xref: /openbmc/linux/drivers/mmc/host/sdhci-msm.c (revision 9a29ad52)
1 /*
2  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
3  *
4  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 #include <linux/module.h>
18 #include <linux/of_device.h>
19 #include <linux/delay.h>
20 #include <linux/mmc/mmc.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/slab.h>
23 #include <linux/iopoll.h>
24 #include <linux/regulator/consumer.h>
25 
26 #include "sdhci-pltfm.h"
27 
28 #define CORE_MCI_VERSION		0x50
29 #define CORE_VERSION_MAJOR_SHIFT	28
30 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
31 #define CORE_VERSION_MINOR_MASK		0xff
32 
33 #define CORE_MCI_GENERICS		0x70
34 #define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
35 
36 #define CORE_HC_MODE		0x78
37 #define HC_MODE_EN		0x1
38 #define CORE_POWER		0x0
39 #define CORE_SW_RST		BIT(7)
40 #define FF_CLK_SW_RST_DIS	BIT(13)
41 
42 #define CORE_PWRCTL_STATUS	0xdc
43 #define CORE_PWRCTL_MASK	0xe0
44 #define CORE_PWRCTL_CLEAR	0xe4
45 #define CORE_PWRCTL_CTL		0xe8
46 #define CORE_PWRCTL_BUS_OFF	BIT(0)
47 #define CORE_PWRCTL_BUS_ON	BIT(1)
48 #define CORE_PWRCTL_IO_LOW	BIT(2)
49 #define CORE_PWRCTL_IO_HIGH	BIT(3)
50 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
51 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
52 #define REQ_BUS_OFF		BIT(0)
53 #define REQ_BUS_ON		BIT(1)
54 #define REQ_IO_LOW		BIT(2)
55 #define REQ_IO_HIGH		BIT(3)
56 #define INT_MASK		0xf
57 #define MAX_PHASES		16
58 #define CORE_DLL_LOCK		BIT(7)
59 #define CORE_DDR_DLL_LOCK	BIT(11)
60 #define CORE_DLL_EN		BIT(16)
61 #define CORE_CDR_EN		BIT(17)
62 #define CORE_CK_OUT_EN		BIT(18)
63 #define CORE_CDR_EXT_EN		BIT(19)
64 #define CORE_DLL_PDN		BIT(29)
65 #define CORE_DLL_RST		BIT(30)
66 #define CORE_DLL_CONFIG		0x100
67 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
68 #define CORE_DLL_STATUS		0x108
69 
70 #define CORE_DLL_CONFIG_2	0x1b4
71 #define CORE_DDR_CAL_EN		BIT(0)
72 #define CORE_FLL_CYCLE_CNT	BIT(18)
73 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
74 
75 #define CORE_VENDOR_SPEC	0x10c
76 #define CORE_VENDOR_SPEC_POR_VAL	0xa1c
77 #define CORE_CLK_PWRSAVE	BIT(1)
78 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
79 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
80 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
81 #define CORE_IO_PAD_PWR_SWITCH_EN	(1 << 15)
82 #define CORE_IO_PAD_PWR_SWITCH  (1 << 16)
83 #define CORE_HC_SELECT_IN_EN	BIT(18)
84 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
85 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
86 
87 #define CORE_3_0V_SUPPORT	(1 << 25)
88 #define CORE_1_8V_SUPPORT	(1 << 26)
89 #define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
90 
91 #define CORE_CSR_CDC_CTLR_CFG0		0x130
92 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
93 #define CORE_HW_AUTOCAL_ENA		BIT(17)
94 
95 #define CORE_CSR_CDC_CTLR_CFG1		0x134
96 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
97 #define CORE_TIMER_ENA			BIT(16)
98 
99 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
100 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
101 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
102 #define CORE_CDC_OFFSET_CFG		0x14C
103 #define CORE_CSR_CDC_DELAY_CFG		0x150
104 #define CORE_CDC_SLAVE_DDA_CFG		0x160
105 #define CORE_CSR_CDC_STATUS0		0x164
106 #define CORE_CALIBRATION_DONE		BIT(0)
107 
108 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
109 
110 #define CORE_CSR_CDC_GEN_CFG		0x178
111 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
112 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
113 
114 #define CORE_DDR_200_CFG		0x184
115 #define CORE_CDC_T4_DLY_SEL		BIT(0)
116 #define CORE_CMDIN_RCLK_EN		BIT(1)
117 #define CORE_START_CDC_TRAFFIC		BIT(6)
118 #define CORE_VENDOR_SPEC3	0x1b0
119 #define CORE_PWRSAVE_DLL	BIT(3)
120 
121 #define CORE_DDR_CONFIG		0x1b8
122 #define DDR_CONFIG_POR_VAL	0x80040853
123 
124 #define CORE_VENDOR_SPEC_CAPABILITIES0	0x11c
125 
126 #define INVALID_TUNING_PHASE	-1
127 #define SDHCI_MSM_MIN_CLOCK	400000
128 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
129 
130 #define CDR_SELEXT_SHIFT	20
131 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
132 #define CMUX_SHIFT_PHASE_SHIFT	24
133 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
134 
135 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
136 
137 /* Timeout value to avoid infinite waiting for pwr_irq */
138 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
139 
140 struct sdhci_msm_host {
141 	struct platform_device *pdev;
142 	void __iomem *core_mem;	/* MSM SDCC mapped address */
143 	int pwr_irq;		/* power irq */
144 	struct clk *bus_clk;	/* SDHC bus voter clock */
145 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
146 	struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
147 	unsigned long clk_rate;
148 	struct mmc_host *mmc;
149 	bool use_14lpp_dll_reset;
150 	bool tuning_done;
151 	bool calibration_done;
152 	u8 saved_tuning_phase;
153 	bool use_cdclp533;
154 	u32 curr_pwr_state;
155 	u32 curr_io_level;
156 	wait_queue_head_t pwr_irq_wait;
157 	bool pwr_irq_flag;
158 	u32 caps_0;
159 };
160 
161 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
162 						    unsigned int clock)
163 {
164 	struct mmc_ios ios = host->mmc->ios;
165 	/*
166 	 * The SDHC requires internal clock frequency to be double the
167 	 * actual clock that will be set for DDR mode. The controller
168 	 * uses the faster clock(100/400MHz) for some of its parts and
169 	 * send the actual required clock (50/200MHz) to the card.
170 	 */
171 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
172 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
173 	    ios.timing == MMC_TIMING_MMC_HS400 ||
174 	    host->flags & SDHCI_HS400_TUNING)
175 		clock *= 2;
176 	return clock;
177 }
178 
179 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
180 					    unsigned int clock)
181 {
182 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
183 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
184 	struct mmc_ios curr_ios = host->mmc->ios;
185 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
186 	int rc;
187 
188 	clock = msm_get_clock_rate_for_bus_mode(host, clock);
189 	rc = clk_set_rate(core_clk, clock);
190 	if (rc) {
191 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
192 		       mmc_hostname(host->mmc), clock,
193 		       curr_ios.timing);
194 		return;
195 	}
196 	msm_host->clk_rate = clock;
197 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
198 		 mmc_hostname(host->mmc), clk_get_rate(core_clk),
199 		 curr_ios.timing);
200 }
201 
202 /* Platform specific tuning */
203 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
204 {
205 	u32 wait_cnt = 50;
206 	u8 ck_out_en;
207 	struct mmc_host *mmc = host->mmc;
208 
209 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
210 	ck_out_en = !!(readl_relaxed(host->ioaddr + CORE_DLL_CONFIG) &
211 			CORE_CK_OUT_EN);
212 
213 	while (ck_out_en != poll) {
214 		if (--wait_cnt == 0) {
215 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
216 			       mmc_hostname(mmc), poll);
217 			return -ETIMEDOUT;
218 		}
219 		udelay(1);
220 
221 		ck_out_en = !!(readl_relaxed(host->ioaddr + CORE_DLL_CONFIG) &
222 				CORE_CK_OUT_EN);
223 	}
224 
225 	return 0;
226 }
227 
228 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
229 {
230 	int rc;
231 	static const u8 grey_coded_phase_table[] = {
232 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
233 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
234 	};
235 	unsigned long flags;
236 	u32 config;
237 	struct mmc_host *mmc = host->mmc;
238 
239 	if (phase > 0xf)
240 		return -EINVAL;
241 
242 	spin_lock_irqsave(&host->lock, flags);
243 
244 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
245 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
246 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
247 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
248 
249 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
250 	rc = msm_dll_poll_ck_out_en(host, 0);
251 	if (rc)
252 		goto err_out;
253 
254 	/*
255 	 * Write the selected DLL clock output phase (0 ... 15)
256 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
257 	 */
258 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
259 	config &= ~CDR_SELEXT_MASK;
260 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
261 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
262 
263 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
264 	config |= CORE_CK_OUT_EN;
265 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
266 
267 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
268 	rc = msm_dll_poll_ck_out_en(host, 1);
269 	if (rc)
270 		goto err_out;
271 
272 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
273 	config |= CORE_CDR_EN;
274 	config &= ~CORE_CDR_EXT_EN;
275 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
276 	goto out;
277 
278 err_out:
279 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
280 	       mmc_hostname(mmc), phase);
281 out:
282 	spin_unlock_irqrestore(&host->lock, flags);
283 	return rc;
284 }
285 
286 /*
287  * Find out the greatest range of consecuitive selected
288  * DLL clock output phases that can be used as sampling
289  * setting for SD3.0 UHS-I card read operation (in SDR104
290  * timing mode) or for eMMC4.5 card read operation (in
291  * HS400/HS200 timing mode).
292  * Select the 3/4 of the range and configure the DLL with the
293  * selected DLL clock output phase.
294  */
295 
296 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
297 					   u8 *phase_table, u8 total_phases)
298 {
299 	int ret;
300 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
301 	u8 phases_per_row[MAX_PHASES] = { 0 };
302 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
303 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
304 	bool phase_0_found = false, phase_15_found = false;
305 	struct mmc_host *mmc = host->mmc;
306 
307 	if (!total_phases || (total_phases > MAX_PHASES)) {
308 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
309 		       mmc_hostname(mmc), total_phases);
310 		return -EINVAL;
311 	}
312 
313 	for (cnt = 0; cnt < total_phases; cnt++) {
314 		ranges[row_index][col_index] = phase_table[cnt];
315 		phases_per_row[row_index] += 1;
316 		col_index++;
317 
318 		if ((cnt + 1) == total_phases) {
319 			continue;
320 		/* check if next phase in phase_table is consecutive or not */
321 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
322 			row_index++;
323 			col_index = 0;
324 		}
325 	}
326 
327 	if (row_index >= MAX_PHASES)
328 		return -EINVAL;
329 
330 	/* Check if phase-0 is present in first valid window? */
331 	if (!ranges[0][0]) {
332 		phase_0_found = true;
333 		phase_0_raw_index = 0;
334 		/* Check if cycle exist between 2 valid windows */
335 		for (cnt = 1; cnt <= row_index; cnt++) {
336 			if (phases_per_row[cnt]) {
337 				for (i = 0; i < phases_per_row[cnt]; i++) {
338 					if (ranges[cnt][i] == 15) {
339 						phase_15_found = true;
340 						phase_15_raw_index = cnt;
341 						break;
342 					}
343 				}
344 			}
345 		}
346 	}
347 
348 	/* If 2 valid windows form cycle then merge them as single window */
349 	if (phase_0_found && phase_15_found) {
350 		/* number of phases in raw where phase 0 is present */
351 		u8 phases_0 = phases_per_row[phase_0_raw_index];
352 		/* number of phases in raw where phase 15 is present */
353 		u8 phases_15 = phases_per_row[phase_15_raw_index];
354 
355 		if (phases_0 + phases_15 >= MAX_PHASES)
356 			/*
357 			 * If there are more than 1 phase windows then total
358 			 * number of phases in both the windows should not be
359 			 * more than or equal to MAX_PHASES.
360 			 */
361 			return -EINVAL;
362 
363 		/* Merge 2 cyclic windows */
364 		i = phases_15;
365 		for (cnt = 0; cnt < phases_0; cnt++) {
366 			ranges[phase_15_raw_index][i] =
367 			    ranges[phase_0_raw_index][cnt];
368 			if (++i >= MAX_PHASES)
369 				break;
370 		}
371 
372 		phases_per_row[phase_0_raw_index] = 0;
373 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
374 	}
375 
376 	for (cnt = 0; cnt <= row_index; cnt++) {
377 		if (phases_per_row[cnt] > curr_max) {
378 			curr_max = phases_per_row[cnt];
379 			selected_row_index = cnt;
380 		}
381 	}
382 
383 	i = (curr_max * 3) / 4;
384 	if (i)
385 		i--;
386 
387 	ret = ranges[selected_row_index][i];
388 
389 	if (ret >= MAX_PHASES) {
390 		ret = -EINVAL;
391 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
392 		       mmc_hostname(mmc), ret);
393 	}
394 
395 	return ret;
396 }
397 
398 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
399 {
400 	u32 mclk_freq = 0, config;
401 
402 	/* Program the MCLK value to MCLK_FREQ bit field */
403 	if (host->clock <= 112000000)
404 		mclk_freq = 0;
405 	else if (host->clock <= 125000000)
406 		mclk_freq = 1;
407 	else if (host->clock <= 137000000)
408 		mclk_freq = 2;
409 	else if (host->clock <= 150000000)
410 		mclk_freq = 3;
411 	else if (host->clock <= 162000000)
412 		mclk_freq = 4;
413 	else if (host->clock <= 175000000)
414 		mclk_freq = 5;
415 	else if (host->clock <= 187000000)
416 		mclk_freq = 6;
417 	else if (host->clock <= 200000000)
418 		mclk_freq = 7;
419 
420 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
421 	config &= ~CMUX_SHIFT_PHASE_MASK;
422 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
423 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
424 }
425 
426 /* Initialize the DLL (Programmable Delay Line) */
427 static int msm_init_cm_dll(struct sdhci_host *host)
428 {
429 	struct mmc_host *mmc = host->mmc;
430 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
431 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
432 	int wait_cnt = 50;
433 	unsigned long flags;
434 	u32 config;
435 
436 	spin_lock_irqsave(&host->lock, flags);
437 
438 	/*
439 	 * Make sure that clock is always enabled when DLL
440 	 * tuning is in progress. Keeping PWRSAVE ON may
441 	 * turn off the clock.
442 	 */
443 	config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
444 	config &= ~CORE_CLK_PWRSAVE;
445 	writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
446 
447 	if (msm_host->use_14lpp_dll_reset) {
448 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
449 		config &= ~CORE_CK_OUT_EN;
450 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
451 
452 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
453 		config |= CORE_DLL_CLOCK_DISABLE;
454 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
455 	}
456 
457 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
458 	config |= CORE_DLL_RST;
459 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
460 
461 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
462 	config |= CORE_DLL_PDN;
463 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
464 	msm_cm_dll_set_freq(host);
465 
466 	if (msm_host->use_14lpp_dll_reset &&
467 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
468 		u32 mclk_freq = 0;
469 
470 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
471 		config &= CORE_FLL_CYCLE_CNT;
472 		if (config)
473 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
474 					clk_get_rate(msm_host->xo_clk));
475 		else
476 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
477 					clk_get_rate(msm_host->xo_clk));
478 
479 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
480 		config &= ~(0xFF << 10);
481 		config |= mclk_freq << 10;
482 
483 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
484 		/* wait for 5us before enabling DLL clock */
485 		udelay(5);
486 	}
487 
488 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
489 	config &= ~CORE_DLL_RST;
490 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
491 
492 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
493 	config &= ~CORE_DLL_PDN;
494 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
495 
496 	if (msm_host->use_14lpp_dll_reset) {
497 		msm_cm_dll_set_freq(host);
498 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
499 		config &= ~CORE_DLL_CLOCK_DISABLE;
500 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
501 	}
502 
503 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
504 	config |= CORE_DLL_EN;
505 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
506 
507 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
508 	config |= CORE_CK_OUT_EN;
509 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
510 
511 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
512 	while (!(readl_relaxed(host->ioaddr + CORE_DLL_STATUS) &
513 		 CORE_DLL_LOCK)) {
514 		/* max. wait for 50us sec for LOCK bit to be set */
515 		if (--wait_cnt == 0) {
516 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
517 			       mmc_hostname(mmc));
518 			spin_unlock_irqrestore(&host->lock, flags);
519 			return -ETIMEDOUT;
520 		}
521 		udelay(1);
522 	}
523 
524 	spin_unlock_irqrestore(&host->lock, flags);
525 	return 0;
526 }
527 
528 static void msm_hc_select_default(struct sdhci_host *host)
529 {
530 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
531 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
532 	u32 config;
533 
534 	if (!msm_host->use_cdclp533) {
535 		config = readl_relaxed(host->ioaddr +
536 				CORE_VENDOR_SPEC3);
537 		config &= ~CORE_PWRSAVE_DLL;
538 		writel_relaxed(config, host->ioaddr +
539 				CORE_VENDOR_SPEC3);
540 	}
541 
542 	config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
543 	config &= ~CORE_HC_MCLK_SEL_MASK;
544 	config |= CORE_HC_MCLK_SEL_DFLT;
545 	writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
546 
547 	/*
548 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
549 	 * configuration from Host Control2 register for all other
550 	 * modes.
551 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
552 	 * in VENDOR_SPEC_FUNC
553 	 */
554 	config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
555 	config &= ~CORE_HC_SELECT_IN_EN;
556 	config &= ~CORE_HC_SELECT_IN_MASK;
557 	writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
558 
559 	/*
560 	 * Make sure above writes impacting free running MCLK are completed
561 	 * before changing the clk_rate at GCC.
562 	 */
563 	wmb();
564 }
565 
566 static void msm_hc_select_hs400(struct sdhci_host *host)
567 {
568 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
569 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
570 	struct mmc_ios ios = host->mmc->ios;
571 	u32 config, dll_lock;
572 	int rc;
573 
574 	/* Select the divided clock (free running MCLK/2) */
575 	config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
576 	config &= ~CORE_HC_MCLK_SEL_MASK;
577 	config |= CORE_HC_MCLK_SEL_HS400;
578 
579 	writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
580 	/*
581 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
582 	 * register
583 	 */
584 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
585 	    !msm_host->calibration_done) {
586 		config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
587 		config |= CORE_HC_SELECT_IN_HS400;
588 		config |= CORE_HC_SELECT_IN_EN;
589 		writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
590 	}
591 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
592 		/*
593 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
594 		 * CORE_DLL_STATUS to be set.  This should get set
595 		 * within 15 us at 200 MHz.
596 		 */
597 		rc = readl_relaxed_poll_timeout(host->ioaddr +
598 						CORE_DLL_STATUS,
599 						dll_lock,
600 						(dll_lock &
601 						(CORE_DLL_LOCK |
602 						CORE_DDR_DLL_LOCK)), 10,
603 						1000);
604 		if (rc == -ETIMEDOUT)
605 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
606 			       mmc_hostname(host->mmc), dll_lock);
607 	}
608 	/*
609 	 * Make sure above writes impacting free running MCLK are completed
610 	 * before changing the clk_rate at GCC.
611 	 */
612 	wmb();
613 }
614 
615 /*
616  * sdhci_msm_hc_select_mode :- In general all timing modes are
617  * controlled via UHS mode select in Host Control2 register.
618  * eMMC specific HS200/HS400 doesn't have their respective modes
619  * defined here, hence we use these values.
620  *
621  * HS200 - SDR104 (Since they both are equivalent in functionality)
622  * HS400 - This involves multiple configurations
623  *		Initially SDR104 - when tuning is required as HS200
624  *		Then when switching to DDR @ 400MHz (HS400) we use
625  *		the vendor specific HC_SELECT_IN to control the mode.
626  *
627  * In addition to controlling the modes we also need to select the
628  * correct input clock for DLL depending on the mode.
629  *
630  * HS400 - divided clock (free running MCLK/2)
631  * All other modes - default (free running MCLK)
632  */
633 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
634 {
635 	struct mmc_ios ios = host->mmc->ios;
636 
637 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
638 	    host->flags & SDHCI_HS400_TUNING)
639 		msm_hc_select_hs400(host);
640 	else
641 		msm_hc_select_default(host);
642 }
643 
644 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
645 {
646 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
647 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
648 	u32 config, calib_done;
649 	int ret;
650 
651 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
652 
653 	/*
654 	 * Retuning in HS400 (DDR mode) will fail, just reset the
655 	 * tuning block and restore the saved tuning phase.
656 	 */
657 	ret = msm_init_cm_dll(host);
658 	if (ret)
659 		goto out;
660 
661 	/* Set the selected phase in delay line hw block */
662 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
663 	if (ret)
664 		goto out;
665 
666 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
667 	config |= CORE_CMD_DAT_TRACK_SEL;
668 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
669 
670 	config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
671 	config &= ~CORE_CDC_T4_DLY_SEL;
672 	writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
673 
674 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
675 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
676 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
677 
678 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
679 	config |= CORE_CDC_SWITCH_RC_EN;
680 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
681 
682 	config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
683 	config &= ~CORE_START_CDC_TRAFFIC;
684 	writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
685 
686 	/* Perform CDC Register Initialization Sequence */
687 
688 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
689 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
690 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
691 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
692 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
693 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
694 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
695 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
696 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
697 
698 	/* CDC HW Calibration */
699 
700 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
701 	config |= CORE_SW_TRIG_FULL_CALIB;
702 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
703 
704 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
705 	config &= ~CORE_SW_TRIG_FULL_CALIB;
706 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
707 
708 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
709 	config |= CORE_HW_AUTOCAL_ENA;
710 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
711 
712 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
713 	config |= CORE_TIMER_ENA;
714 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
715 
716 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
717 					 calib_done,
718 					 (calib_done & CORE_CALIBRATION_DONE),
719 					 1, 50);
720 
721 	if (ret == -ETIMEDOUT) {
722 		pr_err("%s: %s: CDC calibration was not completed\n",
723 		       mmc_hostname(host->mmc), __func__);
724 		goto out;
725 	}
726 
727 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
728 			& CORE_CDC_ERROR_CODE_MASK;
729 	if (ret) {
730 		pr_err("%s: %s: CDC error code %d\n",
731 		       mmc_hostname(host->mmc), __func__, ret);
732 		ret = -EINVAL;
733 		goto out;
734 	}
735 
736 	config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
737 	config |= CORE_START_CDC_TRAFFIC;
738 	writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
739 out:
740 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
741 		 __func__, ret);
742 	return ret;
743 }
744 
745 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
746 {
747 	struct mmc_host *mmc = host->mmc;
748 	u32 dll_status, config;
749 	int ret;
750 
751 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
752 
753 	/*
754 	 * Currently the CORE_DDR_CONFIG register defaults to desired
755 	 * configuration on reset. Currently reprogramming the power on
756 	 * reset (POR) value in case it might have been modified by
757 	 * bootloaders. In the future, if this changes, then the desired
758 	 * values will need to be programmed appropriately.
759 	 */
760 	writel_relaxed(DDR_CONFIG_POR_VAL, host->ioaddr + CORE_DDR_CONFIG);
761 
762 	if (mmc->ios.enhanced_strobe) {
763 		config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
764 		config |= CORE_CMDIN_RCLK_EN;
765 		writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
766 	}
767 
768 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
769 	config |= CORE_DDR_CAL_EN;
770 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
771 
772 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_DLL_STATUS,
773 					 dll_status,
774 					 (dll_status & CORE_DDR_DLL_LOCK),
775 					 10, 1000);
776 
777 	if (ret == -ETIMEDOUT) {
778 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
779 		       mmc_hostname(host->mmc), __func__);
780 		goto out;
781 	}
782 
783 	config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC3);
784 	config |= CORE_PWRSAVE_DLL;
785 	writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC3);
786 
787 	/*
788 	 * Drain writebuffer to ensure above DLL calibration
789 	 * and PWRSAVE DLL is enabled.
790 	 */
791 	wmb();
792 out:
793 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
794 		 __func__, ret);
795 	return ret;
796 }
797 
798 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
799 {
800 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
801 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
802 	struct mmc_host *mmc = host->mmc;
803 	int ret;
804 	u32 config;
805 
806 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
807 
808 	/*
809 	 * Retuning in HS400 (DDR mode) will fail, just reset the
810 	 * tuning block and restore the saved tuning phase.
811 	 */
812 	ret = msm_init_cm_dll(host);
813 	if (ret)
814 		goto out;
815 
816 	if (!mmc->ios.enhanced_strobe) {
817 		/* Set the selected phase in delay line hw block */
818 		ret = msm_config_cm_dll_phase(host,
819 					      msm_host->saved_tuning_phase);
820 		if (ret)
821 			goto out;
822 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
823 		config |= CORE_CMD_DAT_TRACK_SEL;
824 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
825 	}
826 
827 	if (msm_host->use_cdclp533)
828 		ret = sdhci_msm_cdclp533_calibration(host);
829 	else
830 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
831 out:
832 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
833 		 __func__, ret);
834 	return ret;
835 }
836 
837 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
838 {
839 	struct sdhci_host *host = mmc_priv(mmc);
840 	int tuning_seq_cnt = 3;
841 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
842 	int rc;
843 	struct mmc_ios ios = host->mmc->ios;
844 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
845 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
846 
847 	/*
848 	 * Tuning is required for SDR104, HS200 and HS400 cards and
849 	 * if clock frequency is greater than 100MHz in these modes.
850 	 */
851 	if (host->clock <= CORE_FREQ_100MHZ ||
852 	    !(ios.timing == MMC_TIMING_MMC_HS400 ||
853 	    ios.timing == MMC_TIMING_MMC_HS200 ||
854 	    ios.timing == MMC_TIMING_UHS_SDR104))
855 		return 0;
856 
857 	/*
858 	 * For HS400 tuning in HS200 timing requires:
859 	 * - select MCLK/2 in VENDOR_SPEC
860 	 * - program MCLK to 400MHz (or nearest supported) in GCC
861 	 */
862 	if (host->flags & SDHCI_HS400_TUNING) {
863 		sdhci_msm_hc_select_mode(host);
864 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
865 		host->flags &= ~SDHCI_HS400_TUNING;
866 	}
867 
868 retry:
869 	/* First of all reset the tuning block */
870 	rc = msm_init_cm_dll(host);
871 	if (rc)
872 		return rc;
873 
874 	phase = 0;
875 	do {
876 		/* Set the phase in delay line hw block */
877 		rc = msm_config_cm_dll_phase(host, phase);
878 		if (rc)
879 			return rc;
880 
881 		msm_host->saved_tuning_phase = phase;
882 		rc = mmc_send_tuning(mmc, opcode, NULL);
883 		if (!rc) {
884 			/* Tuning is successful at this tuning point */
885 			tuned_phases[tuned_phase_cnt++] = phase;
886 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
887 				 mmc_hostname(mmc), phase);
888 		}
889 	} while (++phase < ARRAY_SIZE(tuned_phases));
890 
891 	if (tuned_phase_cnt) {
892 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
893 						     tuned_phase_cnt);
894 		if (rc < 0)
895 			return rc;
896 		else
897 			phase = rc;
898 
899 		/*
900 		 * Finally set the selected phase in delay
901 		 * line hw block.
902 		 */
903 		rc = msm_config_cm_dll_phase(host, phase);
904 		if (rc)
905 			return rc;
906 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
907 			 mmc_hostname(mmc), phase);
908 	} else {
909 		if (--tuning_seq_cnt)
910 			goto retry;
911 		/* Tuning failed */
912 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
913 		       mmc_hostname(mmc));
914 		rc = -EIO;
915 	}
916 
917 	if (!rc)
918 		msm_host->tuning_done = true;
919 	return rc;
920 }
921 
922 /*
923  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
924  * This needs to be done for both tuning and enhanced_strobe mode.
925  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
926  * fixed feedback clock is used.
927  */
928 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
929 {
930 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
931 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
932 	int ret;
933 
934 	if (host->clock > CORE_FREQ_100MHZ &&
935 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
936 	    !msm_host->calibration_done) {
937 		ret = sdhci_msm_hs400_dll_calibration(host);
938 		if (!ret)
939 			msm_host->calibration_done = true;
940 		else
941 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
942 			       mmc_hostname(host->mmc), ret);
943 	}
944 }
945 
946 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
947 					unsigned int uhs)
948 {
949 	struct mmc_host *mmc = host->mmc;
950 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
951 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
952 	u16 ctrl_2;
953 	u32 config;
954 
955 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
956 	/* Select Bus Speed Mode for host */
957 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
958 	switch (uhs) {
959 	case MMC_TIMING_UHS_SDR12:
960 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
961 		break;
962 	case MMC_TIMING_UHS_SDR25:
963 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
964 		break;
965 	case MMC_TIMING_UHS_SDR50:
966 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
967 		break;
968 	case MMC_TIMING_MMC_HS400:
969 	case MMC_TIMING_MMC_HS200:
970 	case MMC_TIMING_UHS_SDR104:
971 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
972 		break;
973 	case MMC_TIMING_UHS_DDR50:
974 	case MMC_TIMING_MMC_DDR52:
975 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
976 		break;
977 	}
978 
979 	/*
980 	 * When clock frequency is less than 100MHz, the feedback clock must be
981 	 * provided and DLL must not be used so that tuning can be skipped. To
982 	 * provide feedback clock, the mode selection can be any value less
983 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
984 	 */
985 	if (host->clock <= CORE_FREQ_100MHZ) {
986 		if (uhs == MMC_TIMING_MMC_HS400 ||
987 		    uhs == MMC_TIMING_MMC_HS200 ||
988 		    uhs == MMC_TIMING_UHS_SDR104)
989 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
990 		/*
991 		 * DLL is not required for clock <= 100MHz
992 		 * Thus, make sure DLL it is disabled when not required
993 		 */
994 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
995 		config |= CORE_DLL_RST;
996 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
997 
998 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
999 		config |= CORE_DLL_PDN;
1000 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
1001 
1002 		/*
1003 		 * The DLL needs to be restored and CDCLP533 recalibrated
1004 		 * when the clock frequency is set back to 400MHz.
1005 		 */
1006 		msm_host->calibration_done = false;
1007 	}
1008 
1009 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1010 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1011 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1012 
1013 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1014 		sdhci_msm_hs400(host, &mmc->ios);
1015 }
1016 
1017 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1018 {
1019 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1020 }
1021 
1022 static inline void sdhci_msm_complete_pwr_irq_wait(
1023 		struct sdhci_msm_host *msm_host)
1024 {
1025 	wake_up(&msm_host->pwr_irq_wait);
1026 }
1027 
1028 /*
1029  * sdhci_msm_check_power_status API should be called when registers writes
1030  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1031  * To what state the register writes will change the IO lines should be passed
1032  * as the argument req_type. This API will check whether the IO line's state
1033  * is already the expected state and will wait for power irq only if
1034  * power irq is expected to be trigerred based on the current IO line state
1035  * and expected IO line state.
1036  */
1037 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1038 {
1039 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1040 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1041 	bool done = false;
1042 	u32 val;
1043 
1044 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1045 			mmc_hostname(host->mmc), __func__, req_type,
1046 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1047 
1048 	/*
1049 	 * The power interrupt will not be generated for signal voltage
1050 	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1051 	 */
1052 	val = readl(msm_host->core_mem + CORE_MCI_GENERICS);
1053 	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1054 	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1055 		return;
1056 	}
1057 
1058 	/*
1059 	 * The IRQ for request type IO High/LOW will be generated when -
1060 	 * there is a state change in 1.8V enable bit (bit 3) of
1061 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1062 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1063 	 * to set it to 3.3V before card detection happens, the
1064 	 * IRQ doesn't get triggered as there is no state change in this bit.
1065 	 * The driver already handles this case by changing the IO voltage
1066 	 * level to high as part of controller power up sequence. Hence, check
1067 	 * for host->pwr to handle a case where IO voltage high request is
1068 	 * issued even before controller power up.
1069 	 */
1070 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1071 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1072 				mmc_hostname(host->mmc), req_type);
1073 		return;
1074 	}
1075 	if ((req_type & msm_host->curr_pwr_state) ||
1076 			(req_type & msm_host->curr_io_level))
1077 		done = true;
1078 	/*
1079 	 * This is needed here to handle cases where register writes will
1080 	 * not change the current bus state or io level of the controller.
1081 	 * In this case, no power irq will be triggerred and we should
1082 	 * not wait.
1083 	 */
1084 	if (!done) {
1085 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1086 				msm_host->pwr_irq_flag,
1087 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1088 			dev_warn(&msm_host->pdev->dev,
1089 				 "%s: pwr_irq for req: (%d) timed out\n",
1090 				 mmc_hostname(host->mmc), req_type);
1091 	}
1092 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1093 			__func__, req_type);
1094 }
1095 
1096 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1097 {
1098 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1099 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1100 
1101 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1102 			mmc_hostname(host->mmc),
1103 			readl_relaxed(msm_host->core_mem + CORE_PWRCTL_STATUS),
1104 			readl_relaxed(msm_host->core_mem + CORE_PWRCTL_MASK),
1105 			readl_relaxed(msm_host->core_mem + CORE_PWRCTL_CTL));
1106 }
1107 
1108 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1109 {
1110 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1111 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1112 	u32 irq_status, irq_ack = 0;
1113 	int retry = 10;
1114 	u32 pwr_state = 0, io_level = 0;
1115 	u32 config;
1116 
1117 	irq_status = readl_relaxed(msm_host->core_mem + CORE_PWRCTL_STATUS);
1118 	irq_status &= INT_MASK;
1119 
1120 	writel_relaxed(irq_status, msm_host->core_mem + CORE_PWRCTL_CLEAR);
1121 
1122 	/*
1123 	 * There is a rare HW scenario where the first clear pulse could be
1124 	 * lost when actual reset and clear/read of status register is
1125 	 * happening at a time. Hence, retry for at least 10 times to make
1126 	 * sure status register is cleared. Otherwise, this will result in
1127 	 * a spurious power IRQ resulting in system instability.
1128 	 */
1129 	while (irq_status & readl_relaxed(msm_host->core_mem +
1130 				CORE_PWRCTL_STATUS)) {
1131 		if (retry == 0) {
1132 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1133 					mmc_hostname(host->mmc), irq_status);
1134 			sdhci_msm_dump_pwr_ctrl_regs(host);
1135 			WARN_ON(1);
1136 			break;
1137 		}
1138 		writel_relaxed(irq_status,
1139 				msm_host->core_mem + CORE_PWRCTL_CLEAR);
1140 		retry--;
1141 		udelay(10);
1142 	}
1143 
1144 	/* Handle BUS ON/OFF*/
1145 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1146 		pwr_state = REQ_BUS_ON;
1147 		io_level = REQ_IO_HIGH;
1148 		irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1149 	}
1150 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1151 		pwr_state = REQ_BUS_OFF;
1152 		io_level = REQ_IO_LOW;
1153 		irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1154 	}
1155 	/* Handle IO LOW/HIGH */
1156 	if (irq_status & CORE_PWRCTL_IO_LOW) {
1157 		io_level = REQ_IO_LOW;
1158 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1159 	}
1160 	if (irq_status & CORE_PWRCTL_IO_HIGH) {
1161 		io_level = REQ_IO_HIGH;
1162 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1163 	}
1164 
1165 	/*
1166 	 * The driver has to acknowledge the interrupt, switch voltages and
1167 	 * report back if it succeded or not to this register. The voltage
1168 	 * switches are handled by the sdhci core, so just report success.
1169 	 */
1170 	writel_relaxed(irq_ack, msm_host->core_mem + CORE_PWRCTL_CTL);
1171 
1172 	/*
1173 	 * If we don't have info regarding the voltage levels supported by
1174 	 * regulators, don't change the IO PAD PWR SWITCH.
1175 	 */
1176 	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1177 		u32 new_config;
1178 		/*
1179 		 * We should unset IO PAD PWR switch only if the register write
1180 		 * can set IO lines high and the regulator also switches to 3 V.
1181 		 * Else, we should keep the IO PAD PWR switch set.
1182 		 * This is applicable to certain targets where eMMC vccq supply
1183 		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1184 		 * IO PAD PWR switch must be kept set to reflect actual
1185 		 * regulator voltage. This way, during initialization of
1186 		 * controllers with only 1.8V, we will set the IO PAD bit
1187 		 * without waiting for a REQ_IO_LOW.
1188 		 */
1189 		config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
1190 		new_config = config;
1191 
1192 		if ((io_level & REQ_IO_HIGH) &&
1193 				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1194 			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1195 		else if ((io_level & REQ_IO_LOW) ||
1196 				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1197 			new_config |= CORE_IO_PAD_PWR_SWITCH;
1198 
1199 		if (config ^ new_config)
1200 			writel_relaxed(new_config,
1201 					host->ioaddr + CORE_VENDOR_SPEC);
1202 	}
1203 
1204 	if (pwr_state)
1205 		msm_host->curr_pwr_state = pwr_state;
1206 	if (io_level)
1207 		msm_host->curr_io_level = io_level;
1208 
1209 	pr_debug("%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1210 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1211 		irq_ack);
1212 }
1213 
1214 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1215 {
1216 	struct sdhci_host *host = (struct sdhci_host *)data;
1217 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1218 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1219 
1220 	sdhci_msm_handle_pwr_irq(host, irq);
1221 	msm_host->pwr_irq_flag = 1;
1222 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1223 
1224 
1225 	return IRQ_HANDLED;
1226 }
1227 
1228 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1229 {
1230 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1231 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1232 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1233 
1234 	return clk_round_rate(core_clk, ULONG_MAX);
1235 }
1236 
1237 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1238 {
1239 	return SDHCI_MSM_MIN_CLOCK;
1240 }
1241 
1242 /**
1243  * __sdhci_msm_set_clock - sdhci_msm clock control.
1244  *
1245  * Description:
1246  * MSM controller does not use internal divider and
1247  * instead directly control the GCC clock as per
1248  * HW recommendation.
1249  **/
1250 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1251 {
1252 	u16 clk;
1253 	/*
1254 	 * Keep actual_clock as zero -
1255 	 * - since there is no divider used so no need of having actual_clock.
1256 	 * - MSM controller uses SDCLK for data timeout calculation. If
1257 	 *   actual_clock is zero, host->clock is taken for calculation.
1258 	 */
1259 	host->mmc->actual_clock = 0;
1260 
1261 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1262 
1263 	if (clock == 0)
1264 		return;
1265 
1266 	/*
1267 	 * MSM controller do not use clock divider.
1268 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1269 	 * clock with no divider value programmed.
1270 	 */
1271 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1272 	sdhci_enable_clk(host, clk);
1273 }
1274 
1275 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1276 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1277 {
1278 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1279 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1280 
1281 	if (!clock) {
1282 		msm_host->clk_rate = clock;
1283 		goto out;
1284 	}
1285 
1286 	sdhci_msm_hc_select_mode(host);
1287 
1288 	msm_set_clock_rate_for_bus_mode(host, clock);
1289 out:
1290 	__sdhci_msm_set_clock(host, clock);
1291 }
1292 
1293 /*
1294  * Platform specific register write functions. This is so that, if any
1295  * register write needs to be followed up by platform specific actions,
1296  * they can be added here. These functions can go to sleep when writes
1297  * to certain registers are done.
1298  * These functions are relying on sdhci_set_ios not using spinlock.
1299  */
1300 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
1301 {
1302 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1303 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1304 	u32 req_type = 0;
1305 
1306 	switch (reg) {
1307 	case SDHCI_HOST_CONTROL2:
1308 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
1309 			REQ_IO_HIGH;
1310 		break;
1311 	case SDHCI_SOFTWARE_RESET:
1312 		if (host->pwr && (val & SDHCI_RESET_ALL))
1313 			req_type = REQ_BUS_OFF;
1314 		break;
1315 	case SDHCI_POWER_CONTROL:
1316 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
1317 		break;
1318 	}
1319 
1320 	if (req_type) {
1321 		msm_host->pwr_irq_flag = 0;
1322 		/*
1323 		 * Since this register write may trigger a power irq, ensure
1324 		 * all previous register writes are complete by this point.
1325 		 */
1326 		mb();
1327 	}
1328 	return req_type;
1329 }
1330 
1331 /* This function may sleep*/
1332 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
1333 {
1334 	u32 req_type = 0;
1335 
1336 	req_type = __sdhci_msm_check_write(host, val, reg);
1337 	writew_relaxed(val, host->ioaddr + reg);
1338 
1339 	if (req_type)
1340 		sdhci_msm_check_power_status(host, req_type);
1341 }
1342 
1343 /* This function may sleep*/
1344 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
1345 {
1346 	u32 req_type = 0;
1347 
1348 	req_type = __sdhci_msm_check_write(host, val, reg);
1349 
1350 	writeb_relaxed(val, host->ioaddr + reg);
1351 
1352 	if (req_type)
1353 		sdhci_msm_check_power_status(host, req_type);
1354 }
1355 
1356 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
1357 {
1358 	struct mmc_host *mmc = msm_host->mmc;
1359 	struct regulator *supply = mmc->supply.vqmmc;
1360 	u32 caps = 0, config;
1361 	struct sdhci_host *host = mmc_priv(mmc);
1362 
1363 	if (!IS_ERR(mmc->supply.vqmmc)) {
1364 		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
1365 			caps |= CORE_1_8V_SUPPORT;
1366 		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
1367 			caps |= CORE_3_0V_SUPPORT;
1368 
1369 		if (!caps)
1370 			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
1371 					mmc_hostname(mmc));
1372 	}
1373 
1374 	if (caps) {
1375 		/*
1376 		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
1377 		 * bit can be used as required later on.
1378 		 */
1379 		u32 io_level = msm_host->curr_io_level;
1380 
1381 		config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
1382 		config |= CORE_IO_PAD_PWR_SWITCH_EN;
1383 
1384 		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
1385 			config &= ~CORE_IO_PAD_PWR_SWITCH;
1386 		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
1387 			config |= CORE_IO_PAD_PWR_SWITCH;
1388 
1389 		writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
1390 	}
1391 	msm_host->caps_0 |= caps;
1392 	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
1393 }
1394 
1395 static const struct of_device_id sdhci_msm_dt_match[] = {
1396 	{ .compatible = "qcom,sdhci-msm-v4" },
1397 	{},
1398 };
1399 
1400 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
1401 
1402 static const struct sdhci_ops sdhci_msm_ops = {
1403 	.reset = sdhci_reset,
1404 	.set_clock = sdhci_msm_set_clock,
1405 	.get_min_clock = sdhci_msm_get_min_clock,
1406 	.get_max_clock = sdhci_msm_get_max_clock,
1407 	.set_bus_width = sdhci_set_bus_width,
1408 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
1409 	.write_w = sdhci_msm_writew,
1410 	.write_b = sdhci_msm_writeb,
1411 };
1412 
1413 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
1414 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1415 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
1416 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
1417 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
1418 	.ops = &sdhci_msm_ops,
1419 };
1420 
1421 static int sdhci_msm_probe(struct platform_device *pdev)
1422 {
1423 	struct sdhci_host *host;
1424 	struct sdhci_pltfm_host *pltfm_host;
1425 	struct sdhci_msm_host *msm_host;
1426 	struct resource *core_memres;
1427 	struct clk *clk;
1428 	int ret;
1429 	u16 host_version, core_minor;
1430 	u32 core_version, config;
1431 	u8 core_major;
1432 
1433 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
1434 	if (IS_ERR(host))
1435 		return PTR_ERR(host);
1436 
1437 	host->sdma_boundary = 0;
1438 	pltfm_host = sdhci_priv(host);
1439 	msm_host = sdhci_pltfm_priv(pltfm_host);
1440 	msm_host->mmc = host->mmc;
1441 	msm_host->pdev = pdev;
1442 
1443 	ret = mmc_of_parse(host->mmc);
1444 	if (ret)
1445 		goto pltfm_free;
1446 
1447 	sdhci_get_of_property(pdev);
1448 
1449 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
1450 
1451 	/* Setup SDCC bus voter clock. */
1452 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
1453 	if (!IS_ERR(msm_host->bus_clk)) {
1454 		/* Vote for max. clk rate for max. performance */
1455 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
1456 		if (ret)
1457 			goto pltfm_free;
1458 		ret = clk_prepare_enable(msm_host->bus_clk);
1459 		if (ret)
1460 			goto pltfm_free;
1461 	}
1462 
1463 	/* Setup main peripheral bus clock */
1464 	clk = devm_clk_get(&pdev->dev, "iface");
1465 	if (IS_ERR(clk)) {
1466 		ret = PTR_ERR(clk);
1467 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
1468 		goto bus_clk_disable;
1469 	}
1470 	msm_host->bulk_clks[1].clk = clk;
1471 
1472 	/* Setup SDC MMC clock */
1473 	clk = devm_clk_get(&pdev->dev, "core");
1474 	if (IS_ERR(clk)) {
1475 		ret = PTR_ERR(clk);
1476 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
1477 		goto bus_clk_disable;
1478 	}
1479 	msm_host->bulk_clks[0].clk = clk;
1480 
1481 	/* Vote for maximum clock rate for maximum performance */
1482 	ret = clk_set_rate(clk, INT_MAX);
1483 	if (ret)
1484 		dev_warn(&pdev->dev, "core clock boost failed\n");
1485 
1486 	clk = devm_clk_get(&pdev->dev, "cal");
1487 	if (IS_ERR(clk))
1488 		clk = NULL;
1489 	msm_host->bulk_clks[2].clk = clk;
1490 
1491 	clk = devm_clk_get(&pdev->dev, "sleep");
1492 	if (IS_ERR(clk))
1493 		clk = NULL;
1494 	msm_host->bulk_clks[3].clk = clk;
1495 
1496 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
1497 				      msm_host->bulk_clks);
1498 	if (ret)
1499 		goto bus_clk_disable;
1500 
1501 	/*
1502 	 * xo clock is needed for FLL feature of cm_dll.
1503 	 * In case if xo clock is not mentioned in DT, warn and proceed.
1504 	 */
1505 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
1506 	if (IS_ERR(msm_host->xo_clk)) {
1507 		ret = PTR_ERR(msm_host->xo_clk);
1508 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
1509 	}
1510 
1511 	core_memres = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1512 	msm_host->core_mem = devm_ioremap_resource(&pdev->dev, core_memres);
1513 
1514 	if (IS_ERR(msm_host->core_mem)) {
1515 		dev_err(&pdev->dev, "Failed to remap registers\n");
1516 		ret = PTR_ERR(msm_host->core_mem);
1517 		goto clk_disable;
1518 	}
1519 
1520 	/* Reset the vendor spec register to power on reset state */
1521 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
1522 		       host->ioaddr + CORE_VENDOR_SPEC);
1523 
1524 	/* Set HC_MODE_EN bit in HC_MODE register */
1525 	writel_relaxed(HC_MODE_EN, (msm_host->core_mem + CORE_HC_MODE));
1526 
1527 	config = readl_relaxed(msm_host->core_mem + CORE_HC_MODE);
1528 	config |= FF_CLK_SW_RST_DIS;
1529 	writel_relaxed(config, msm_host->core_mem + CORE_HC_MODE);
1530 
1531 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
1532 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
1533 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
1534 			       SDHCI_VENDOR_VER_SHIFT));
1535 
1536 	core_version = readl_relaxed(msm_host->core_mem + CORE_MCI_VERSION);
1537 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
1538 		      CORE_VERSION_MAJOR_SHIFT;
1539 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
1540 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
1541 		core_version, core_major, core_minor);
1542 
1543 	if (core_major == 1 && core_minor >= 0x42)
1544 		msm_host->use_14lpp_dll_reset = true;
1545 
1546 	/*
1547 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
1548 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
1549 	 */
1550 	if (core_major == 1 && core_minor < 0x34)
1551 		msm_host->use_cdclp533 = true;
1552 
1553 	/*
1554 	 * Support for some capabilities is not advertised by newer
1555 	 * controller versions and must be explicitly enabled.
1556 	 */
1557 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
1558 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
1559 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
1560 		writel_relaxed(config, host->ioaddr +
1561 			       CORE_VENDOR_SPEC_CAPABILITIES0);
1562 	}
1563 
1564 	/*
1565 	 * Power on reset state may trigger power irq if previous status of
1566 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
1567 	 * interrupt in GIC, any pending power irq interrupt should be
1568 	 * acknowledged. Otherwise power irq interrupt handler would be
1569 	 * fired prematurely.
1570 	 */
1571 	sdhci_msm_handle_pwr_irq(host, 0);
1572 
1573 	/*
1574 	 * Ensure that above writes are propogated before interrupt enablement
1575 	 * in GIC.
1576 	 */
1577 	mb();
1578 
1579 	/* Setup IRQ for handling power/voltage tasks with PMIC */
1580 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
1581 	if (msm_host->pwr_irq < 0) {
1582 		dev_err(&pdev->dev, "Get pwr_irq failed (%d)\n",
1583 			msm_host->pwr_irq);
1584 		ret = msm_host->pwr_irq;
1585 		goto clk_disable;
1586 	}
1587 
1588 	sdhci_msm_init_pwr_irq_wait(msm_host);
1589 	/* Enable pwr irq interrupts */
1590 	writel_relaxed(INT_MASK, msm_host->core_mem + CORE_PWRCTL_MASK);
1591 
1592 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
1593 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
1594 					dev_name(&pdev->dev), host);
1595 	if (ret) {
1596 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
1597 		goto clk_disable;
1598 	}
1599 
1600 	pm_runtime_get_noresume(&pdev->dev);
1601 	pm_runtime_set_active(&pdev->dev);
1602 	pm_runtime_enable(&pdev->dev);
1603 	pm_runtime_set_autosuspend_delay(&pdev->dev,
1604 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
1605 	pm_runtime_use_autosuspend(&pdev->dev);
1606 
1607 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
1608 	ret = sdhci_add_host(host);
1609 	if (ret)
1610 		goto pm_runtime_disable;
1611 	sdhci_msm_set_regulator_caps(msm_host);
1612 
1613 	pm_runtime_mark_last_busy(&pdev->dev);
1614 	pm_runtime_put_autosuspend(&pdev->dev);
1615 
1616 	return 0;
1617 
1618 pm_runtime_disable:
1619 	pm_runtime_disable(&pdev->dev);
1620 	pm_runtime_set_suspended(&pdev->dev);
1621 	pm_runtime_put_noidle(&pdev->dev);
1622 clk_disable:
1623 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1624 				   msm_host->bulk_clks);
1625 bus_clk_disable:
1626 	if (!IS_ERR(msm_host->bus_clk))
1627 		clk_disable_unprepare(msm_host->bus_clk);
1628 pltfm_free:
1629 	sdhci_pltfm_free(pdev);
1630 	return ret;
1631 }
1632 
1633 static int sdhci_msm_remove(struct platform_device *pdev)
1634 {
1635 	struct sdhci_host *host = platform_get_drvdata(pdev);
1636 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1637 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1638 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
1639 		    0xffffffff);
1640 
1641 	sdhci_remove_host(host, dead);
1642 
1643 	pm_runtime_get_sync(&pdev->dev);
1644 	pm_runtime_disable(&pdev->dev);
1645 	pm_runtime_put_noidle(&pdev->dev);
1646 
1647 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1648 				   msm_host->bulk_clks);
1649 	if (!IS_ERR(msm_host->bus_clk))
1650 		clk_disable_unprepare(msm_host->bus_clk);
1651 	sdhci_pltfm_free(pdev);
1652 	return 0;
1653 }
1654 
1655 #ifdef CONFIG_PM
1656 static int sdhci_msm_runtime_suspend(struct device *dev)
1657 {
1658 	struct sdhci_host *host = dev_get_drvdata(dev);
1659 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1660 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1661 
1662 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1663 				   msm_host->bulk_clks);
1664 
1665 	return 0;
1666 }
1667 
1668 static int sdhci_msm_runtime_resume(struct device *dev)
1669 {
1670 	struct sdhci_host *host = dev_get_drvdata(dev);
1671 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1672 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1673 
1674 	return clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
1675 				       msm_host->bulk_clks);
1676 }
1677 #endif
1678 
1679 static const struct dev_pm_ops sdhci_msm_pm_ops = {
1680 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1681 				pm_runtime_force_resume)
1682 	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
1683 			   sdhci_msm_runtime_resume,
1684 			   NULL)
1685 };
1686 
1687 static struct platform_driver sdhci_msm_driver = {
1688 	.probe = sdhci_msm_probe,
1689 	.remove = sdhci_msm_remove,
1690 	.driver = {
1691 		   .name = "sdhci_msm",
1692 		   .of_match_table = sdhci_msm_dt_match,
1693 		   .pm = &sdhci_msm_pm_ops,
1694 	},
1695 };
1696 
1697 module_platform_driver(sdhci_msm_driver);
1698 
1699 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
1700 MODULE_LICENSE("GPL v2");
1701