074 		/* Enable 1.8V Signal Enable in the Host Control2 register */
2075 		ctrl |= SDHCI_CTRL_VDD_180;
2076 		break;
2077 
2078 	default:
2079 		return -EINVAL;
2080 	}
2081 
2082 	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2083 
2084 	/* Wait for 5ms */
2085 	usleep_range(5000, 5500);
2086 
2087 	/* regulator output should be stable within 5 ms */
2088 	status = ctrl & SDHCI_CTRL_VDD_180;
2089 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2090 	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2091 		return 0;
2092 
2093 	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2094 		mmc_hostname(mmc));
2095 
2096 	return -EAGAIN;
2097 }
2098 
2099 #define DRIVER_NAME "sdhci_msm"
2100 #define SDHCI_MSM_DUMP(f, x...) \
2101 	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2102 
2103 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2104 {
2105 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2106 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2107 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2108 
2109 	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2110 
2111 	SDHCI_MSM_DUMP(
2112 			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2113 		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2114 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2115 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2116 	SDHCI_MSM_DUMP(
2117 			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2118 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2119 		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2120 		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2121 	SDHCI_MSM_DUMP(
2122 			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2123 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2124 		readl_relaxed(host->ioaddr +
2125 			msm_offset->core_vendor_spec_func2),
2126 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2127 }
2128 
2129 static const struct sdhci_msm_variant_ops mci_var_ops = {
2130 	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2131 	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2132 };
2133 
2134 static const struct sdhci_msm_variant_ops v5_var_ops = {
2135 	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2136 	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2137 };
2138 
2139 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2140 	.var_ops = &mci_var_ops,
2141 	.offset = &sdhci_msm_mci_offset,
2142 };
2143 
2144 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2145 	.mci_removed = true,
2146 	.var_ops = &v5_var_ops,
2147 	.offset = &sdhci_msm_v5_offset,
2148 };
2149 
2150 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2151 	.mci_removed = true,
2152 	.restore_dll_config = true,
2153 	.var_ops = &v5_var_ops,
2154 	.offset = &sdhci_msm_v5_offset,
2155 };
2156 
2157 static const struct sdhci_msm_variant_info sm8250_sdhci_var = {
2158 	.mci_removed = true,
2159 	.uses_tassadar_dll = true,
2160 	.var_ops = &v5_var_ops,
2161 	.offset = &sdhci_msm_v5_offset,
2162 };
2163 
2164 static const struct of_device_id sdhci_msm_dt_match[] = {
2165 	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2166 	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2167 	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2168 	{.compatible = "qcom,sm8250-sdhci", .data = &sm8250_sdhci_var},
2169 	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2170 	{},
2171 };
2172 
2173 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2174 
2175 static const struct sdhci_ops sdhci_msm_ops = {
2176 	.reset = sdhci_msm_reset,
2177 	.set_clock = sdhci_msm_set_clock,
2178 	.get_min_clock = sdhci_msm_get_min_clock,
2179 	.get_max_clock = sdhci_msm_get_max_clock,
2180 	.set_bus_width = sdhci_set_bus_width,
2181 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2182 	.write_w = sdhci_msm_writew,
2183 	.write_b = sdhci_msm_writeb,
2184 	.irq	= sdhci_msm_cqe_irq,
2185 	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2186 	.set_power = sdhci_set_power_noreg,
2187 };
2188 
2189 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2190 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2191 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2192 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2193 		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2194 
2195 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2196 	.ops = &sdhci_msm_ops,
2197 };
2198 
2199 static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2200 		struct sdhci_host *host)
2201 {
2202 	struct device_node *node = pdev->dev.of_node;
2203 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2204 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2205 
2206 	if (of_property_read_u32(node, "qcom,ddr-config",
2207 				&msm_host->ddr_config))
2208 		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2209 
2210 	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2211 }
2212 
2213 
2214 static int sdhci_msm_probe(struct platform_device *pdev)
2215 {
2216 	struct sdhci_host *host;
2217 	struct sdhci_pltfm_host *pltfm_host;
2218 	struct sdhci_msm_host *msm_host;
2219 	struct clk *clk;
2220 	int ret;
2221 	u16 host_version, core_minor;
2222 	u32 core_version, config;
2223 	u8 core_major;
2224 	const struct sdhci_msm_offset *msm_offset;
2225 	const struct sdhci_msm_variant_info *var_info;
2226 	struct device_node *node = pdev->dev.of_node;
2227 
2228 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2229 	if (IS_ERR(host))
2230 		return PTR_ERR(host);
2231 
2232 	host->sdma_boundary = 0;
2233 	pltfm_host = sdhci_priv(host);
2234 	msm_host = sdhci_pltfm_priv(pltfm_host);
2235 	msm_host->mmc = host->mmc;
2236 	msm_host->pdev = pdev;
2237 
2238 	ret = mmc_of_parse(host->mmc);
2239 	if (ret)
2240 		goto pltfm_free;
2241 
2242 	/*
2243 	 * Based on the compatible string, load the required msm host info from
2244 	 * the data associated with the version info.
2245 	 */
2246 	var_info = of_device_get_match_data(&pdev->dev);
2247 
2248 	msm_host->mci_removed = var_info->mci_removed;
2249 	msm_host->restore_dll_config = var_info->restore_dll_config;
2250 	msm_host->var_ops = var_info->var_ops;
2251 	msm_host->offset = var_info->offset;
2252 	msm_host->uses_tassadar_dll = var_info->uses_tassadar_dll;
2253 
2254 	msm_offset = msm_host->offset;
2255 
2256 	sdhci_get_of_property(pdev);
2257 	sdhci_msm_get_of_property(pdev, host);
2258 
2259 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2260 
2261 	/* Setup SDCC bus voter clock. */
2262 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2263 	if (!IS_ERR(msm_host->bus_clk)) {
2264 		/* Vote for max. clk rate for max. performance */
2265 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2266 		if (ret)
2267 			goto pltfm_free;
2268 		ret = clk_prepare_enable(msm_host->bus_clk);
2269 		if (ret)
2270 			goto pltfm_free;
2271 	}
2272 
2273 	/* Setup main peripheral bus clock */
2274 	clk = devm_clk_get(&pdev->dev, "iface");
2275 	if (IS_ERR(clk)) {
2276 		ret = PTR_ERR(clk);
2277 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2278 		goto bus_clk_disable;
2279 	}
2280 	msm_host->bulk_clks[1].clk = clk;
2281 
2282 	/* Setup SDC MMC clock */
2283 	clk = devm_clk_get(&pdev->dev, "core");
2284 	if (IS_ERR(clk)) {
2285 		ret = PTR_ERR(clk);
2286 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2287 		goto bus_clk_disable;
2288 	}
2289 	msm_host->bulk_clks[0].clk = clk;
2290 
2291 	 /* Check for optional interconnect paths */
2292 	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2293 	if (ret)
2294 		goto bus_clk_disable;
2295 
2296 	msm_host->opp_table = dev_pm_opp_set_clkname(&pdev->dev, "core");
2297 	if (IS_ERR(msm_host->opp_table)) {
2298 		ret = PTR_ERR(msm_host->opp_table);
2299 		goto bus_clk_disable;
2300 	}
2301 
2302 	/* OPP table is optional */
2303 	ret = dev_pm_opp_of_add_table(&pdev->dev);
2304 	if (ret && ret != -ENODEV) {
2305 		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2306 		goto opp_put_clkname;
2307 	}
2308 
2309 	/* Vote for maximum clock rate for maximum performance */
2310 	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2311 	if (ret)
2312 		dev_warn(&pdev->dev, "core clock boost failed\n");
2313 
2314 	clk = devm_clk_get(&pdev->dev, "cal");
2315 	if (IS_ERR(clk))
2316 		clk = NULL;
2317 	msm_host->bulk_clks[2].clk = clk;
2318 
2319 	clk = devm_clk_get(&pdev->dev, "sleep");
2320 	if (IS_ERR(clk))
2321 		clk = NULL;
2322 	msm_host->bulk_clks[3].clk = clk;
2323 
2324 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2325 				      msm_host->bulk_clks);
2326 	if (ret)
2327 		goto opp_cleanup;
2328 
2329 	/*
2330 	 * xo clock is needed for FLL feature of cm_dll.
2331 	 * In case if xo clock is not mentioned in DT, warn and proceed.
2332 	 */
2333 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2334 	if (IS_ERR(msm_host->xo_clk)) {
2335 		ret = PTR_ERR(msm_host->xo_clk);
2336 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2337 	}
2338 
2339 	if (!msm_host->mci_removed) {
2340 		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2341 		if (IS_ERR(msm_host->core_mem)) {
2342 			ret = PTR_ERR(msm_host->core_mem);
2343 			goto clk_disable;
2344 		}
2345 	}
2346 
2347 	/* Reset the vendor spec register to power on reset state */
2348 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2349 			host->ioaddr + msm_offset->core_vendor_spec);
2350 
2351 	if (!msm_host->mci_removed) {
2352 		/* Set HC_MODE_EN bit in HC_MODE register */
2353 		msm_host_writel(msm_host, HC_MODE_EN, host,
2354 				msm_offset->core_hc_mode);
2355 		config = msm_host_readl(msm_host, host,
2356 				msm_offset->core_hc_mode);
2357 		config |= FF_CLK_SW_RST_DIS;
2358 		msm_host_writel(msm_host, config, host,
2359 				msm_offset->core_hc_mode);
2360 	}
2361 
2362 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2363 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2364 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2365 			       SDHCI_VENDOR_VER_SHIFT));
2366 
2367 	core_version = msm_host_readl(msm_host, host,
2368 			msm_offset->core_mci_version);
2369 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2370 		      CORE_VERSION_MAJOR_SHIFT;
2371 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2372 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2373 		core_version, core_major, core_minor);
2374 
2375 	if (core_major == 1 && core_minor >= 0x42)
2376 		msm_host->use_14lpp_dll_reset = true;
2377 
2378 	/*
2379 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2380 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2381 	 */
2382 	if (core_major == 1 && core_minor < 0x34)
2383 		msm_host->use_cdclp533 = true;
2384 
2385 	/*
2386 	 * Support for some capabilities is not advertised by newer
2387 	 * controller versions and must be explicitly enabled.
2388 	 */
2389 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2390 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2391 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2392 		writel_relaxed(config, host->ioaddr +
2393 				msm_offset->core_vendor_spec_capabilities0);
2394 	}
2395 
2396 	if (core_major == 1 && core_minor >= 0x49)
2397 		msm_host->updated_ddr_cfg = true;
2398 
2399 	ret = sdhci_msm_register_vreg(msm_host);
2400 	if (ret)
2401 		goto clk_disable;
2402 
2403 	/*
2404 	 * Power on reset state may trigger power irq if previous status of
2405 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2406 	 * interrupt in GIC, any pending power irq interrupt should be
2407 	 * acknowledged. Otherwise power irq interrupt handler would be
2408 	 * fired prematurely.
2409 	 */
2410 	sdhci_msm_handle_pwr_irq(host, 0);
2411 
2412 	/*
2413 	 * Ensure that above writes are propogated before interrupt enablement
2414 	 * in GIC.
2415 	 */
2416 	mb();
2417 
2418 	/* Setup IRQ for handling power/voltage tasks with PMIC */
2419 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2420 	if (msm_host->pwr_irq < 0) {
2421 		ret = msm_host->pwr_irq;
2422 		goto clk_disable;
2423 	}
2424 
2425 	sdhci_msm_init_pwr_irq_wait(msm_host);
2426 	/* Enable pwr irq interrupts */
2427 	msm_host_writel(msm_host, INT_MASK, host,
2428 		msm_offset->core_pwrctl_mask);
2429 
2430 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2431 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2432 					dev_name(&pdev->dev), host);
2433 	if (ret) {
2434 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2435 		goto clk_disable;
2436 	}
2437 
2438 	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2439 
2440 	pm_runtime_get_noresume(&pdev->dev);
2441 	pm_runtime_set_active(&pdev->dev);
2442 	pm_runtime_enable(&pdev->dev);
2443 	pm_runtime_set_autosuspend_delay(&pdev->dev,
2444 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2445 	pm_runtime_use_autosuspend(&pdev->dev);
2446 
2447 	host->mmc_host_ops.start_signal_voltage_switch =
2448 		sdhci_msm_start_signal_voltage_switch;
2449 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2450 	if (of_property_read_bool(node, "supports-cqe"))
2451 		ret = sdhci_msm_cqe_add_host(host, pdev);
2452 	else
2453 		ret = sdhci_add_host(host);
2454 	if (ret)
2455 		goto pm_runtime_disable;
2456 
2457 	pm_runtime_mark_last_busy(&pdev->dev);
2458 	pm_runtime_put_autosuspend(&pdev->dev);
2459 
2460 	return 0;
2461 
2462 pm_runtime_disable:
2463 	pm_runtime_disable(&pdev->dev);
2464 	pm_runtime_set_suspended(&pdev->dev);
2465 	pm_runtime_put_noidle(&pdev->dev);
2466 clk_disable:
2467 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2468 				   msm_host->bulk_clks);
2469 opp_cleanup:
2470 	dev_pm_opp_of_remove_table(&pdev->dev);
2471 opp_put_clkname:
2472 	dev_pm_opp_put_clkname(msm_host->opp_table);
2473 bus_clk_disable:
2474 	if (!IS_ERR(msm_host->bus_clk))
2475 		clk_disable_unprepare(msm_host->bus_clk);
2476 pltfm_free:
2477 	sdhci_pltfm_free(pdev);
2478 	return ret;
2479 }
2480 
2481 static int sdhci_msm_remove(struct platform_device *pdev)
2482 {
2483 	struct sdhci_host *host = platform_get_drvdata(pdev);
2484 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2485 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2486 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2487 		    0xffffffff);
2488 
2489 	sdhci_remove_host(host, dead);
2490 
2491 	dev_pm_opp_of_remove_table(&pdev->dev);
2492 	dev_pm_opp_put_clkname(msm_host->opp_table);
2493 	pm_runtime_get_sync(&pdev->dev);
2494 	pm_runtime_disable(&pdev->dev);
2495 	pm_runtime_put_noidle(&pdev->dev);
2496 
2497 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2498 				   msm_host->bulk_clks);
2499 	if (!IS_ERR(msm_host->bus_clk))
2500 		clk_disable_unprepare(msm_host->bus_clk);
2501 	sdhci_pltfm_free(pdev);
2502 	return 0;
2503 }
2504 
2505 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2506 {
2507 	struct sdhci_host *host = dev_get_drvdata(dev);
2508 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2509 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2510 
2511 	/* Drop the performance vote */
2512 	dev_pm_opp_set_rate(dev, 0);
2513 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2514 				   msm_host->bulk_clks);
2515 
2516 	return 0;
2517 }
2518 
2519 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2520 {
2521 	struct sdhci_host *host = dev_get_drvdata(dev);
2522 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2523 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2524 	int ret;
2525 
2526 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2527 				       msm_host->bulk_clks);
2528 	if (ret)
2529 		return ret;
2530 	/*
2531 	 * Whenever core-clock is gated dynamically, it's needed to
2532 	 * restore the SDR DLL settings when the clock is ungated.
2533 	 */
2534 	if (msm_host->restore_dll_config && msm_host->clk_rate)
2535 		ret = sdhci_msm_restore_sdr_dll_config(host);
2536 
2537 	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2538 
2539 	return ret;
2540 }
2541 
2542 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2543 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2544 				pm_runtime_force_resume)
2545 	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2546 			   sdhci_msm_runtime_resume,
2547 			   NULL)
2548 };
2549 
2550 static struct platform_driver sdhci_msm_driver = {
2551 	.probe = sdhci_msm_probe,
2552 	.remove = sdhci_msm_remove,
2553 	.driver = {
2554 		   .name = "sdhci_msm",
2555 		   .of_match_table = sdhci_msm_dt_match,
2556 		   .pm = &sdhci_msm_pm_ops,
2557 		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2558 	},
2559 };
2560 
2561 module_platform_driver(sdhci_msm_driver);
2562 
2563 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2564 MODULE_LICENSE("GPL v2");
2565