1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver 4 * 5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/delay.h> 10 #include <linux/mmc/mmc.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/pm_opp.h> 13 #include <linux/slab.h> 14 #include <linux/iopoll.h> 15 #include <linux/regulator/consumer.h> 16 #include <linux/interconnect.h> 17 #include <linux/of.h> 18 #include <linux/pinctrl/consumer.h> 19 #include <linux/reset.h> 20 21 #include <soc/qcom/ice.h> 22 23 #include "sdhci-cqhci.h" 24 #include "sdhci-pltfm.h" 25 #include "cqhci.h" 26 27 #define CORE_MCI_VERSION 0x50 28 #define CORE_VERSION_MAJOR_SHIFT 28 29 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT) 30 #define CORE_VERSION_MINOR_MASK 0xff 31 32 #define CORE_MCI_GENERICS 0x70 33 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29) 34 35 #define HC_MODE_EN 0x1 36 #define CORE_POWER 0x0 37 #define CORE_SW_RST BIT(7) 38 #define FF_CLK_SW_RST_DIS BIT(13) 39 40 #define CORE_PWRCTL_BUS_OFF BIT(0) 41 #define CORE_PWRCTL_BUS_ON BIT(1) 42 #define CORE_PWRCTL_IO_LOW BIT(2) 43 #define CORE_PWRCTL_IO_HIGH BIT(3) 44 #define CORE_PWRCTL_BUS_SUCCESS BIT(0) 45 #define CORE_PWRCTL_BUS_FAIL BIT(1) 46 #define CORE_PWRCTL_IO_SUCCESS BIT(2) 47 #define CORE_PWRCTL_IO_FAIL BIT(3) 48 #define REQ_BUS_OFF BIT(0) 49 #define REQ_BUS_ON BIT(1) 50 #define REQ_IO_LOW BIT(2) 51 #define REQ_IO_HIGH BIT(3) 52 #define INT_MASK 0xf 53 #define MAX_PHASES 16 54 #define CORE_DLL_LOCK BIT(7) 55 #define CORE_DDR_DLL_LOCK BIT(11) 56 #define CORE_DLL_EN BIT(16) 57 #define CORE_CDR_EN BIT(17) 58 #define CORE_CK_OUT_EN BIT(18) 59 #define CORE_CDR_EXT_EN BIT(19) 60 #define CORE_DLL_PDN BIT(29) 61 #define CORE_DLL_RST BIT(30) 62 #define CORE_CMD_DAT_TRACK_SEL BIT(0) 63 64 #define CORE_DDR_CAL_EN BIT(0) 65 #define CORE_FLL_CYCLE_CNT BIT(18) 66 #define CORE_DLL_CLOCK_DISABLE BIT(21) 67 68 #define DLL_USR_CTL_POR_VAL 0x10800 69 #define ENABLE_DLL_LOCK_STATUS BIT(26) 70 #define FINE_TUNE_MODE_EN BIT(27) 71 #define BIAS_OK_SIGNAL BIT(29) 72 73 #define DLL_CONFIG_3_LOW_FREQ_VAL 0x08 74 #define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10 75 76 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c 77 #define CORE_CLK_PWRSAVE BIT(1) 78 #define CORE_HC_MCLK_SEL_DFLT (2 << 8) 79 #define CORE_HC_MCLK_SEL_HS400 (3 << 8) 80 #define CORE_HC_MCLK_SEL_MASK (3 << 8) 81 #define CORE_IO_PAD_PWR_SWITCH_EN BIT(15) 82 #define CORE_IO_PAD_PWR_SWITCH BIT(16) 83 #define CORE_HC_SELECT_IN_EN BIT(18) 84 #define CORE_HC_SELECT_IN_HS400 (6 << 19) 85 #define CORE_HC_SELECT_IN_MASK (7 << 19) 86 87 #define CORE_3_0V_SUPPORT BIT(25) 88 #define CORE_1_8V_SUPPORT BIT(26) 89 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT) 90 91 #define CORE_CSR_CDC_CTLR_CFG0 0x130 92 #define CORE_SW_TRIG_FULL_CALIB BIT(16) 93 #define CORE_HW_AUTOCAL_ENA BIT(17) 94 95 #define CORE_CSR_CDC_CTLR_CFG1 0x134 96 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138 97 #define CORE_TIMER_ENA BIT(16) 98 99 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C 100 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140 101 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144 102 #define CORE_CDC_OFFSET_CFG 0x14C 103 #define CORE_CSR_CDC_DELAY_CFG 0x150 104 #define CORE_CDC_SLAVE_DDA_CFG 0x160 105 #define CORE_CSR_CDC_STATUS0 0x164 106 #define CORE_CALIBRATION_DONE BIT(0) 107 108 #define CORE_CDC_ERROR_CODE_MASK 0x7000000 109 110 #define CORE_CSR_CDC_GEN_CFG 0x178 111 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0) 112 #define CORE_CDC_SWITCH_RC_EN BIT(1) 113 114 #define CORE_CDC_T4_DLY_SEL BIT(0) 115 #define CORE_CMDIN_RCLK_EN BIT(1) 116 #define CORE_START_CDC_TRAFFIC BIT(6) 117 118 #define CORE_PWRSAVE_DLL BIT(3) 119 120 #define DDR_CONFIG_POR_VAL 0x80040873 121 122 123 #define INVALID_TUNING_PHASE -1 124 #define SDHCI_MSM_MIN_CLOCK 400000 125 #define CORE_FREQ_100MHZ (100 * 1000 * 1000) 126 127 #define CDR_SELEXT_SHIFT 20 128 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT) 129 #define CMUX_SHIFT_PHASE_SHIFT 24 130 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT) 131 132 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50 133 134 /* Timeout value to avoid infinite waiting for pwr_irq */ 135 #define MSM_PWR_IRQ_TIMEOUT_MS 5000 136 137 /* Max load for eMMC Vdd-io supply */ 138 #define MMC_VQMMC_MAX_LOAD_UA 325000 139 140 #define msm_host_readl(msm_host, host, offset) \ 141 msm_host->var_ops->msm_readl_relaxed(host, offset) 142 143 #define msm_host_writel(msm_host, val, host, offset) \ 144 msm_host->var_ops->msm_writel_relaxed(val, host, offset) 145 146 /* CQHCI vendor specific registers */ 147 #define CQHCI_VENDOR_CFG1 0xA00 148 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13) 149 150 struct sdhci_msm_offset { 151 u32 core_hc_mode; 152 u32 core_mci_data_cnt; 153 u32 core_mci_status; 154 u32 core_mci_fifo_cnt; 155 u32 core_mci_version; 156 u32 core_generics; 157 u32 core_testbus_config; 158 u32 core_testbus_sel2_bit; 159 u32 core_testbus_ena; 160 u32 core_testbus_sel2; 161 u32 core_pwrctl_status; 162 u32 core_pwrctl_mask; 163 u32 core_pwrctl_clear; 164 u32 core_pwrctl_ctl; 165 u32 core_sdcc_debug_reg; 166 u32 core_dll_config; 167 u32 core_dll_status; 168 u32 core_vendor_spec; 169 u32 core_vendor_spec_adma_err_addr0; 170 u32 core_vendor_spec_adma_err_addr1; 171 u32 core_vendor_spec_func2; 172 u32 core_vendor_spec_capabilities0; 173 u32 core_ddr_200_cfg; 174 u32 core_vendor_spec3; 175 u32 core_dll_config_2; 176 u32 core_dll_config_3; 177 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */ 178 u32 core_ddr_config; 179 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */ 180 }; 181 182 static const struct sdhci_msm_offset sdhci_msm_v5_offset = { 183 .core_mci_data_cnt = 0x35c, 184 .core_mci_status = 0x324, 185 .core_mci_fifo_cnt = 0x308, 186 .core_mci_version = 0x318, 187 .core_generics = 0x320, 188 .core_testbus_config = 0x32c, 189 .core_testbus_sel2_bit = 3, 190 .core_testbus_ena = (1 << 31), 191 .core_testbus_sel2 = (1 << 3), 192 .core_pwrctl_status = 0x240, 193 .core_pwrctl_mask = 0x244, 194 .core_pwrctl_clear = 0x248, 195 .core_pwrctl_ctl = 0x24c, 196 .core_sdcc_debug_reg = 0x358, 197 .core_dll_config = 0x200, 198 .core_dll_status = 0x208, 199 .core_vendor_spec = 0x20c, 200 .core_vendor_spec_adma_err_addr0 = 0x214, 201 .core_vendor_spec_adma_err_addr1 = 0x218, 202 .core_vendor_spec_func2 = 0x210, 203 .core_vendor_spec_capabilities0 = 0x21c, 204 .core_ddr_200_cfg = 0x224, 205 .core_vendor_spec3 = 0x250, 206 .core_dll_config_2 = 0x254, 207 .core_dll_config_3 = 0x258, 208 .core_ddr_config = 0x25c, 209 .core_dll_usr_ctl = 0x388, 210 }; 211 212 static const struct sdhci_msm_offset sdhci_msm_mci_offset = { 213 .core_hc_mode = 0x78, 214 .core_mci_data_cnt = 0x30, 215 .core_mci_status = 0x34, 216 .core_mci_fifo_cnt = 0x44, 217 .core_mci_version = 0x050, 218 .core_generics = 0x70, 219 .core_testbus_config = 0x0cc, 220 .core_testbus_sel2_bit = 4, 221 .core_testbus_ena = (1 << 3), 222 .core_testbus_sel2 = (1 << 4), 223 .core_pwrctl_status = 0xdc, 224 .core_pwrctl_mask = 0xe0, 225 .core_pwrctl_clear = 0xe4, 226 .core_pwrctl_ctl = 0xe8, 227 .core_sdcc_debug_reg = 0x124, 228 .core_dll_config = 0x100, 229 .core_dll_status = 0x108, 230 .core_vendor_spec = 0x10c, 231 .core_vendor_spec_adma_err_addr0 = 0x114, 232 .core_vendor_spec_adma_err_addr1 = 0x118, 233 .core_vendor_spec_func2 = 0x110, 234 .core_vendor_spec_capabilities0 = 0x11c, 235 .core_ddr_200_cfg = 0x184, 236 .core_vendor_spec3 = 0x1b0, 237 .core_dll_config_2 = 0x1b4, 238 .core_ddr_config_old = 0x1b8, 239 .core_ddr_config = 0x1bc, 240 }; 241 242 struct sdhci_msm_variant_ops { 243 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset); 244 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host, 245 u32 offset); 246 }; 247 248 /* 249 * From V5, register spaces have changed. Wrap this info in a structure 250 * and choose the data_structure based on version info mentioned in DT. 251 */ 252 struct sdhci_msm_variant_info { 253 bool mci_removed; 254 bool restore_dll_config; 255 const struct sdhci_msm_variant_ops *var_ops; 256 const struct sdhci_msm_offset *offset; 257 }; 258 259 struct sdhci_msm_host { 260 struct platform_device *pdev; 261 void __iomem *core_mem; /* MSM SDCC mapped address */ 262 int pwr_irq; /* power irq */ 263 struct clk *bus_clk; /* SDHC bus voter clock */ 264 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/ 265 /* core, iface, cal and sleep clocks */ 266 struct clk_bulk_data bulk_clks[4]; 267 #ifdef CONFIG_MMC_CRYPTO 268 struct qcom_ice *ice; 269 #endif 270 unsigned long clk_rate; 271 struct mmc_host *mmc; 272 bool use_14lpp_dll_reset; 273 bool tuning_done; 274 bool calibration_done; 275 u8 saved_tuning_phase; 276 bool use_cdclp533; 277 u32 curr_pwr_state; 278 u32 curr_io_level; 279 wait_queue_head_t pwr_irq_wait; 280 bool pwr_irq_flag; 281 u32 caps_0; 282 bool mci_removed; 283 bool restore_dll_config; 284 const struct sdhci_msm_variant_ops *var_ops; 285 const struct sdhci_msm_offset *offset; 286 bool use_cdr; 287 u32 transfer_mode; 288 bool updated_ddr_cfg; 289 bool uses_tassadar_dll; 290 u32 dll_config; 291 u32 ddr_config; 292 bool vqmmc_enabled; 293 }; 294 295 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host) 296 { 297 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 298 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 299 300 return msm_host->offset; 301 } 302 303 /* 304 * APIs to read/write to vendor specific registers which were there in the 305 * core_mem region before MCI was removed. 306 */ 307 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host, 308 u32 offset) 309 { 310 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 311 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 312 313 return readl_relaxed(msm_host->core_mem + offset); 314 } 315 316 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host, 317 u32 offset) 318 { 319 return readl_relaxed(host->ioaddr + offset); 320 } 321 322 static void sdhci_msm_mci_variant_writel_relaxed(u32 val, 323 struct sdhci_host *host, u32 offset) 324 { 325 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 326 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 327 328 writel_relaxed(val, msm_host->core_mem + offset); 329 } 330 331 static void sdhci_msm_v5_variant_writel_relaxed(u32 val, 332 struct sdhci_host *host, u32 offset) 333 { 334 writel_relaxed(val, host->ioaddr + offset); 335 } 336 337 static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host) 338 { 339 struct mmc_ios ios = host->mmc->ios; 340 /* 341 * The SDHC requires internal clock frequency to be double the 342 * actual clock that will be set for DDR mode. The controller 343 * uses the faster clock(100/400MHz) for some of its parts and 344 * send the actual required clock (50/200MHz) to the card. 345 */ 346 if (ios.timing == MMC_TIMING_UHS_DDR50 || 347 ios.timing == MMC_TIMING_MMC_DDR52 || 348 ios.timing == MMC_TIMING_MMC_HS400 || 349 host->flags & SDHCI_HS400_TUNING) 350 return 2; 351 return 1; 352 } 353 354 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host, 355 unsigned int clock) 356 { 357 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 358 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 359 struct mmc_ios curr_ios = host->mmc->ios; 360 struct clk *core_clk = msm_host->bulk_clks[0].clk; 361 unsigned long achieved_rate; 362 unsigned int desired_rate; 363 unsigned int mult; 364 int rc; 365 366 mult = msm_get_clock_mult_for_bus_mode(host); 367 desired_rate = clock * mult; 368 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate); 369 if (rc) { 370 pr_err("%s: Failed to set clock at rate %u at timing %d\n", 371 mmc_hostname(host->mmc), desired_rate, curr_ios.timing); 372 return; 373 } 374 375 /* 376 * Qualcomm clock drivers by default round clock _up_ if they can't 377 * make the requested rate. This is not good for SD. Yell if we 378 * encounter it. 379 */ 380 achieved_rate = clk_get_rate(core_clk); 381 if (achieved_rate > desired_rate) 382 pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n", 383 mmc_hostname(host->mmc), desired_rate, achieved_rate); 384 host->mmc->actual_clock = achieved_rate / mult; 385 386 /* Stash the rate we requested to use in sdhci_msm_runtime_resume() */ 387 msm_host->clk_rate = desired_rate; 388 389 pr_debug("%s: Setting clock at rate %lu at timing %d\n", 390 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing); 391 } 392 393 /* Platform specific tuning */ 394 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll) 395 { 396 u32 wait_cnt = 50; 397 u8 ck_out_en; 398 struct mmc_host *mmc = host->mmc; 399 const struct sdhci_msm_offset *msm_offset = 400 sdhci_priv_msm_offset(host); 401 402 /* Poll for CK_OUT_EN bit. max. poll time = 50us */ 403 ck_out_en = !!(readl_relaxed(host->ioaddr + 404 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 405 406 while (ck_out_en != poll) { 407 if (--wait_cnt == 0) { 408 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n", 409 mmc_hostname(mmc), poll); 410 return -ETIMEDOUT; 411 } 412 udelay(1); 413 414 ck_out_en = !!(readl_relaxed(host->ioaddr + 415 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 416 } 417 418 return 0; 419 } 420 421 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase) 422 { 423 int rc; 424 static const u8 grey_coded_phase_table[] = { 425 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 426 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8 427 }; 428 unsigned long flags; 429 u32 config; 430 struct mmc_host *mmc = host->mmc; 431 const struct sdhci_msm_offset *msm_offset = 432 sdhci_priv_msm_offset(host); 433 434 if (phase > 0xf) 435 return -EINVAL; 436 437 spin_lock_irqsave(&host->lock, flags); 438 439 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 440 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN); 441 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN); 442 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 443 444 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */ 445 rc = msm_dll_poll_ck_out_en(host, 0); 446 if (rc) 447 goto err_out; 448 449 /* 450 * Write the selected DLL clock output phase (0 ... 15) 451 * to CDR_SELEXT bit field of DLL_CONFIG register. 452 */ 453 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 454 config &= ~CDR_SELEXT_MASK; 455 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT; 456 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 457 458 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 459 config |= CORE_CK_OUT_EN; 460 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 461 462 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */ 463 rc = msm_dll_poll_ck_out_en(host, 1); 464 if (rc) 465 goto err_out; 466 467 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 468 config |= CORE_CDR_EN; 469 config &= ~CORE_CDR_EXT_EN; 470 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 471 goto out; 472 473 err_out: 474 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n", 475 mmc_hostname(mmc), phase); 476 out: 477 spin_unlock_irqrestore(&host->lock, flags); 478 return rc; 479 } 480 481 /* 482 * Find out the greatest range of consecuitive selected 483 * DLL clock output phases that can be used as sampling 484 * setting for SD3.0 UHS-I card read operation (in SDR104 485 * timing mode) or for eMMC4.5 card read operation (in 486 * HS400/HS200 timing mode). 487 * Select the 3/4 of the range and configure the DLL with the 488 * selected DLL clock output phase. 489 */ 490 491 static int msm_find_most_appropriate_phase(struct sdhci_host *host, 492 u8 *phase_table, u8 total_phases) 493 { 494 int ret; 495 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} }; 496 u8 phases_per_row[MAX_PHASES] = { 0 }; 497 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0; 498 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0; 499 bool phase_0_found = false, phase_15_found = false; 500 struct mmc_host *mmc = host->mmc; 501 502 if (!total_phases || (total_phases > MAX_PHASES)) { 503 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n", 504 mmc_hostname(mmc), total_phases); 505 return -EINVAL; 506 } 507 508 for (cnt = 0; cnt < total_phases; cnt++) { 509 ranges[row_index][col_index] = phase_table[cnt]; 510 phases_per_row[row_index] += 1; 511 col_index++; 512 513 if ((cnt + 1) == total_phases) { 514 continue; 515 /* check if next phase in phase_table is consecutive or not */ 516 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) { 517 row_index++; 518 col_index = 0; 519 } 520 } 521 522 if (row_index >= MAX_PHASES) 523 return -EINVAL; 524 525 /* Check if phase-0 is present in first valid window? */ 526 if (!ranges[0][0]) { 527 phase_0_found = true; 528 phase_0_raw_index = 0; 529 /* Check if cycle exist between 2 valid windows */ 530 for (cnt = 1; cnt <= row_index; cnt++) { 531 if (phases_per_row[cnt]) { 532 for (i = 0; i < phases_per_row[cnt]; i++) { 533 if (ranges[cnt][i] == 15) { 534 phase_15_found = true; 535 phase_15_raw_index = cnt; 536 break; 537 } 538 } 539 } 540 } 541 } 542 543 /* If 2 valid windows form cycle then merge them as single window */ 544 if (phase_0_found && phase_15_found) { 545 /* number of phases in raw where phase 0 is present */ 546 u8 phases_0 = phases_per_row[phase_0_raw_index]; 547 /* number of phases in raw where phase 15 is present */ 548 u8 phases_15 = phases_per_row[phase_15_raw_index]; 549 550 if (phases_0 + phases_15 >= MAX_PHASES) 551 /* 552 * If there are more than 1 phase windows then total 553 * number of phases in both the windows should not be 554 * more than or equal to MAX_PHASES. 555 */ 556 return -EINVAL; 557 558 /* Merge 2 cyclic windows */ 559 i = phases_15; 560 for (cnt = 0; cnt < phases_0; cnt++) { 561 ranges[phase_15_raw_index][i] = 562 ranges[phase_0_raw_index][cnt]; 563 if (++i >= MAX_PHASES) 564 break; 565 } 566 567 phases_per_row[phase_0_raw_index] = 0; 568 phases_per_row[phase_15_raw_index] = phases_15 + phases_0; 569 } 570 571 for (cnt = 0; cnt <= row_index; cnt++) { 572 if (phases_per_row[cnt] > curr_max) { 573 curr_max = phases_per_row[cnt]; 574 selected_row_index = cnt; 575 } 576 } 577 578 i = (curr_max * 3) / 4; 579 if (i) 580 i--; 581 582 ret = ranges[selected_row_index][i]; 583 584 if (ret >= MAX_PHASES) { 585 ret = -EINVAL; 586 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n", 587 mmc_hostname(mmc), ret); 588 } 589 590 return ret; 591 } 592 593 static inline void msm_cm_dll_set_freq(struct sdhci_host *host) 594 { 595 u32 mclk_freq = 0, config; 596 const struct sdhci_msm_offset *msm_offset = 597 sdhci_priv_msm_offset(host); 598 599 /* Program the MCLK value to MCLK_FREQ bit field */ 600 if (host->clock <= 112000000) 601 mclk_freq = 0; 602 else if (host->clock <= 125000000) 603 mclk_freq = 1; 604 else if (host->clock <= 137000000) 605 mclk_freq = 2; 606 else if (host->clock <= 150000000) 607 mclk_freq = 3; 608 else if (host->clock <= 162000000) 609 mclk_freq = 4; 610 else if (host->clock <= 175000000) 611 mclk_freq = 5; 612 else if (host->clock <= 187000000) 613 mclk_freq = 6; 614 else if (host->clock <= 200000000) 615 mclk_freq = 7; 616 617 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 618 config &= ~CMUX_SHIFT_PHASE_MASK; 619 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT; 620 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 621 } 622 623 /* Initialize the DLL (Programmable Delay Line) */ 624 static int msm_init_cm_dll(struct sdhci_host *host) 625 { 626 struct mmc_host *mmc = host->mmc; 627 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 628 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 629 int wait_cnt = 50; 630 unsigned long flags, xo_clk = 0; 631 u32 config; 632 const struct sdhci_msm_offset *msm_offset = 633 msm_host->offset; 634 635 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk)) 636 xo_clk = clk_get_rate(msm_host->xo_clk); 637 638 spin_lock_irqsave(&host->lock, flags); 639 640 /* 641 * Make sure that clock is always enabled when DLL 642 * tuning is in progress. Keeping PWRSAVE ON may 643 * turn off the clock. 644 */ 645 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 646 config &= ~CORE_CLK_PWRSAVE; 647 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 648 649 if (msm_host->dll_config) 650 writel_relaxed(msm_host->dll_config, 651 host->ioaddr + msm_offset->core_dll_config); 652 653 if (msm_host->use_14lpp_dll_reset) { 654 config = readl_relaxed(host->ioaddr + 655 msm_offset->core_dll_config); 656 config &= ~CORE_CK_OUT_EN; 657 writel_relaxed(config, host->ioaddr + 658 msm_offset->core_dll_config); 659 660 config = readl_relaxed(host->ioaddr + 661 msm_offset->core_dll_config_2); 662 config |= CORE_DLL_CLOCK_DISABLE; 663 writel_relaxed(config, host->ioaddr + 664 msm_offset->core_dll_config_2); 665 } 666 667 config = readl_relaxed(host->ioaddr + 668 msm_offset->core_dll_config); 669 config |= CORE_DLL_RST; 670 writel_relaxed(config, host->ioaddr + 671 msm_offset->core_dll_config); 672 673 config = readl_relaxed(host->ioaddr + 674 msm_offset->core_dll_config); 675 config |= CORE_DLL_PDN; 676 writel_relaxed(config, host->ioaddr + 677 msm_offset->core_dll_config); 678 679 if (!msm_host->dll_config) 680 msm_cm_dll_set_freq(host); 681 682 if (msm_host->use_14lpp_dll_reset && 683 !IS_ERR_OR_NULL(msm_host->xo_clk)) { 684 u32 mclk_freq = 0; 685 686 config = readl_relaxed(host->ioaddr + 687 msm_offset->core_dll_config_2); 688 config &= CORE_FLL_CYCLE_CNT; 689 if (config) 690 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8), 691 xo_clk); 692 else 693 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4), 694 xo_clk); 695 696 config = readl_relaxed(host->ioaddr + 697 msm_offset->core_dll_config_2); 698 config &= ~(0xFF << 10); 699 config |= mclk_freq << 10; 700 701 writel_relaxed(config, host->ioaddr + 702 msm_offset->core_dll_config_2); 703 /* wait for 5us before enabling DLL clock */ 704 udelay(5); 705 } 706 707 config = readl_relaxed(host->ioaddr + 708 msm_offset->core_dll_config); 709 config &= ~CORE_DLL_RST; 710 writel_relaxed(config, host->ioaddr + 711 msm_offset->core_dll_config); 712 713 config = readl_relaxed(host->ioaddr + 714 msm_offset->core_dll_config); 715 config &= ~CORE_DLL_PDN; 716 writel_relaxed(config, host->ioaddr + 717 msm_offset->core_dll_config); 718 719 if (msm_host->use_14lpp_dll_reset) { 720 if (!msm_host->dll_config) 721 msm_cm_dll_set_freq(host); 722 config = readl_relaxed(host->ioaddr + 723 msm_offset->core_dll_config_2); 724 config &= ~CORE_DLL_CLOCK_DISABLE; 725 writel_relaxed(config, host->ioaddr + 726 msm_offset->core_dll_config_2); 727 } 728 729 /* 730 * Configure DLL user control register to enable DLL status. 731 * This setting is applicable to SDCC v5.1 onwards only. 732 */ 733 if (msm_host->uses_tassadar_dll) { 734 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN | 735 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL; 736 writel_relaxed(config, host->ioaddr + 737 msm_offset->core_dll_usr_ctl); 738 739 config = readl_relaxed(host->ioaddr + 740 msm_offset->core_dll_config_3); 741 config &= ~0xFF; 742 if (msm_host->clk_rate < 150000000) 743 config |= DLL_CONFIG_3_LOW_FREQ_VAL; 744 else 745 config |= DLL_CONFIG_3_HIGH_FREQ_VAL; 746 writel_relaxed(config, host->ioaddr + 747 msm_offset->core_dll_config_3); 748 } 749 750 config = readl_relaxed(host->ioaddr + 751 msm_offset->core_dll_config); 752 config |= CORE_DLL_EN; 753 writel_relaxed(config, host->ioaddr + 754 msm_offset->core_dll_config); 755 756 config = readl_relaxed(host->ioaddr + 757 msm_offset->core_dll_config); 758 config |= CORE_CK_OUT_EN; 759 writel_relaxed(config, host->ioaddr + 760 msm_offset->core_dll_config); 761 762 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */ 763 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) & 764 CORE_DLL_LOCK)) { 765 /* max. wait for 50us sec for LOCK bit to be set */ 766 if (--wait_cnt == 0) { 767 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n", 768 mmc_hostname(mmc)); 769 spin_unlock_irqrestore(&host->lock, flags); 770 return -ETIMEDOUT; 771 } 772 udelay(1); 773 } 774 775 spin_unlock_irqrestore(&host->lock, flags); 776 return 0; 777 } 778 779 static void msm_hc_select_default(struct sdhci_host *host) 780 { 781 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 782 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 783 u32 config; 784 const struct sdhci_msm_offset *msm_offset = 785 msm_host->offset; 786 787 if (!msm_host->use_cdclp533) { 788 config = readl_relaxed(host->ioaddr + 789 msm_offset->core_vendor_spec3); 790 config &= ~CORE_PWRSAVE_DLL; 791 writel_relaxed(config, host->ioaddr + 792 msm_offset->core_vendor_spec3); 793 } 794 795 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 796 config &= ~CORE_HC_MCLK_SEL_MASK; 797 config |= CORE_HC_MCLK_SEL_DFLT; 798 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 799 800 /* 801 * Disable HC_SELECT_IN to be able to use the UHS mode select 802 * configuration from Host Control2 register for all other 803 * modes. 804 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field 805 * in VENDOR_SPEC_FUNC 806 */ 807 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 808 config &= ~CORE_HC_SELECT_IN_EN; 809 config &= ~CORE_HC_SELECT_IN_MASK; 810 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 811 812 /* 813 * Make sure above writes impacting free running MCLK are completed 814 * before changing the clk_rate at GCC. 815 */ 816 wmb(); 817 } 818 819 static void msm_hc_select_hs400(struct sdhci_host *host) 820 { 821 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 822 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 823 struct mmc_ios ios = host->mmc->ios; 824 u32 config, dll_lock; 825 int rc; 826 const struct sdhci_msm_offset *msm_offset = 827 msm_host->offset; 828 829 /* Select the divided clock (free running MCLK/2) */ 830 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 831 config &= ~CORE_HC_MCLK_SEL_MASK; 832 config |= CORE_HC_MCLK_SEL_HS400; 833 834 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 835 /* 836 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC 837 * register 838 */ 839 if ((msm_host->tuning_done || ios.enhanced_strobe) && 840 !msm_host->calibration_done) { 841 config = readl_relaxed(host->ioaddr + 842 msm_offset->core_vendor_spec); 843 config |= CORE_HC_SELECT_IN_HS400; 844 config |= CORE_HC_SELECT_IN_EN; 845 writel_relaxed(config, host->ioaddr + 846 msm_offset->core_vendor_spec); 847 } 848 if (!msm_host->clk_rate && !msm_host->use_cdclp533) { 849 /* 850 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in 851 * core_dll_status to be set. This should get set 852 * within 15 us at 200 MHz. 853 */ 854 rc = readl_relaxed_poll_timeout(host->ioaddr + 855 msm_offset->core_dll_status, 856 dll_lock, 857 (dll_lock & 858 (CORE_DLL_LOCK | 859 CORE_DDR_DLL_LOCK)), 10, 860 1000); 861 if (rc == -ETIMEDOUT) 862 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n", 863 mmc_hostname(host->mmc), dll_lock); 864 } 865 /* 866 * Make sure above writes impacting free running MCLK are completed 867 * before changing the clk_rate at GCC. 868 */ 869 wmb(); 870 } 871 872 /* 873 * sdhci_msm_hc_select_mode :- In general all timing modes are 874 * controlled via UHS mode select in Host Control2 register. 875 * eMMC specific HS200/HS400 doesn't have their respective modes 876 * defined here, hence we use these values. 877 * 878 * HS200 - SDR104 (Since they both are equivalent in functionality) 879 * HS400 - This involves multiple configurations 880 * Initially SDR104 - when tuning is required as HS200 881 * Then when switching to DDR @ 400MHz (HS400) we use 882 * the vendor specific HC_SELECT_IN to control the mode. 883 * 884 * In addition to controlling the modes we also need to select the 885 * correct input clock for DLL depending on the mode. 886 * 887 * HS400 - divided clock (free running MCLK/2) 888 * All other modes - default (free running MCLK) 889 */ 890 static void sdhci_msm_hc_select_mode(struct sdhci_host *host) 891 { 892 struct mmc_ios ios = host->mmc->ios; 893 894 if (ios.timing == MMC_TIMING_MMC_HS400 || 895 host->flags & SDHCI_HS400_TUNING) 896 msm_hc_select_hs400(host); 897 else 898 msm_hc_select_default(host); 899 } 900 901 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host) 902 { 903 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 904 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 905 u32 config, calib_done; 906 int ret; 907 const struct sdhci_msm_offset *msm_offset = 908 msm_host->offset; 909 910 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 911 912 /* 913 * Retuning in HS400 (DDR mode) will fail, just reset the 914 * tuning block and restore the saved tuning phase. 915 */ 916 ret = msm_init_cm_dll(host); 917 if (ret) 918 goto out; 919 920 /* Set the selected phase in delay line hw block */ 921 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 922 if (ret) 923 goto out; 924 925 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 926 config |= CORE_CMD_DAT_TRACK_SEL; 927 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 928 929 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 930 config &= ~CORE_CDC_T4_DLY_SEL; 931 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 932 933 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 934 config &= ~CORE_CDC_SWITCH_BYPASS_OFF; 935 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 936 937 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 938 config |= CORE_CDC_SWITCH_RC_EN; 939 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 940 941 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 942 config &= ~CORE_START_CDC_TRAFFIC; 943 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 944 945 /* Perform CDC Register Initialization Sequence */ 946 947 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 948 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1); 949 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 950 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1); 951 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG); 952 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG); 953 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG); 954 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG); 955 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG); 956 957 /* CDC HW Calibration */ 958 959 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 960 config |= CORE_SW_TRIG_FULL_CALIB; 961 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 962 963 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 964 config &= ~CORE_SW_TRIG_FULL_CALIB; 965 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 966 967 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 968 config |= CORE_HW_AUTOCAL_ENA; 969 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 970 971 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 972 config |= CORE_TIMER_ENA; 973 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 974 975 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0, 976 calib_done, 977 (calib_done & CORE_CALIBRATION_DONE), 978 1, 50); 979 980 if (ret == -ETIMEDOUT) { 981 pr_err("%s: %s: CDC calibration was not completed\n", 982 mmc_hostname(host->mmc), __func__); 983 goto out; 984 } 985 986 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0) 987 & CORE_CDC_ERROR_CODE_MASK; 988 if (ret) { 989 pr_err("%s: %s: CDC error code %d\n", 990 mmc_hostname(host->mmc), __func__, ret); 991 ret = -EINVAL; 992 goto out; 993 } 994 995 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 996 config |= CORE_START_CDC_TRAFFIC; 997 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 998 out: 999 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1000 __func__, ret); 1001 return ret; 1002 } 1003 1004 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host) 1005 { 1006 struct mmc_host *mmc = host->mmc; 1007 u32 dll_status, config, ddr_cfg_offset; 1008 int ret; 1009 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1010 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1011 const struct sdhci_msm_offset *msm_offset = 1012 sdhci_priv_msm_offset(host); 1013 1014 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 1015 1016 /* 1017 * Currently the core_ddr_config register defaults to desired 1018 * configuration on reset. Currently reprogramming the power on 1019 * reset (POR) value in case it might have been modified by 1020 * bootloaders. In the future, if this changes, then the desired 1021 * values will need to be programmed appropriately. 1022 */ 1023 if (msm_host->updated_ddr_cfg) 1024 ddr_cfg_offset = msm_offset->core_ddr_config; 1025 else 1026 ddr_cfg_offset = msm_offset->core_ddr_config_old; 1027 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset); 1028 1029 if (mmc->ios.enhanced_strobe) { 1030 config = readl_relaxed(host->ioaddr + 1031 msm_offset->core_ddr_200_cfg); 1032 config |= CORE_CMDIN_RCLK_EN; 1033 writel_relaxed(config, host->ioaddr + 1034 msm_offset->core_ddr_200_cfg); 1035 } 1036 1037 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2); 1038 config |= CORE_DDR_CAL_EN; 1039 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2); 1040 1041 ret = readl_relaxed_poll_timeout(host->ioaddr + 1042 msm_offset->core_dll_status, 1043 dll_status, 1044 (dll_status & CORE_DDR_DLL_LOCK), 1045 10, 1000); 1046 1047 if (ret == -ETIMEDOUT) { 1048 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n", 1049 mmc_hostname(host->mmc), __func__); 1050 goto out; 1051 } 1052 1053 /* 1054 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3. 1055 * When MCLK is gated OFF, it is not gated for less than 0.5us 1056 * and MCLK must be switched on for at-least 1us before DATA 1057 * starts coming. Controllers with 14lpp and later tech DLL cannot 1058 * guarantee above requirement. So PWRSAVE_DLL should not be 1059 * turned on for host controllers using this DLL. 1060 */ 1061 if (!msm_host->use_14lpp_dll_reset) { 1062 config = readl_relaxed(host->ioaddr + 1063 msm_offset->core_vendor_spec3); 1064 config |= CORE_PWRSAVE_DLL; 1065 writel_relaxed(config, host->ioaddr + 1066 msm_offset->core_vendor_spec3); 1067 } 1068 1069 /* 1070 * Drain writebuffer to ensure above DLL calibration 1071 * and PWRSAVE DLL is enabled. 1072 */ 1073 wmb(); 1074 out: 1075 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1076 __func__, ret); 1077 return ret; 1078 } 1079 1080 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host) 1081 { 1082 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1083 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1084 struct mmc_host *mmc = host->mmc; 1085 int ret; 1086 u32 config; 1087 const struct sdhci_msm_offset *msm_offset = 1088 msm_host->offset; 1089 1090 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 1091 1092 /* 1093 * Retuning in HS400 (DDR mode) will fail, just reset the 1094 * tuning block and restore the saved tuning phase. 1095 */ 1096 ret = msm_init_cm_dll(host); 1097 if (ret) 1098 goto out; 1099 1100 if (!mmc->ios.enhanced_strobe) { 1101 /* Set the selected phase in delay line hw block */ 1102 ret = msm_config_cm_dll_phase(host, 1103 msm_host->saved_tuning_phase); 1104 if (ret) 1105 goto out; 1106 config = readl_relaxed(host->ioaddr + 1107 msm_offset->core_dll_config); 1108 config |= CORE_CMD_DAT_TRACK_SEL; 1109 writel_relaxed(config, host->ioaddr + 1110 msm_offset->core_dll_config); 1111 } 1112 1113 if (msm_host->use_cdclp533) 1114 ret = sdhci_msm_cdclp533_calibration(host); 1115 else 1116 ret = sdhci_msm_cm_dll_sdc4_calibration(host); 1117 out: 1118 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1119 __func__, ret); 1120 return ret; 1121 } 1122 1123 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host) 1124 { 1125 struct mmc_ios *ios = &host->mmc->ios; 1126 1127 /* 1128 * Tuning is required for SDR104, HS200 and HS400 cards and 1129 * if clock frequency is greater than 100MHz in these modes. 1130 */ 1131 if (host->clock <= CORE_FREQ_100MHZ || 1132 !(ios->timing == MMC_TIMING_MMC_HS400 || 1133 ios->timing == MMC_TIMING_MMC_HS200 || 1134 ios->timing == MMC_TIMING_UHS_SDR104) || 1135 ios->enhanced_strobe) 1136 return false; 1137 1138 return true; 1139 } 1140 1141 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host) 1142 { 1143 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1144 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1145 int ret; 1146 1147 /* 1148 * SDR DLL comes into picture only for timing modes which needs 1149 * tuning. 1150 */ 1151 if (!sdhci_msm_is_tuning_needed(host)) 1152 return 0; 1153 1154 /* Reset the tuning block */ 1155 ret = msm_init_cm_dll(host); 1156 if (ret) 1157 return ret; 1158 1159 /* Restore the tuning block */ 1160 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 1161 1162 return ret; 1163 } 1164 1165 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable) 1166 { 1167 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host); 1168 u32 config, oldconfig = readl_relaxed(host->ioaddr + 1169 msm_offset->core_dll_config); 1170 1171 config = oldconfig; 1172 if (enable) { 1173 config |= CORE_CDR_EN; 1174 config &= ~CORE_CDR_EXT_EN; 1175 } else { 1176 config &= ~CORE_CDR_EN; 1177 config |= CORE_CDR_EXT_EN; 1178 } 1179 1180 if (config != oldconfig) { 1181 writel_relaxed(config, host->ioaddr + 1182 msm_offset->core_dll_config); 1183 } 1184 } 1185 1186 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode) 1187 { 1188 struct sdhci_host *host = mmc_priv(mmc); 1189 int tuning_seq_cnt = 10; 1190 u8 phase, tuned_phases[16], tuned_phase_cnt = 0; 1191 int rc; 1192 struct mmc_ios ios = host->mmc->ios; 1193 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1194 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1195 1196 if (!sdhci_msm_is_tuning_needed(host)) { 1197 msm_host->use_cdr = false; 1198 sdhci_msm_set_cdr(host, false); 1199 return 0; 1200 } 1201 1202 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */ 1203 msm_host->use_cdr = true; 1204 1205 /* 1206 * Clear tuning_done flag before tuning to ensure proper 1207 * HS400 settings. 1208 */ 1209 msm_host->tuning_done = 0; 1210 1211 /* 1212 * For HS400 tuning in HS200 timing requires: 1213 * - select MCLK/2 in VENDOR_SPEC 1214 * - program MCLK to 400MHz (or nearest supported) in GCC 1215 */ 1216 if (host->flags & SDHCI_HS400_TUNING) { 1217 sdhci_msm_hc_select_mode(host); 1218 msm_set_clock_rate_for_bus_mode(host, ios.clock); 1219 host->flags &= ~SDHCI_HS400_TUNING; 1220 } 1221 1222 retry: 1223 /* First of all reset the tuning block */ 1224 rc = msm_init_cm_dll(host); 1225 if (rc) 1226 return rc; 1227 1228 phase = 0; 1229 do { 1230 /* Set the phase in delay line hw block */ 1231 rc = msm_config_cm_dll_phase(host, phase); 1232 if (rc) 1233 return rc; 1234 1235 rc = mmc_send_tuning(mmc, opcode, NULL); 1236 if (!rc) { 1237 /* Tuning is successful at this tuning point */ 1238 tuned_phases[tuned_phase_cnt++] = phase; 1239 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n", 1240 mmc_hostname(mmc), phase); 1241 } 1242 } while (++phase < ARRAY_SIZE(tuned_phases)); 1243 1244 if (tuned_phase_cnt) { 1245 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) { 1246 /* 1247 * All phases valid is _almost_ as bad as no phases 1248 * valid. Probably all phases are not really reliable 1249 * but we didn't detect where the unreliable place is. 1250 * That means we'll essentially be guessing and hoping 1251 * we get a good phase. Better to try a few times. 1252 */ 1253 dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n", 1254 mmc_hostname(mmc)); 1255 if (--tuning_seq_cnt) { 1256 tuned_phase_cnt = 0; 1257 goto retry; 1258 } 1259 } 1260 1261 rc = msm_find_most_appropriate_phase(host, tuned_phases, 1262 tuned_phase_cnt); 1263 if (rc < 0) 1264 return rc; 1265 else 1266 phase = rc; 1267 1268 /* 1269 * Finally set the selected phase in delay 1270 * line hw block. 1271 */ 1272 rc = msm_config_cm_dll_phase(host, phase); 1273 if (rc) 1274 return rc; 1275 msm_host->saved_tuning_phase = phase; 1276 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n", 1277 mmc_hostname(mmc), phase); 1278 } else { 1279 if (--tuning_seq_cnt) 1280 goto retry; 1281 /* Tuning failed */ 1282 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n", 1283 mmc_hostname(mmc)); 1284 rc = -EIO; 1285 } 1286 1287 if (!rc) 1288 msm_host->tuning_done = true; 1289 return rc; 1290 } 1291 1292 /* 1293 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation. 1294 * This needs to be done for both tuning and enhanced_strobe mode. 1295 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz 1296 * fixed feedback clock is used. 1297 */ 1298 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios) 1299 { 1300 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1301 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1302 int ret; 1303 1304 if (host->clock > CORE_FREQ_100MHZ && 1305 (msm_host->tuning_done || ios->enhanced_strobe) && 1306 !msm_host->calibration_done) { 1307 ret = sdhci_msm_hs400_dll_calibration(host); 1308 if (!ret) 1309 msm_host->calibration_done = true; 1310 else 1311 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n", 1312 mmc_hostname(host->mmc), ret); 1313 } 1314 } 1315 1316 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host, 1317 unsigned int uhs) 1318 { 1319 struct mmc_host *mmc = host->mmc; 1320 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1321 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1322 u16 ctrl_2; 1323 u32 config; 1324 const struct sdhci_msm_offset *msm_offset = 1325 msm_host->offset; 1326 1327 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); 1328 /* Select Bus Speed Mode for host */ 1329 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1330 switch (uhs) { 1331 case MMC_TIMING_UHS_SDR12: 1332 ctrl_2 |= SDHCI_CTRL_UHS_SDR12; 1333 break; 1334 case MMC_TIMING_UHS_SDR25: 1335 ctrl_2 |= SDHCI_CTRL_UHS_SDR25; 1336 break; 1337 case MMC_TIMING_UHS_SDR50: 1338 ctrl_2 |= SDHCI_CTRL_UHS_SDR50; 1339 break; 1340 case MMC_TIMING_MMC_HS400: 1341 case MMC_TIMING_MMC_HS200: 1342 case MMC_TIMING_UHS_SDR104: 1343 ctrl_2 |= SDHCI_CTRL_UHS_SDR104; 1344 break; 1345 case MMC_TIMING_UHS_DDR50: 1346 case MMC_TIMING_MMC_DDR52: 1347 ctrl_2 |= SDHCI_CTRL_UHS_DDR50; 1348 break; 1349 } 1350 1351 /* 1352 * When clock frequency is less than 100MHz, the feedback clock must be 1353 * provided and DLL must not be used so that tuning can be skipped. To 1354 * provide feedback clock, the mode selection can be any value less 1355 * than 3'b011 in bits [2:0] of HOST CONTROL2 register. 1356 */ 1357 if (host->clock <= CORE_FREQ_100MHZ) { 1358 if (uhs == MMC_TIMING_MMC_HS400 || 1359 uhs == MMC_TIMING_MMC_HS200 || 1360 uhs == MMC_TIMING_UHS_SDR104) 1361 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1362 /* 1363 * DLL is not required for clock <= 100MHz 1364 * Thus, make sure DLL it is disabled when not required 1365 */ 1366 config = readl_relaxed(host->ioaddr + 1367 msm_offset->core_dll_config); 1368 config |= CORE_DLL_RST; 1369 writel_relaxed(config, host->ioaddr + 1370 msm_offset->core_dll_config); 1371 1372 config = readl_relaxed(host->ioaddr + 1373 msm_offset->core_dll_config); 1374 config |= CORE_DLL_PDN; 1375 writel_relaxed(config, host->ioaddr + 1376 msm_offset->core_dll_config); 1377 1378 /* 1379 * The DLL needs to be restored and CDCLP533 recalibrated 1380 * when the clock frequency is set back to 400MHz. 1381 */ 1382 msm_host->calibration_done = false; 1383 } 1384 1385 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n", 1386 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2); 1387 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); 1388 1389 if (mmc->ios.timing == MMC_TIMING_MMC_HS400) 1390 sdhci_msm_hs400(host, &mmc->ios); 1391 } 1392 1393 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level) 1394 { 1395 struct platform_device *pdev = msm_host->pdev; 1396 int ret; 1397 1398 if (level) 1399 ret = pinctrl_pm_select_default_state(&pdev->dev); 1400 else 1401 ret = pinctrl_pm_select_sleep_state(&pdev->dev); 1402 1403 return ret; 1404 } 1405 1406 static int sdhci_msm_set_vmmc(struct mmc_host *mmc) 1407 { 1408 if (IS_ERR(mmc->supply.vmmc)) 1409 return 0; 1410 1411 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd); 1412 } 1413 1414 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host, 1415 struct mmc_host *mmc, bool level) 1416 { 1417 int ret; 1418 struct mmc_ios ios; 1419 1420 if (msm_host->vqmmc_enabled == level) 1421 return 0; 1422 1423 if (level) { 1424 /* Set the IO voltage regulator to default voltage level */ 1425 if (msm_host->caps_0 & CORE_3_0V_SUPPORT) 1426 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330; 1427 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT) 1428 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180; 1429 1430 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1431 ret = mmc_regulator_set_vqmmc(mmc, &ios); 1432 if (ret < 0) { 1433 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n", 1434 mmc_hostname(mmc), ret); 1435 goto out; 1436 } 1437 } 1438 ret = regulator_enable(mmc->supply.vqmmc); 1439 } else { 1440 ret = regulator_disable(mmc->supply.vqmmc); 1441 } 1442 1443 if (ret) 1444 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n", 1445 mmc_hostname(mmc), level ? "en":"dis", ret); 1446 else 1447 msm_host->vqmmc_enabled = level; 1448 out: 1449 return ret; 1450 } 1451 1452 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host, 1453 struct mmc_host *mmc, bool hpm) 1454 { 1455 int load, ret; 1456 1457 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0; 1458 ret = regulator_set_load(mmc->supply.vqmmc, load); 1459 if (ret) 1460 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n", 1461 mmc_hostname(mmc), ret); 1462 return ret; 1463 } 1464 1465 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host, 1466 struct mmc_host *mmc, bool level) 1467 { 1468 int ret; 1469 bool always_on; 1470 1471 if (IS_ERR(mmc->supply.vqmmc) || 1472 (mmc->ios.power_mode == MMC_POWER_UNDEFINED)) 1473 return 0; 1474 /* 1475 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM 1476 * and HPM modes by setting the corresponding load. 1477 * 1478 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off 1479 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off 1480 * gets invoked. Once eMMC is initialized (i.e. always_on == 1), 1481 * Vqmmc should remain ON, So just set the load instead of turning it 1482 * off/on. 1483 */ 1484 always_on = !mmc_card_is_removable(mmc) && 1485 mmc->card && mmc_card_mmc(mmc->card); 1486 1487 if (always_on) 1488 ret = msm_config_vqmmc_mode(msm_host, mmc, level); 1489 else 1490 ret = msm_toggle_vqmmc(msm_host, mmc, level); 1491 1492 return ret; 1493 } 1494 1495 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host) 1496 { 1497 init_waitqueue_head(&msm_host->pwr_irq_wait); 1498 } 1499 1500 static inline void sdhci_msm_complete_pwr_irq_wait( 1501 struct sdhci_msm_host *msm_host) 1502 { 1503 wake_up(&msm_host->pwr_irq_wait); 1504 } 1505 1506 /* 1507 * sdhci_msm_check_power_status API should be called when registers writes 1508 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens. 1509 * To what state the register writes will change the IO lines should be passed 1510 * as the argument req_type. This API will check whether the IO line's state 1511 * is already the expected state and will wait for power irq only if 1512 * power irq is expected to be triggered based on the current IO line state 1513 * and expected IO line state. 1514 */ 1515 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type) 1516 { 1517 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1518 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1519 bool done = false; 1520 u32 val = SWITCHABLE_SIGNALING_VOLTAGE; 1521 const struct sdhci_msm_offset *msm_offset = 1522 msm_host->offset; 1523 1524 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n", 1525 mmc_hostname(host->mmc), __func__, req_type, 1526 msm_host->curr_pwr_state, msm_host->curr_io_level); 1527 1528 /* 1529 * The power interrupt will not be generated for signal voltage 1530 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set. 1531 * Since sdhci-msm-v5, this bit has been removed and SW must consider 1532 * it as always set. 1533 */ 1534 if (!msm_host->mci_removed) 1535 val = msm_host_readl(msm_host, host, 1536 msm_offset->core_generics); 1537 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) && 1538 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) { 1539 return; 1540 } 1541 1542 /* 1543 * The IRQ for request type IO High/LOW will be generated when - 1544 * there is a state change in 1.8V enable bit (bit 3) of 1545 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0 1546 * which indicates 3.3V IO voltage. So, when MMC core layer tries 1547 * to set it to 3.3V before card detection happens, the 1548 * IRQ doesn't get triggered as there is no state change in this bit. 1549 * The driver already handles this case by changing the IO voltage 1550 * level to high as part of controller power up sequence. Hence, check 1551 * for host->pwr to handle a case where IO voltage high request is 1552 * issued even before controller power up. 1553 */ 1554 if ((req_type & REQ_IO_HIGH) && !host->pwr) { 1555 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n", 1556 mmc_hostname(host->mmc), req_type); 1557 return; 1558 } 1559 if ((req_type & msm_host->curr_pwr_state) || 1560 (req_type & msm_host->curr_io_level)) 1561 done = true; 1562 /* 1563 * This is needed here to handle cases where register writes will 1564 * not change the current bus state or io level of the controller. 1565 * In this case, no power irq will be triggerred and we should 1566 * not wait. 1567 */ 1568 if (!done) { 1569 if (!wait_event_timeout(msm_host->pwr_irq_wait, 1570 msm_host->pwr_irq_flag, 1571 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS))) 1572 dev_warn(&msm_host->pdev->dev, 1573 "%s: pwr_irq for req: (%d) timed out\n", 1574 mmc_hostname(host->mmc), req_type); 1575 } 1576 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc), 1577 __func__, req_type); 1578 } 1579 1580 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host) 1581 { 1582 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1583 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1584 const struct sdhci_msm_offset *msm_offset = 1585 msm_host->offset; 1586 1587 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n", 1588 mmc_hostname(host->mmc), 1589 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status), 1590 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask), 1591 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl)); 1592 } 1593 1594 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq) 1595 { 1596 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1597 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1598 struct mmc_host *mmc = host->mmc; 1599 u32 irq_status, irq_ack = 0; 1600 int retry = 10, ret; 1601 u32 pwr_state = 0, io_level = 0; 1602 u32 config; 1603 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1604 1605 irq_status = msm_host_readl(msm_host, host, 1606 msm_offset->core_pwrctl_status); 1607 irq_status &= INT_MASK; 1608 1609 msm_host_writel(msm_host, irq_status, host, 1610 msm_offset->core_pwrctl_clear); 1611 1612 /* 1613 * There is a rare HW scenario where the first clear pulse could be 1614 * lost when actual reset and clear/read of status register is 1615 * happening at a time. Hence, retry for at least 10 times to make 1616 * sure status register is cleared. Otherwise, this will result in 1617 * a spurious power IRQ resulting in system instability. 1618 */ 1619 while (irq_status & msm_host_readl(msm_host, host, 1620 msm_offset->core_pwrctl_status)) { 1621 if (retry == 0) { 1622 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n", 1623 mmc_hostname(host->mmc), irq_status); 1624 sdhci_msm_dump_pwr_ctrl_regs(host); 1625 WARN_ON(1); 1626 break; 1627 } 1628 msm_host_writel(msm_host, irq_status, host, 1629 msm_offset->core_pwrctl_clear); 1630 retry--; 1631 udelay(10); 1632 } 1633 1634 /* Handle BUS ON/OFF*/ 1635 if (irq_status & CORE_PWRCTL_BUS_ON) { 1636 pwr_state = REQ_BUS_ON; 1637 io_level = REQ_IO_HIGH; 1638 } 1639 if (irq_status & CORE_PWRCTL_BUS_OFF) { 1640 pwr_state = REQ_BUS_OFF; 1641 io_level = REQ_IO_LOW; 1642 } 1643 1644 if (pwr_state) { 1645 ret = sdhci_msm_set_vmmc(mmc); 1646 if (!ret) 1647 ret = sdhci_msm_set_vqmmc(msm_host, mmc, 1648 pwr_state & REQ_BUS_ON); 1649 if (!ret) 1650 ret = sdhci_msm_set_pincfg(msm_host, 1651 pwr_state & REQ_BUS_ON); 1652 if (!ret) 1653 irq_ack |= CORE_PWRCTL_BUS_SUCCESS; 1654 else 1655 irq_ack |= CORE_PWRCTL_BUS_FAIL; 1656 } 1657 1658 /* Handle IO LOW/HIGH */ 1659 if (irq_status & CORE_PWRCTL_IO_LOW) 1660 io_level = REQ_IO_LOW; 1661 1662 if (irq_status & CORE_PWRCTL_IO_HIGH) 1663 io_level = REQ_IO_HIGH; 1664 1665 if (io_level) 1666 irq_ack |= CORE_PWRCTL_IO_SUCCESS; 1667 1668 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) { 1669 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios); 1670 if (ret < 0) { 1671 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n", 1672 mmc_hostname(mmc), ret, 1673 mmc->ios.signal_voltage, mmc->ios.vdd, 1674 irq_status); 1675 irq_ack |= CORE_PWRCTL_IO_FAIL; 1676 } 1677 } 1678 1679 /* 1680 * The driver has to acknowledge the interrupt, switch voltages and 1681 * report back if it succeded or not to this register. The voltage 1682 * switches are handled by the sdhci core, so just report success. 1683 */ 1684 msm_host_writel(msm_host, irq_ack, host, 1685 msm_offset->core_pwrctl_ctl); 1686 1687 /* 1688 * If we don't have info regarding the voltage levels supported by 1689 * regulators, don't change the IO PAD PWR SWITCH. 1690 */ 1691 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1692 u32 new_config; 1693 /* 1694 * We should unset IO PAD PWR switch only if the register write 1695 * can set IO lines high and the regulator also switches to 3 V. 1696 * Else, we should keep the IO PAD PWR switch set. 1697 * This is applicable to certain targets where eMMC vccq supply 1698 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the 1699 * IO PAD PWR switch must be kept set to reflect actual 1700 * regulator voltage. This way, during initialization of 1701 * controllers with only 1.8V, we will set the IO PAD bit 1702 * without waiting for a REQ_IO_LOW. 1703 */ 1704 config = readl_relaxed(host->ioaddr + 1705 msm_offset->core_vendor_spec); 1706 new_config = config; 1707 1708 if ((io_level & REQ_IO_HIGH) && 1709 (msm_host->caps_0 & CORE_3_0V_SUPPORT)) 1710 new_config &= ~CORE_IO_PAD_PWR_SWITCH; 1711 else if ((io_level & REQ_IO_LOW) || 1712 (msm_host->caps_0 & CORE_1_8V_SUPPORT)) 1713 new_config |= CORE_IO_PAD_PWR_SWITCH; 1714 1715 if (config ^ new_config) 1716 writel_relaxed(new_config, host->ioaddr + 1717 msm_offset->core_vendor_spec); 1718 } 1719 1720 if (pwr_state) 1721 msm_host->curr_pwr_state = pwr_state; 1722 if (io_level) 1723 msm_host->curr_io_level = io_level; 1724 1725 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n", 1726 mmc_hostname(msm_host->mmc), __func__, irq, irq_status, 1727 irq_ack); 1728 } 1729 1730 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data) 1731 { 1732 struct sdhci_host *host = (struct sdhci_host *)data; 1733 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1734 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1735 1736 sdhci_msm_handle_pwr_irq(host, irq); 1737 msm_host->pwr_irq_flag = 1; 1738 sdhci_msm_complete_pwr_irq_wait(msm_host); 1739 1740 1741 return IRQ_HANDLED; 1742 } 1743 1744 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host) 1745 { 1746 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1747 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1748 struct clk *core_clk = msm_host->bulk_clks[0].clk; 1749 1750 return clk_round_rate(core_clk, ULONG_MAX); 1751 } 1752 1753 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host) 1754 { 1755 return SDHCI_MSM_MIN_CLOCK; 1756 } 1757 1758 /* 1759 * __sdhci_msm_set_clock - sdhci_msm clock control. 1760 * 1761 * Description: 1762 * MSM controller does not use internal divider and 1763 * instead directly control the GCC clock as per 1764 * HW recommendation. 1765 **/ 1766 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1767 { 1768 u16 clk; 1769 1770 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); 1771 1772 if (clock == 0) 1773 return; 1774 1775 /* 1776 * MSM controller do not use clock divider. 1777 * Thus read SDHCI_CLOCK_CONTROL and only enable 1778 * clock with no divider value programmed. 1779 */ 1780 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); 1781 sdhci_enable_clk(host, clk); 1782 } 1783 1784 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */ 1785 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1786 { 1787 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1788 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1789 1790 if (!clock) { 1791 host->mmc->actual_clock = msm_host->clk_rate = 0; 1792 goto out; 1793 } 1794 1795 sdhci_msm_hc_select_mode(host); 1796 1797 msm_set_clock_rate_for_bus_mode(host, clock); 1798 out: 1799 __sdhci_msm_set_clock(host, clock); 1800 } 1801 1802 /*****************************************************************************\ 1803 * * 1804 * Inline Crypto Engine (ICE) support * 1805 * * 1806 \*****************************************************************************/ 1807 1808 #ifdef CONFIG_MMC_CRYPTO 1809 1810 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host, 1811 struct cqhci_host *cq_host) 1812 { 1813 struct mmc_host *mmc = msm_host->mmc; 1814 struct device *dev = mmc_dev(mmc); 1815 struct qcom_ice *ice; 1816 1817 if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS)) 1818 return 0; 1819 1820 ice = of_qcom_ice_get(dev); 1821 if (ice == ERR_PTR(-EOPNOTSUPP)) { 1822 dev_warn(dev, "Disabling inline encryption support\n"); 1823 ice = NULL; 1824 } 1825 1826 if (IS_ERR_OR_NULL(ice)) 1827 return PTR_ERR_OR_ZERO(ice); 1828 1829 msm_host->ice = ice; 1830 mmc->caps2 |= MMC_CAP2_CRYPTO; 1831 1832 return 0; 1833 } 1834 1835 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host) 1836 { 1837 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO) 1838 qcom_ice_enable(msm_host->ice); 1839 } 1840 1841 static __maybe_unused int sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host) 1842 { 1843 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO) 1844 return qcom_ice_resume(msm_host->ice); 1845 1846 return 0; 1847 } 1848 1849 static __maybe_unused int sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host) 1850 { 1851 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO) 1852 return qcom_ice_suspend(msm_host->ice); 1853 1854 return 0; 1855 } 1856 1857 /* 1858 * Program a key into a QC ICE keyslot, or evict a keyslot. QC ICE requires 1859 * vendor-specific SCM calls for this; it doesn't support the standard way. 1860 */ 1861 static int sdhci_msm_program_key(struct cqhci_host *cq_host, 1862 const union cqhci_crypto_cfg_entry *cfg, 1863 int slot) 1864 { 1865 struct sdhci_host *host = mmc_priv(cq_host->mmc); 1866 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1867 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1868 union cqhci_crypto_cap_entry cap; 1869 1870 /* Only AES-256-XTS has been tested so far. */ 1871 cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx]; 1872 if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS || 1873 cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) 1874 return -EINVAL; 1875 1876 if (cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE) 1877 return qcom_ice_program_key(msm_host->ice, 1878 QCOM_ICE_CRYPTO_ALG_AES_XTS, 1879 QCOM_ICE_CRYPTO_KEY_SIZE_256, 1880 cfg->crypto_key, 1881 cfg->data_unit_size, slot); 1882 else 1883 return qcom_ice_evict_key(msm_host->ice, slot); 1884 } 1885 1886 #else /* CONFIG_MMC_CRYPTO */ 1887 1888 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host, 1889 struct cqhci_host *cq_host) 1890 { 1891 return 0; 1892 } 1893 1894 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host) 1895 { 1896 } 1897 1898 static inline __maybe_unused int 1899 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host) 1900 { 1901 return 0; 1902 } 1903 1904 static inline __maybe_unused int 1905 sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host) 1906 { 1907 return 0; 1908 } 1909 #endif /* !CONFIG_MMC_CRYPTO */ 1910 1911 /*****************************************************************************\ 1912 * * 1913 * MSM Command Queue Engine (CQE) * 1914 * * 1915 \*****************************************************************************/ 1916 1917 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask) 1918 { 1919 int cmd_error = 0; 1920 int data_error = 0; 1921 1922 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error)) 1923 return intmask; 1924 1925 cqhci_irq(host->mmc, intmask, cmd_error, data_error); 1926 return 0; 1927 } 1928 1929 static void sdhci_msm_cqe_enable(struct mmc_host *mmc) 1930 { 1931 struct sdhci_host *host = mmc_priv(mmc); 1932 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1933 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1934 1935 sdhci_cqe_enable(mmc); 1936 sdhci_msm_ice_enable(msm_host); 1937 } 1938 1939 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery) 1940 { 1941 struct sdhci_host *host = mmc_priv(mmc); 1942 unsigned long flags; 1943 u32 ctrl; 1944 1945 /* 1946 * When CQE is halted, the legacy SDHCI path operates only 1947 * on 16-byte descriptors in 64bit mode. 1948 */ 1949 if (host->flags & SDHCI_USE_64_BIT_DMA) 1950 host->desc_sz = 16; 1951 1952 spin_lock_irqsave(&host->lock, flags); 1953 1954 /* 1955 * During CQE command transfers, command complete bit gets latched. 1956 * So s/w should clear command complete interrupt status when CQE is 1957 * either halted or disabled. Otherwise unexpected SDCHI legacy 1958 * interrupt gets triggered when CQE is halted/disabled. 1959 */ 1960 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE); 1961 ctrl |= SDHCI_INT_RESPONSE; 1962 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE); 1963 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS); 1964 1965 spin_unlock_irqrestore(&host->lock, flags); 1966 1967 sdhci_cqe_disable(mmc, recovery); 1968 } 1969 1970 static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd) 1971 { 1972 u32 count, start = 15; 1973 1974 __sdhci_set_timeout(host, cmd); 1975 count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL); 1976 /* 1977 * Update software timeout value if its value is less than hardware data 1978 * timeout value. Qcom SoC hardware data timeout value was calculated 1979 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock. 1980 */ 1981 if (cmd && cmd->data && host->clock > 400000 && 1982 host->clock <= 50000000 && 1983 ((1 << (count + start)) > (10 * host->clock))) 1984 host->data_timeout = 22LL * NSEC_PER_SEC; 1985 } 1986 1987 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = { 1988 .enable = sdhci_msm_cqe_enable, 1989 .disable = sdhci_msm_cqe_disable, 1990 #ifdef CONFIG_MMC_CRYPTO 1991 .program_key = sdhci_msm_program_key, 1992 #endif 1993 }; 1994 1995 static int sdhci_msm_cqe_add_host(struct sdhci_host *host, 1996 struct platform_device *pdev) 1997 { 1998 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1999 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2000 struct cqhci_host *cq_host; 2001 bool dma64; 2002 u32 cqcfg; 2003 int ret; 2004 2005 /* 2006 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors. 2007 * So ensure ADMA table is allocated for 16byte descriptors. 2008 */ 2009 if (host->caps & SDHCI_CAN_64BIT) 2010 host->alloc_desc_sz = 16; 2011 2012 ret = sdhci_setup_host(host); 2013 if (ret) 2014 return ret; 2015 2016 cq_host = cqhci_pltfm_init(pdev); 2017 if (IS_ERR(cq_host)) { 2018 ret = PTR_ERR(cq_host); 2019 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret); 2020 goto cleanup; 2021 } 2022 2023 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD; 2024 cq_host->ops = &sdhci_msm_cqhci_ops; 2025 2026 dma64 = host->flags & SDHCI_USE_64_BIT_DMA; 2027 2028 ret = sdhci_msm_ice_init(msm_host, cq_host); 2029 if (ret) 2030 goto cleanup; 2031 2032 ret = cqhci_init(cq_host, host->mmc, dma64); 2033 if (ret) { 2034 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n", 2035 mmc_hostname(host->mmc), ret); 2036 goto cleanup; 2037 } 2038 2039 /* Disable cqe reset due to cqe enable signal */ 2040 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1); 2041 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN; 2042 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1); 2043 2044 /* 2045 * SDHC expects 12byte ADMA descriptors till CQE is enabled. 2046 * So limit desc_sz to 12 so that the data commands that are sent 2047 * during card initialization (before CQE gets enabled) would 2048 * get executed without any issues. 2049 */ 2050 if (host->flags & SDHCI_USE_64_BIT_DMA) 2051 host->desc_sz = 12; 2052 2053 ret = __sdhci_add_host(host); 2054 if (ret) 2055 goto cleanup; 2056 2057 dev_info(&pdev->dev, "%s: CQE init: success\n", 2058 mmc_hostname(host->mmc)); 2059 return ret; 2060 2061 cleanup: 2062 sdhci_cleanup_host(host); 2063 return ret; 2064 } 2065 2066 /* 2067 * Platform specific register write functions. This is so that, if any 2068 * register write needs to be followed up by platform specific actions, 2069 * they can be added here. These functions can go to sleep when writes 2070 * to certain registers are done. 2071 * These functions are relying on sdhci_set_ios not using spinlock. 2072 */ 2073 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg) 2074 { 2075 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2076 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2077 u32 req_type = 0; 2078 2079 switch (reg) { 2080 case SDHCI_HOST_CONTROL2: 2081 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW : 2082 REQ_IO_HIGH; 2083 break; 2084 case SDHCI_SOFTWARE_RESET: 2085 if (host->pwr && (val & SDHCI_RESET_ALL)) 2086 req_type = REQ_BUS_OFF; 2087 break; 2088 case SDHCI_POWER_CONTROL: 2089 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON; 2090 break; 2091 case SDHCI_TRANSFER_MODE: 2092 msm_host->transfer_mode = val; 2093 break; 2094 case SDHCI_COMMAND: 2095 if (!msm_host->use_cdr) 2096 break; 2097 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) && 2098 !mmc_op_tuning(SDHCI_GET_CMD(val))) 2099 sdhci_msm_set_cdr(host, true); 2100 else 2101 sdhci_msm_set_cdr(host, false); 2102 break; 2103 } 2104 2105 if (req_type) { 2106 msm_host->pwr_irq_flag = 0; 2107 /* 2108 * Since this register write may trigger a power irq, ensure 2109 * all previous register writes are complete by this point. 2110 */ 2111 mb(); 2112 } 2113 return req_type; 2114 } 2115 2116 /* This function may sleep*/ 2117 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg) 2118 { 2119 u32 req_type = 0; 2120 2121 req_type = __sdhci_msm_check_write(host, val, reg); 2122 writew_relaxed(val, host->ioaddr + reg); 2123 2124 if (req_type) 2125 sdhci_msm_check_power_status(host, req_type); 2126 } 2127 2128 /* This function may sleep*/ 2129 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg) 2130 { 2131 u32 req_type = 0; 2132 2133 req_type = __sdhci_msm_check_write(host, val, reg); 2134 2135 writeb_relaxed(val, host->ioaddr + reg); 2136 2137 if (req_type) 2138 sdhci_msm_check_power_status(host, req_type); 2139 } 2140 2141 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host) 2142 { 2143 struct mmc_host *mmc = msm_host->mmc; 2144 struct regulator *supply = mmc->supply.vqmmc; 2145 u32 caps = 0, config; 2146 struct sdhci_host *host = mmc_priv(mmc); 2147 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 2148 2149 if (!IS_ERR(mmc->supply.vqmmc)) { 2150 if (regulator_is_supported_voltage(supply, 1700000, 1950000)) 2151 caps |= CORE_1_8V_SUPPORT; 2152 if (regulator_is_supported_voltage(supply, 2700000, 3600000)) 2153 caps |= CORE_3_0V_SUPPORT; 2154 2155 if (!caps) 2156 pr_warn("%s: 1.8/3V not supported for vqmmc\n", 2157 mmc_hostname(mmc)); 2158 } 2159 2160 if (caps) { 2161 /* 2162 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH 2163 * bit can be used as required later on. 2164 */ 2165 u32 io_level = msm_host->curr_io_level; 2166 2167 config = readl_relaxed(host->ioaddr + 2168 msm_offset->core_vendor_spec); 2169 config |= CORE_IO_PAD_PWR_SWITCH_EN; 2170 2171 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT)) 2172 config &= ~CORE_IO_PAD_PWR_SWITCH; 2173 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT)) 2174 config |= CORE_IO_PAD_PWR_SWITCH; 2175 2176 writel_relaxed(config, 2177 host->ioaddr + msm_offset->core_vendor_spec); 2178 } 2179 msm_host->caps_0 |= caps; 2180 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps); 2181 } 2182 2183 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host) 2184 { 2185 int ret; 2186 2187 ret = mmc_regulator_get_supply(msm_host->mmc); 2188 if (ret) 2189 return ret; 2190 2191 sdhci_msm_set_regulator_caps(msm_host); 2192 2193 return 0; 2194 } 2195 2196 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc, 2197 struct mmc_ios *ios) 2198 { 2199 struct sdhci_host *host = mmc_priv(mmc); 2200 u16 ctrl, status; 2201 2202 /* 2203 * Signal Voltage Switching is only applicable for Host Controllers 2204 * v3.00 and above. 2205 */ 2206 if (host->version < SDHCI_SPEC_300) 2207 return 0; 2208 2209 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2210 2211 switch (ios->signal_voltage) { 2212 case MMC_SIGNAL_VOLTAGE_330: 2213 if (!(host->flags & SDHCI_SIGNALING_330)) 2214 return -EINVAL; 2215 2216 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */ 2217 ctrl &= ~SDHCI_CTRL_VDD_180; 2218 break; 2219 case MMC_SIGNAL_VOLTAGE_180: 2220 if (!(host->flags & SDHCI_SIGNALING_180)) 2221 return -EINVAL; 2222 2223 /* Enable 1.8V Signal Enable in the Host Control2 register */ 2224 ctrl |= SDHCI_CTRL_VDD_180; 2225 break; 2226 2227 default: 2228 return -EINVAL; 2229 } 2230 2231 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); 2232 2233 /* Wait for 5ms */ 2234 usleep_range(5000, 5500); 2235 2236 /* regulator output should be stable within 5 ms */ 2237 status = ctrl & SDHCI_CTRL_VDD_180; 2238 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2239 if ((ctrl & SDHCI_CTRL_VDD_180) == status) 2240 return 0; 2241 2242 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n", 2243 mmc_hostname(mmc)); 2244 2245 return -EAGAIN; 2246 } 2247 2248 #define DRIVER_NAME "sdhci_msm" 2249 #define SDHCI_MSM_DUMP(f, x...) \ 2250 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x) 2251 2252 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host) 2253 { 2254 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2255 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2256 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 2257 2258 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n"); 2259 2260 SDHCI_MSM_DUMP( 2261 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n", 2262 readl_relaxed(host->ioaddr + msm_offset->core_dll_status), 2263 readl_relaxed(host->ioaddr + msm_offset->core_dll_config), 2264 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2)); 2265 SDHCI_MSM_DUMP( 2266 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n", 2267 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3), 2268 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl), 2269 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config)); 2270 SDHCI_MSM_DUMP( 2271 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n", 2272 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec), 2273 readl_relaxed(host->ioaddr + 2274 msm_offset->core_vendor_spec_func2), 2275 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3)); 2276 } 2277 2278 static const struct sdhci_msm_variant_ops mci_var_ops = { 2279 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed, 2280 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed, 2281 }; 2282 2283 static const struct sdhci_msm_variant_ops v5_var_ops = { 2284 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed, 2285 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed, 2286 }; 2287 2288 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = { 2289 .var_ops = &mci_var_ops, 2290 .offset = &sdhci_msm_mci_offset, 2291 }; 2292 2293 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = { 2294 .mci_removed = true, 2295 .var_ops = &v5_var_ops, 2296 .offset = &sdhci_msm_v5_offset, 2297 }; 2298 2299 static const struct sdhci_msm_variant_info sdm845_sdhci_var = { 2300 .mci_removed = true, 2301 .restore_dll_config = true, 2302 .var_ops = &v5_var_ops, 2303 .offset = &sdhci_msm_v5_offset, 2304 }; 2305 2306 static const struct of_device_id sdhci_msm_dt_match[] = { 2307 /* 2308 * Do not add new variants to the driver which are compatible with 2309 * generic ones, unless they need customization. 2310 */ 2311 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var}, 2312 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var}, 2313 {.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var}, 2314 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var}, 2315 {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var}, 2316 {}, 2317 }; 2318 2319 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match); 2320 2321 static const struct sdhci_ops sdhci_msm_ops = { 2322 .reset = sdhci_and_cqhci_reset, 2323 .set_clock = sdhci_msm_set_clock, 2324 .get_min_clock = sdhci_msm_get_min_clock, 2325 .get_max_clock = sdhci_msm_get_max_clock, 2326 .set_bus_width = sdhci_set_bus_width, 2327 .set_uhs_signaling = sdhci_msm_set_uhs_signaling, 2328 .write_w = sdhci_msm_writew, 2329 .write_b = sdhci_msm_writeb, 2330 .irq = sdhci_msm_cqe_irq, 2331 .dump_vendor_regs = sdhci_msm_dump_vendor_regs, 2332 .set_power = sdhci_set_power_noreg, 2333 .set_timeout = sdhci_msm_set_timeout, 2334 }; 2335 2336 static const struct sdhci_pltfm_data sdhci_msm_pdata = { 2337 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION | 2338 SDHCI_QUIRK_SINGLE_POWER_WRITE | 2339 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN | 2340 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12, 2341 2342 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, 2343 .ops = &sdhci_msm_ops, 2344 }; 2345 2346 static inline void sdhci_msm_get_of_property(struct platform_device *pdev, 2347 struct sdhci_host *host) 2348 { 2349 struct device_node *node = pdev->dev.of_node; 2350 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2351 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2352 2353 if (of_property_read_u32(node, "qcom,ddr-config", 2354 &msm_host->ddr_config)) 2355 msm_host->ddr_config = DDR_CONFIG_POR_VAL; 2356 2357 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config); 2358 2359 if (of_device_is_compatible(node, "qcom,msm8916-sdhci")) 2360 host->quirks2 |= SDHCI_QUIRK2_BROKEN_64_BIT_DMA; 2361 } 2362 2363 static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host) 2364 { 2365 struct reset_control *reset; 2366 int ret = 0; 2367 2368 reset = reset_control_get_optional_exclusive(dev, NULL); 2369 if (IS_ERR(reset)) 2370 return dev_err_probe(dev, PTR_ERR(reset), 2371 "unable to acquire core_reset\n"); 2372 2373 if (!reset) 2374 return ret; 2375 2376 ret = reset_control_assert(reset); 2377 if (ret) { 2378 reset_control_put(reset); 2379 return dev_err_probe(dev, ret, "core_reset assert failed\n"); 2380 } 2381 2382 /* 2383 * The hardware requirement for delay between assert/deassert 2384 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to 2385 * ~125us (4/32768). To be on the safe side add 200us delay. 2386 */ 2387 usleep_range(200, 210); 2388 2389 ret = reset_control_deassert(reset); 2390 if (ret) { 2391 reset_control_put(reset); 2392 return dev_err_probe(dev, ret, "core_reset deassert failed\n"); 2393 } 2394 2395 usleep_range(200, 210); 2396 reset_control_put(reset); 2397 2398 return ret; 2399 } 2400 2401 static int sdhci_msm_probe(struct platform_device *pdev) 2402 { 2403 struct sdhci_host *host; 2404 struct sdhci_pltfm_host *pltfm_host; 2405 struct sdhci_msm_host *msm_host; 2406 struct clk *clk; 2407 int ret; 2408 u16 host_version, core_minor; 2409 u32 core_version, config; 2410 u8 core_major; 2411 const struct sdhci_msm_offset *msm_offset; 2412 const struct sdhci_msm_variant_info *var_info; 2413 struct device_node *node = pdev->dev.of_node; 2414 2415 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host)); 2416 if (IS_ERR(host)) 2417 return PTR_ERR(host); 2418 2419 host->sdma_boundary = 0; 2420 pltfm_host = sdhci_priv(host); 2421 msm_host = sdhci_pltfm_priv(pltfm_host); 2422 msm_host->mmc = host->mmc; 2423 msm_host->pdev = pdev; 2424 2425 ret = mmc_of_parse(host->mmc); 2426 if (ret) 2427 goto pltfm_free; 2428 2429 /* 2430 * Based on the compatible string, load the required msm host info from 2431 * the data associated with the version info. 2432 */ 2433 var_info = of_device_get_match_data(&pdev->dev); 2434 2435 msm_host->mci_removed = var_info->mci_removed; 2436 msm_host->restore_dll_config = var_info->restore_dll_config; 2437 msm_host->var_ops = var_info->var_ops; 2438 msm_host->offset = var_info->offset; 2439 2440 msm_offset = msm_host->offset; 2441 2442 sdhci_get_of_property(pdev); 2443 sdhci_msm_get_of_property(pdev, host); 2444 2445 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE; 2446 2447 ret = sdhci_msm_gcc_reset(&pdev->dev, host); 2448 if (ret) 2449 goto pltfm_free; 2450 2451 /* Setup SDCC bus voter clock. */ 2452 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus"); 2453 if (!IS_ERR(msm_host->bus_clk)) { 2454 /* Vote for max. clk rate for max. performance */ 2455 ret = clk_set_rate(msm_host->bus_clk, INT_MAX); 2456 if (ret) 2457 goto pltfm_free; 2458 ret = clk_prepare_enable(msm_host->bus_clk); 2459 if (ret) 2460 goto pltfm_free; 2461 } 2462 2463 /* Setup main peripheral bus clock */ 2464 clk = devm_clk_get(&pdev->dev, "iface"); 2465 if (IS_ERR(clk)) { 2466 ret = PTR_ERR(clk); 2467 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret); 2468 goto bus_clk_disable; 2469 } 2470 msm_host->bulk_clks[1].clk = clk; 2471 2472 /* Setup SDC MMC clock */ 2473 clk = devm_clk_get(&pdev->dev, "core"); 2474 if (IS_ERR(clk)) { 2475 ret = PTR_ERR(clk); 2476 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret); 2477 goto bus_clk_disable; 2478 } 2479 msm_host->bulk_clks[0].clk = clk; 2480 2481 /* Check for optional interconnect paths */ 2482 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL); 2483 if (ret) 2484 goto bus_clk_disable; 2485 2486 ret = devm_pm_opp_set_clkname(&pdev->dev, "core"); 2487 if (ret) 2488 goto bus_clk_disable; 2489 2490 /* OPP table is optional */ 2491 ret = devm_pm_opp_of_add_table(&pdev->dev); 2492 if (ret && ret != -ENODEV) { 2493 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n"); 2494 goto bus_clk_disable; 2495 } 2496 2497 /* Vote for maximum clock rate for maximum performance */ 2498 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX); 2499 if (ret) 2500 dev_warn(&pdev->dev, "core clock boost failed\n"); 2501 2502 clk = devm_clk_get(&pdev->dev, "cal"); 2503 if (IS_ERR(clk)) 2504 clk = NULL; 2505 msm_host->bulk_clks[2].clk = clk; 2506 2507 clk = devm_clk_get(&pdev->dev, "sleep"); 2508 if (IS_ERR(clk)) 2509 clk = NULL; 2510 msm_host->bulk_clks[3].clk = clk; 2511 2512 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2513 msm_host->bulk_clks); 2514 if (ret) 2515 goto bus_clk_disable; 2516 2517 /* 2518 * xo clock is needed for FLL feature of cm_dll. 2519 * In case if xo clock is not mentioned in DT, warn and proceed. 2520 */ 2521 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo"); 2522 if (IS_ERR(msm_host->xo_clk)) { 2523 ret = PTR_ERR(msm_host->xo_clk); 2524 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret); 2525 } 2526 2527 if (!msm_host->mci_removed) { 2528 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1); 2529 if (IS_ERR(msm_host->core_mem)) { 2530 ret = PTR_ERR(msm_host->core_mem); 2531 goto clk_disable; 2532 } 2533 } 2534 2535 /* Reset the vendor spec register to power on reset state */ 2536 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL, 2537 host->ioaddr + msm_offset->core_vendor_spec); 2538 2539 if (!msm_host->mci_removed) { 2540 /* Set HC_MODE_EN bit in HC_MODE register */ 2541 msm_host_writel(msm_host, HC_MODE_EN, host, 2542 msm_offset->core_hc_mode); 2543 config = msm_host_readl(msm_host, host, 2544 msm_offset->core_hc_mode); 2545 config |= FF_CLK_SW_RST_DIS; 2546 msm_host_writel(msm_host, config, host, 2547 msm_offset->core_hc_mode); 2548 } 2549 2550 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION)); 2551 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n", 2552 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >> 2553 SDHCI_VENDOR_VER_SHIFT)); 2554 2555 core_version = msm_host_readl(msm_host, host, 2556 msm_offset->core_mci_version); 2557 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >> 2558 CORE_VERSION_MAJOR_SHIFT; 2559 core_minor = core_version & CORE_VERSION_MINOR_MASK; 2560 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n", 2561 core_version, core_major, core_minor); 2562 2563 if (core_major == 1 && core_minor >= 0x42) 2564 msm_host->use_14lpp_dll_reset = true; 2565 2566 /* 2567 * SDCC 5 controller with major version 1, minor version 0x34 and later 2568 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL. 2569 */ 2570 if (core_major == 1 && core_minor < 0x34) 2571 msm_host->use_cdclp533 = true; 2572 2573 /* 2574 * Support for some capabilities is not advertised by newer 2575 * controller versions and must be explicitly enabled. 2576 */ 2577 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) { 2578 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES); 2579 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT; 2580 writel_relaxed(config, host->ioaddr + 2581 msm_offset->core_vendor_spec_capabilities0); 2582 } 2583 2584 if (core_major == 1 && core_minor >= 0x49) 2585 msm_host->updated_ddr_cfg = true; 2586 2587 if (core_major == 1 && core_minor >= 0x71) 2588 msm_host->uses_tassadar_dll = true; 2589 2590 ret = sdhci_msm_register_vreg(msm_host); 2591 if (ret) 2592 goto clk_disable; 2593 2594 /* 2595 * Power on reset state may trigger power irq if previous status of 2596 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq 2597 * interrupt in GIC, any pending power irq interrupt should be 2598 * acknowledged. Otherwise power irq interrupt handler would be 2599 * fired prematurely. 2600 */ 2601 sdhci_msm_handle_pwr_irq(host, 0); 2602 2603 /* 2604 * Ensure that above writes are propogated before interrupt enablement 2605 * in GIC. 2606 */ 2607 mb(); 2608 2609 /* Setup IRQ for handling power/voltage tasks with PMIC */ 2610 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq"); 2611 if (msm_host->pwr_irq < 0) { 2612 ret = msm_host->pwr_irq; 2613 goto clk_disable; 2614 } 2615 2616 sdhci_msm_init_pwr_irq_wait(msm_host); 2617 /* Enable pwr irq interrupts */ 2618 msm_host_writel(msm_host, INT_MASK, host, 2619 msm_offset->core_pwrctl_mask); 2620 2621 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL, 2622 sdhci_msm_pwr_irq, IRQF_ONESHOT, 2623 dev_name(&pdev->dev), host); 2624 if (ret) { 2625 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret); 2626 goto clk_disable; 2627 } 2628 2629 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY; 2630 2631 /* Set the timeout value to max possible */ 2632 host->max_timeout_count = 0xF; 2633 2634 pm_runtime_get_noresume(&pdev->dev); 2635 pm_runtime_set_active(&pdev->dev); 2636 pm_runtime_enable(&pdev->dev); 2637 pm_runtime_set_autosuspend_delay(&pdev->dev, 2638 MSM_MMC_AUTOSUSPEND_DELAY_MS); 2639 pm_runtime_use_autosuspend(&pdev->dev); 2640 2641 host->mmc_host_ops.start_signal_voltage_switch = 2642 sdhci_msm_start_signal_voltage_switch; 2643 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning; 2644 if (of_property_read_bool(node, "supports-cqe")) 2645 ret = sdhci_msm_cqe_add_host(host, pdev); 2646 else 2647 ret = sdhci_add_host(host); 2648 if (ret) 2649 goto pm_runtime_disable; 2650 2651 pm_runtime_mark_last_busy(&pdev->dev); 2652 pm_runtime_put_autosuspend(&pdev->dev); 2653 2654 return 0; 2655 2656 pm_runtime_disable: 2657 pm_runtime_disable(&pdev->dev); 2658 pm_runtime_set_suspended(&pdev->dev); 2659 pm_runtime_put_noidle(&pdev->dev); 2660 clk_disable: 2661 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2662 msm_host->bulk_clks); 2663 bus_clk_disable: 2664 if (!IS_ERR(msm_host->bus_clk)) 2665 clk_disable_unprepare(msm_host->bus_clk); 2666 pltfm_free: 2667 sdhci_pltfm_free(pdev); 2668 return ret; 2669 } 2670 2671 static void sdhci_msm_remove(struct platform_device *pdev) 2672 { 2673 struct sdhci_host *host = platform_get_drvdata(pdev); 2674 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2675 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2676 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) == 2677 0xffffffff); 2678 2679 sdhci_remove_host(host, dead); 2680 2681 pm_runtime_get_sync(&pdev->dev); 2682 pm_runtime_disable(&pdev->dev); 2683 pm_runtime_put_noidle(&pdev->dev); 2684 2685 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2686 msm_host->bulk_clks); 2687 if (!IS_ERR(msm_host->bus_clk)) 2688 clk_disable_unprepare(msm_host->bus_clk); 2689 sdhci_pltfm_free(pdev); 2690 } 2691 2692 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev) 2693 { 2694 struct sdhci_host *host = dev_get_drvdata(dev); 2695 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2696 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2697 2698 /* Drop the performance vote */ 2699 dev_pm_opp_set_rate(dev, 0); 2700 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2701 msm_host->bulk_clks); 2702 2703 return sdhci_msm_ice_suspend(msm_host); 2704 } 2705 2706 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev) 2707 { 2708 struct sdhci_host *host = dev_get_drvdata(dev); 2709 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2710 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2711 int ret; 2712 2713 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2714 msm_host->bulk_clks); 2715 if (ret) 2716 return ret; 2717 /* 2718 * Whenever core-clock is gated dynamically, it's needed to 2719 * restore the SDR DLL settings when the clock is ungated. 2720 */ 2721 if (msm_host->restore_dll_config && msm_host->clk_rate) { 2722 ret = sdhci_msm_restore_sdr_dll_config(host); 2723 if (ret) 2724 return ret; 2725 } 2726 2727 dev_pm_opp_set_rate(dev, msm_host->clk_rate); 2728 2729 return sdhci_msm_ice_resume(msm_host); 2730 } 2731 2732 static const struct dev_pm_ops sdhci_msm_pm_ops = { 2733 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 2734 pm_runtime_force_resume) 2735 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend, 2736 sdhci_msm_runtime_resume, 2737 NULL) 2738 }; 2739 2740 static struct platform_driver sdhci_msm_driver = { 2741 .probe = sdhci_msm_probe, 2742 .remove_new = sdhci_msm_remove, 2743 .driver = { 2744 .name = "sdhci_msm", 2745 .of_match_table = sdhci_msm_dt_match, 2746 .pm = &sdhci_msm_pm_ops, 2747 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2748 }, 2749 }; 2750 2751 module_platform_driver(sdhci_msm_driver); 2752 2753 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver"); 2754 MODULE_LICENSE("GPL v2"); 2755