xref: /openbmc/linux/drivers/mmc/host/sdhci-msm.c (revision 82e6fdd6)
1 /*
2  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
3  *
4  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 #include <linux/module.h>
18 #include <linux/of_device.h>
19 #include <linux/delay.h>
20 #include <linux/mmc/mmc.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/slab.h>
23 #include <linux/iopoll.h>
24 
25 #include "sdhci-pltfm.h"
26 
27 #define CORE_MCI_VERSION		0x50
28 #define CORE_VERSION_MAJOR_SHIFT	28
29 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
30 #define CORE_VERSION_MINOR_MASK		0xff
31 
32 #define CORE_MCI_GENERICS		0x70
33 #define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
34 
35 #define CORE_HC_MODE		0x78
36 #define HC_MODE_EN		0x1
37 #define CORE_POWER		0x0
38 #define CORE_SW_RST		BIT(7)
39 #define FF_CLK_SW_RST_DIS	BIT(13)
40 
41 #define CORE_PWRCTL_STATUS	0xdc
42 #define CORE_PWRCTL_MASK	0xe0
43 #define CORE_PWRCTL_CLEAR	0xe4
44 #define CORE_PWRCTL_CTL		0xe8
45 #define CORE_PWRCTL_BUS_OFF	BIT(0)
46 #define CORE_PWRCTL_BUS_ON	BIT(1)
47 #define CORE_PWRCTL_IO_LOW	BIT(2)
48 #define CORE_PWRCTL_IO_HIGH	BIT(3)
49 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
50 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
51 #define REQ_BUS_OFF		BIT(0)
52 #define REQ_BUS_ON		BIT(1)
53 #define REQ_IO_LOW		BIT(2)
54 #define REQ_IO_HIGH		BIT(3)
55 #define INT_MASK		0xf
56 #define MAX_PHASES		16
57 #define CORE_DLL_LOCK		BIT(7)
58 #define CORE_DDR_DLL_LOCK	BIT(11)
59 #define CORE_DLL_EN		BIT(16)
60 #define CORE_CDR_EN		BIT(17)
61 #define CORE_CK_OUT_EN		BIT(18)
62 #define CORE_CDR_EXT_EN		BIT(19)
63 #define CORE_DLL_PDN		BIT(29)
64 #define CORE_DLL_RST		BIT(30)
65 #define CORE_DLL_CONFIG		0x100
66 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
67 #define CORE_DLL_STATUS		0x108
68 
69 #define CORE_DLL_CONFIG_2	0x1b4
70 #define CORE_DDR_CAL_EN		BIT(0)
71 #define CORE_FLL_CYCLE_CNT	BIT(18)
72 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
73 
74 #define CORE_VENDOR_SPEC	0x10c
75 #define CORE_VENDOR_SPEC_POR_VAL	0xa1c
76 #define CORE_CLK_PWRSAVE	BIT(1)
77 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
78 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
79 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
80 #define CORE_HC_SELECT_IN_EN	BIT(18)
81 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
82 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
83 
84 #define CORE_CSR_CDC_CTLR_CFG0		0x130
85 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
86 #define CORE_HW_AUTOCAL_ENA		BIT(17)
87 
88 #define CORE_CSR_CDC_CTLR_CFG1		0x134
89 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
90 #define CORE_TIMER_ENA			BIT(16)
91 
92 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
93 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
94 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
95 #define CORE_CDC_OFFSET_CFG		0x14C
96 #define CORE_CSR_CDC_DELAY_CFG		0x150
97 #define CORE_CDC_SLAVE_DDA_CFG		0x160
98 #define CORE_CSR_CDC_STATUS0		0x164
99 #define CORE_CALIBRATION_DONE		BIT(0)
100 
101 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
102 
103 #define CORE_CSR_CDC_GEN_CFG		0x178
104 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
105 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
106 
107 #define CORE_DDR_200_CFG		0x184
108 #define CORE_CDC_T4_DLY_SEL		BIT(0)
109 #define CORE_CMDIN_RCLK_EN		BIT(1)
110 #define CORE_START_CDC_TRAFFIC		BIT(6)
111 #define CORE_VENDOR_SPEC3	0x1b0
112 #define CORE_PWRSAVE_DLL	BIT(3)
113 
114 #define CORE_DDR_CONFIG		0x1b8
115 #define DDR_CONFIG_POR_VAL	0x80040853
116 
117 #define CORE_VENDOR_SPEC_CAPABILITIES0	0x11c
118 
119 #define INVALID_TUNING_PHASE	-1
120 #define SDHCI_MSM_MIN_CLOCK	400000
121 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
122 
123 #define CDR_SELEXT_SHIFT	20
124 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
125 #define CMUX_SHIFT_PHASE_SHIFT	24
126 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
127 
128 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
129 
130 /* Timeout value to avoid infinite waiting for pwr_irq */
131 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
132 
133 struct sdhci_msm_host {
134 	struct platform_device *pdev;
135 	void __iomem *core_mem;	/* MSM SDCC mapped address */
136 	int pwr_irq;		/* power irq */
137 	struct clk *bus_clk;	/* SDHC bus voter clock */
138 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
139 	struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
140 	unsigned long clk_rate;
141 	struct mmc_host *mmc;
142 	bool use_14lpp_dll_reset;
143 	bool tuning_done;
144 	bool calibration_done;
145 	u8 saved_tuning_phase;
146 	bool use_cdclp533;
147 	u32 curr_pwr_state;
148 	u32 curr_io_level;
149 	wait_queue_head_t pwr_irq_wait;
150 	bool pwr_irq_flag;
151 };
152 
153 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
154 						    unsigned int clock)
155 {
156 	struct mmc_ios ios = host->mmc->ios;
157 	/*
158 	 * The SDHC requires internal clock frequency to be double the
159 	 * actual clock that will be set for DDR mode. The controller
160 	 * uses the faster clock(100/400MHz) for some of its parts and
161 	 * send the actual required clock (50/200MHz) to the card.
162 	 */
163 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
164 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
165 	    ios.timing == MMC_TIMING_MMC_HS400 ||
166 	    host->flags & SDHCI_HS400_TUNING)
167 		clock *= 2;
168 	return clock;
169 }
170 
171 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
172 					    unsigned int clock)
173 {
174 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
175 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
176 	struct mmc_ios curr_ios = host->mmc->ios;
177 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
178 	int rc;
179 
180 	clock = msm_get_clock_rate_for_bus_mode(host, clock);
181 	rc = clk_set_rate(core_clk, clock);
182 	if (rc) {
183 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
184 		       mmc_hostname(host->mmc), clock,
185 		       curr_ios.timing);
186 		return;
187 	}
188 	msm_host->clk_rate = clock;
189 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
190 		 mmc_hostname(host->mmc), clk_get_rate(core_clk),
191 		 curr_ios.timing);
192 }
193 
194 /* Platform specific tuning */
195 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
196 {
197 	u32 wait_cnt = 50;
198 	u8 ck_out_en;
199 	struct mmc_host *mmc = host->mmc;
200 
201 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
202 	ck_out_en = !!(readl_relaxed(host->ioaddr + CORE_DLL_CONFIG) &
203 			CORE_CK_OUT_EN);
204 
205 	while (ck_out_en != poll) {
206 		if (--wait_cnt == 0) {
207 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
208 			       mmc_hostname(mmc), poll);
209 			return -ETIMEDOUT;
210 		}
211 		udelay(1);
212 
213 		ck_out_en = !!(readl_relaxed(host->ioaddr + CORE_DLL_CONFIG) &
214 				CORE_CK_OUT_EN);
215 	}
216 
217 	return 0;
218 }
219 
220 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
221 {
222 	int rc;
223 	static const u8 grey_coded_phase_table[] = {
224 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
225 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
226 	};
227 	unsigned long flags;
228 	u32 config;
229 	struct mmc_host *mmc = host->mmc;
230 
231 	if (phase > 0xf)
232 		return -EINVAL;
233 
234 	spin_lock_irqsave(&host->lock, flags);
235 
236 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
237 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
238 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
239 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
240 
241 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
242 	rc = msm_dll_poll_ck_out_en(host, 0);
243 	if (rc)
244 		goto err_out;
245 
246 	/*
247 	 * Write the selected DLL clock output phase (0 ... 15)
248 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
249 	 */
250 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
251 	config &= ~CDR_SELEXT_MASK;
252 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
253 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
254 
255 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
256 	config |= CORE_CK_OUT_EN;
257 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
258 
259 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
260 	rc = msm_dll_poll_ck_out_en(host, 1);
261 	if (rc)
262 		goto err_out;
263 
264 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
265 	config |= CORE_CDR_EN;
266 	config &= ~CORE_CDR_EXT_EN;
267 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
268 	goto out;
269 
270 err_out:
271 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
272 	       mmc_hostname(mmc), phase);
273 out:
274 	spin_unlock_irqrestore(&host->lock, flags);
275 	return rc;
276 }
277 
278 /*
279  * Find out the greatest range of consecuitive selected
280  * DLL clock output phases that can be used as sampling
281  * setting for SD3.0 UHS-I card read operation (in SDR104
282  * timing mode) or for eMMC4.5 card read operation (in
283  * HS400/HS200 timing mode).
284  * Select the 3/4 of the range and configure the DLL with the
285  * selected DLL clock output phase.
286  */
287 
288 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
289 					   u8 *phase_table, u8 total_phases)
290 {
291 	int ret;
292 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
293 	u8 phases_per_row[MAX_PHASES] = { 0 };
294 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
295 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
296 	bool phase_0_found = false, phase_15_found = false;
297 	struct mmc_host *mmc = host->mmc;
298 
299 	if (!total_phases || (total_phases > MAX_PHASES)) {
300 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
301 		       mmc_hostname(mmc), total_phases);
302 		return -EINVAL;
303 	}
304 
305 	for (cnt = 0; cnt < total_phases; cnt++) {
306 		ranges[row_index][col_index] = phase_table[cnt];
307 		phases_per_row[row_index] += 1;
308 		col_index++;
309 
310 		if ((cnt + 1) == total_phases) {
311 			continue;
312 		/* check if next phase in phase_table is consecutive or not */
313 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
314 			row_index++;
315 			col_index = 0;
316 		}
317 	}
318 
319 	if (row_index >= MAX_PHASES)
320 		return -EINVAL;
321 
322 	/* Check if phase-0 is present in first valid window? */
323 	if (!ranges[0][0]) {
324 		phase_0_found = true;
325 		phase_0_raw_index = 0;
326 		/* Check if cycle exist between 2 valid windows */
327 		for (cnt = 1; cnt <= row_index; cnt++) {
328 			if (phases_per_row[cnt]) {
329 				for (i = 0; i < phases_per_row[cnt]; i++) {
330 					if (ranges[cnt][i] == 15) {
331 						phase_15_found = true;
332 						phase_15_raw_index = cnt;
333 						break;
334 					}
335 				}
336 			}
337 		}
338 	}
339 
340 	/* If 2 valid windows form cycle then merge them as single window */
341 	if (phase_0_found && phase_15_found) {
342 		/* number of phases in raw where phase 0 is present */
343 		u8 phases_0 = phases_per_row[phase_0_raw_index];
344 		/* number of phases in raw where phase 15 is present */
345 		u8 phases_15 = phases_per_row[phase_15_raw_index];
346 
347 		if (phases_0 + phases_15 >= MAX_PHASES)
348 			/*
349 			 * If there are more than 1 phase windows then total
350 			 * number of phases in both the windows should not be
351 			 * more than or equal to MAX_PHASES.
352 			 */
353 			return -EINVAL;
354 
355 		/* Merge 2 cyclic windows */
356 		i = phases_15;
357 		for (cnt = 0; cnt < phases_0; cnt++) {
358 			ranges[phase_15_raw_index][i] =
359 			    ranges[phase_0_raw_index][cnt];
360 			if (++i >= MAX_PHASES)
361 				break;
362 		}
363 
364 		phases_per_row[phase_0_raw_index] = 0;
365 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
366 	}
367 
368 	for (cnt = 0; cnt <= row_index; cnt++) {
369 		if (phases_per_row[cnt] > curr_max) {
370 			curr_max = phases_per_row[cnt];
371 			selected_row_index = cnt;
372 		}
373 	}
374 
375 	i = (curr_max * 3) / 4;
376 	if (i)
377 		i--;
378 
379 	ret = ranges[selected_row_index][i];
380 
381 	if (ret >= MAX_PHASES) {
382 		ret = -EINVAL;
383 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
384 		       mmc_hostname(mmc), ret);
385 	}
386 
387 	return ret;
388 }
389 
390 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
391 {
392 	u32 mclk_freq = 0, config;
393 
394 	/* Program the MCLK value to MCLK_FREQ bit field */
395 	if (host->clock <= 112000000)
396 		mclk_freq = 0;
397 	else if (host->clock <= 125000000)
398 		mclk_freq = 1;
399 	else if (host->clock <= 137000000)
400 		mclk_freq = 2;
401 	else if (host->clock <= 150000000)
402 		mclk_freq = 3;
403 	else if (host->clock <= 162000000)
404 		mclk_freq = 4;
405 	else if (host->clock <= 175000000)
406 		mclk_freq = 5;
407 	else if (host->clock <= 187000000)
408 		mclk_freq = 6;
409 	else if (host->clock <= 200000000)
410 		mclk_freq = 7;
411 
412 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
413 	config &= ~CMUX_SHIFT_PHASE_MASK;
414 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
415 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
416 }
417 
418 /* Initialize the DLL (Programmable Delay Line) */
419 static int msm_init_cm_dll(struct sdhci_host *host)
420 {
421 	struct mmc_host *mmc = host->mmc;
422 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
423 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
424 	int wait_cnt = 50;
425 	unsigned long flags;
426 	u32 config;
427 
428 	spin_lock_irqsave(&host->lock, flags);
429 
430 	/*
431 	 * Make sure that clock is always enabled when DLL
432 	 * tuning is in progress. Keeping PWRSAVE ON may
433 	 * turn off the clock.
434 	 */
435 	config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
436 	config &= ~CORE_CLK_PWRSAVE;
437 	writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
438 
439 	if (msm_host->use_14lpp_dll_reset) {
440 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
441 		config &= ~CORE_CK_OUT_EN;
442 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
443 
444 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
445 		config |= CORE_DLL_CLOCK_DISABLE;
446 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
447 	}
448 
449 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
450 	config |= CORE_DLL_RST;
451 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
452 
453 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
454 	config |= CORE_DLL_PDN;
455 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
456 	msm_cm_dll_set_freq(host);
457 
458 	if (msm_host->use_14lpp_dll_reset &&
459 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
460 		u32 mclk_freq = 0;
461 
462 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
463 		config &= CORE_FLL_CYCLE_CNT;
464 		if (config)
465 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
466 					clk_get_rate(msm_host->xo_clk));
467 		else
468 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
469 					clk_get_rate(msm_host->xo_clk));
470 
471 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
472 		config &= ~(0xFF << 10);
473 		config |= mclk_freq << 10;
474 
475 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
476 		/* wait for 5us before enabling DLL clock */
477 		udelay(5);
478 	}
479 
480 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
481 	config &= ~CORE_DLL_RST;
482 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
483 
484 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
485 	config &= ~CORE_DLL_PDN;
486 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
487 
488 	if (msm_host->use_14lpp_dll_reset) {
489 		msm_cm_dll_set_freq(host);
490 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
491 		config &= ~CORE_DLL_CLOCK_DISABLE;
492 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
493 	}
494 
495 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
496 	config |= CORE_DLL_EN;
497 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
498 
499 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
500 	config |= CORE_CK_OUT_EN;
501 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
502 
503 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
504 	while (!(readl_relaxed(host->ioaddr + CORE_DLL_STATUS) &
505 		 CORE_DLL_LOCK)) {
506 		/* max. wait for 50us sec for LOCK bit to be set */
507 		if (--wait_cnt == 0) {
508 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
509 			       mmc_hostname(mmc));
510 			spin_unlock_irqrestore(&host->lock, flags);
511 			return -ETIMEDOUT;
512 		}
513 		udelay(1);
514 	}
515 
516 	spin_unlock_irqrestore(&host->lock, flags);
517 	return 0;
518 }
519 
520 static void msm_hc_select_default(struct sdhci_host *host)
521 {
522 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
523 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
524 	u32 config;
525 
526 	if (!msm_host->use_cdclp533) {
527 		config = readl_relaxed(host->ioaddr +
528 				CORE_VENDOR_SPEC3);
529 		config &= ~CORE_PWRSAVE_DLL;
530 		writel_relaxed(config, host->ioaddr +
531 				CORE_VENDOR_SPEC3);
532 	}
533 
534 	config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
535 	config &= ~CORE_HC_MCLK_SEL_MASK;
536 	config |= CORE_HC_MCLK_SEL_DFLT;
537 	writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
538 
539 	/*
540 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
541 	 * configuration from Host Control2 register for all other
542 	 * modes.
543 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
544 	 * in VENDOR_SPEC_FUNC
545 	 */
546 	config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
547 	config &= ~CORE_HC_SELECT_IN_EN;
548 	config &= ~CORE_HC_SELECT_IN_MASK;
549 	writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
550 
551 	/*
552 	 * Make sure above writes impacting free running MCLK are completed
553 	 * before changing the clk_rate at GCC.
554 	 */
555 	wmb();
556 }
557 
558 static void msm_hc_select_hs400(struct sdhci_host *host)
559 {
560 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
561 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
562 	struct mmc_ios ios = host->mmc->ios;
563 	u32 config, dll_lock;
564 	int rc;
565 
566 	/* Select the divided clock (free running MCLK/2) */
567 	config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
568 	config &= ~CORE_HC_MCLK_SEL_MASK;
569 	config |= CORE_HC_MCLK_SEL_HS400;
570 
571 	writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
572 	/*
573 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
574 	 * register
575 	 */
576 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
577 	    !msm_host->calibration_done) {
578 		config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC);
579 		config |= CORE_HC_SELECT_IN_HS400;
580 		config |= CORE_HC_SELECT_IN_EN;
581 		writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC);
582 	}
583 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
584 		/*
585 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
586 		 * CORE_DLL_STATUS to be set.  This should get set
587 		 * within 15 us at 200 MHz.
588 		 */
589 		rc = readl_relaxed_poll_timeout(host->ioaddr +
590 						CORE_DLL_STATUS,
591 						dll_lock,
592 						(dll_lock &
593 						(CORE_DLL_LOCK |
594 						CORE_DDR_DLL_LOCK)), 10,
595 						1000);
596 		if (rc == -ETIMEDOUT)
597 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
598 			       mmc_hostname(host->mmc), dll_lock);
599 	}
600 	/*
601 	 * Make sure above writes impacting free running MCLK are completed
602 	 * before changing the clk_rate at GCC.
603 	 */
604 	wmb();
605 }
606 
607 /*
608  * sdhci_msm_hc_select_mode :- In general all timing modes are
609  * controlled via UHS mode select in Host Control2 register.
610  * eMMC specific HS200/HS400 doesn't have their respective modes
611  * defined here, hence we use these values.
612  *
613  * HS200 - SDR104 (Since they both are equivalent in functionality)
614  * HS400 - This involves multiple configurations
615  *		Initially SDR104 - when tuning is required as HS200
616  *		Then when switching to DDR @ 400MHz (HS400) we use
617  *		the vendor specific HC_SELECT_IN to control the mode.
618  *
619  * In addition to controlling the modes we also need to select the
620  * correct input clock for DLL depending on the mode.
621  *
622  * HS400 - divided clock (free running MCLK/2)
623  * All other modes - default (free running MCLK)
624  */
625 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
626 {
627 	struct mmc_ios ios = host->mmc->ios;
628 
629 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
630 	    host->flags & SDHCI_HS400_TUNING)
631 		msm_hc_select_hs400(host);
632 	else
633 		msm_hc_select_default(host);
634 }
635 
636 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
637 {
638 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
639 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
640 	u32 config, calib_done;
641 	int ret;
642 
643 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
644 
645 	/*
646 	 * Retuning in HS400 (DDR mode) will fail, just reset the
647 	 * tuning block and restore the saved tuning phase.
648 	 */
649 	ret = msm_init_cm_dll(host);
650 	if (ret)
651 		goto out;
652 
653 	/* Set the selected phase in delay line hw block */
654 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
655 	if (ret)
656 		goto out;
657 
658 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
659 	config |= CORE_CMD_DAT_TRACK_SEL;
660 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
661 
662 	config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
663 	config &= ~CORE_CDC_T4_DLY_SEL;
664 	writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
665 
666 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
667 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
668 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
669 
670 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
671 	config |= CORE_CDC_SWITCH_RC_EN;
672 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
673 
674 	config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
675 	config &= ~CORE_START_CDC_TRAFFIC;
676 	writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
677 
678 	/* Perform CDC Register Initialization Sequence */
679 
680 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
681 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
682 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
683 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
684 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
685 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
686 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
687 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
688 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
689 
690 	/* CDC HW Calibration */
691 
692 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
693 	config |= CORE_SW_TRIG_FULL_CALIB;
694 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
695 
696 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
697 	config &= ~CORE_SW_TRIG_FULL_CALIB;
698 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
699 
700 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
701 	config |= CORE_HW_AUTOCAL_ENA;
702 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
703 
704 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
705 	config |= CORE_TIMER_ENA;
706 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
707 
708 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
709 					 calib_done,
710 					 (calib_done & CORE_CALIBRATION_DONE),
711 					 1, 50);
712 
713 	if (ret == -ETIMEDOUT) {
714 		pr_err("%s: %s: CDC calibration was not completed\n",
715 		       mmc_hostname(host->mmc), __func__);
716 		goto out;
717 	}
718 
719 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
720 			& CORE_CDC_ERROR_CODE_MASK;
721 	if (ret) {
722 		pr_err("%s: %s: CDC error code %d\n",
723 		       mmc_hostname(host->mmc), __func__, ret);
724 		ret = -EINVAL;
725 		goto out;
726 	}
727 
728 	config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
729 	config |= CORE_START_CDC_TRAFFIC;
730 	writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
731 out:
732 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
733 		 __func__, ret);
734 	return ret;
735 }
736 
737 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
738 {
739 	struct mmc_host *mmc = host->mmc;
740 	u32 dll_status, config;
741 	int ret;
742 
743 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
744 
745 	/*
746 	 * Currently the CORE_DDR_CONFIG register defaults to desired
747 	 * configuration on reset. Currently reprogramming the power on
748 	 * reset (POR) value in case it might have been modified by
749 	 * bootloaders. In the future, if this changes, then the desired
750 	 * values will need to be programmed appropriately.
751 	 */
752 	writel_relaxed(DDR_CONFIG_POR_VAL, host->ioaddr + CORE_DDR_CONFIG);
753 
754 	if (mmc->ios.enhanced_strobe) {
755 		config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG);
756 		config |= CORE_CMDIN_RCLK_EN;
757 		writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG);
758 	}
759 
760 	config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2);
761 	config |= CORE_DDR_CAL_EN;
762 	writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2);
763 
764 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_DLL_STATUS,
765 					 dll_status,
766 					 (dll_status & CORE_DDR_DLL_LOCK),
767 					 10, 1000);
768 
769 	if (ret == -ETIMEDOUT) {
770 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
771 		       mmc_hostname(host->mmc), __func__);
772 		goto out;
773 	}
774 
775 	config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC3);
776 	config |= CORE_PWRSAVE_DLL;
777 	writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC3);
778 
779 	/*
780 	 * Drain writebuffer to ensure above DLL calibration
781 	 * and PWRSAVE DLL is enabled.
782 	 */
783 	wmb();
784 out:
785 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
786 		 __func__, ret);
787 	return ret;
788 }
789 
790 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
791 {
792 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
793 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
794 	struct mmc_host *mmc = host->mmc;
795 	int ret;
796 	u32 config;
797 
798 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
799 
800 	/*
801 	 * Retuning in HS400 (DDR mode) will fail, just reset the
802 	 * tuning block and restore the saved tuning phase.
803 	 */
804 	ret = msm_init_cm_dll(host);
805 	if (ret)
806 		goto out;
807 
808 	if (!mmc->ios.enhanced_strobe) {
809 		/* Set the selected phase in delay line hw block */
810 		ret = msm_config_cm_dll_phase(host,
811 					      msm_host->saved_tuning_phase);
812 		if (ret)
813 			goto out;
814 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
815 		config |= CORE_CMD_DAT_TRACK_SEL;
816 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
817 	}
818 
819 	if (msm_host->use_cdclp533)
820 		ret = sdhci_msm_cdclp533_calibration(host);
821 	else
822 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
823 out:
824 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
825 		 __func__, ret);
826 	return ret;
827 }
828 
829 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
830 {
831 	struct sdhci_host *host = mmc_priv(mmc);
832 	int tuning_seq_cnt = 3;
833 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
834 	int rc;
835 	struct mmc_ios ios = host->mmc->ios;
836 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
837 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
838 
839 	/*
840 	 * Tuning is required for SDR104, HS200 and HS400 cards and
841 	 * if clock frequency is greater than 100MHz in these modes.
842 	 */
843 	if (host->clock <= CORE_FREQ_100MHZ ||
844 	    !(ios.timing == MMC_TIMING_MMC_HS400 ||
845 	    ios.timing == MMC_TIMING_MMC_HS200 ||
846 	    ios.timing == MMC_TIMING_UHS_SDR104))
847 		return 0;
848 
849 	/*
850 	 * For HS400 tuning in HS200 timing requires:
851 	 * - select MCLK/2 in VENDOR_SPEC
852 	 * - program MCLK to 400MHz (or nearest supported) in GCC
853 	 */
854 	if (host->flags & SDHCI_HS400_TUNING) {
855 		sdhci_msm_hc_select_mode(host);
856 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
857 		host->flags &= ~SDHCI_HS400_TUNING;
858 	}
859 
860 retry:
861 	/* First of all reset the tuning block */
862 	rc = msm_init_cm_dll(host);
863 	if (rc)
864 		return rc;
865 
866 	phase = 0;
867 	do {
868 		/* Set the phase in delay line hw block */
869 		rc = msm_config_cm_dll_phase(host, phase);
870 		if (rc)
871 			return rc;
872 
873 		msm_host->saved_tuning_phase = phase;
874 		rc = mmc_send_tuning(mmc, opcode, NULL);
875 		if (!rc) {
876 			/* Tuning is successful at this tuning point */
877 			tuned_phases[tuned_phase_cnt++] = phase;
878 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
879 				 mmc_hostname(mmc), phase);
880 		}
881 	} while (++phase < ARRAY_SIZE(tuned_phases));
882 
883 	if (tuned_phase_cnt) {
884 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
885 						     tuned_phase_cnt);
886 		if (rc < 0)
887 			return rc;
888 		else
889 			phase = rc;
890 
891 		/*
892 		 * Finally set the selected phase in delay
893 		 * line hw block.
894 		 */
895 		rc = msm_config_cm_dll_phase(host, phase);
896 		if (rc)
897 			return rc;
898 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
899 			 mmc_hostname(mmc), phase);
900 	} else {
901 		if (--tuning_seq_cnt)
902 			goto retry;
903 		/* Tuning failed */
904 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
905 		       mmc_hostname(mmc));
906 		rc = -EIO;
907 	}
908 
909 	if (!rc)
910 		msm_host->tuning_done = true;
911 	return rc;
912 }
913 
914 /*
915  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
916  * This needs to be done for both tuning and enhanced_strobe mode.
917  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
918  * fixed feedback clock is used.
919  */
920 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
921 {
922 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
923 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
924 	int ret;
925 
926 	if (host->clock > CORE_FREQ_100MHZ &&
927 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
928 	    !msm_host->calibration_done) {
929 		ret = sdhci_msm_hs400_dll_calibration(host);
930 		if (!ret)
931 			msm_host->calibration_done = true;
932 		else
933 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
934 			       mmc_hostname(host->mmc), ret);
935 	}
936 }
937 
938 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
939 					unsigned int uhs)
940 {
941 	struct mmc_host *mmc = host->mmc;
942 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
943 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
944 	u16 ctrl_2;
945 	u32 config;
946 
947 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
948 	/* Select Bus Speed Mode for host */
949 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
950 	switch (uhs) {
951 	case MMC_TIMING_UHS_SDR12:
952 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
953 		break;
954 	case MMC_TIMING_UHS_SDR25:
955 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
956 		break;
957 	case MMC_TIMING_UHS_SDR50:
958 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
959 		break;
960 	case MMC_TIMING_MMC_HS400:
961 	case MMC_TIMING_MMC_HS200:
962 	case MMC_TIMING_UHS_SDR104:
963 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
964 		break;
965 	case MMC_TIMING_UHS_DDR50:
966 	case MMC_TIMING_MMC_DDR52:
967 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
968 		break;
969 	}
970 
971 	/*
972 	 * When clock frequency is less than 100MHz, the feedback clock must be
973 	 * provided and DLL must not be used so that tuning can be skipped. To
974 	 * provide feedback clock, the mode selection can be any value less
975 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
976 	 */
977 	if (host->clock <= CORE_FREQ_100MHZ) {
978 		if (uhs == MMC_TIMING_MMC_HS400 ||
979 		    uhs == MMC_TIMING_MMC_HS200 ||
980 		    uhs == MMC_TIMING_UHS_SDR104)
981 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
982 		/*
983 		 * DLL is not required for clock <= 100MHz
984 		 * Thus, make sure DLL it is disabled when not required
985 		 */
986 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
987 		config |= CORE_DLL_RST;
988 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
989 
990 		config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG);
991 		config |= CORE_DLL_PDN;
992 		writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG);
993 
994 		/*
995 		 * The DLL needs to be restored and CDCLP533 recalibrated
996 		 * when the clock frequency is set back to 400MHz.
997 		 */
998 		msm_host->calibration_done = false;
999 	}
1000 
1001 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1002 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1003 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1004 
1005 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1006 		sdhci_msm_hs400(host, &mmc->ios);
1007 }
1008 
1009 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1010 {
1011 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1012 }
1013 
1014 static inline void sdhci_msm_complete_pwr_irq_wait(
1015 		struct sdhci_msm_host *msm_host)
1016 {
1017 	wake_up(&msm_host->pwr_irq_wait);
1018 }
1019 
1020 /*
1021  * sdhci_msm_check_power_status API should be called when registers writes
1022  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1023  * To what state the register writes will change the IO lines should be passed
1024  * as the argument req_type. This API will check whether the IO line's state
1025  * is already the expected state and will wait for power irq only if
1026  * power irq is expected to be trigerred based on the current IO line state
1027  * and expected IO line state.
1028  */
1029 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1030 {
1031 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1032 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1033 	bool done = false;
1034 	u32 val;
1035 
1036 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1037 			mmc_hostname(host->mmc), __func__, req_type,
1038 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1039 
1040 	/*
1041 	 * The power interrupt will not be generated for signal voltage
1042 	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1043 	 */
1044 	val = readl(msm_host->core_mem + CORE_MCI_GENERICS);
1045 	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1046 	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1047 		return;
1048 	}
1049 
1050 	/*
1051 	 * The IRQ for request type IO High/LOW will be generated when -
1052 	 * there is a state change in 1.8V enable bit (bit 3) of
1053 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1054 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1055 	 * to set it to 3.3V before card detection happens, the
1056 	 * IRQ doesn't get triggered as there is no state change in this bit.
1057 	 * The driver already handles this case by changing the IO voltage
1058 	 * level to high as part of controller power up sequence. Hence, check
1059 	 * for host->pwr to handle a case where IO voltage high request is
1060 	 * issued even before controller power up.
1061 	 */
1062 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1063 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1064 				mmc_hostname(host->mmc), req_type);
1065 		return;
1066 	}
1067 	if ((req_type & msm_host->curr_pwr_state) ||
1068 			(req_type & msm_host->curr_io_level))
1069 		done = true;
1070 	/*
1071 	 * This is needed here to handle cases where register writes will
1072 	 * not change the current bus state or io level of the controller.
1073 	 * In this case, no power irq will be triggerred and we should
1074 	 * not wait.
1075 	 */
1076 	if (!done) {
1077 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1078 				msm_host->pwr_irq_flag,
1079 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1080 			dev_warn(&msm_host->pdev->dev,
1081 				 "%s: pwr_irq for req: (%d) timed out\n",
1082 				 mmc_hostname(host->mmc), req_type);
1083 	}
1084 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1085 			__func__, req_type);
1086 }
1087 
1088 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1089 {
1090 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1091 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1092 
1093 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1094 			mmc_hostname(host->mmc),
1095 			readl_relaxed(msm_host->core_mem + CORE_PWRCTL_STATUS),
1096 			readl_relaxed(msm_host->core_mem + CORE_PWRCTL_MASK),
1097 			readl_relaxed(msm_host->core_mem + CORE_PWRCTL_CTL));
1098 }
1099 
1100 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1101 {
1102 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1103 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1104 	u32 irq_status, irq_ack = 0;
1105 	int retry = 10;
1106 	int pwr_state = 0, io_level = 0;
1107 
1108 
1109 	irq_status = readl_relaxed(msm_host->core_mem + CORE_PWRCTL_STATUS);
1110 	irq_status &= INT_MASK;
1111 
1112 	writel_relaxed(irq_status, msm_host->core_mem + CORE_PWRCTL_CLEAR);
1113 
1114 	/*
1115 	 * There is a rare HW scenario where the first clear pulse could be
1116 	 * lost when actual reset and clear/read of status register is
1117 	 * happening at a time. Hence, retry for at least 10 times to make
1118 	 * sure status register is cleared. Otherwise, this will result in
1119 	 * a spurious power IRQ resulting in system instability.
1120 	 */
1121 	while (irq_status & readl_relaxed(msm_host->core_mem +
1122 				CORE_PWRCTL_STATUS)) {
1123 		if (retry == 0) {
1124 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1125 					mmc_hostname(host->mmc), irq_status);
1126 			sdhci_msm_dump_pwr_ctrl_regs(host);
1127 			WARN_ON(1);
1128 			break;
1129 		}
1130 		writel_relaxed(irq_status,
1131 				msm_host->core_mem + CORE_PWRCTL_CLEAR);
1132 		retry--;
1133 		udelay(10);
1134 	}
1135 
1136 	/* Handle BUS ON/OFF*/
1137 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1138 		pwr_state = REQ_BUS_ON;
1139 		io_level = REQ_IO_HIGH;
1140 		irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1141 	}
1142 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1143 		pwr_state = REQ_BUS_OFF;
1144 		io_level = REQ_IO_LOW;
1145 		irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1146 	}
1147 	/* Handle IO LOW/HIGH */
1148 	if (irq_status & CORE_PWRCTL_IO_LOW) {
1149 		io_level = REQ_IO_LOW;
1150 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1151 	}
1152 	if (irq_status & CORE_PWRCTL_IO_HIGH) {
1153 		io_level = REQ_IO_HIGH;
1154 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1155 	}
1156 
1157 	/*
1158 	 * The driver has to acknowledge the interrupt, switch voltages and
1159 	 * report back if it succeded or not to this register. The voltage
1160 	 * switches are handled by the sdhci core, so just report success.
1161 	 */
1162 	writel_relaxed(irq_ack, msm_host->core_mem + CORE_PWRCTL_CTL);
1163 
1164 	if (pwr_state)
1165 		msm_host->curr_pwr_state = pwr_state;
1166 	if (io_level)
1167 		msm_host->curr_io_level = io_level;
1168 
1169 	pr_debug("%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1170 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1171 		irq_ack);
1172 }
1173 
1174 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1175 {
1176 	struct sdhci_host *host = (struct sdhci_host *)data;
1177 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1178 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1179 
1180 	sdhci_msm_handle_pwr_irq(host, irq);
1181 	msm_host->pwr_irq_flag = 1;
1182 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1183 
1184 
1185 	return IRQ_HANDLED;
1186 }
1187 
1188 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1189 {
1190 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1191 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1192 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1193 
1194 	return clk_round_rate(core_clk, ULONG_MAX);
1195 }
1196 
1197 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1198 {
1199 	return SDHCI_MSM_MIN_CLOCK;
1200 }
1201 
1202 /**
1203  * __sdhci_msm_set_clock - sdhci_msm clock control.
1204  *
1205  * Description:
1206  * MSM controller does not use internal divider and
1207  * instead directly control the GCC clock as per
1208  * HW recommendation.
1209  **/
1210 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1211 {
1212 	u16 clk;
1213 	/*
1214 	 * Keep actual_clock as zero -
1215 	 * - since there is no divider used so no need of having actual_clock.
1216 	 * - MSM controller uses SDCLK for data timeout calculation. If
1217 	 *   actual_clock is zero, host->clock is taken for calculation.
1218 	 */
1219 	host->mmc->actual_clock = 0;
1220 
1221 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1222 
1223 	if (clock == 0)
1224 		return;
1225 
1226 	/*
1227 	 * MSM controller do not use clock divider.
1228 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1229 	 * clock with no divider value programmed.
1230 	 */
1231 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1232 	sdhci_enable_clk(host, clk);
1233 }
1234 
1235 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1236 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1237 {
1238 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1239 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1240 
1241 	if (!clock) {
1242 		msm_host->clk_rate = clock;
1243 		goto out;
1244 	}
1245 
1246 	sdhci_msm_hc_select_mode(host);
1247 
1248 	msm_set_clock_rate_for_bus_mode(host, clock);
1249 out:
1250 	__sdhci_msm_set_clock(host, clock);
1251 }
1252 
1253 /*
1254  * Platform specific register write functions. This is so that, if any
1255  * register write needs to be followed up by platform specific actions,
1256  * they can be added here. These functions can go to sleep when writes
1257  * to certain registers are done.
1258  * These functions are relying on sdhci_set_ios not using spinlock.
1259  */
1260 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
1261 {
1262 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1263 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1264 	u32 req_type = 0;
1265 
1266 	switch (reg) {
1267 	case SDHCI_HOST_CONTROL2:
1268 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
1269 			REQ_IO_HIGH;
1270 		break;
1271 	case SDHCI_SOFTWARE_RESET:
1272 		if (host->pwr && (val & SDHCI_RESET_ALL))
1273 			req_type = REQ_BUS_OFF;
1274 		break;
1275 	case SDHCI_POWER_CONTROL:
1276 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
1277 		break;
1278 	}
1279 
1280 	if (req_type) {
1281 		msm_host->pwr_irq_flag = 0;
1282 		/*
1283 		 * Since this register write may trigger a power irq, ensure
1284 		 * all previous register writes are complete by this point.
1285 		 */
1286 		mb();
1287 	}
1288 	return req_type;
1289 }
1290 
1291 /* This function may sleep*/
1292 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
1293 {
1294 	u32 req_type = 0;
1295 
1296 	req_type = __sdhci_msm_check_write(host, val, reg);
1297 	writew_relaxed(val, host->ioaddr + reg);
1298 
1299 	if (req_type)
1300 		sdhci_msm_check_power_status(host, req_type);
1301 }
1302 
1303 /* This function may sleep*/
1304 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
1305 {
1306 	u32 req_type = 0;
1307 
1308 	req_type = __sdhci_msm_check_write(host, val, reg);
1309 
1310 	writeb_relaxed(val, host->ioaddr + reg);
1311 
1312 	if (req_type)
1313 		sdhci_msm_check_power_status(host, req_type);
1314 }
1315 
1316 static const struct of_device_id sdhci_msm_dt_match[] = {
1317 	{ .compatible = "qcom,sdhci-msm-v4" },
1318 	{},
1319 };
1320 
1321 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
1322 
1323 static const struct sdhci_ops sdhci_msm_ops = {
1324 	.reset = sdhci_reset,
1325 	.set_clock = sdhci_msm_set_clock,
1326 	.get_min_clock = sdhci_msm_get_min_clock,
1327 	.get_max_clock = sdhci_msm_get_max_clock,
1328 	.set_bus_width = sdhci_set_bus_width,
1329 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
1330 	.write_w = sdhci_msm_writew,
1331 	.write_b = sdhci_msm_writeb,
1332 };
1333 
1334 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
1335 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1336 		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1337 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
1338 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
1339 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
1340 	.ops = &sdhci_msm_ops,
1341 };
1342 
1343 static int sdhci_msm_probe(struct platform_device *pdev)
1344 {
1345 	struct sdhci_host *host;
1346 	struct sdhci_pltfm_host *pltfm_host;
1347 	struct sdhci_msm_host *msm_host;
1348 	struct resource *core_memres;
1349 	struct clk *clk;
1350 	int ret;
1351 	u16 host_version, core_minor;
1352 	u32 core_version, config;
1353 	u8 core_major;
1354 
1355 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
1356 	if (IS_ERR(host))
1357 		return PTR_ERR(host);
1358 
1359 	host->sdma_boundary = 0;
1360 	pltfm_host = sdhci_priv(host);
1361 	msm_host = sdhci_pltfm_priv(pltfm_host);
1362 	msm_host->mmc = host->mmc;
1363 	msm_host->pdev = pdev;
1364 
1365 	ret = mmc_of_parse(host->mmc);
1366 	if (ret)
1367 		goto pltfm_free;
1368 
1369 	sdhci_get_of_property(pdev);
1370 
1371 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
1372 
1373 	/* Setup SDCC bus voter clock. */
1374 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
1375 	if (!IS_ERR(msm_host->bus_clk)) {
1376 		/* Vote for max. clk rate for max. performance */
1377 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
1378 		if (ret)
1379 			goto pltfm_free;
1380 		ret = clk_prepare_enable(msm_host->bus_clk);
1381 		if (ret)
1382 			goto pltfm_free;
1383 	}
1384 
1385 	/* Setup main peripheral bus clock */
1386 	clk = devm_clk_get(&pdev->dev, "iface");
1387 	if (IS_ERR(clk)) {
1388 		ret = PTR_ERR(clk);
1389 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
1390 		goto bus_clk_disable;
1391 	}
1392 	msm_host->bulk_clks[1].clk = clk;
1393 
1394 	/* Setup SDC MMC clock */
1395 	clk = devm_clk_get(&pdev->dev, "core");
1396 	if (IS_ERR(clk)) {
1397 		ret = PTR_ERR(clk);
1398 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
1399 		goto bus_clk_disable;
1400 	}
1401 	msm_host->bulk_clks[0].clk = clk;
1402 
1403 	/* Vote for maximum clock rate for maximum performance */
1404 	ret = clk_set_rate(clk, INT_MAX);
1405 	if (ret)
1406 		dev_warn(&pdev->dev, "core clock boost failed\n");
1407 
1408 	clk = devm_clk_get(&pdev->dev, "cal");
1409 	if (IS_ERR(clk))
1410 		clk = NULL;
1411 	msm_host->bulk_clks[2].clk = clk;
1412 
1413 	clk = devm_clk_get(&pdev->dev, "sleep");
1414 	if (IS_ERR(clk))
1415 		clk = NULL;
1416 	msm_host->bulk_clks[3].clk = clk;
1417 
1418 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
1419 				      msm_host->bulk_clks);
1420 	if (ret)
1421 		goto bus_clk_disable;
1422 
1423 	/*
1424 	 * xo clock is needed for FLL feature of cm_dll.
1425 	 * In case if xo clock is not mentioned in DT, warn and proceed.
1426 	 */
1427 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
1428 	if (IS_ERR(msm_host->xo_clk)) {
1429 		ret = PTR_ERR(msm_host->xo_clk);
1430 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
1431 	}
1432 
1433 	core_memres = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1434 	msm_host->core_mem = devm_ioremap_resource(&pdev->dev, core_memres);
1435 
1436 	if (IS_ERR(msm_host->core_mem)) {
1437 		dev_err(&pdev->dev, "Failed to remap registers\n");
1438 		ret = PTR_ERR(msm_host->core_mem);
1439 		goto clk_disable;
1440 	}
1441 
1442 	/* Reset the vendor spec register to power on reset state */
1443 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
1444 		       host->ioaddr + CORE_VENDOR_SPEC);
1445 
1446 	/* Set HC_MODE_EN bit in HC_MODE register */
1447 	writel_relaxed(HC_MODE_EN, (msm_host->core_mem + CORE_HC_MODE));
1448 
1449 	config = readl_relaxed(msm_host->core_mem + CORE_HC_MODE);
1450 	config |= FF_CLK_SW_RST_DIS;
1451 	writel_relaxed(config, msm_host->core_mem + CORE_HC_MODE);
1452 
1453 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
1454 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
1455 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
1456 			       SDHCI_VENDOR_VER_SHIFT));
1457 
1458 	core_version = readl_relaxed(msm_host->core_mem + CORE_MCI_VERSION);
1459 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
1460 		      CORE_VERSION_MAJOR_SHIFT;
1461 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
1462 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
1463 		core_version, core_major, core_minor);
1464 
1465 	if (core_major == 1 && core_minor >= 0x42)
1466 		msm_host->use_14lpp_dll_reset = true;
1467 
1468 	/*
1469 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
1470 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
1471 	 */
1472 	if (core_major == 1 && core_minor < 0x34)
1473 		msm_host->use_cdclp533 = true;
1474 
1475 	/*
1476 	 * Support for some capabilities is not advertised by newer
1477 	 * controller versions and must be explicitly enabled.
1478 	 */
1479 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
1480 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
1481 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
1482 		writel_relaxed(config, host->ioaddr +
1483 			       CORE_VENDOR_SPEC_CAPABILITIES0);
1484 	}
1485 
1486 	/*
1487 	 * Power on reset state may trigger power irq if previous status of
1488 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
1489 	 * interrupt in GIC, any pending power irq interrupt should be
1490 	 * acknowledged. Otherwise power irq interrupt handler would be
1491 	 * fired prematurely.
1492 	 */
1493 	sdhci_msm_handle_pwr_irq(host, 0);
1494 
1495 	/*
1496 	 * Ensure that above writes are propogated before interrupt enablement
1497 	 * in GIC.
1498 	 */
1499 	mb();
1500 
1501 	/* Setup IRQ for handling power/voltage tasks with PMIC */
1502 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
1503 	if (msm_host->pwr_irq < 0) {
1504 		dev_err(&pdev->dev, "Get pwr_irq failed (%d)\n",
1505 			msm_host->pwr_irq);
1506 		ret = msm_host->pwr_irq;
1507 		goto clk_disable;
1508 	}
1509 
1510 	sdhci_msm_init_pwr_irq_wait(msm_host);
1511 	/* Enable pwr irq interrupts */
1512 	writel_relaxed(INT_MASK, msm_host->core_mem + CORE_PWRCTL_MASK);
1513 
1514 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
1515 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
1516 					dev_name(&pdev->dev), host);
1517 	if (ret) {
1518 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
1519 		goto clk_disable;
1520 	}
1521 
1522 	pm_runtime_get_noresume(&pdev->dev);
1523 	pm_runtime_set_active(&pdev->dev);
1524 	pm_runtime_enable(&pdev->dev);
1525 	pm_runtime_set_autosuspend_delay(&pdev->dev,
1526 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
1527 	pm_runtime_use_autosuspend(&pdev->dev);
1528 
1529 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
1530 	ret = sdhci_add_host(host);
1531 	if (ret)
1532 		goto pm_runtime_disable;
1533 
1534 	pm_runtime_mark_last_busy(&pdev->dev);
1535 	pm_runtime_put_autosuspend(&pdev->dev);
1536 
1537 	return 0;
1538 
1539 pm_runtime_disable:
1540 	pm_runtime_disable(&pdev->dev);
1541 	pm_runtime_set_suspended(&pdev->dev);
1542 	pm_runtime_put_noidle(&pdev->dev);
1543 clk_disable:
1544 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1545 				   msm_host->bulk_clks);
1546 bus_clk_disable:
1547 	if (!IS_ERR(msm_host->bus_clk))
1548 		clk_disable_unprepare(msm_host->bus_clk);
1549 pltfm_free:
1550 	sdhci_pltfm_free(pdev);
1551 	return ret;
1552 }
1553 
1554 static int sdhci_msm_remove(struct platform_device *pdev)
1555 {
1556 	struct sdhci_host *host = platform_get_drvdata(pdev);
1557 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1558 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1559 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
1560 		    0xffffffff);
1561 
1562 	sdhci_remove_host(host, dead);
1563 
1564 	pm_runtime_get_sync(&pdev->dev);
1565 	pm_runtime_disable(&pdev->dev);
1566 	pm_runtime_put_noidle(&pdev->dev);
1567 
1568 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1569 				   msm_host->bulk_clks);
1570 	if (!IS_ERR(msm_host->bus_clk))
1571 		clk_disable_unprepare(msm_host->bus_clk);
1572 	sdhci_pltfm_free(pdev);
1573 	return 0;
1574 }
1575 
1576 #ifdef CONFIG_PM
1577 static int sdhci_msm_runtime_suspend(struct device *dev)
1578 {
1579 	struct sdhci_host *host = dev_get_drvdata(dev);
1580 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1581 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1582 
1583 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1584 				   msm_host->bulk_clks);
1585 
1586 	return 0;
1587 }
1588 
1589 static int sdhci_msm_runtime_resume(struct device *dev)
1590 {
1591 	struct sdhci_host *host = dev_get_drvdata(dev);
1592 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1593 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1594 
1595 	return clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
1596 				       msm_host->bulk_clks);
1597 }
1598 #endif
1599 
1600 static const struct dev_pm_ops sdhci_msm_pm_ops = {
1601 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1602 				pm_runtime_force_resume)
1603 	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
1604 			   sdhci_msm_runtime_resume,
1605 			   NULL)
1606 };
1607 
1608 static struct platform_driver sdhci_msm_driver = {
1609 	.probe = sdhci_msm_probe,
1610 	.remove = sdhci_msm_remove,
1611 	.driver = {
1612 		   .name = "sdhci_msm",
1613 		   .of_match_table = sdhci_msm_dt_match,
1614 		   .pm = &sdhci_msm_pm_ops,
1615 	},
1616 };
1617 
1618 module_platform_driver(sdhci_msm_driver);
1619 
1620 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
1621 MODULE_LICENSE("GPL v2");
1622