1 /* 2 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver 3 * 4 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 and 8 * only version 2 as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 */ 16 17 #include <linux/module.h> 18 #include <linux/of_device.h> 19 #include <linux/delay.h> 20 #include <linux/mmc/mmc.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/slab.h> 23 #include <linux/iopoll.h> 24 #include <linux/regulator/consumer.h> 25 26 #include "sdhci-pltfm.h" 27 28 #define CORE_MCI_VERSION 0x50 29 #define CORE_VERSION_MAJOR_SHIFT 28 30 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT) 31 #define CORE_VERSION_MINOR_MASK 0xff 32 33 #define CORE_MCI_GENERICS 0x70 34 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29) 35 36 #define HC_MODE_EN 0x1 37 #define CORE_POWER 0x0 38 #define CORE_SW_RST BIT(7) 39 #define FF_CLK_SW_RST_DIS BIT(13) 40 41 #define CORE_PWRCTL_BUS_OFF BIT(0) 42 #define CORE_PWRCTL_BUS_ON BIT(1) 43 #define CORE_PWRCTL_IO_LOW BIT(2) 44 #define CORE_PWRCTL_IO_HIGH BIT(3) 45 #define CORE_PWRCTL_BUS_SUCCESS BIT(0) 46 #define CORE_PWRCTL_IO_SUCCESS BIT(2) 47 #define REQ_BUS_OFF BIT(0) 48 #define REQ_BUS_ON BIT(1) 49 #define REQ_IO_LOW BIT(2) 50 #define REQ_IO_HIGH BIT(3) 51 #define INT_MASK 0xf 52 #define MAX_PHASES 16 53 #define CORE_DLL_LOCK BIT(7) 54 #define CORE_DDR_DLL_LOCK BIT(11) 55 #define CORE_DLL_EN BIT(16) 56 #define CORE_CDR_EN BIT(17) 57 #define CORE_CK_OUT_EN BIT(18) 58 #define CORE_CDR_EXT_EN BIT(19) 59 #define CORE_DLL_PDN BIT(29) 60 #define CORE_DLL_RST BIT(30) 61 #define CORE_CMD_DAT_TRACK_SEL BIT(0) 62 63 #define CORE_DDR_CAL_EN BIT(0) 64 #define CORE_FLL_CYCLE_CNT BIT(18) 65 #define CORE_DLL_CLOCK_DISABLE BIT(21) 66 67 #define CORE_VENDOR_SPEC_POR_VAL 0xa1c 68 #define CORE_CLK_PWRSAVE BIT(1) 69 #define CORE_HC_MCLK_SEL_DFLT (2 << 8) 70 #define CORE_HC_MCLK_SEL_HS400 (3 << 8) 71 #define CORE_HC_MCLK_SEL_MASK (3 << 8) 72 #define CORE_IO_PAD_PWR_SWITCH_EN (1 << 15) 73 #define CORE_IO_PAD_PWR_SWITCH (1 << 16) 74 #define CORE_HC_SELECT_IN_EN BIT(18) 75 #define CORE_HC_SELECT_IN_HS400 (6 << 19) 76 #define CORE_HC_SELECT_IN_MASK (7 << 19) 77 78 #define CORE_3_0V_SUPPORT (1 << 25) 79 #define CORE_1_8V_SUPPORT (1 << 26) 80 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT) 81 82 #define CORE_CSR_CDC_CTLR_CFG0 0x130 83 #define CORE_SW_TRIG_FULL_CALIB BIT(16) 84 #define CORE_HW_AUTOCAL_ENA BIT(17) 85 86 #define CORE_CSR_CDC_CTLR_CFG1 0x134 87 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138 88 #define CORE_TIMER_ENA BIT(16) 89 90 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C 91 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140 92 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144 93 #define CORE_CDC_OFFSET_CFG 0x14C 94 #define CORE_CSR_CDC_DELAY_CFG 0x150 95 #define CORE_CDC_SLAVE_DDA_CFG 0x160 96 #define CORE_CSR_CDC_STATUS0 0x164 97 #define CORE_CALIBRATION_DONE BIT(0) 98 99 #define CORE_CDC_ERROR_CODE_MASK 0x7000000 100 101 #define CORE_CSR_CDC_GEN_CFG 0x178 102 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0) 103 #define CORE_CDC_SWITCH_RC_EN BIT(1) 104 105 #define CORE_CDC_T4_DLY_SEL BIT(0) 106 #define CORE_CMDIN_RCLK_EN BIT(1) 107 #define CORE_START_CDC_TRAFFIC BIT(6) 108 109 #define CORE_PWRSAVE_DLL BIT(3) 110 111 #define DDR_CONFIG_POR_VAL 0x80040853 112 113 114 #define INVALID_TUNING_PHASE -1 115 #define SDHCI_MSM_MIN_CLOCK 400000 116 #define CORE_FREQ_100MHZ (100 * 1000 * 1000) 117 118 #define CDR_SELEXT_SHIFT 20 119 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT) 120 #define CMUX_SHIFT_PHASE_SHIFT 24 121 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT) 122 123 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50 124 125 /* Timeout value to avoid infinite waiting for pwr_irq */ 126 #define MSM_PWR_IRQ_TIMEOUT_MS 5000 127 128 #define msm_host_readl(msm_host, host, offset) \ 129 msm_host->var_ops->msm_readl_relaxed(host, offset) 130 131 #define msm_host_writel(msm_host, val, host, offset) \ 132 msm_host->var_ops->msm_writel_relaxed(val, host, offset) 133 134 struct sdhci_msm_offset { 135 u32 core_hc_mode; 136 u32 core_mci_data_cnt; 137 u32 core_mci_status; 138 u32 core_mci_fifo_cnt; 139 u32 core_mci_version; 140 u32 core_generics; 141 u32 core_testbus_config; 142 u32 core_testbus_sel2_bit; 143 u32 core_testbus_ena; 144 u32 core_testbus_sel2; 145 u32 core_pwrctl_status; 146 u32 core_pwrctl_mask; 147 u32 core_pwrctl_clear; 148 u32 core_pwrctl_ctl; 149 u32 core_sdcc_debug_reg; 150 u32 core_dll_config; 151 u32 core_dll_status; 152 u32 core_vendor_spec; 153 u32 core_vendor_spec_adma_err_addr0; 154 u32 core_vendor_spec_adma_err_addr1; 155 u32 core_vendor_spec_func2; 156 u32 core_vendor_spec_capabilities0; 157 u32 core_ddr_200_cfg; 158 u32 core_vendor_spec3; 159 u32 core_dll_config_2; 160 u32 core_ddr_config; 161 u32 core_ddr_config_2; 162 }; 163 164 static const struct sdhci_msm_offset sdhci_msm_v5_offset = { 165 .core_mci_data_cnt = 0x35c, 166 .core_mci_status = 0x324, 167 .core_mci_fifo_cnt = 0x308, 168 .core_mci_version = 0x318, 169 .core_generics = 0x320, 170 .core_testbus_config = 0x32c, 171 .core_testbus_sel2_bit = 3, 172 .core_testbus_ena = (1 << 31), 173 .core_testbus_sel2 = (1 << 3), 174 .core_pwrctl_status = 0x240, 175 .core_pwrctl_mask = 0x244, 176 .core_pwrctl_clear = 0x248, 177 .core_pwrctl_ctl = 0x24c, 178 .core_sdcc_debug_reg = 0x358, 179 .core_dll_config = 0x200, 180 .core_dll_status = 0x208, 181 .core_vendor_spec = 0x20c, 182 .core_vendor_spec_adma_err_addr0 = 0x214, 183 .core_vendor_spec_adma_err_addr1 = 0x218, 184 .core_vendor_spec_func2 = 0x210, 185 .core_vendor_spec_capabilities0 = 0x21c, 186 .core_ddr_200_cfg = 0x224, 187 .core_vendor_spec3 = 0x250, 188 .core_dll_config_2 = 0x254, 189 .core_ddr_config = 0x258, 190 .core_ddr_config_2 = 0x25c, 191 }; 192 193 static const struct sdhci_msm_offset sdhci_msm_mci_offset = { 194 .core_hc_mode = 0x78, 195 .core_mci_data_cnt = 0x30, 196 .core_mci_status = 0x34, 197 .core_mci_fifo_cnt = 0x44, 198 .core_mci_version = 0x050, 199 .core_generics = 0x70, 200 .core_testbus_config = 0x0cc, 201 .core_testbus_sel2_bit = 4, 202 .core_testbus_ena = (1 << 3), 203 .core_testbus_sel2 = (1 << 4), 204 .core_pwrctl_status = 0xdc, 205 .core_pwrctl_mask = 0xe0, 206 .core_pwrctl_clear = 0xe4, 207 .core_pwrctl_ctl = 0xe8, 208 .core_sdcc_debug_reg = 0x124, 209 .core_dll_config = 0x100, 210 .core_dll_status = 0x108, 211 .core_vendor_spec = 0x10c, 212 .core_vendor_spec_adma_err_addr0 = 0x114, 213 .core_vendor_spec_adma_err_addr1 = 0x118, 214 .core_vendor_spec_func2 = 0x110, 215 .core_vendor_spec_capabilities0 = 0x11c, 216 .core_ddr_200_cfg = 0x184, 217 .core_vendor_spec3 = 0x1b0, 218 .core_dll_config_2 = 0x1b4, 219 .core_ddr_config = 0x1b8, 220 .core_ddr_config_2 = 0x1bc, 221 }; 222 223 struct sdhci_msm_variant_ops { 224 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset); 225 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host, 226 u32 offset); 227 }; 228 229 /* 230 * From V5, register spaces have changed. Wrap this info in a structure 231 * and choose the data_structure based on version info mentioned in DT. 232 */ 233 struct sdhci_msm_variant_info { 234 bool mci_removed; 235 const struct sdhci_msm_variant_ops *var_ops; 236 const struct sdhci_msm_offset *offset; 237 }; 238 239 struct sdhci_msm_host { 240 struct platform_device *pdev; 241 void __iomem *core_mem; /* MSM SDCC mapped address */ 242 int pwr_irq; /* power irq */ 243 struct clk *bus_clk; /* SDHC bus voter clock */ 244 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/ 245 struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */ 246 unsigned long clk_rate; 247 struct mmc_host *mmc; 248 bool use_14lpp_dll_reset; 249 bool tuning_done; 250 bool calibration_done; 251 u8 saved_tuning_phase; 252 bool use_cdclp533; 253 u32 curr_pwr_state; 254 u32 curr_io_level; 255 wait_queue_head_t pwr_irq_wait; 256 bool pwr_irq_flag; 257 u32 caps_0; 258 bool mci_removed; 259 const struct sdhci_msm_variant_ops *var_ops; 260 const struct sdhci_msm_offset *offset; 261 }; 262 263 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host) 264 { 265 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 266 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 267 268 return msm_host->offset; 269 } 270 271 /* 272 * APIs to read/write to vendor specific registers which were there in the 273 * core_mem region before MCI was removed. 274 */ 275 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host, 276 u32 offset) 277 { 278 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 279 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 280 281 return readl_relaxed(msm_host->core_mem + offset); 282 } 283 284 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host, 285 u32 offset) 286 { 287 return readl_relaxed(host->ioaddr + offset); 288 } 289 290 static void sdhci_msm_mci_variant_writel_relaxed(u32 val, 291 struct sdhci_host *host, u32 offset) 292 { 293 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 294 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 295 296 writel_relaxed(val, msm_host->core_mem + offset); 297 } 298 299 static void sdhci_msm_v5_variant_writel_relaxed(u32 val, 300 struct sdhci_host *host, u32 offset) 301 { 302 writel_relaxed(val, host->ioaddr + offset); 303 } 304 305 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host, 306 unsigned int clock) 307 { 308 struct mmc_ios ios = host->mmc->ios; 309 /* 310 * The SDHC requires internal clock frequency to be double the 311 * actual clock that will be set for DDR mode. The controller 312 * uses the faster clock(100/400MHz) for some of its parts and 313 * send the actual required clock (50/200MHz) to the card. 314 */ 315 if (ios.timing == MMC_TIMING_UHS_DDR50 || 316 ios.timing == MMC_TIMING_MMC_DDR52 || 317 ios.timing == MMC_TIMING_MMC_HS400 || 318 host->flags & SDHCI_HS400_TUNING) 319 clock *= 2; 320 return clock; 321 } 322 323 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host, 324 unsigned int clock) 325 { 326 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 327 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 328 struct mmc_ios curr_ios = host->mmc->ios; 329 struct clk *core_clk = msm_host->bulk_clks[0].clk; 330 int rc; 331 332 clock = msm_get_clock_rate_for_bus_mode(host, clock); 333 rc = clk_set_rate(core_clk, clock); 334 if (rc) { 335 pr_err("%s: Failed to set clock at rate %u at timing %d\n", 336 mmc_hostname(host->mmc), clock, 337 curr_ios.timing); 338 return; 339 } 340 msm_host->clk_rate = clock; 341 pr_debug("%s: Setting clock at rate %lu at timing %d\n", 342 mmc_hostname(host->mmc), clk_get_rate(core_clk), 343 curr_ios.timing); 344 } 345 346 /* Platform specific tuning */ 347 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll) 348 { 349 u32 wait_cnt = 50; 350 u8 ck_out_en; 351 struct mmc_host *mmc = host->mmc; 352 const struct sdhci_msm_offset *msm_offset = 353 sdhci_priv_msm_offset(host); 354 355 /* Poll for CK_OUT_EN bit. max. poll time = 50us */ 356 ck_out_en = !!(readl_relaxed(host->ioaddr + 357 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 358 359 while (ck_out_en != poll) { 360 if (--wait_cnt == 0) { 361 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n", 362 mmc_hostname(mmc), poll); 363 return -ETIMEDOUT; 364 } 365 udelay(1); 366 367 ck_out_en = !!(readl_relaxed(host->ioaddr + 368 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 369 } 370 371 return 0; 372 } 373 374 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase) 375 { 376 int rc; 377 static const u8 grey_coded_phase_table[] = { 378 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 379 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8 380 }; 381 unsigned long flags; 382 u32 config; 383 struct mmc_host *mmc = host->mmc; 384 const struct sdhci_msm_offset *msm_offset = 385 sdhci_priv_msm_offset(host); 386 387 if (phase > 0xf) 388 return -EINVAL; 389 390 spin_lock_irqsave(&host->lock, flags); 391 392 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 393 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN); 394 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN); 395 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 396 397 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */ 398 rc = msm_dll_poll_ck_out_en(host, 0); 399 if (rc) 400 goto err_out; 401 402 /* 403 * Write the selected DLL clock output phase (0 ... 15) 404 * to CDR_SELEXT bit field of DLL_CONFIG register. 405 */ 406 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 407 config &= ~CDR_SELEXT_MASK; 408 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT; 409 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 410 411 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 412 config |= CORE_CK_OUT_EN; 413 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 414 415 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */ 416 rc = msm_dll_poll_ck_out_en(host, 1); 417 if (rc) 418 goto err_out; 419 420 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 421 config |= CORE_CDR_EN; 422 config &= ~CORE_CDR_EXT_EN; 423 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 424 goto out; 425 426 err_out: 427 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n", 428 mmc_hostname(mmc), phase); 429 out: 430 spin_unlock_irqrestore(&host->lock, flags); 431 return rc; 432 } 433 434 /* 435 * Find out the greatest range of consecuitive selected 436 * DLL clock output phases that can be used as sampling 437 * setting for SD3.0 UHS-I card read operation (in SDR104 438 * timing mode) or for eMMC4.5 card read operation (in 439 * HS400/HS200 timing mode). 440 * Select the 3/4 of the range and configure the DLL with the 441 * selected DLL clock output phase. 442 */ 443 444 static int msm_find_most_appropriate_phase(struct sdhci_host *host, 445 u8 *phase_table, u8 total_phases) 446 { 447 int ret; 448 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} }; 449 u8 phases_per_row[MAX_PHASES] = { 0 }; 450 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0; 451 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0; 452 bool phase_0_found = false, phase_15_found = false; 453 struct mmc_host *mmc = host->mmc; 454 455 if (!total_phases || (total_phases > MAX_PHASES)) { 456 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n", 457 mmc_hostname(mmc), total_phases); 458 return -EINVAL; 459 } 460 461 for (cnt = 0; cnt < total_phases; cnt++) { 462 ranges[row_index][col_index] = phase_table[cnt]; 463 phases_per_row[row_index] += 1; 464 col_index++; 465 466 if ((cnt + 1) == total_phases) { 467 continue; 468 /* check if next phase in phase_table is consecutive or not */ 469 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) { 470 row_index++; 471 col_index = 0; 472 } 473 } 474 475 if (row_index >= MAX_PHASES) 476 return -EINVAL; 477 478 /* Check if phase-0 is present in first valid window? */ 479 if (!ranges[0][0]) { 480 phase_0_found = true; 481 phase_0_raw_index = 0; 482 /* Check if cycle exist between 2 valid windows */ 483 for (cnt = 1; cnt <= row_index; cnt++) { 484 if (phases_per_row[cnt]) { 485 for (i = 0; i < phases_per_row[cnt]; i++) { 486 if (ranges[cnt][i] == 15) { 487 phase_15_found = true; 488 phase_15_raw_index = cnt; 489 break; 490 } 491 } 492 } 493 } 494 } 495 496 /* If 2 valid windows form cycle then merge them as single window */ 497 if (phase_0_found && phase_15_found) { 498 /* number of phases in raw where phase 0 is present */ 499 u8 phases_0 = phases_per_row[phase_0_raw_index]; 500 /* number of phases in raw where phase 15 is present */ 501 u8 phases_15 = phases_per_row[phase_15_raw_index]; 502 503 if (phases_0 + phases_15 >= MAX_PHASES) 504 /* 505 * If there are more than 1 phase windows then total 506 * number of phases in both the windows should not be 507 * more than or equal to MAX_PHASES. 508 */ 509 return -EINVAL; 510 511 /* Merge 2 cyclic windows */ 512 i = phases_15; 513 for (cnt = 0; cnt < phases_0; cnt++) { 514 ranges[phase_15_raw_index][i] = 515 ranges[phase_0_raw_index][cnt]; 516 if (++i >= MAX_PHASES) 517 break; 518 } 519 520 phases_per_row[phase_0_raw_index] = 0; 521 phases_per_row[phase_15_raw_index] = phases_15 + phases_0; 522 } 523 524 for (cnt = 0; cnt <= row_index; cnt++) { 525 if (phases_per_row[cnt] > curr_max) { 526 curr_max = phases_per_row[cnt]; 527 selected_row_index = cnt; 528 } 529 } 530 531 i = (curr_max * 3) / 4; 532 if (i) 533 i--; 534 535 ret = ranges[selected_row_index][i]; 536 537 if (ret >= MAX_PHASES) { 538 ret = -EINVAL; 539 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n", 540 mmc_hostname(mmc), ret); 541 } 542 543 return ret; 544 } 545 546 static inline void msm_cm_dll_set_freq(struct sdhci_host *host) 547 { 548 u32 mclk_freq = 0, config; 549 const struct sdhci_msm_offset *msm_offset = 550 sdhci_priv_msm_offset(host); 551 552 /* Program the MCLK value to MCLK_FREQ bit field */ 553 if (host->clock <= 112000000) 554 mclk_freq = 0; 555 else if (host->clock <= 125000000) 556 mclk_freq = 1; 557 else if (host->clock <= 137000000) 558 mclk_freq = 2; 559 else if (host->clock <= 150000000) 560 mclk_freq = 3; 561 else if (host->clock <= 162000000) 562 mclk_freq = 4; 563 else if (host->clock <= 175000000) 564 mclk_freq = 5; 565 else if (host->clock <= 187000000) 566 mclk_freq = 6; 567 else if (host->clock <= 200000000) 568 mclk_freq = 7; 569 570 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 571 config &= ~CMUX_SHIFT_PHASE_MASK; 572 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT; 573 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 574 } 575 576 /* Initialize the DLL (Programmable Delay Line) */ 577 static int msm_init_cm_dll(struct sdhci_host *host) 578 { 579 struct mmc_host *mmc = host->mmc; 580 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 581 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 582 int wait_cnt = 50; 583 unsigned long flags; 584 u32 config; 585 const struct sdhci_msm_offset *msm_offset = 586 msm_host->offset; 587 588 spin_lock_irqsave(&host->lock, flags); 589 590 /* 591 * Make sure that clock is always enabled when DLL 592 * tuning is in progress. Keeping PWRSAVE ON may 593 * turn off the clock. 594 */ 595 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 596 config &= ~CORE_CLK_PWRSAVE; 597 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 598 599 if (msm_host->use_14lpp_dll_reset) { 600 config = readl_relaxed(host->ioaddr + 601 msm_offset->core_dll_config); 602 config &= ~CORE_CK_OUT_EN; 603 writel_relaxed(config, host->ioaddr + 604 msm_offset->core_dll_config); 605 606 config = readl_relaxed(host->ioaddr + 607 msm_offset->core_dll_config_2); 608 config |= CORE_DLL_CLOCK_DISABLE; 609 writel_relaxed(config, host->ioaddr + 610 msm_offset->core_dll_config_2); 611 } 612 613 config = readl_relaxed(host->ioaddr + 614 msm_offset->core_dll_config); 615 config |= CORE_DLL_RST; 616 writel_relaxed(config, host->ioaddr + 617 msm_offset->core_dll_config); 618 619 config = readl_relaxed(host->ioaddr + 620 msm_offset->core_dll_config); 621 config |= CORE_DLL_PDN; 622 writel_relaxed(config, host->ioaddr + 623 msm_offset->core_dll_config); 624 msm_cm_dll_set_freq(host); 625 626 if (msm_host->use_14lpp_dll_reset && 627 !IS_ERR_OR_NULL(msm_host->xo_clk)) { 628 u32 mclk_freq = 0; 629 630 config = readl_relaxed(host->ioaddr + 631 msm_offset->core_dll_config_2); 632 config &= CORE_FLL_CYCLE_CNT; 633 if (config) 634 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8), 635 clk_get_rate(msm_host->xo_clk)); 636 else 637 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4), 638 clk_get_rate(msm_host->xo_clk)); 639 640 config = readl_relaxed(host->ioaddr + 641 msm_offset->core_dll_config_2); 642 config &= ~(0xFF << 10); 643 config |= mclk_freq << 10; 644 645 writel_relaxed(config, host->ioaddr + 646 msm_offset->core_dll_config_2); 647 /* wait for 5us before enabling DLL clock */ 648 udelay(5); 649 } 650 651 config = readl_relaxed(host->ioaddr + 652 msm_offset->core_dll_config); 653 config &= ~CORE_DLL_RST; 654 writel_relaxed(config, host->ioaddr + 655 msm_offset->core_dll_config); 656 657 config = readl_relaxed(host->ioaddr + 658 msm_offset->core_dll_config); 659 config &= ~CORE_DLL_PDN; 660 writel_relaxed(config, host->ioaddr + 661 msm_offset->core_dll_config); 662 663 if (msm_host->use_14lpp_dll_reset) { 664 msm_cm_dll_set_freq(host); 665 config = readl_relaxed(host->ioaddr + 666 msm_offset->core_dll_config_2); 667 config &= ~CORE_DLL_CLOCK_DISABLE; 668 writel_relaxed(config, host->ioaddr + 669 msm_offset->core_dll_config_2); 670 } 671 672 config = readl_relaxed(host->ioaddr + 673 msm_offset->core_dll_config); 674 config |= CORE_DLL_EN; 675 writel_relaxed(config, host->ioaddr + 676 msm_offset->core_dll_config); 677 678 config = readl_relaxed(host->ioaddr + 679 msm_offset->core_dll_config); 680 config |= CORE_CK_OUT_EN; 681 writel_relaxed(config, host->ioaddr + 682 msm_offset->core_dll_config); 683 684 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */ 685 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) & 686 CORE_DLL_LOCK)) { 687 /* max. wait for 50us sec for LOCK bit to be set */ 688 if (--wait_cnt == 0) { 689 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n", 690 mmc_hostname(mmc)); 691 spin_unlock_irqrestore(&host->lock, flags); 692 return -ETIMEDOUT; 693 } 694 udelay(1); 695 } 696 697 spin_unlock_irqrestore(&host->lock, flags); 698 return 0; 699 } 700 701 static void msm_hc_select_default(struct sdhci_host *host) 702 { 703 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 704 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 705 u32 config; 706 const struct sdhci_msm_offset *msm_offset = 707 msm_host->offset; 708 709 if (!msm_host->use_cdclp533) { 710 config = readl_relaxed(host->ioaddr + 711 msm_offset->core_vendor_spec3); 712 config &= ~CORE_PWRSAVE_DLL; 713 writel_relaxed(config, host->ioaddr + 714 msm_offset->core_vendor_spec3); 715 } 716 717 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 718 config &= ~CORE_HC_MCLK_SEL_MASK; 719 config |= CORE_HC_MCLK_SEL_DFLT; 720 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 721 722 /* 723 * Disable HC_SELECT_IN to be able to use the UHS mode select 724 * configuration from Host Control2 register for all other 725 * modes. 726 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field 727 * in VENDOR_SPEC_FUNC 728 */ 729 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 730 config &= ~CORE_HC_SELECT_IN_EN; 731 config &= ~CORE_HC_SELECT_IN_MASK; 732 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 733 734 /* 735 * Make sure above writes impacting free running MCLK are completed 736 * before changing the clk_rate at GCC. 737 */ 738 wmb(); 739 } 740 741 static void msm_hc_select_hs400(struct sdhci_host *host) 742 { 743 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 744 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 745 struct mmc_ios ios = host->mmc->ios; 746 u32 config, dll_lock; 747 int rc; 748 const struct sdhci_msm_offset *msm_offset = 749 msm_host->offset; 750 751 /* Select the divided clock (free running MCLK/2) */ 752 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 753 config &= ~CORE_HC_MCLK_SEL_MASK; 754 config |= CORE_HC_MCLK_SEL_HS400; 755 756 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 757 /* 758 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC 759 * register 760 */ 761 if ((msm_host->tuning_done || ios.enhanced_strobe) && 762 !msm_host->calibration_done) { 763 config = readl_relaxed(host->ioaddr + 764 msm_offset->core_vendor_spec); 765 config |= CORE_HC_SELECT_IN_HS400; 766 config |= CORE_HC_SELECT_IN_EN; 767 writel_relaxed(config, host->ioaddr + 768 msm_offset->core_vendor_spec); 769 } 770 if (!msm_host->clk_rate && !msm_host->use_cdclp533) { 771 /* 772 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in 773 * core_dll_status to be set. This should get set 774 * within 15 us at 200 MHz. 775 */ 776 rc = readl_relaxed_poll_timeout(host->ioaddr + 777 msm_offset->core_dll_status, 778 dll_lock, 779 (dll_lock & 780 (CORE_DLL_LOCK | 781 CORE_DDR_DLL_LOCK)), 10, 782 1000); 783 if (rc == -ETIMEDOUT) 784 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n", 785 mmc_hostname(host->mmc), dll_lock); 786 } 787 /* 788 * Make sure above writes impacting free running MCLK are completed 789 * before changing the clk_rate at GCC. 790 */ 791 wmb(); 792 } 793 794 /* 795 * sdhci_msm_hc_select_mode :- In general all timing modes are 796 * controlled via UHS mode select in Host Control2 register. 797 * eMMC specific HS200/HS400 doesn't have their respective modes 798 * defined here, hence we use these values. 799 * 800 * HS200 - SDR104 (Since they both are equivalent in functionality) 801 * HS400 - This involves multiple configurations 802 * Initially SDR104 - when tuning is required as HS200 803 * Then when switching to DDR @ 400MHz (HS400) we use 804 * the vendor specific HC_SELECT_IN to control the mode. 805 * 806 * In addition to controlling the modes we also need to select the 807 * correct input clock for DLL depending on the mode. 808 * 809 * HS400 - divided clock (free running MCLK/2) 810 * All other modes - default (free running MCLK) 811 */ 812 static void sdhci_msm_hc_select_mode(struct sdhci_host *host) 813 { 814 struct mmc_ios ios = host->mmc->ios; 815 816 if (ios.timing == MMC_TIMING_MMC_HS400 || 817 host->flags & SDHCI_HS400_TUNING) 818 msm_hc_select_hs400(host); 819 else 820 msm_hc_select_default(host); 821 } 822 823 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host) 824 { 825 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 826 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 827 u32 config, calib_done; 828 int ret; 829 const struct sdhci_msm_offset *msm_offset = 830 msm_host->offset; 831 832 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 833 834 /* 835 * Retuning in HS400 (DDR mode) will fail, just reset the 836 * tuning block and restore the saved tuning phase. 837 */ 838 ret = msm_init_cm_dll(host); 839 if (ret) 840 goto out; 841 842 /* Set the selected phase in delay line hw block */ 843 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 844 if (ret) 845 goto out; 846 847 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 848 config |= CORE_CMD_DAT_TRACK_SEL; 849 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 850 851 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 852 config &= ~CORE_CDC_T4_DLY_SEL; 853 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 854 855 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 856 config &= ~CORE_CDC_SWITCH_BYPASS_OFF; 857 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 858 859 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 860 config |= CORE_CDC_SWITCH_RC_EN; 861 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 862 863 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 864 config &= ~CORE_START_CDC_TRAFFIC; 865 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 866 867 /* Perform CDC Register Initialization Sequence */ 868 869 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 870 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1); 871 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 872 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1); 873 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG); 874 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG); 875 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG); 876 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG); 877 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG); 878 879 /* CDC HW Calibration */ 880 881 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 882 config |= CORE_SW_TRIG_FULL_CALIB; 883 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 884 885 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 886 config &= ~CORE_SW_TRIG_FULL_CALIB; 887 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 888 889 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 890 config |= CORE_HW_AUTOCAL_ENA; 891 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 892 893 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 894 config |= CORE_TIMER_ENA; 895 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 896 897 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0, 898 calib_done, 899 (calib_done & CORE_CALIBRATION_DONE), 900 1, 50); 901 902 if (ret == -ETIMEDOUT) { 903 pr_err("%s: %s: CDC calibration was not completed\n", 904 mmc_hostname(host->mmc), __func__); 905 goto out; 906 } 907 908 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0) 909 & CORE_CDC_ERROR_CODE_MASK; 910 if (ret) { 911 pr_err("%s: %s: CDC error code %d\n", 912 mmc_hostname(host->mmc), __func__, ret); 913 ret = -EINVAL; 914 goto out; 915 } 916 917 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 918 config |= CORE_START_CDC_TRAFFIC; 919 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 920 out: 921 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 922 __func__, ret); 923 return ret; 924 } 925 926 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host) 927 { 928 struct mmc_host *mmc = host->mmc; 929 u32 dll_status, config; 930 int ret; 931 const struct sdhci_msm_offset *msm_offset = 932 sdhci_priv_msm_offset(host); 933 934 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 935 936 /* 937 * Currently the core_ddr_config register defaults to desired 938 * configuration on reset. Currently reprogramming the power on 939 * reset (POR) value in case it might have been modified by 940 * bootloaders. In the future, if this changes, then the desired 941 * values will need to be programmed appropriately. 942 */ 943 writel_relaxed(DDR_CONFIG_POR_VAL, host->ioaddr + 944 msm_offset->core_ddr_config); 945 946 if (mmc->ios.enhanced_strobe) { 947 config = readl_relaxed(host->ioaddr + 948 msm_offset->core_ddr_200_cfg); 949 config |= CORE_CMDIN_RCLK_EN; 950 writel_relaxed(config, host->ioaddr + 951 msm_offset->core_ddr_200_cfg); 952 } 953 954 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2); 955 config |= CORE_DDR_CAL_EN; 956 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2); 957 958 ret = readl_relaxed_poll_timeout(host->ioaddr + 959 msm_offset->core_dll_status, 960 dll_status, 961 (dll_status & CORE_DDR_DLL_LOCK), 962 10, 1000); 963 964 if (ret == -ETIMEDOUT) { 965 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n", 966 mmc_hostname(host->mmc), __func__); 967 goto out; 968 } 969 970 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3); 971 config |= CORE_PWRSAVE_DLL; 972 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec3); 973 974 /* 975 * Drain writebuffer to ensure above DLL calibration 976 * and PWRSAVE DLL is enabled. 977 */ 978 wmb(); 979 out: 980 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 981 __func__, ret); 982 return ret; 983 } 984 985 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host) 986 { 987 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 988 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 989 struct mmc_host *mmc = host->mmc; 990 int ret; 991 u32 config; 992 const struct sdhci_msm_offset *msm_offset = 993 msm_host->offset; 994 995 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 996 997 /* 998 * Retuning in HS400 (DDR mode) will fail, just reset the 999 * tuning block and restore the saved tuning phase. 1000 */ 1001 ret = msm_init_cm_dll(host); 1002 if (ret) 1003 goto out; 1004 1005 if (!mmc->ios.enhanced_strobe) { 1006 /* Set the selected phase in delay line hw block */ 1007 ret = msm_config_cm_dll_phase(host, 1008 msm_host->saved_tuning_phase); 1009 if (ret) 1010 goto out; 1011 config = readl_relaxed(host->ioaddr + 1012 msm_offset->core_dll_config); 1013 config |= CORE_CMD_DAT_TRACK_SEL; 1014 writel_relaxed(config, host->ioaddr + 1015 msm_offset->core_dll_config); 1016 } 1017 1018 if (msm_host->use_cdclp533) 1019 ret = sdhci_msm_cdclp533_calibration(host); 1020 else 1021 ret = sdhci_msm_cm_dll_sdc4_calibration(host); 1022 out: 1023 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1024 __func__, ret); 1025 return ret; 1026 } 1027 1028 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode) 1029 { 1030 struct sdhci_host *host = mmc_priv(mmc); 1031 int tuning_seq_cnt = 3; 1032 u8 phase, tuned_phases[16], tuned_phase_cnt = 0; 1033 int rc; 1034 struct mmc_ios ios = host->mmc->ios; 1035 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1036 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1037 1038 /* 1039 * Tuning is required for SDR104, HS200 and HS400 cards and 1040 * if clock frequency is greater than 100MHz in these modes. 1041 */ 1042 if (host->clock <= CORE_FREQ_100MHZ || 1043 !(ios.timing == MMC_TIMING_MMC_HS400 || 1044 ios.timing == MMC_TIMING_MMC_HS200 || 1045 ios.timing == MMC_TIMING_UHS_SDR104)) 1046 return 0; 1047 1048 /* 1049 * For HS400 tuning in HS200 timing requires: 1050 * - select MCLK/2 in VENDOR_SPEC 1051 * - program MCLK to 400MHz (or nearest supported) in GCC 1052 */ 1053 if (host->flags & SDHCI_HS400_TUNING) { 1054 sdhci_msm_hc_select_mode(host); 1055 msm_set_clock_rate_for_bus_mode(host, ios.clock); 1056 host->flags &= ~SDHCI_HS400_TUNING; 1057 } 1058 1059 retry: 1060 /* First of all reset the tuning block */ 1061 rc = msm_init_cm_dll(host); 1062 if (rc) 1063 return rc; 1064 1065 phase = 0; 1066 do { 1067 /* Set the phase in delay line hw block */ 1068 rc = msm_config_cm_dll_phase(host, phase); 1069 if (rc) 1070 return rc; 1071 1072 msm_host->saved_tuning_phase = phase; 1073 rc = mmc_send_tuning(mmc, opcode, NULL); 1074 if (!rc) { 1075 /* Tuning is successful at this tuning point */ 1076 tuned_phases[tuned_phase_cnt++] = phase; 1077 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n", 1078 mmc_hostname(mmc), phase); 1079 } 1080 } while (++phase < ARRAY_SIZE(tuned_phases)); 1081 1082 if (tuned_phase_cnt) { 1083 rc = msm_find_most_appropriate_phase(host, tuned_phases, 1084 tuned_phase_cnt); 1085 if (rc < 0) 1086 return rc; 1087 else 1088 phase = rc; 1089 1090 /* 1091 * Finally set the selected phase in delay 1092 * line hw block. 1093 */ 1094 rc = msm_config_cm_dll_phase(host, phase); 1095 if (rc) 1096 return rc; 1097 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n", 1098 mmc_hostname(mmc), phase); 1099 } else { 1100 if (--tuning_seq_cnt) 1101 goto retry; 1102 /* Tuning failed */ 1103 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n", 1104 mmc_hostname(mmc)); 1105 rc = -EIO; 1106 } 1107 1108 if (!rc) 1109 msm_host->tuning_done = true; 1110 return rc; 1111 } 1112 1113 /* 1114 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation. 1115 * This needs to be done for both tuning and enhanced_strobe mode. 1116 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz 1117 * fixed feedback clock is used. 1118 */ 1119 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios) 1120 { 1121 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1122 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1123 int ret; 1124 1125 if (host->clock > CORE_FREQ_100MHZ && 1126 (msm_host->tuning_done || ios->enhanced_strobe) && 1127 !msm_host->calibration_done) { 1128 ret = sdhci_msm_hs400_dll_calibration(host); 1129 if (!ret) 1130 msm_host->calibration_done = true; 1131 else 1132 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n", 1133 mmc_hostname(host->mmc), ret); 1134 } 1135 } 1136 1137 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host, 1138 unsigned int uhs) 1139 { 1140 struct mmc_host *mmc = host->mmc; 1141 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1142 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1143 u16 ctrl_2; 1144 u32 config; 1145 const struct sdhci_msm_offset *msm_offset = 1146 msm_host->offset; 1147 1148 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); 1149 /* Select Bus Speed Mode for host */ 1150 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1151 switch (uhs) { 1152 case MMC_TIMING_UHS_SDR12: 1153 ctrl_2 |= SDHCI_CTRL_UHS_SDR12; 1154 break; 1155 case MMC_TIMING_UHS_SDR25: 1156 ctrl_2 |= SDHCI_CTRL_UHS_SDR25; 1157 break; 1158 case MMC_TIMING_UHS_SDR50: 1159 ctrl_2 |= SDHCI_CTRL_UHS_SDR50; 1160 break; 1161 case MMC_TIMING_MMC_HS400: 1162 case MMC_TIMING_MMC_HS200: 1163 case MMC_TIMING_UHS_SDR104: 1164 ctrl_2 |= SDHCI_CTRL_UHS_SDR104; 1165 break; 1166 case MMC_TIMING_UHS_DDR50: 1167 case MMC_TIMING_MMC_DDR52: 1168 ctrl_2 |= SDHCI_CTRL_UHS_DDR50; 1169 break; 1170 } 1171 1172 /* 1173 * When clock frequency is less than 100MHz, the feedback clock must be 1174 * provided and DLL must not be used so that tuning can be skipped. To 1175 * provide feedback clock, the mode selection can be any value less 1176 * than 3'b011 in bits [2:0] of HOST CONTROL2 register. 1177 */ 1178 if (host->clock <= CORE_FREQ_100MHZ) { 1179 if (uhs == MMC_TIMING_MMC_HS400 || 1180 uhs == MMC_TIMING_MMC_HS200 || 1181 uhs == MMC_TIMING_UHS_SDR104) 1182 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1183 /* 1184 * DLL is not required for clock <= 100MHz 1185 * Thus, make sure DLL it is disabled when not required 1186 */ 1187 config = readl_relaxed(host->ioaddr + 1188 msm_offset->core_dll_config); 1189 config |= CORE_DLL_RST; 1190 writel_relaxed(config, host->ioaddr + 1191 msm_offset->core_dll_config); 1192 1193 config = readl_relaxed(host->ioaddr + 1194 msm_offset->core_dll_config); 1195 config |= CORE_DLL_PDN; 1196 writel_relaxed(config, host->ioaddr + 1197 msm_offset->core_dll_config); 1198 1199 /* 1200 * The DLL needs to be restored and CDCLP533 recalibrated 1201 * when the clock frequency is set back to 400MHz. 1202 */ 1203 msm_host->calibration_done = false; 1204 } 1205 1206 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n", 1207 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2); 1208 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); 1209 1210 if (mmc->ios.timing == MMC_TIMING_MMC_HS400) 1211 sdhci_msm_hs400(host, &mmc->ios); 1212 } 1213 1214 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host) 1215 { 1216 init_waitqueue_head(&msm_host->pwr_irq_wait); 1217 } 1218 1219 static inline void sdhci_msm_complete_pwr_irq_wait( 1220 struct sdhci_msm_host *msm_host) 1221 { 1222 wake_up(&msm_host->pwr_irq_wait); 1223 } 1224 1225 /* 1226 * sdhci_msm_check_power_status API should be called when registers writes 1227 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens. 1228 * To what state the register writes will change the IO lines should be passed 1229 * as the argument req_type. This API will check whether the IO line's state 1230 * is already the expected state and will wait for power irq only if 1231 * power irq is expected to be trigerred based on the current IO line state 1232 * and expected IO line state. 1233 */ 1234 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type) 1235 { 1236 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1237 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1238 bool done = false; 1239 u32 val = SWITCHABLE_SIGNALING_VOLTAGE; 1240 const struct sdhci_msm_offset *msm_offset = 1241 msm_host->offset; 1242 1243 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n", 1244 mmc_hostname(host->mmc), __func__, req_type, 1245 msm_host->curr_pwr_state, msm_host->curr_io_level); 1246 1247 /* 1248 * The power interrupt will not be generated for signal voltage 1249 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set. 1250 * Since sdhci-msm-v5, this bit has been removed and SW must consider 1251 * it as always set. 1252 */ 1253 if (!msm_host->mci_removed) 1254 val = msm_host_readl(msm_host, host, 1255 msm_offset->core_generics); 1256 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) && 1257 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) { 1258 return; 1259 } 1260 1261 /* 1262 * The IRQ for request type IO High/LOW will be generated when - 1263 * there is a state change in 1.8V enable bit (bit 3) of 1264 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0 1265 * which indicates 3.3V IO voltage. So, when MMC core layer tries 1266 * to set it to 3.3V before card detection happens, the 1267 * IRQ doesn't get triggered as there is no state change in this bit. 1268 * The driver already handles this case by changing the IO voltage 1269 * level to high as part of controller power up sequence. Hence, check 1270 * for host->pwr to handle a case where IO voltage high request is 1271 * issued even before controller power up. 1272 */ 1273 if ((req_type & REQ_IO_HIGH) && !host->pwr) { 1274 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n", 1275 mmc_hostname(host->mmc), req_type); 1276 return; 1277 } 1278 if ((req_type & msm_host->curr_pwr_state) || 1279 (req_type & msm_host->curr_io_level)) 1280 done = true; 1281 /* 1282 * This is needed here to handle cases where register writes will 1283 * not change the current bus state or io level of the controller. 1284 * In this case, no power irq will be triggerred and we should 1285 * not wait. 1286 */ 1287 if (!done) { 1288 if (!wait_event_timeout(msm_host->pwr_irq_wait, 1289 msm_host->pwr_irq_flag, 1290 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS))) 1291 dev_warn(&msm_host->pdev->dev, 1292 "%s: pwr_irq for req: (%d) timed out\n", 1293 mmc_hostname(host->mmc), req_type); 1294 } 1295 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc), 1296 __func__, req_type); 1297 } 1298 1299 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host) 1300 { 1301 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1302 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1303 const struct sdhci_msm_offset *msm_offset = 1304 msm_host->offset; 1305 1306 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n", 1307 mmc_hostname(host->mmc), 1308 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status), 1309 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask), 1310 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl)); 1311 } 1312 1313 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq) 1314 { 1315 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1316 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1317 u32 irq_status, irq_ack = 0; 1318 int retry = 10; 1319 u32 pwr_state = 0, io_level = 0; 1320 u32 config; 1321 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1322 1323 irq_status = msm_host_readl(msm_host, host, 1324 msm_offset->core_pwrctl_status); 1325 irq_status &= INT_MASK; 1326 1327 msm_host_writel(msm_host, irq_status, host, 1328 msm_offset->core_pwrctl_clear); 1329 1330 /* 1331 * There is a rare HW scenario where the first clear pulse could be 1332 * lost when actual reset and clear/read of status register is 1333 * happening at a time. Hence, retry for at least 10 times to make 1334 * sure status register is cleared. Otherwise, this will result in 1335 * a spurious power IRQ resulting in system instability. 1336 */ 1337 while (irq_status & msm_host_readl(msm_host, host, 1338 msm_offset->core_pwrctl_status)) { 1339 if (retry == 0) { 1340 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n", 1341 mmc_hostname(host->mmc), irq_status); 1342 sdhci_msm_dump_pwr_ctrl_regs(host); 1343 WARN_ON(1); 1344 break; 1345 } 1346 msm_host_writel(msm_host, irq_status, host, 1347 msm_offset->core_pwrctl_clear); 1348 retry--; 1349 udelay(10); 1350 } 1351 1352 /* Handle BUS ON/OFF*/ 1353 if (irq_status & CORE_PWRCTL_BUS_ON) { 1354 pwr_state = REQ_BUS_ON; 1355 io_level = REQ_IO_HIGH; 1356 irq_ack |= CORE_PWRCTL_BUS_SUCCESS; 1357 } 1358 if (irq_status & CORE_PWRCTL_BUS_OFF) { 1359 pwr_state = REQ_BUS_OFF; 1360 io_level = REQ_IO_LOW; 1361 irq_ack |= CORE_PWRCTL_BUS_SUCCESS; 1362 } 1363 /* Handle IO LOW/HIGH */ 1364 if (irq_status & CORE_PWRCTL_IO_LOW) { 1365 io_level = REQ_IO_LOW; 1366 irq_ack |= CORE_PWRCTL_IO_SUCCESS; 1367 } 1368 if (irq_status & CORE_PWRCTL_IO_HIGH) { 1369 io_level = REQ_IO_HIGH; 1370 irq_ack |= CORE_PWRCTL_IO_SUCCESS; 1371 } 1372 1373 /* 1374 * The driver has to acknowledge the interrupt, switch voltages and 1375 * report back if it succeded or not to this register. The voltage 1376 * switches are handled by the sdhci core, so just report success. 1377 */ 1378 msm_host_writel(msm_host, irq_ack, host, 1379 msm_offset->core_pwrctl_ctl); 1380 1381 /* 1382 * If we don't have info regarding the voltage levels supported by 1383 * regulators, don't change the IO PAD PWR SWITCH. 1384 */ 1385 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1386 u32 new_config; 1387 /* 1388 * We should unset IO PAD PWR switch only if the register write 1389 * can set IO lines high and the regulator also switches to 3 V. 1390 * Else, we should keep the IO PAD PWR switch set. 1391 * This is applicable to certain targets where eMMC vccq supply 1392 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the 1393 * IO PAD PWR switch must be kept set to reflect actual 1394 * regulator voltage. This way, during initialization of 1395 * controllers with only 1.8V, we will set the IO PAD bit 1396 * without waiting for a REQ_IO_LOW. 1397 */ 1398 config = readl_relaxed(host->ioaddr + 1399 msm_offset->core_vendor_spec); 1400 new_config = config; 1401 1402 if ((io_level & REQ_IO_HIGH) && 1403 (msm_host->caps_0 & CORE_3_0V_SUPPORT)) 1404 new_config &= ~CORE_IO_PAD_PWR_SWITCH; 1405 else if ((io_level & REQ_IO_LOW) || 1406 (msm_host->caps_0 & CORE_1_8V_SUPPORT)) 1407 new_config |= CORE_IO_PAD_PWR_SWITCH; 1408 1409 if (config ^ new_config) 1410 writel_relaxed(new_config, host->ioaddr + 1411 msm_offset->core_vendor_spec); 1412 } 1413 1414 if (pwr_state) 1415 msm_host->curr_pwr_state = pwr_state; 1416 if (io_level) 1417 msm_host->curr_io_level = io_level; 1418 1419 pr_debug("%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n", 1420 mmc_hostname(msm_host->mmc), __func__, irq, irq_status, 1421 irq_ack); 1422 } 1423 1424 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data) 1425 { 1426 struct sdhci_host *host = (struct sdhci_host *)data; 1427 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1428 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1429 1430 sdhci_msm_handle_pwr_irq(host, irq); 1431 msm_host->pwr_irq_flag = 1; 1432 sdhci_msm_complete_pwr_irq_wait(msm_host); 1433 1434 1435 return IRQ_HANDLED; 1436 } 1437 1438 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host) 1439 { 1440 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1441 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1442 struct clk *core_clk = msm_host->bulk_clks[0].clk; 1443 1444 return clk_round_rate(core_clk, ULONG_MAX); 1445 } 1446 1447 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host) 1448 { 1449 return SDHCI_MSM_MIN_CLOCK; 1450 } 1451 1452 /** 1453 * __sdhci_msm_set_clock - sdhci_msm clock control. 1454 * 1455 * Description: 1456 * MSM controller does not use internal divider and 1457 * instead directly control the GCC clock as per 1458 * HW recommendation. 1459 **/ 1460 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1461 { 1462 u16 clk; 1463 /* 1464 * Keep actual_clock as zero - 1465 * - since there is no divider used so no need of having actual_clock. 1466 * - MSM controller uses SDCLK for data timeout calculation. If 1467 * actual_clock is zero, host->clock is taken for calculation. 1468 */ 1469 host->mmc->actual_clock = 0; 1470 1471 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); 1472 1473 if (clock == 0) 1474 return; 1475 1476 /* 1477 * MSM controller do not use clock divider. 1478 * Thus read SDHCI_CLOCK_CONTROL and only enable 1479 * clock with no divider value programmed. 1480 */ 1481 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); 1482 sdhci_enable_clk(host, clk); 1483 } 1484 1485 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */ 1486 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1487 { 1488 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1489 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1490 1491 if (!clock) { 1492 msm_host->clk_rate = clock; 1493 goto out; 1494 } 1495 1496 sdhci_msm_hc_select_mode(host); 1497 1498 msm_set_clock_rate_for_bus_mode(host, clock); 1499 out: 1500 __sdhci_msm_set_clock(host, clock); 1501 } 1502 1503 /* 1504 * Platform specific register write functions. This is so that, if any 1505 * register write needs to be followed up by platform specific actions, 1506 * they can be added here. These functions can go to sleep when writes 1507 * to certain registers are done. 1508 * These functions are relying on sdhci_set_ios not using spinlock. 1509 */ 1510 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg) 1511 { 1512 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1513 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1514 u32 req_type = 0; 1515 1516 switch (reg) { 1517 case SDHCI_HOST_CONTROL2: 1518 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW : 1519 REQ_IO_HIGH; 1520 break; 1521 case SDHCI_SOFTWARE_RESET: 1522 if (host->pwr && (val & SDHCI_RESET_ALL)) 1523 req_type = REQ_BUS_OFF; 1524 break; 1525 case SDHCI_POWER_CONTROL: 1526 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON; 1527 break; 1528 } 1529 1530 if (req_type) { 1531 msm_host->pwr_irq_flag = 0; 1532 /* 1533 * Since this register write may trigger a power irq, ensure 1534 * all previous register writes are complete by this point. 1535 */ 1536 mb(); 1537 } 1538 return req_type; 1539 } 1540 1541 /* This function may sleep*/ 1542 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg) 1543 { 1544 u32 req_type = 0; 1545 1546 req_type = __sdhci_msm_check_write(host, val, reg); 1547 writew_relaxed(val, host->ioaddr + reg); 1548 1549 if (req_type) 1550 sdhci_msm_check_power_status(host, req_type); 1551 } 1552 1553 /* This function may sleep*/ 1554 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg) 1555 { 1556 u32 req_type = 0; 1557 1558 req_type = __sdhci_msm_check_write(host, val, reg); 1559 1560 writeb_relaxed(val, host->ioaddr + reg); 1561 1562 if (req_type) 1563 sdhci_msm_check_power_status(host, req_type); 1564 } 1565 1566 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host) 1567 { 1568 struct mmc_host *mmc = msm_host->mmc; 1569 struct regulator *supply = mmc->supply.vqmmc; 1570 u32 caps = 0, config; 1571 struct sdhci_host *host = mmc_priv(mmc); 1572 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1573 1574 if (!IS_ERR(mmc->supply.vqmmc)) { 1575 if (regulator_is_supported_voltage(supply, 1700000, 1950000)) 1576 caps |= CORE_1_8V_SUPPORT; 1577 if (regulator_is_supported_voltage(supply, 2700000, 3600000)) 1578 caps |= CORE_3_0V_SUPPORT; 1579 1580 if (!caps) 1581 pr_warn("%s: 1.8/3V not supported for vqmmc\n", 1582 mmc_hostname(mmc)); 1583 } 1584 1585 if (caps) { 1586 /* 1587 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH 1588 * bit can be used as required later on. 1589 */ 1590 u32 io_level = msm_host->curr_io_level; 1591 1592 config = readl_relaxed(host->ioaddr + 1593 msm_offset->core_vendor_spec); 1594 config |= CORE_IO_PAD_PWR_SWITCH_EN; 1595 1596 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT)) 1597 config &= ~CORE_IO_PAD_PWR_SWITCH; 1598 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT)) 1599 config |= CORE_IO_PAD_PWR_SWITCH; 1600 1601 writel_relaxed(config, 1602 host->ioaddr + msm_offset->core_vendor_spec); 1603 } 1604 msm_host->caps_0 |= caps; 1605 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps); 1606 } 1607 1608 static const struct sdhci_msm_variant_ops mci_var_ops = { 1609 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed, 1610 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed, 1611 }; 1612 1613 static const struct sdhci_msm_variant_ops v5_var_ops = { 1614 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed, 1615 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed, 1616 }; 1617 1618 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = { 1619 .mci_removed = false, 1620 .var_ops = &mci_var_ops, 1621 .offset = &sdhci_msm_mci_offset, 1622 }; 1623 1624 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = { 1625 .mci_removed = true, 1626 .var_ops = &v5_var_ops, 1627 .offset = &sdhci_msm_v5_offset, 1628 }; 1629 1630 static const struct of_device_id sdhci_msm_dt_match[] = { 1631 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var}, 1632 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var}, 1633 {}, 1634 }; 1635 1636 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match); 1637 1638 static const struct sdhci_ops sdhci_msm_ops = { 1639 .reset = sdhci_reset, 1640 .set_clock = sdhci_msm_set_clock, 1641 .get_min_clock = sdhci_msm_get_min_clock, 1642 .get_max_clock = sdhci_msm_get_max_clock, 1643 .set_bus_width = sdhci_set_bus_width, 1644 .set_uhs_signaling = sdhci_msm_set_uhs_signaling, 1645 .write_w = sdhci_msm_writew, 1646 .write_b = sdhci_msm_writeb, 1647 }; 1648 1649 static const struct sdhci_pltfm_data sdhci_msm_pdata = { 1650 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION | 1651 SDHCI_QUIRK_SINGLE_POWER_WRITE | 1652 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, 1653 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, 1654 .ops = &sdhci_msm_ops, 1655 }; 1656 1657 static int sdhci_msm_probe(struct platform_device *pdev) 1658 { 1659 struct sdhci_host *host; 1660 struct sdhci_pltfm_host *pltfm_host; 1661 struct sdhci_msm_host *msm_host; 1662 struct resource *core_memres; 1663 struct clk *clk; 1664 int ret; 1665 u16 host_version, core_minor; 1666 u32 core_version, config; 1667 u8 core_major; 1668 const struct sdhci_msm_offset *msm_offset; 1669 const struct sdhci_msm_variant_info *var_info; 1670 1671 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host)); 1672 if (IS_ERR(host)) 1673 return PTR_ERR(host); 1674 1675 host->sdma_boundary = 0; 1676 pltfm_host = sdhci_priv(host); 1677 msm_host = sdhci_pltfm_priv(pltfm_host); 1678 msm_host->mmc = host->mmc; 1679 msm_host->pdev = pdev; 1680 1681 ret = mmc_of_parse(host->mmc); 1682 if (ret) 1683 goto pltfm_free; 1684 1685 /* 1686 * Based on the compatible string, load the required msm host info from 1687 * the data associated with the version info. 1688 */ 1689 var_info = of_device_get_match_data(&pdev->dev); 1690 1691 msm_host->mci_removed = var_info->mci_removed; 1692 msm_host->var_ops = var_info->var_ops; 1693 msm_host->offset = var_info->offset; 1694 1695 msm_offset = msm_host->offset; 1696 1697 sdhci_get_of_property(pdev); 1698 1699 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE; 1700 1701 /* Setup SDCC bus voter clock. */ 1702 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus"); 1703 if (!IS_ERR(msm_host->bus_clk)) { 1704 /* Vote for max. clk rate for max. performance */ 1705 ret = clk_set_rate(msm_host->bus_clk, INT_MAX); 1706 if (ret) 1707 goto pltfm_free; 1708 ret = clk_prepare_enable(msm_host->bus_clk); 1709 if (ret) 1710 goto pltfm_free; 1711 } 1712 1713 /* Setup main peripheral bus clock */ 1714 clk = devm_clk_get(&pdev->dev, "iface"); 1715 if (IS_ERR(clk)) { 1716 ret = PTR_ERR(clk); 1717 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret); 1718 goto bus_clk_disable; 1719 } 1720 msm_host->bulk_clks[1].clk = clk; 1721 1722 /* Setup SDC MMC clock */ 1723 clk = devm_clk_get(&pdev->dev, "core"); 1724 if (IS_ERR(clk)) { 1725 ret = PTR_ERR(clk); 1726 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret); 1727 goto bus_clk_disable; 1728 } 1729 msm_host->bulk_clks[0].clk = clk; 1730 1731 /* Vote for maximum clock rate for maximum performance */ 1732 ret = clk_set_rate(clk, INT_MAX); 1733 if (ret) 1734 dev_warn(&pdev->dev, "core clock boost failed\n"); 1735 1736 clk = devm_clk_get(&pdev->dev, "cal"); 1737 if (IS_ERR(clk)) 1738 clk = NULL; 1739 msm_host->bulk_clks[2].clk = clk; 1740 1741 clk = devm_clk_get(&pdev->dev, "sleep"); 1742 if (IS_ERR(clk)) 1743 clk = NULL; 1744 msm_host->bulk_clks[3].clk = clk; 1745 1746 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 1747 msm_host->bulk_clks); 1748 if (ret) 1749 goto bus_clk_disable; 1750 1751 /* 1752 * xo clock is needed for FLL feature of cm_dll. 1753 * In case if xo clock is not mentioned in DT, warn and proceed. 1754 */ 1755 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo"); 1756 if (IS_ERR(msm_host->xo_clk)) { 1757 ret = PTR_ERR(msm_host->xo_clk); 1758 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret); 1759 } 1760 1761 if (!msm_host->mci_removed) { 1762 core_memres = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1763 msm_host->core_mem = devm_ioremap_resource(&pdev->dev, 1764 core_memres); 1765 1766 if (IS_ERR(msm_host->core_mem)) { 1767 ret = PTR_ERR(msm_host->core_mem); 1768 goto clk_disable; 1769 } 1770 } 1771 1772 /* Reset the vendor spec register to power on reset state */ 1773 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL, 1774 host->ioaddr + msm_offset->core_vendor_spec); 1775 1776 if (!msm_host->mci_removed) { 1777 /* Set HC_MODE_EN bit in HC_MODE register */ 1778 msm_host_writel(msm_host, HC_MODE_EN, host, 1779 msm_offset->core_hc_mode); 1780 config = msm_host_readl(msm_host, host, 1781 msm_offset->core_hc_mode); 1782 config |= FF_CLK_SW_RST_DIS; 1783 msm_host_writel(msm_host, config, host, 1784 msm_offset->core_hc_mode); 1785 } 1786 1787 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION)); 1788 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n", 1789 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >> 1790 SDHCI_VENDOR_VER_SHIFT)); 1791 1792 core_version = msm_host_readl(msm_host, host, 1793 msm_offset->core_mci_version); 1794 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >> 1795 CORE_VERSION_MAJOR_SHIFT; 1796 core_minor = core_version & CORE_VERSION_MINOR_MASK; 1797 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n", 1798 core_version, core_major, core_minor); 1799 1800 if (core_major == 1 && core_minor >= 0x42) 1801 msm_host->use_14lpp_dll_reset = true; 1802 1803 /* 1804 * SDCC 5 controller with major version 1, minor version 0x34 and later 1805 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL. 1806 */ 1807 if (core_major == 1 && core_minor < 0x34) 1808 msm_host->use_cdclp533 = true; 1809 1810 /* 1811 * Support for some capabilities is not advertised by newer 1812 * controller versions and must be explicitly enabled. 1813 */ 1814 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) { 1815 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES); 1816 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT; 1817 writel_relaxed(config, host->ioaddr + 1818 msm_offset->core_vendor_spec_capabilities0); 1819 } 1820 1821 /* 1822 * Power on reset state may trigger power irq if previous status of 1823 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq 1824 * interrupt in GIC, any pending power irq interrupt should be 1825 * acknowledged. Otherwise power irq interrupt handler would be 1826 * fired prematurely. 1827 */ 1828 sdhci_msm_handle_pwr_irq(host, 0); 1829 1830 /* 1831 * Ensure that above writes are propogated before interrupt enablement 1832 * in GIC. 1833 */ 1834 mb(); 1835 1836 /* Setup IRQ for handling power/voltage tasks with PMIC */ 1837 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq"); 1838 if (msm_host->pwr_irq < 0) { 1839 dev_err(&pdev->dev, "Get pwr_irq failed (%d)\n", 1840 msm_host->pwr_irq); 1841 ret = msm_host->pwr_irq; 1842 goto clk_disable; 1843 } 1844 1845 sdhci_msm_init_pwr_irq_wait(msm_host); 1846 /* Enable pwr irq interrupts */ 1847 msm_host_writel(msm_host, INT_MASK, host, 1848 msm_offset->core_pwrctl_mask); 1849 1850 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL, 1851 sdhci_msm_pwr_irq, IRQF_ONESHOT, 1852 dev_name(&pdev->dev), host); 1853 if (ret) { 1854 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret); 1855 goto clk_disable; 1856 } 1857 1858 pm_runtime_get_noresume(&pdev->dev); 1859 pm_runtime_set_active(&pdev->dev); 1860 pm_runtime_enable(&pdev->dev); 1861 pm_runtime_set_autosuspend_delay(&pdev->dev, 1862 MSM_MMC_AUTOSUSPEND_DELAY_MS); 1863 pm_runtime_use_autosuspend(&pdev->dev); 1864 1865 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning; 1866 ret = sdhci_add_host(host); 1867 if (ret) 1868 goto pm_runtime_disable; 1869 sdhci_msm_set_regulator_caps(msm_host); 1870 1871 pm_runtime_mark_last_busy(&pdev->dev); 1872 pm_runtime_put_autosuspend(&pdev->dev); 1873 1874 return 0; 1875 1876 pm_runtime_disable: 1877 pm_runtime_disable(&pdev->dev); 1878 pm_runtime_set_suspended(&pdev->dev); 1879 pm_runtime_put_noidle(&pdev->dev); 1880 clk_disable: 1881 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 1882 msm_host->bulk_clks); 1883 bus_clk_disable: 1884 if (!IS_ERR(msm_host->bus_clk)) 1885 clk_disable_unprepare(msm_host->bus_clk); 1886 pltfm_free: 1887 sdhci_pltfm_free(pdev); 1888 return ret; 1889 } 1890 1891 static int sdhci_msm_remove(struct platform_device *pdev) 1892 { 1893 struct sdhci_host *host = platform_get_drvdata(pdev); 1894 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1895 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1896 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) == 1897 0xffffffff); 1898 1899 sdhci_remove_host(host, dead); 1900 1901 pm_runtime_get_sync(&pdev->dev); 1902 pm_runtime_disable(&pdev->dev); 1903 pm_runtime_put_noidle(&pdev->dev); 1904 1905 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 1906 msm_host->bulk_clks); 1907 if (!IS_ERR(msm_host->bus_clk)) 1908 clk_disable_unprepare(msm_host->bus_clk); 1909 sdhci_pltfm_free(pdev); 1910 return 0; 1911 } 1912 1913 #ifdef CONFIG_PM 1914 static int sdhci_msm_runtime_suspend(struct device *dev) 1915 { 1916 struct sdhci_host *host = dev_get_drvdata(dev); 1917 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1918 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1919 1920 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 1921 msm_host->bulk_clks); 1922 1923 return 0; 1924 } 1925 1926 static int sdhci_msm_runtime_resume(struct device *dev) 1927 { 1928 struct sdhci_host *host = dev_get_drvdata(dev); 1929 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1930 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1931 1932 return clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 1933 msm_host->bulk_clks); 1934 } 1935 #endif 1936 1937 static const struct dev_pm_ops sdhci_msm_pm_ops = { 1938 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1939 pm_runtime_force_resume) 1940 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend, 1941 sdhci_msm_runtime_resume, 1942 NULL) 1943 }; 1944 1945 static struct platform_driver sdhci_msm_driver = { 1946 .probe = sdhci_msm_probe, 1947 .remove = sdhci_msm_remove, 1948 .driver = { 1949 .name = "sdhci_msm", 1950 .of_match_table = sdhci_msm_dt_match, 1951 .pm = &sdhci_msm_pm_ops, 1952 }, 1953 }; 1954 1955 module_platform_driver(sdhci_msm_driver); 1956 1957 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver"); 1958 MODULE_LICENSE("GPL v2"); 1959