1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver 4 * 5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/of_device.h> 10 #include <linux/delay.h> 11 #include <linux/mmc/mmc.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/slab.h> 14 #include <linux/iopoll.h> 15 #include <linux/regulator/consumer.h> 16 17 #include "sdhci-pltfm.h" 18 #include "cqhci.h" 19 20 #define CORE_MCI_VERSION 0x50 21 #define CORE_VERSION_MAJOR_SHIFT 28 22 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT) 23 #define CORE_VERSION_MINOR_MASK 0xff 24 25 #define CORE_MCI_GENERICS 0x70 26 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29) 27 28 #define HC_MODE_EN 0x1 29 #define CORE_POWER 0x0 30 #define CORE_SW_RST BIT(7) 31 #define FF_CLK_SW_RST_DIS BIT(13) 32 33 #define CORE_PWRCTL_BUS_OFF BIT(0) 34 #define CORE_PWRCTL_BUS_ON BIT(1) 35 #define CORE_PWRCTL_IO_LOW BIT(2) 36 #define CORE_PWRCTL_IO_HIGH BIT(3) 37 #define CORE_PWRCTL_BUS_SUCCESS BIT(0) 38 #define CORE_PWRCTL_IO_SUCCESS BIT(2) 39 #define REQ_BUS_OFF BIT(0) 40 #define REQ_BUS_ON BIT(1) 41 #define REQ_IO_LOW BIT(2) 42 #define REQ_IO_HIGH BIT(3) 43 #define INT_MASK 0xf 44 #define MAX_PHASES 16 45 #define CORE_DLL_LOCK BIT(7) 46 #define CORE_DDR_DLL_LOCK BIT(11) 47 #define CORE_DLL_EN BIT(16) 48 #define CORE_CDR_EN BIT(17) 49 #define CORE_CK_OUT_EN BIT(18) 50 #define CORE_CDR_EXT_EN BIT(19) 51 #define CORE_DLL_PDN BIT(29) 52 #define CORE_DLL_RST BIT(30) 53 #define CORE_CMD_DAT_TRACK_SEL BIT(0) 54 55 #define CORE_DDR_CAL_EN BIT(0) 56 #define CORE_FLL_CYCLE_CNT BIT(18) 57 #define CORE_DLL_CLOCK_DISABLE BIT(21) 58 59 #define CORE_VENDOR_SPEC_POR_VAL 0xa1c 60 #define CORE_CLK_PWRSAVE BIT(1) 61 #define CORE_HC_MCLK_SEL_DFLT (2 << 8) 62 #define CORE_HC_MCLK_SEL_HS400 (3 << 8) 63 #define CORE_HC_MCLK_SEL_MASK (3 << 8) 64 #define CORE_IO_PAD_PWR_SWITCH_EN (1 << 15) 65 #define CORE_IO_PAD_PWR_SWITCH (1 << 16) 66 #define CORE_HC_SELECT_IN_EN BIT(18) 67 #define CORE_HC_SELECT_IN_HS400 (6 << 19) 68 #define CORE_HC_SELECT_IN_MASK (7 << 19) 69 70 #define CORE_3_0V_SUPPORT (1 << 25) 71 #define CORE_1_8V_SUPPORT (1 << 26) 72 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT) 73 74 #define CORE_CSR_CDC_CTLR_CFG0 0x130 75 #define CORE_SW_TRIG_FULL_CALIB BIT(16) 76 #define CORE_HW_AUTOCAL_ENA BIT(17) 77 78 #define CORE_CSR_CDC_CTLR_CFG1 0x134 79 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138 80 #define CORE_TIMER_ENA BIT(16) 81 82 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C 83 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140 84 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144 85 #define CORE_CDC_OFFSET_CFG 0x14C 86 #define CORE_CSR_CDC_DELAY_CFG 0x150 87 #define CORE_CDC_SLAVE_DDA_CFG 0x160 88 #define CORE_CSR_CDC_STATUS0 0x164 89 #define CORE_CALIBRATION_DONE BIT(0) 90 91 #define CORE_CDC_ERROR_CODE_MASK 0x7000000 92 93 #define CORE_CSR_CDC_GEN_CFG 0x178 94 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0) 95 #define CORE_CDC_SWITCH_RC_EN BIT(1) 96 97 #define CORE_CDC_T4_DLY_SEL BIT(0) 98 #define CORE_CMDIN_RCLK_EN BIT(1) 99 #define CORE_START_CDC_TRAFFIC BIT(6) 100 101 #define CORE_PWRSAVE_DLL BIT(3) 102 103 #define DDR_CONFIG_POR_VAL 0x80040873 104 105 106 #define INVALID_TUNING_PHASE -1 107 #define SDHCI_MSM_MIN_CLOCK 400000 108 #define CORE_FREQ_100MHZ (100 * 1000 * 1000) 109 110 #define CDR_SELEXT_SHIFT 20 111 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT) 112 #define CMUX_SHIFT_PHASE_SHIFT 24 113 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT) 114 115 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50 116 117 /* Timeout value to avoid infinite waiting for pwr_irq */ 118 #define MSM_PWR_IRQ_TIMEOUT_MS 5000 119 120 #define msm_host_readl(msm_host, host, offset) \ 121 msm_host->var_ops->msm_readl_relaxed(host, offset) 122 123 #define msm_host_writel(msm_host, val, host, offset) \ 124 msm_host->var_ops->msm_writel_relaxed(val, host, offset) 125 126 /* CQHCI vendor specific registers */ 127 #define CQHCI_VENDOR_CFG1 0xA00 128 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13) 129 130 struct sdhci_msm_offset { 131 u32 core_hc_mode; 132 u32 core_mci_data_cnt; 133 u32 core_mci_status; 134 u32 core_mci_fifo_cnt; 135 u32 core_mci_version; 136 u32 core_generics; 137 u32 core_testbus_config; 138 u32 core_testbus_sel2_bit; 139 u32 core_testbus_ena; 140 u32 core_testbus_sel2; 141 u32 core_pwrctl_status; 142 u32 core_pwrctl_mask; 143 u32 core_pwrctl_clear; 144 u32 core_pwrctl_ctl; 145 u32 core_sdcc_debug_reg; 146 u32 core_dll_config; 147 u32 core_dll_status; 148 u32 core_vendor_spec; 149 u32 core_vendor_spec_adma_err_addr0; 150 u32 core_vendor_spec_adma_err_addr1; 151 u32 core_vendor_spec_func2; 152 u32 core_vendor_spec_capabilities0; 153 u32 core_ddr_200_cfg; 154 u32 core_vendor_spec3; 155 u32 core_dll_config_2; 156 u32 core_dll_config_3; 157 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */ 158 u32 core_ddr_config; 159 }; 160 161 static const struct sdhci_msm_offset sdhci_msm_v5_offset = { 162 .core_mci_data_cnt = 0x35c, 163 .core_mci_status = 0x324, 164 .core_mci_fifo_cnt = 0x308, 165 .core_mci_version = 0x318, 166 .core_generics = 0x320, 167 .core_testbus_config = 0x32c, 168 .core_testbus_sel2_bit = 3, 169 .core_testbus_ena = (1 << 31), 170 .core_testbus_sel2 = (1 << 3), 171 .core_pwrctl_status = 0x240, 172 .core_pwrctl_mask = 0x244, 173 .core_pwrctl_clear = 0x248, 174 .core_pwrctl_ctl = 0x24c, 175 .core_sdcc_debug_reg = 0x358, 176 .core_dll_config = 0x200, 177 .core_dll_status = 0x208, 178 .core_vendor_spec = 0x20c, 179 .core_vendor_spec_adma_err_addr0 = 0x214, 180 .core_vendor_spec_adma_err_addr1 = 0x218, 181 .core_vendor_spec_func2 = 0x210, 182 .core_vendor_spec_capabilities0 = 0x21c, 183 .core_ddr_200_cfg = 0x224, 184 .core_vendor_spec3 = 0x250, 185 .core_dll_config_2 = 0x254, 186 .core_dll_config_3 = 0x258, 187 .core_ddr_config = 0x25c, 188 }; 189 190 static const struct sdhci_msm_offset sdhci_msm_mci_offset = { 191 .core_hc_mode = 0x78, 192 .core_mci_data_cnt = 0x30, 193 .core_mci_status = 0x34, 194 .core_mci_fifo_cnt = 0x44, 195 .core_mci_version = 0x050, 196 .core_generics = 0x70, 197 .core_testbus_config = 0x0cc, 198 .core_testbus_sel2_bit = 4, 199 .core_testbus_ena = (1 << 3), 200 .core_testbus_sel2 = (1 << 4), 201 .core_pwrctl_status = 0xdc, 202 .core_pwrctl_mask = 0xe0, 203 .core_pwrctl_clear = 0xe4, 204 .core_pwrctl_ctl = 0xe8, 205 .core_sdcc_debug_reg = 0x124, 206 .core_dll_config = 0x100, 207 .core_dll_status = 0x108, 208 .core_vendor_spec = 0x10c, 209 .core_vendor_spec_adma_err_addr0 = 0x114, 210 .core_vendor_spec_adma_err_addr1 = 0x118, 211 .core_vendor_spec_func2 = 0x110, 212 .core_vendor_spec_capabilities0 = 0x11c, 213 .core_ddr_200_cfg = 0x184, 214 .core_vendor_spec3 = 0x1b0, 215 .core_dll_config_2 = 0x1b4, 216 .core_ddr_config_old = 0x1b8, 217 .core_ddr_config = 0x1bc, 218 }; 219 220 struct sdhci_msm_variant_ops { 221 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset); 222 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host, 223 u32 offset); 224 }; 225 226 /* 227 * From V5, register spaces have changed. Wrap this info in a structure 228 * and choose the data_structure based on version info mentioned in DT. 229 */ 230 struct sdhci_msm_variant_info { 231 bool mci_removed; 232 bool restore_dll_config; 233 const struct sdhci_msm_variant_ops *var_ops; 234 const struct sdhci_msm_offset *offset; 235 }; 236 237 struct sdhci_msm_host { 238 struct platform_device *pdev; 239 void __iomem *core_mem; /* MSM SDCC mapped address */ 240 int pwr_irq; /* power irq */ 241 struct clk *bus_clk; /* SDHC bus voter clock */ 242 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/ 243 struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */ 244 unsigned long clk_rate; 245 struct mmc_host *mmc; 246 bool use_14lpp_dll_reset; 247 bool tuning_done; 248 bool calibration_done; 249 u8 saved_tuning_phase; 250 bool use_cdclp533; 251 u32 curr_pwr_state; 252 u32 curr_io_level; 253 wait_queue_head_t pwr_irq_wait; 254 bool pwr_irq_flag; 255 u32 caps_0; 256 bool mci_removed; 257 bool restore_dll_config; 258 const struct sdhci_msm_variant_ops *var_ops; 259 const struct sdhci_msm_offset *offset; 260 bool use_cdr; 261 u32 transfer_mode; 262 bool updated_ddr_cfg; 263 }; 264 265 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host) 266 { 267 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 268 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 269 270 return msm_host->offset; 271 } 272 273 /* 274 * APIs to read/write to vendor specific registers which were there in the 275 * core_mem region before MCI was removed. 276 */ 277 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host, 278 u32 offset) 279 { 280 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 281 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 282 283 return readl_relaxed(msm_host->core_mem + offset); 284 } 285 286 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host, 287 u32 offset) 288 { 289 return readl_relaxed(host->ioaddr + offset); 290 } 291 292 static void sdhci_msm_mci_variant_writel_relaxed(u32 val, 293 struct sdhci_host *host, u32 offset) 294 { 295 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 296 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 297 298 writel_relaxed(val, msm_host->core_mem + offset); 299 } 300 301 static void sdhci_msm_v5_variant_writel_relaxed(u32 val, 302 struct sdhci_host *host, u32 offset) 303 { 304 writel_relaxed(val, host->ioaddr + offset); 305 } 306 307 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host, 308 unsigned int clock) 309 { 310 struct mmc_ios ios = host->mmc->ios; 311 /* 312 * The SDHC requires internal clock frequency to be double the 313 * actual clock that will be set for DDR mode. The controller 314 * uses the faster clock(100/400MHz) for some of its parts and 315 * send the actual required clock (50/200MHz) to the card. 316 */ 317 if (ios.timing == MMC_TIMING_UHS_DDR50 || 318 ios.timing == MMC_TIMING_MMC_DDR52 || 319 ios.timing == MMC_TIMING_MMC_HS400 || 320 host->flags & SDHCI_HS400_TUNING) 321 clock *= 2; 322 return clock; 323 } 324 325 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host, 326 unsigned int clock) 327 { 328 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 329 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 330 struct mmc_ios curr_ios = host->mmc->ios; 331 struct clk *core_clk = msm_host->bulk_clks[0].clk; 332 int rc; 333 334 clock = msm_get_clock_rate_for_bus_mode(host, clock); 335 rc = clk_set_rate(core_clk, clock); 336 if (rc) { 337 pr_err("%s: Failed to set clock at rate %u at timing %d\n", 338 mmc_hostname(host->mmc), clock, 339 curr_ios.timing); 340 return; 341 } 342 msm_host->clk_rate = clock; 343 pr_debug("%s: Setting clock at rate %lu at timing %d\n", 344 mmc_hostname(host->mmc), clk_get_rate(core_clk), 345 curr_ios.timing); 346 } 347 348 /* Platform specific tuning */ 349 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll) 350 { 351 u32 wait_cnt = 50; 352 u8 ck_out_en; 353 struct mmc_host *mmc = host->mmc; 354 const struct sdhci_msm_offset *msm_offset = 355 sdhci_priv_msm_offset(host); 356 357 /* Poll for CK_OUT_EN bit. max. poll time = 50us */ 358 ck_out_en = !!(readl_relaxed(host->ioaddr + 359 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 360 361 while (ck_out_en != poll) { 362 if (--wait_cnt == 0) { 363 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n", 364 mmc_hostname(mmc), poll); 365 return -ETIMEDOUT; 366 } 367 udelay(1); 368 369 ck_out_en = !!(readl_relaxed(host->ioaddr + 370 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 371 } 372 373 return 0; 374 } 375 376 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase) 377 { 378 int rc; 379 static const u8 grey_coded_phase_table[] = { 380 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 381 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8 382 }; 383 unsigned long flags; 384 u32 config; 385 struct mmc_host *mmc = host->mmc; 386 const struct sdhci_msm_offset *msm_offset = 387 sdhci_priv_msm_offset(host); 388 389 if (phase > 0xf) 390 return -EINVAL; 391 392 spin_lock_irqsave(&host->lock, flags); 393 394 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 395 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN); 396 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN); 397 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 398 399 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */ 400 rc = msm_dll_poll_ck_out_en(host, 0); 401 if (rc) 402 goto err_out; 403 404 /* 405 * Write the selected DLL clock output phase (0 ... 15) 406 * to CDR_SELEXT bit field of DLL_CONFIG register. 407 */ 408 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 409 config &= ~CDR_SELEXT_MASK; 410 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT; 411 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 412 413 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 414 config |= CORE_CK_OUT_EN; 415 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 416 417 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */ 418 rc = msm_dll_poll_ck_out_en(host, 1); 419 if (rc) 420 goto err_out; 421 422 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 423 config |= CORE_CDR_EN; 424 config &= ~CORE_CDR_EXT_EN; 425 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 426 goto out; 427 428 err_out: 429 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n", 430 mmc_hostname(mmc), phase); 431 out: 432 spin_unlock_irqrestore(&host->lock, flags); 433 return rc; 434 } 435 436 /* 437 * Find out the greatest range of consecuitive selected 438 * DLL clock output phases that can be used as sampling 439 * setting for SD3.0 UHS-I card read operation (in SDR104 440 * timing mode) or for eMMC4.5 card read operation (in 441 * HS400/HS200 timing mode). 442 * Select the 3/4 of the range and configure the DLL with the 443 * selected DLL clock output phase. 444 */ 445 446 static int msm_find_most_appropriate_phase(struct sdhci_host *host, 447 u8 *phase_table, u8 total_phases) 448 { 449 int ret; 450 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} }; 451 u8 phases_per_row[MAX_PHASES] = { 0 }; 452 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0; 453 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0; 454 bool phase_0_found = false, phase_15_found = false; 455 struct mmc_host *mmc = host->mmc; 456 457 if (!total_phases || (total_phases > MAX_PHASES)) { 458 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n", 459 mmc_hostname(mmc), total_phases); 460 return -EINVAL; 461 } 462 463 for (cnt = 0; cnt < total_phases; cnt++) { 464 ranges[row_index][col_index] = phase_table[cnt]; 465 phases_per_row[row_index] += 1; 466 col_index++; 467 468 if ((cnt + 1) == total_phases) { 469 continue; 470 /* check if next phase in phase_table is consecutive or not */ 471 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) { 472 row_index++; 473 col_index = 0; 474 } 475 } 476 477 if (row_index >= MAX_PHASES) 478 return -EINVAL; 479 480 /* Check if phase-0 is present in first valid window? */ 481 if (!ranges[0][0]) { 482 phase_0_found = true; 483 phase_0_raw_index = 0; 484 /* Check if cycle exist between 2 valid windows */ 485 for (cnt = 1; cnt <= row_index; cnt++) { 486 if (phases_per_row[cnt]) { 487 for (i = 0; i < phases_per_row[cnt]; i++) { 488 if (ranges[cnt][i] == 15) { 489 phase_15_found = true; 490 phase_15_raw_index = cnt; 491 break; 492 } 493 } 494 } 495 } 496 } 497 498 /* If 2 valid windows form cycle then merge them as single window */ 499 if (phase_0_found && phase_15_found) { 500 /* number of phases in raw where phase 0 is present */ 501 u8 phases_0 = phases_per_row[phase_0_raw_index]; 502 /* number of phases in raw where phase 15 is present */ 503 u8 phases_15 = phases_per_row[phase_15_raw_index]; 504 505 if (phases_0 + phases_15 >= MAX_PHASES) 506 /* 507 * If there are more than 1 phase windows then total 508 * number of phases in both the windows should not be 509 * more than or equal to MAX_PHASES. 510 */ 511 return -EINVAL; 512 513 /* Merge 2 cyclic windows */ 514 i = phases_15; 515 for (cnt = 0; cnt < phases_0; cnt++) { 516 ranges[phase_15_raw_index][i] = 517 ranges[phase_0_raw_index][cnt]; 518 if (++i >= MAX_PHASES) 519 break; 520 } 521 522 phases_per_row[phase_0_raw_index] = 0; 523 phases_per_row[phase_15_raw_index] = phases_15 + phases_0; 524 } 525 526 for (cnt = 0; cnt <= row_index; cnt++) { 527 if (phases_per_row[cnt] > curr_max) { 528 curr_max = phases_per_row[cnt]; 529 selected_row_index = cnt; 530 } 531 } 532 533 i = (curr_max * 3) / 4; 534 if (i) 535 i--; 536 537 ret = ranges[selected_row_index][i]; 538 539 if (ret >= MAX_PHASES) { 540 ret = -EINVAL; 541 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n", 542 mmc_hostname(mmc), ret); 543 } 544 545 return ret; 546 } 547 548 static inline void msm_cm_dll_set_freq(struct sdhci_host *host) 549 { 550 u32 mclk_freq = 0, config; 551 const struct sdhci_msm_offset *msm_offset = 552 sdhci_priv_msm_offset(host); 553 554 /* Program the MCLK value to MCLK_FREQ bit field */ 555 if (host->clock <= 112000000) 556 mclk_freq = 0; 557 else if (host->clock <= 125000000) 558 mclk_freq = 1; 559 else if (host->clock <= 137000000) 560 mclk_freq = 2; 561 else if (host->clock <= 150000000) 562 mclk_freq = 3; 563 else if (host->clock <= 162000000) 564 mclk_freq = 4; 565 else if (host->clock <= 175000000) 566 mclk_freq = 5; 567 else if (host->clock <= 187000000) 568 mclk_freq = 6; 569 else if (host->clock <= 200000000) 570 mclk_freq = 7; 571 572 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 573 config &= ~CMUX_SHIFT_PHASE_MASK; 574 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT; 575 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 576 } 577 578 /* Initialize the DLL (Programmable Delay Line) */ 579 static int msm_init_cm_dll(struct sdhci_host *host) 580 { 581 struct mmc_host *mmc = host->mmc; 582 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 583 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 584 int wait_cnt = 50; 585 unsigned long flags, xo_clk = 0; 586 u32 config; 587 const struct sdhci_msm_offset *msm_offset = 588 msm_host->offset; 589 590 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk)) 591 xo_clk = clk_get_rate(msm_host->xo_clk); 592 593 spin_lock_irqsave(&host->lock, flags); 594 595 /* 596 * Make sure that clock is always enabled when DLL 597 * tuning is in progress. Keeping PWRSAVE ON may 598 * turn off the clock. 599 */ 600 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 601 config &= ~CORE_CLK_PWRSAVE; 602 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 603 604 if (msm_host->use_14lpp_dll_reset) { 605 config = readl_relaxed(host->ioaddr + 606 msm_offset->core_dll_config); 607 config &= ~CORE_CK_OUT_EN; 608 writel_relaxed(config, host->ioaddr + 609 msm_offset->core_dll_config); 610 611 config = readl_relaxed(host->ioaddr + 612 msm_offset->core_dll_config_2); 613 config |= CORE_DLL_CLOCK_DISABLE; 614 writel_relaxed(config, host->ioaddr + 615 msm_offset->core_dll_config_2); 616 } 617 618 config = readl_relaxed(host->ioaddr + 619 msm_offset->core_dll_config); 620 config |= CORE_DLL_RST; 621 writel_relaxed(config, host->ioaddr + 622 msm_offset->core_dll_config); 623 624 config = readl_relaxed(host->ioaddr + 625 msm_offset->core_dll_config); 626 config |= CORE_DLL_PDN; 627 writel_relaxed(config, host->ioaddr + 628 msm_offset->core_dll_config); 629 msm_cm_dll_set_freq(host); 630 631 if (msm_host->use_14lpp_dll_reset && 632 !IS_ERR_OR_NULL(msm_host->xo_clk)) { 633 u32 mclk_freq = 0; 634 635 config = readl_relaxed(host->ioaddr + 636 msm_offset->core_dll_config_2); 637 config &= CORE_FLL_CYCLE_CNT; 638 if (config) 639 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8), 640 xo_clk); 641 else 642 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4), 643 xo_clk); 644 645 config = readl_relaxed(host->ioaddr + 646 msm_offset->core_dll_config_2); 647 config &= ~(0xFF << 10); 648 config |= mclk_freq << 10; 649 650 writel_relaxed(config, host->ioaddr + 651 msm_offset->core_dll_config_2); 652 /* wait for 5us before enabling DLL clock */ 653 udelay(5); 654 } 655 656 config = readl_relaxed(host->ioaddr + 657 msm_offset->core_dll_config); 658 config &= ~CORE_DLL_RST; 659 writel_relaxed(config, host->ioaddr + 660 msm_offset->core_dll_config); 661 662 config = readl_relaxed(host->ioaddr + 663 msm_offset->core_dll_config); 664 config &= ~CORE_DLL_PDN; 665 writel_relaxed(config, host->ioaddr + 666 msm_offset->core_dll_config); 667 668 if (msm_host->use_14lpp_dll_reset) { 669 msm_cm_dll_set_freq(host); 670 config = readl_relaxed(host->ioaddr + 671 msm_offset->core_dll_config_2); 672 config &= ~CORE_DLL_CLOCK_DISABLE; 673 writel_relaxed(config, host->ioaddr + 674 msm_offset->core_dll_config_2); 675 } 676 677 config = readl_relaxed(host->ioaddr + 678 msm_offset->core_dll_config); 679 config |= CORE_DLL_EN; 680 writel_relaxed(config, host->ioaddr + 681 msm_offset->core_dll_config); 682 683 config = readl_relaxed(host->ioaddr + 684 msm_offset->core_dll_config); 685 config |= CORE_CK_OUT_EN; 686 writel_relaxed(config, host->ioaddr + 687 msm_offset->core_dll_config); 688 689 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */ 690 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) & 691 CORE_DLL_LOCK)) { 692 /* max. wait for 50us sec for LOCK bit to be set */ 693 if (--wait_cnt == 0) { 694 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n", 695 mmc_hostname(mmc)); 696 spin_unlock_irqrestore(&host->lock, flags); 697 return -ETIMEDOUT; 698 } 699 udelay(1); 700 } 701 702 spin_unlock_irqrestore(&host->lock, flags); 703 return 0; 704 } 705 706 static void msm_hc_select_default(struct sdhci_host *host) 707 { 708 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 709 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 710 u32 config; 711 const struct sdhci_msm_offset *msm_offset = 712 msm_host->offset; 713 714 if (!msm_host->use_cdclp533) { 715 config = readl_relaxed(host->ioaddr + 716 msm_offset->core_vendor_spec3); 717 config &= ~CORE_PWRSAVE_DLL; 718 writel_relaxed(config, host->ioaddr + 719 msm_offset->core_vendor_spec3); 720 } 721 722 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 723 config &= ~CORE_HC_MCLK_SEL_MASK; 724 config |= CORE_HC_MCLK_SEL_DFLT; 725 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 726 727 /* 728 * Disable HC_SELECT_IN to be able to use the UHS mode select 729 * configuration from Host Control2 register for all other 730 * modes. 731 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field 732 * in VENDOR_SPEC_FUNC 733 */ 734 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 735 config &= ~CORE_HC_SELECT_IN_EN; 736 config &= ~CORE_HC_SELECT_IN_MASK; 737 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 738 739 /* 740 * Make sure above writes impacting free running MCLK are completed 741 * before changing the clk_rate at GCC. 742 */ 743 wmb(); 744 } 745 746 static void msm_hc_select_hs400(struct sdhci_host *host) 747 { 748 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 749 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 750 struct mmc_ios ios = host->mmc->ios; 751 u32 config, dll_lock; 752 int rc; 753 const struct sdhci_msm_offset *msm_offset = 754 msm_host->offset; 755 756 /* Select the divided clock (free running MCLK/2) */ 757 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 758 config &= ~CORE_HC_MCLK_SEL_MASK; 759 config |= CORE_HC_MCLK_SEL_HS400; 760 761 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 762 /* 763 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC 764 * register 765 */ 766 if ((msm_host->tuning_done || ios.enhanced_strobe) && 767 !msm_host->calibration_done) { 768 config = readl_relaxed(host->ioaddr + 769 msm_offset->core_vendor_spec); 770 config |= CORE_HC_SELECT_IN_HS400; 771 config |= CORE_HC_SELECT_IN_EN; 772 writel_relaxed(config, host->ioaddr + 773 msm_offset->core_vendor_spec); 774 } 775 if (!msm_host->clk_rate && !msm_host->use_cdclp533) { 776 /* 777 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in 778 * core_dll_status to be set. This should get set 779 * within 15 us at 200 MHz. 780 */ 781 rc = readl_relaxed_poll_timeout(host->ioaddr + 782 msm_offset->core_dll_status, 783 dll_lock, 784 (dll_lock & 785 (CORE_DLL_LOCK | 786 CORE_DDR_DLL_LOCK)), 10, 787 1000); 788 if (rc == -ETIMEDOUT) 789 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n", 790 mmc_hostname(host->mmc), dll_lock); 791 } 792 /* 793 * Make sure above writes impacting free running MCLK are completed 794 * before changing the clk_rate at GCC. 795 */ 796 wmb(); 797 } 798 799 /* 800 * sdhci_msm_hc_select_mode :- In general all timing modes are 801 * controlled via UHS mode select in Host Control2 register. 802 * eMMC specific HS200/HS400 doesn't have their respective modes 803 * defined here, hence we use these values. 804 * 805 * HS200 - SDR104 (Since they both are equivalent in functionality) 806 * HS400 - This involves multiple configurations 807 * Initially SDR104 - when tuning is required as HS200 808 * Then when switching to DDR @ 400MHz (HS400) we use 809 * the vendor specific HC_SELECT_IN to control the mode. 810 * 811 * In addition to controlling the modes we also need to select the 812 * correct input clock for DLL depending on the mode. 813 * 814 * HS400 - divided clock (free running MCLK/2) 815 * All other modes - default (free running MCLK) 816 */ 817 static void sdhci_msm_hc_select_mode(struct sdhci_host *host) 818 { 819 struct mmc_ios ios = host->mmc->ios; 820 821 if (ios.timing == MMC_TIMING_MMC_HS400 || 822 host->flags & SDHCI_HS400_TUNING) 823 msm_hc_select_hs400(host); 824 else 825 msm_hc_select_default(host); 826 } 827 828 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host) 829 { 830 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 831 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 832 u32 config, calib_done; 833 int ret; 834 const struct sdhci_msm_offset *msm_offset = 835 msm_host->offset; 836 837 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 838 839 /* 840 * Retuning in HS400 (DDR mode) will fail, just reset the 841 * tuning block and restore the saved tuning phase. 842 */ 843 ret = msm_init_cm_dll(host); 844 if (ret) 845 goto out; 846 847 /* Set the selected phase in delay line hw block */ 848 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 849 if (ret) 850 goto out; 851 852 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 853 config |= CORE_CMD_DAT_TRACK_SEL; 854 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 855 856 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 857 config &= ~CORE_CDC_T4_DLY_SEL; 858 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 859 860 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 861 config &= ~CORE_CDC_SWITCH_BYPASS_OFF; 862 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 863 864 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 865 config |= CORE_CDC_SWITCH_RC_EN; 866 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 867 868 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 869 config &= ~CORE_START_CDC_TRAFFIC; 870 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 871 872 /* Perform CDC Register Initialization Sequence */ 873 874 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 875 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1); 876 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 877 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1); 878 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG); 879 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG); 880 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG); 881 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG); 882 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG); 883 884 /* CDC HW Calibration */ 885 886 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 887 config |= CORE_SW_TRIG_FULL_CALIB; 888 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 889 890 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 891 config &= ~CORE_SW_TRIG_FULL_CALIB; 892 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 893 894 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 895 config |= CORE_HW_AUTOCAL_ENA; 896 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 897 898 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 899 config |= CORE_TIMER_ENA; 900 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 901 902 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0, 903 calib_done, 904 (calib_done & CORE_CALIBRATION_DONE), 905 1, 50); 906 907 if (ret == -ETIMEDOUT) { 908 pr_err("%s: %s: CDC calibration was not completed\n", 909 mmc_hostname(host->mmc), __func__); 910 goto out; 911 } 912 913 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0) 914 & CORE_CDC_ERROR_CODE_MASK; 915 if (ret) { 916 pr_err("%s: %s: CDC error code %d\n", 917 mmc_hostname(host->mmc), __func__, ret); 918 ret = -EINVAL; 919 goto out; 920 } 921 922 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 923 config |= CORE_START_CDC_TRAFFIC; 924 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 925 out: 926 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 927 __func__, ret); 928 return ret; 929 } 930 931 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host) 932 { 933 struct mmc_host *mmc = host->mmc; 934 u32 dll_status, config, ddr_cfg_offset; 935 int ret; 936 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 937 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 938 const struct sdhci_msm_offset *msm_offset = 939 sdhci_priv_msm_offset(host); 940 941 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 942 943 /* 944 * Currently the core_ddr_config register defaults to desired 945 * configuration on reset. Currently reprogramming the power on 946 * reset (POR) value in case it might have been modified by 947 * bootloaders. In the future, if this changes, then the desired 948 * values will need to be programmed appropriately. 949 */ 950 if (msm_host->updated_ddr_cfg) 951 ddr_cfg_offset = msm_offset->core_ddr_config; 952 else 953 ddr_cfg_offset = msm_offset->core_ddr_config_old; 954 writel_relaxed(DDR_CONFIG_POR_VAL, host->ioaddr + ddr_cfg_offset); 955 956 if (mmc->ios.enhanced_strobe) { 957 config = readl_relaxed(host->ioaddr + 958 msm_offset->core_ddr_200_cfg); 959 config |= CORE_CMDIN_RCLK_EN; 960 writel_relaxed(config, host->ioaddr + 961 msm_offset->core_ddr_200_cfg); 962 } 963 964 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2); 965 config |= CORE_DDR_CAL_EN; 966 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2); 967 968 ret = readl_relaxed_poll_timeout(host->ioaddr + 969 msm_offset->core_dll_status, 970 dll_status, 971 (dll_status & CORE_DDR_DLL_LOCK), 972 10, 1000); 973 974 if (ret == -ETIMEDOUT) { 975 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n", 976 mmc_hostname(host->mmc), __func__); 977 goto out; 978 } 979 980 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3); 981 config |= CORE_PWRSAVE_DLL; 982 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec3); 983 984 /* 985 * Drain writebuffer to ensure above DLL calibration 986 * and PWRSAVE DLL is enabled. 987 */ 988 wmb(); 989 out: 990 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 991 __func__, ret); 992 return ret; 993 } 994 995 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host) 996 { 997 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 998 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 999 struct mmc_host *mmc = host->mmc; 1000 int ret; 1001 u32 config; 1002 const struct sdhci_msm_offset *msm_offset = 1003 msm_host->offset; 1004 1005 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 1006 1007 /* 1008 * Retuning in HS400 (DDR mode) will fail, just reset the 1009 * tuning block and restore the saved tuning phase. 1010 */ 1011 ret = msm_init_cm_dll(host); 1012 if (ret) 1013 goto out; 1014 1015 if (!mmc->ios.enhanced_strobe) { 1016 /* Set the selected phase in delay line hw block */ 1017 ret = msm_config_cm_dll_phase(host, 1018 msm_host->saved_tuning_phase); 1019 if (ret) 1020 goto out; 1021 config = readl_relaxed(host->ioaddr + 1022 msm_offset->core_dll_config); 1023 config |= CORE_CMD_DAT_TRACK_SEL; 1024 writel_relaxed(config, host->ioaddr + 1025 msm_offset->core_dll_config); 1026 } 1027 1028 if (msm_host->use_cdclp533) 1029 ret = sdhci_msm_cdclp533_calibration(host); 1030 else 1031 ret = sdhci_msm_cm_dll_sdc4_calibration(host); 1032 out: 1033 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1034 __func__, ret); 1035 return ret; 1036 } 1037 1038 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host) 1039 { 1040 struct mmc_ios *ios = &host->mmc->ios; 1041 1042 /* 1043 * Tuning is required for SDR104, HS200 and HS400 cards and 1044 * if clock frequency is greater than 100MHz in these modes. 1045 */ 1046 if (host->clock <= CORE_FREQ_100MHZ || 1047 !(ios->timing == MMC_TIMING_MMC_HS400 || 1048 ios->timing == MMC_TIMING_MMC_HS200 || 1049 ios->timing == MMC_TIMING_UHS_SDR104) || 1050 ios->enhanced_strobe) 1051 return false; 1052 1053 return true; 1054 } 1055 1056 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host) 1057 { 1058 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1059 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1060 int ret; 1061 1062 /* 1063 * SDR DLL comes into picture only for timing modes which needs 1064 * tuning. 1065 */ 1066 if (!sdhci_msm_is_tuning_needed(host)) 1067 return 0; 1068 1069 /* Reset the tuning block */ 1070 ret = msm_init_cm_dll(host); 1071 if (ret) 1072 return ret; 1073 1074 /* Restore the tuning block */ 1075 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 1076 1077 return ret; 1078 } 1079 1080 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable) 1081 { 1082 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host); 1083 u32 config, oldconfig = readl_relaxed(host->ioaddr + 1084 msm_offset->core_dll_config); 1085 1086 config = oldconfig; 1087 if (enable) { 1088 config |= CORE_CDR_EN; 1089 config &= ~CORE_CDR_EXT_EN; 1090 } else { 1091 config &= ~CORE_CDR_EN; 1092 config |= CORE_CDR_EXT_EN; 1093 } 1094 1095 if (config != oldconfig) { 1096 writel_relaxed(config, host->ioaddr + 1097 msm_offset->core_dll_config); 1098 } 1099 } 1100 1101 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode) 1102 { 1103 struct sdhci_host *host = mmc_priv(mmc); 1104 int tuning_seq_cnt = 3; 1105 u8 phase, tuned_phases[16], tuned_phase_cnt = 0; 1106 int rc; 1107 struct mmc_ios ios = host->mmc->ios; 1108 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1109 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1110 1111 if (!sdhci_msm_is_tuning_needed(host)) { 1112 msm_host->use_cdr = false; 1113 sdhci_msm_set_cdr(host, false); 1114 return 0; 1115 } 1116 1117 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */ 1118 msm_host->use_cdr = true; 1119 1120 /* 1121 * For HS400 tuning in HS200 timing requires: 1122 * - select MCLK/2 in VENDOR_SPEC 1123 * - program MCLK to 400MHz (or nearest supported) in GCC 1124 */ 1125 if (host->flags & SDHCI_HS400_TUNING) { 1126 sdhci_msm_hc_select_mode(host); 1127 msm_set_clock_rate_for_bus_mode(host, ios.clock); 1128 host->flags &= ~SDHCI_HS400_TUNING; 1129 } 1130 1131 retry: 1132 /* First of all reset the tuning block */ 1133 rc = msm_init_cm_dll(host); 1134 if (rc) 1135 return rc; 1136 1137 phase = 0; 1138 do { 1139 /* Set the phase in delay line hw block */ 1140 rc = msm_config_cm_dll_phase(host, phase); 1141 if (rc) 1142 return rc; 1143 1144 rc = mmc_send_tuning(mmc, opcode, NULL); 1145 if (!rc) { 1146 /* Tuning is successful at this tuning point */ 1147 tuned_phases[tuned_phase_cnt++] = phase; 1148 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n", 1149 mmc_hostname(mmc), phase); 1150 } 1151 } while (++phase < ARRAY_SIZE(tuned_phases)); 1152 1153 if (tuned_phase_cnt) { 1154 rc = msm_find_most_appropriate_phase(host, tuned_phases, 1155 tuned_phase_cnt); 1156 if (rc < 0) 1157 return rc; 1158 else 1159 phase = rc; 1160 1161 /* 1162 * Finally set the selected phase in delay 1163 * line hw block. 1164 */ 1165 rc = msm_config_cm_dll_phase(host, phase); 1166 if (rc) 1167 return rc; 1168 msm_host->saved_tuning_phase = phase; 1169 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n", 1170 mmc_hostname(mmc), phase); 1171 } else { 1172 if (--tuning_seq_cnt) 1173 goto retry; 1174 /* Tuning failed */ 1175 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n", 1176 mmc_hostname(mmc)); 1177 rc = -EIO; 1178 } 1179 1180 if (!rc) 1181 msm_host->tuning_done = true; 1182 return rc; 1183 } 1184 1185 /* 1186 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation. 1187 * This needs to be done for both tuning and enhanced_strobe mode. 1188 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz 1189 * fixed feedback clock is used. 1190 */ 1191 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios) 1192 { 1193 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1194 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1195 int ret; 1196 1197 if (host->clock > CORE_FREQ_100MHZ && 1198 (msm_host->tuning_done || ios->enhanced_strobe) && 1199 !msm_host->calibration_done) { 1200 ret = sdhci_msm_hs400_dll_calibration(host); 1201 if (!ret) 1202 msm_host->calibration_done = true; 1203 else 1204 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n", 1205 mmc_hostname(host->mmc), ret); 1206 } 1207 } 1208 1209 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host, 1210 unsigned int uhs) 1211 { 1212 struct mmc_host *mmc = host->mmc; 1213 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1214 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1215 u16 ctrl_2; 1216 u32 config; 1217 const struct sdhci_msm_offset *msm_offset = 1218 msm_host->offset; 1219 1220 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); 1221 /* Select Bus Speed Mode for host */ 1222 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1223 switch (uhs) { 1224 case MMC_TIMING_UHS_SDR12: 1225 ctrl_2 |= SDHCI_CTRL_UHS_SDR12; 1226 break; 1227 case MMC_TIMING_UHS_SDR25: 1228 ctrl_2 |= SDHCI_CTRL_UHS_SDR25; 1229 break; 1230 case MMC_TIMING_UHS_SDR50: 1231 ctrl_2 |= SDHCI_CTRL_UHS_SDR50; 1232 break; 1233 case MMC_TIMING_MMC_HS400: 1234 case MMC_TIMING_MMC_HS200: 1235 case MMC_TIMING_UHS_SDR104: 1236 ctrl_2 |= SDHCI_CTRL_UHS_SDR104; 1237 break; 1238 case MMC_TIMING_UHS_DDR50: 1239 case MMC_TIMING_MMC_DDR52: 1240 ctrl_2 |= SDHCI_CTRL_UHS_DDR50; 1241 break; 1242 } 1243 1244 /* 1245 * When clock frequency is less than 100MHz, the feedback clock must be 1246 * provided and DLL must not be used so that tuning can be skipped. To 1247 * provide feedback clock, the mode selection can be any value less 1248 * than 3'b011 in bits [2:0] of HOST CONTROL2 register. 1249 */ 1250 if (host->clock <= CORE_FREQ_100MHZ) { 1251 if (uhs == MMC_TIMING_MMC_HS400 || 1252 uhs == MMC_TIMING_MMC_HS200 || 1253 uhs == MMC_TIMING_UHS_SDR104) 1254 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1255 /* 1256 * DLL is not required for clock <= 100MHz 1257 * Thus, make sure DLL it is disabled when not required 1258 */ 1259 config = readl_relaxed(host->ioaddr + 1260 msm_offset->core_dll_config); 1261 config |= CORE_DLL_RST; 1262 writel_relaxed(config, host->ioaddr + 1263 msm_offset->core_dll_config); 1264 1265 config = readl_relaxed(host->ioaddr + 1266 msm_offset->core_dll_config); 1267 config |= CORE_DLL_PDN; 1268 writel_relaxed(config, host->ioaddr + 1269 msm_offset->core_dll_config); 1270 1271 /* 1272 * The DLL needs to be restored and CDCLP533 recalibrated 1273 * when the clock frequency is set back to 400MHz. 1274 */ 1275 msm_host->calibration_done = false; 1276 } 1277 1278 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n", 1279 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2); 1280 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); 1281 1282 if (mmc->ios.timing == MMC_TIMING_MMC_HS400) 1283 sdhci_msm_hs400(host, &mmc->ios); 1284 } 1285 1286 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host) 1287 { 1288 init_waitqueue_head(&msm_host->pwr_irq_wait); 1289 } 1290 1291 static inline void sdhci_msm_complete_pwr_irq_wait( 1292 struct sdhci_msm_host *msm_host) 1293 { 1294 wake_up(&msm_host->pwr_irq_wait); 1295 } 1296 1297 /* 1298 * sdhci_msm_check_power_status API should be called when registers writes 1299 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens. 1300 * To what state the register writes will change the IO lines should be passed 1301 * as the argument req_type. This API will check whether the IO line's state 1302 * is already the expected state and will wait for power irq only if 1303 * power irq is expected to be trigerred based on the current IO line state 1304 * and expected IO line state. 1305 */ 1306 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type) 1307 { 1308 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1309 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1310 bool done = false; 1311 u32 val = SWITCHABLE_SIGNALING_VOLTAGE; 1312 const struct sdhci_msm_offset *msm_offset = 1313 msm_host->offset; 1314 1315 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n", 1316 mmc_hostname(host->mmc), __func__, req_type, 1317 msm_host->curr_pwr_state, msm_host->curr_io_level); 1318 1319 /* 1320 * The power interrupt will not be generated for signal voltage 1321 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set. 1322 * Since sdhci-msm-v5, this bit has been removed and SW must consider 1323 * it as always set. 1324 */ 1325 if (!msm_host->mci_removed) 1326 val = msm_host_readl(msm_host, host, 1327 msm_offset->core_generics); 1328 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) && 1329 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) { 1330 return; 1331 } 1332 1333 /* 1334 * The IRQ for request type IO High/LOW will be generated when - 1335 * there is a state change in 1.8V enable bit (bit 3) of 1336 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0 1337 * which indicates 3.3V IO voltage. So, when MMC core layer tries 1338 * to set it to 3.3V before card detection happens, the 1339 * IRQ doesn't get triggered as there is no state change in this bit. 1340 * The driver already handles this case by changing the IO voltage 1341 * level to high as part of controller power up sequence. Hence, check 1342 * for host->pwr to handle a case where IO voltage high request is 1343 * issued even before controller power up. 1344 */ 1345 if ((req_type & REQ_IO_HIGH) && !host->pwr) { 1346 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n", 1347 mmc_hostname(host->mmc), req_type); 1348 return; 1349 } 1350 if ((req_type & msm_host->curr_pwr_state) || 1351 (req_type & msm_host->curr_io_level)) 1352 done = true; 1353 /* 1354 * This is needed here to handle cases where register writes will 1355 * not change the current bus state or io level of the controller. 1356 * In this case, no power irq will be triggerred and we should 1357 * not wait. 1358 */ 1359 if (!done) { 1360 if (!wait_event_timeout(msm_host->pwr_irq_wait, 1361 msm_host->pwr_irq_flag, 1362 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS))) 1363 dev_warn(&msm_host->pdev->dev, 1364 "%s: pwr_irq for req: (%d) timed out\n", 1365 mmc_hostname(host->mmc), req_type); 1366 } 1367 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc), 1368 __func__, req_type); 1369 } 1370 1371 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host) 1372 { 1373 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1374 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1375 const struct sdhci_msm_offset *msm_offset = 1376 msm_host->offset; 1377 1378 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n", 1379 mmc_hostname(host->mmc), 1380 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status), 1381 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask), 1382 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl)); 1383 } 1384 1385 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq) 1386 { 1387 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1388 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1389 u32 irq_status, irq_ack = 0; 1390 int retry = 10; 1391 u32 pwr_state = 0, io_level = 0; 1392 u32 config; 1393 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1394 1395 irq_status = msm_host_readl(msm_host, host, 1396 msm_offset->core_pwrctl_status); 1397 irq_status &= INT_MASK; 1398 1399 msm_host_writel(msm_host, irq_status, host, 1400 msm_offset->core_pwrctl_clear); 1401 1402 /* 1403 * There is a rare HW scenario where the first clear pulse could be 1404 * lost when actual reset and clear/read of status register is 1405 * happening at a time. Hence, retry for at least 10 times to make 1406 * sure status register is cleared. Otherwise, this will result in 1407 * a spurious power IRQ resulting in system instability. 1408 */ 1409 while (irq_status & msm_host_readl(msm_host, host, 1410 msm_offset->core_pwrctl_status)) { 1411 if (retry == 0) { 1412 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n", 1413 mmc_hostname(host->mmc), irq_status); 1414 sdhci_msm_dump_pwr_ctrl_regs(host); 1415 WARN_ON(1); 1416 break; 1417 } 1418 msm_host_writel(msm_host, irq_status, host, 1419 msm_offset->core_pwrctl_clear); 1420 retry--; 1421 udelay(10); 1422 } 1423 1424 /* Handle BUS ON/OFF*/ 1425 if (irq_status & CORE_PWRCTL_BUS_ON) { 1426 pwr_state = REQ_BUS_ON; 1427 io_level = REQ_IO_HIGH; 1428 irq_ack |= CORE_PWRCTL_BUS_SUCCESS; 1429 } 1430 if (irq_status & CORE_PWRCTL_BUS_OFF) { 1431 pwr_state = REQ_BUS_OFF; 1432 io_level = REQ_IO_LOW; 1433 irq_ack |= CORE_PWRCTL_BUS_SUCCESS; 1434 } 1435 /* Handle IO LOW/HIGH */ 1436 if (irq_status & CORE_PWRCTL_IO_LOW) { 1437 io_level = REQ_IO_LOW; 1438 irq_ack |= CORE_PWRCTL_IO_SUCCESS; 1439 } 1440 if (irq_status & CORE_PWRCTL_IO_HIGH) { 1441 io_level = REQ_IO_HIGH; 1442 irq_ack |= CORE_PWRCTL_IO_SUCCESS; 1443 } 1444 1445 /* 1446 * The driver has to acknowledge the interrupt, switch voltages and 1447 * report back if it succeded or not to this register. The voltage 1448 * switches are handled by the sdhci core, so just report success. 1449 */ 1450 msm_host_writel(msm_host, irq_ack, host, 1451 msm_offset->core_pwrctl_ctl); 1452 1453 /* 1454 * If we don't have info regarding the voltage levels supported by 1455 * regulators, don't change the IO PAD PWR SWITCH. 1456 */ 1457 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1458 u32 new_config; 1459 /* 1460 * We should unset IO PAD PWR switch only if the register write 1461 * can set IO lines high and the regulator also switches to 3 V. 1462 * Else, we should keep the IO PAD PWR switch set. 1463 * This is applicable to certain targets where eMMC vccq supply 1464 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the 1465 * IO PAD PWR switch must be kept set to reflect actual 1466 * regulator voltage. This way, during initialization of 1467 * controllers with only 1.8V, we will set the IO PAD bit 1468 * without waiting for a REQ_IO_LOW. 1469 */ 1470 config = readl_relaxed(host->ioaddr + 1471 msm_offset->core_vendor_spec); 1472 new_config = config; 1473 1474 if ((io_level & REQ_IO_HIGH) && 1475 (msm_host->caps_0 & CORE_3_0V_SUPPORT)) 1476 new_config &= ~CORE_IO_PAD_PWR_SWITCH; 1477 else if ((io_level & REQ_IO_LOW) || 1478 (msm_host->caps_0 & CORE_1_8V_SUPPORT)) 1479 new_config |= CORE_IO_PAD_PWR_SWITCH; 1480 1481 if (config ^ new_config) 1482 writel_relaxed(new_config, host->ioaddr + 1483 msm_offset->core_vendor_spec); 1484 } 1485 1486 if (pwr_state) 1487 msm_host->curr_pwr_state = pwr_state; 1488 if (io_level) 1489 msm_host->curr_io_level = io_level; 1490 1491 pr_debug("%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n", 1492 mmc_hostname(msm_host->mmc), __func__, irq, irq_status, 1493 irq_ack); 1494 } 1495 1496 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data) 1497 { 1498 struct sdhci_host *host = (struct sdhci_host *)data; 1499 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1500 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1501 1502 sdhci_msm_handle_pwr_irq(host, irq); 1503 msm_host->pwr_irq_flag = 1; 1504 sdhci_msm_complete_pwr_irq_wait(msm_host); 1505 1506 1507 return IRQ_HANDLED; 1508 } 1509 1510 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host) 1511 { 1512 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1513 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1514 struct clk *core_clk = msm_host->bulk_clks[0].clk; 1515 1516 return clk_round_rate(core_clk, ULONG_MAX); 1517 } 1518 1519 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host) 1520 { 1521 return SDHCI_MSM_MIN_CLOCK; 1522 } 1523 1524 /** 1525 * __sdhci_msm_set_clock - sdhci_msm clock control. 1526 * 1527 * Description: 1528 * MSM controller does not use internal divider and 1529 * instead directly control the GCC clock as per 1530 * HW recommendation. 1531 **/ 1532 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1533 { 1534 u16 clk; 1535 /* 1536 * Keep actual_clock as zero - 1537 * - since there is no divider used so no need of having actual_clock. 1538 * - MSM controller uses SDCLK for data timeout calculation. If 1539 * actual_clock is zero, host->clock is taken for calculation. 1540 */ 1541 host->mmc->actual_clock = 0; 1542 1543 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); 1544 1545 if (clock == 0) 1546 return; 1547 1548 /* 1549 * MSM controller do not use clock divider. 1550 * Thus read SDHCI_CLOCK_CONTROL and only enable 1551 * clock with no divider value programmed. 1552 */ 1553 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); 1554 sdhci_enable_clk(host, clk); 1555 } 1556 1557 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */ 1558 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1559 { 1560 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1561 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1562 1563 if (!clock) { 1564 msm_host->clk_rate = clock; 1565 goto out; 1566 } 1567 1568 sdhci_msm_hc_select_mode(host); 1569 1570 msm_set_clock_rate_for_bus_mode(host, clock); 1571 out: 1572 __sdhci_msm_set_clock(host, clock); 1573 } 1574 1575 /*****************************************************************************\ 1576 * * 1577 * MSM Command Queue Engine (CQE) * 1578 * * 1579 \*****************************************************************************/ 1580 1581 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask) 1582 { 1583 int cmd_error = 0; 1584 int data_error = 0; 1585 1586 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error)) 1587 return intmask; 1588 1589 cqhci_irq(host->mmc, intmask, cmd_error, data_error); 1590 return 0; 1591 } 1592 1593 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery) 1594 { 1595 struct sdhci_host *host = mmc_priv(mmc); 1596 unsigned long flags; 1597 u32 ctrl; 1598 1599 /* 1600 * When CQE is halted, the legacy SDHCI path operates only 1601 * on 16-byte descriptors in 64bit mode. 1602 */ 1603 if (host->flags & SDHCI_USE_64_BIT_DMA) 1604 host->desc_sz = 16; 1605 1606 spin_lock_irqsave(&host->lock, flags); 1607 1608 /* 1609 * During CQE command transfers, command complete bit gets latched. 1610 * So s/w should clear command complete interrupt status when CQE is 1611 * either halted or disabled. Otherwise unexpected SDCHI legacy 1612 * interrupt gets triggered when CQE is halted/disabled. 1613 */ 1614 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE); 1615 ctrl |= SDHCI_INT_RESPONSE; 1616 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE); 1617 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS); 1618 1619 spin_unlock_irqrestore(&host->lock, flags); 1620 1621 sdhci_cqe_disable(mmc, recovery); 1622 } 1623 1624 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = { 1625 .enable = sdhci_cqe_enable, 1626 .disable = sdhci_msm_cqe_disable, 1627 }; 1628 1629 static int sdhci_msm_cqe_add_host(struct sdhci_host *host, 1630 struct platform_device *pdev) 1631 { 1632 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1633 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1634 struct cqhci_host *cq_host; 1635 bool dma64; 1636 u32 cqcfg; 1637 int ret; 1638 1639 /* 1640 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors. 1641 * So ensure ADMA table is allocated for 16byte descriptors. 1642 */ 1643 if (host->caps & SDHCI_CAN_64BIT) 1644 host->alloc_desc_sz = 16; 1645 1646 ret = sdhci_setup_host(host); 1647 if (ret) 1648 return ret; 1649 1650 cq_host = cqhci_pltfm_init(pdev); 1651 if (IS_ERR(cq_host)) { 1652 ret = PTR_ERR(cq_host); 1653 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret); 1654 goto cleanup; 1655 } 1656 1657 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD; 1658 cq_host->ops = &sdhci_msm_cqhci_ops; 1659 1660 dma64 = host->flags & SDHCI_USE_64_BIT_DMA; 1661 1662 ret = cqhci_init(cq_host, host->mmc, dma64); 1663 if (ret) { 1664 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n", 1665 mmc_hostname(host->mmc), ret); 1666 goto cleanup; 1667 } 1668 1669 /* Disable cqe reset due to cqe enable signal */ 1670 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1); 1671 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN; 1672 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1); 1673 1674 /* 1675 * SDHC expects 12byte ADMA descriptors till CQE is enabled. 1676 * So limit desc_sz to 12 so that the data commands that are sent 1677 * during card initialization (before CQE gets enabled) would 1678 * get executed without any issues. 1679 */ 1680 if (host->flags & SDHCI_USE_64_BIT_DMA) 1681 host->desc_sz = 12; 1682 1683 ret = __sdhci_add_host(host); 1684 if (ret) 1685 goto cleanup; 1686 1687 dev_info(&pdev->dev, "%s: CQE init: success\n", 1688 mmc_hostname(host->mmc)); 1689 return ret; 1690 1691 cleanup: 1692 sdhci_cleanup_host(host); 1693 return ret; 1694 } 1695 1696 /* 1697 * Platform specific register write functions. This is so that, if any 1698 * register write needs to be followed up by platform specific actions, 1699 * they can be added here. These functions can go to sleep when writes 1700 * to certain registers are done. 1701 * These functions are relying on sdhci_set_ios not using spinlock. 1702 */ 1703 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg) 1704 { 1705 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1706 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1707 u32 req_type = 0; 1708 1709 switch (reg) { 1710 case SDHCI_HOST_CONTROL2: 1711 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW : 1712 REQ_IO_HIGH; 1713 break; 1714 case SDHCI_SOFTWARE_RESET: 1715 if (host->pwr && (val & SDHCI_RESET_ALL)) 1716 req_type = REQ_BUS_OFF; 1717 break; 1718 case SDHCI_POWER_CONTROL: 1719 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON; 1720 break; 1721 case SDHCI_TRANSFER_MODE: 1722 msm_host->transfer_mode = val; 1723 break; 1724 case SDHCI_COMMAND: 1725 if (!msm_host->use_cdr) 1726 break; 1727 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) && 1728 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 && 1729 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK) 1730 sdhci_msm_set_cdr(host, true); 1731 else 1732 sdhci_msm_set_cdr(host, false); 1733 break; 1734 } 1735 1736 if (req_type) { 1737 msm_host->pwr_irq_flag = 0; 1738 /* 1739 * Since this register write may trigger a power irq, ensure 1740 * all previous register writes are complete by this point. 1741 */ 1742 mb(); 1743 } 1744 return req_type; 1745 } 1746 1747 /* This function may sleep*/ 1748 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg) 1749 { 1750 u32 req_type = 0; 1751 1752 req_type = __sdhci_msm_check_write(host, val, reg); 1753 writew_relaxed(val, host->ioaddr + reg); 1754 1755 if (req_type) 1756 sdhci_msm_check_power_status(host, req_type); 1757 } 1758 1759 /* This function may sleep*/ 1760 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg) 1761 { 1762 u32 req_type = 0; 1763 1764 req_type = __sdhci_msm_check_write(host, val, reg); 1765 1766 writeb_relaxed(val, host->ioaddr + reg); 1767 1768 if (req_type) 1769 sdhci_msm_check_power_status(host, req_type); 1770 } 1771 1772 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host) 1773 { 1774 struct mmc_host *mmc = msm_host->mmc; 1775 struct regulator *supply = mmc->supply.vqmmc; 1776 u32 caps = 0, config; 1777 struct sdhci_host *host = mmc_priv(mmc); 1778 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1779 1780 if (!IS_ERR(mmc->supply.vqmmc)) { 1781 if (regulator_is_supported_voltage(supply, 1700000, 1950000)) 1782 caps |= CORE_1_8V_SUPPORT; 1783 if (regulator_is_supported_voltage(supply, 2700000, 3600000)) 1784 caps |= CORE_3_0V_SUPPORT; 1785 1786 if (!caps) 1787 pr_warn("%s: 1.8/3V not supported for vqmmc\n", 1788 mmc_hostname(mmc)); 1789 } 1790 1791 if (caps) { 1792 /* 1793 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH 1794 * bit can be used as required later on. 1795 */ 1796 u32 io_level = msm_host->curr_io_level; 1797 1798 config = readl_relaxed(host->ioaddr + 1799 msm_offset->core_vendor_spec); 1800 config |= CORE_IO_PAD_PWR_SWITCH_EN; 1801 1802 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT)) 1803 config &= ~CORE_IO_PAD_PWR_SWITCH; 1804 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT)) 1805 config |= CORE_IO_PAD_PWR_SWITCH; 1806 1807 writel_relaxed(config, 1808 host->ioaddr + msm_offset->core_vendor_spec); 1809 } 1810 msm_host->caps_0 |= caps; 1811 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps); 1812 } 1813 1814 static const struct sdhci_msm_variant_ops mci_var_ops = { 1815 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed, 1816 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed, 1817 }; 1818 1819 static const struct sdhci_msm_variant_ops v5_var_ops = { 1820 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed, 1821 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed, 1822 }; 1823 1824 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = { 1825 .var_ops = &mci_var_ops, 1826 .offset = &sdhci_msm_mci_offset, 1827 }; 1828 1829 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = { 1830 .mci_removed = true, 1831 .var_ops = &v5_var_ops, 1832 .offset = &sdhci_msm_v5_offset, 1833 }; 1834 1835 static const struct sdhci_msm_variant_info sdm845_sdhci_var = { 1836 .mci_removed = true, 1837 .restore_dll_config = true, 1838 .var_ops = &v5_var_ops, 1839 .offset = &sdhci_msm_v5_offset, 1840 }; 1841 1842 static const struct of_device_id sdhci_msm_dt_match[] = { 1843 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var}, 1844 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var}, 1845 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var}, 1846 {}, 1847 }; 1848 1849 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match); 1850 1851 static const struct sdhci_ops sdhci_msm_ops = { 1852 .reset = sdhci_reset, 1853 .set_clock = sdhci_msm_set_clock, 1854 .get_min_clock = sdhci_msm_get_min_clock, 1855 .get_max_clock = sdhci_msm_get_max_clock, 1856 .set_bus_width = sdhci_set_bus_width, 1857 .set_uhs_signaling = sdhci_msm_set_uhs_signaling, 1858 .write_w = sdhci_msm_writew, 1859 .write_b = sdhci_msm_writeb, 1860 .irq = sdhci_msm_cqe_irq, 1861 }; 1862 1863 static const struct sdhci_pltfm_data sdhci_msm_pdata = { 1864 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION | 1865 SDHCI_QUIRK_SINGLE_POWER_WRITE | 1866 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, 1867 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, 1868 .ops = &sdhci_msm_ops, 1869 }; 1870 1871 static int sdhci_msm_probe(struct platform_device *pdev) 1872 { 1873 struct sdhci_host *host; 1874 struct sdhci_pltfm_host *pltfm_host; 1875 struct sdhci_msm_host *msm_host; 1876 struct clk *clk; 1877 int ret; 1878 u16 host_version, core_minor; 1879 u32 core_version, config; 1880 u8 core_major; 1881 const struct sdhci_msm_offset *msm_offset; 1882 const struct sdhci_msm_variant_info *var_info; 1883 struct device_node *node = pdev->dev.of_node; 1884 1885 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host)); 1886 if (IS_ERR(host)) 1887 return PTR_ERR(host); 1888 1889 host->sdma_boundary = 0; 1890 pltfm_host = sdhci_priv(host); 1891 msm_host = sdhci_pltfm_priv(pltfm_host); 1892 msm_host->mmc = host->mmc; 1893 msm_host->pdev = pdev; 1894 1895 ret = mmc_of_parse(host->mmc); 1896 if (ret) 1897 goto pltfm_free; 1898 1899 /* 1900 * Based on the compatible string, load the required msm host info from 1901 * the data associated with the version info. 1902 */ 1903 var_info = of_device_get_match_data(&pdev->dev); 1904 1905 msm_host->mci_removed = var_info->mci_removed; 1906 msm_host->restore_dll_config = var_info->restore_dll_config; 1907 msm_host->var_ops = var_info->var_ops; 1908 msm_host->offset = var_info->offset; 1909 1910 msm_offset = msm_host->offset; 1911 1912 sdhci_get_of_property(pdev); 1913 1914 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE; 1915 1916 /* Setup SDCC bus voter clock. */ 1917 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus"); 1918 if (!IS_ERR(msm_host->bus_clk)) { 1919 /* Vote for max. clk rate for max. performance */ 1920 ret = clk_set_rate(msm_host->bus_clk, INT_MAX); 1921 if (ret) 1922 goto pltfm_free; 1923 ret = clk_prepare_enable(msm_host->bus_clk); 1924 if (ret) 1925 goto pltfm_free; 1926 } 1927 1928 /* Setup main peripheral bus clock */ 1929 clk = devm_clk_get(&pdev->dev, "iface"); 1930 if (IS_ERR(clk)) { 1931 ret = PTR_ERR(clk); 1932 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret); 1933 goto bus_clk_disable; 1934 } 1935 msm_host->bulk_clks[1].clk = clk; 1936 1937 /* Setup SDC MMC clock */ 1938 clk = devm_clk_get(&pdev->dev, "core"); 1939 if (IS_ERR(clk)) { 1940 ret = PTR_ERR(clk); 1941 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret); 1942 goto bus_clk_disable; 1943 } 1944 msm_host->bulk_clks[0].clk = clk; 1945 1946 /* Vote for maximum clock rate for maximum performance */ 1947 ret = clk_set_rate(clk, INT_MAX); 1948 if (ret) 1949 dev_warn(&pdev->dev, "core clock boost failed\n"); 1950 1951 clk = devm_clk_get(&pdev->dev, "cal"); 1952 if (IS_ERR(clk)) 1953 clk = NULL; 1954 msm_host->bulk_clks[2].clk = clk; 1955 1956 clk = devm_clk_get(&pdev->dev, "sleep"); 1957 if (IS_ERR(clk)) 1958 clk = NULL; 1959 msm_host->bulk_clks[3].clk = clk; 1960 1961 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 1962 msm_host->bulk_clks); 1963 if (ret) 1964 goto bus_clk_disable; 1965 1966 /* 1967 * xo clock is needed for FLL feature of cm_dll. 1968 * In case if xo clock is not mentioned in DT, warn and proceed. 1969 */ 1970 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo"); 1971 if (IS_ERR(msm_host->xo_clk)) { 1972 ret = PTR_ERR(msm_host->xo_clk); 1973 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret); 1974 } 1975 1976 if (!msm_host->mci_removed) { 1977 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1); 1978 if (IS_ERR(msm_host->core_mem)) { 1979 ret = PTR_ERR(msm_host->core_mem); 1980 goto clk_disable; 1981 } 1982 } 1983 1984 /* Reset the vendor spec register to power on reset state */ 1985 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL, 1986 host->ioaddr + msm_offset->core_vendor_spec); 1987 1988 if (!msm_host->mci_removed) { 1989 /* Set HC_MODE_EN bit in HC_MODE register */ 1990 msm_host_writel(msm_host, HC_MODE_EN, host, 1991 msm_offset->core_hc_mode); 1992 config = msm_host_readl(msm_host, host, 1993 msm_offset->core_hc_mode); 1994 config |= FF_CLK_SW_RST_DIS; 1995 msm_host_writel(msm_host, config, host, 1996 msm_offset->core_hc_mode); 1997 } 1998 1999 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION)); 2000 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n", 2001 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >> 2002 SDHCI_VENDOR_VER_SHIFT)); 2003 2004 core_version = msm_host_readl(msm_host, host, 2005 msm_offset->core_mci_version); 2006 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >> 2007 CORE_VERSION_MAJOR_SHIFT; 2008 core_minor = core_version & CORE_VERSION_MINOR_MASK; 2009 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n", 2010 core_version, core_major, core_minor); 2011 2012 if (core_major == 1 && core_minor >= 0x42) 2013 msm_host->use_14lpp_dll_reset = true; 2014 2015 /* 2016 * SDCC 5 controller with major version 1, minor version 0x34 and later 2017 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL. 2018 */ 2019 if (core_major == 1 && core_minor < 0x34) 2020 msm_host->use_cdclp533 = true; 2021 2022 /* 2023 * Support for some capabilities is not advertised by newer 2024 * controller versions and must be explicitly enabled. 2025 */ 2026 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) { 2027 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES); 2028 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT; 2029 writel_relaxed(config, host->ioaddr + 2030 msm_offset->core_vendor_spec_capabilities0); 2031 } 2032 2033 if (core_major == 1 && core_minor >= 0x49) 2034 msm_host->updated_ddr_cfg = true; 2035 2036 /* 2037 * Power on reset state may trigger power irq if previous status of 2038 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq 2039 * interrupt in GIC, any pending power irq interrupt should be 2040 * acknowledged. Otherwise power irq interrupt handler would be 2041 * fired prematurely. 2042 */ 2043 sdhci_msm_handle_pwr_irq(host, 0); 2044 2045 /* 2046 * Ensure that above writes are propogated before interrupt enablement 2047 * in GIC. 2048 */ 2049 mb(); 2050 2051 /* Setup IRQ for handling power/voltage tasks with PMIC */ 2052 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq"); 2053 if (msm_host->pwr_irq < 0) { 2054 ret = msm_host->pwr_irq; 2055 goto clk_disable; 2056 } 2057 2058 sdhci_msm_init_pwr_irq_wait(msm_host); 2059 /* Enable pwr irq interrupts */ 2060 msm_host_writel(msm_host, INT_MASK, host, 2061 msm_offset->core_pwrctl_mask); 2062 2063 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL, 2064 sdhci_msm_pwr_irq, IRQF_ONESHOT, 2065 dev_name(&pdev->dev), host); 2066 if (ret) { 2067 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret); 2068 goto clk_disable; 2069 } 2070 2071 pm_runtime_get_noresume(&pdev->dev); 2072 pm_runtime_set_active(&pdev->dev); 2073 pm_runtime_enable(&pdev->dev); 2074 pm_runtime_set_autosuspend_delay(&pdev->dev, 2075 MSM_MMC_AUTOSUSPEND_DELAY_MS); 2076 pm_runtime_use_autosuspend(&pdev->dev); 2077 2078 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning; 2079 if (of_property_read_bool(node, "supports-cqe")) 2080 ret = sdhci_msm_cqe_add_host(host, pdev); 2081 else 2082 ret = sdhci_add_host(host); 2083 if (ret) 2084 goto pm_runtime_disable; 2085 sdhci_msm_set_regulator_caps(msm_host); 2086 2087 pm_runtime_mark_last_busy(&pdev->dev); 2088 pm_runtime_put_autosuspend(&pdev->dev); 2089 2090 return 0; 2091 2092 pm_runtime_disable: 2093 pm_runtime_disable(&pdev->dev); 2094 pm_runtime_set_suspended(&pdev->dev); 2095 pm_runtime_put_noidle(&pdev->dev); 2096 clk_disable: 2097 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2098 msm_host->bulk_clks); 2099 bus_clk_disable: 2100 if (!IS_ERR(msm_host->bus_clk)) 2101 clk_disable_unprepare(msm_host->bus_clk); 2102 pltfm_free: 2103 sdhci_pltfm_free(pdev); 2104 return ret; 2105 } 2106 2107 static int sdhci_msm_remove(struct platform_device *pdev) 2108 { 2109 struct sdhci_host *host = platform_get_drvdata(pdev); 2110 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2111 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2112 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) == 2113 0xffffffff); 2114 2115 sdhci_remove_host(host, dead); 2116 2117 pm_runtime_get_sync(&pdev->dev); 2118 pm_runtime_disable(&pdev->dev); 2119 pm_runtime_put_noidle(&pdev->dev); 2120 2121 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2122 msm_host->bulk_clks); 2123 if (!IS_ERR(msm_host->bus_clk)) 2124 clk_disable_unprepare(msm_host->bus_clk); 2125 sdhci_pltfm_free(pdev); 2126 return 0; 2127 } 2128 2129 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev) 2130 { 2131 struct sdhci_host *host = dev_get_drvdata(dev); 2132 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2133 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2134 2135 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2136 msm_host->bulk_clks); 2137 2138 return 0; 2139 } 2140 2141 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev) 2142 { 2143 struct sdhci_host *host = dev_get_drvdata(dev); 2144 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2145 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2146 int ret; 2147 2148 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2149 msm_host->bulk_clks); 2150 if (ret) 2151 return ret; 2152 /* 2153 * Whenever core-clock is gated dynamically, it's needed to 2154 * restore the SDR DLL settings when the clock is ungated. 2155 */ 2156 if (msm_host->restore_dll_config && msm_host->clk_rate) 2157 return sdhci_msm_restore_sdr_dll_config(host); 2158 2159 return 0; 2160 } 2161 2162 static const struct dev_pm_ops sdhci_msm_pm_ops = { 2163 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 2164 pm_runtime_force_resume) 2165 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend, 2166 sdhci_msm_runtime_resume, 2167 NULL) 2168 }; 2169 2170 static struct platform_driver sdhci_msm_driver = { 2171 .probe = sdhci_msm_probe, 2172 .remove = sdhci_msm_remove, 2173 .driver = { 2174 .name = "sdhci_msm", 2175 .of_match_table = sdhci_msm_dt_match, 2176 .pm = &sdhci_msm_pm_ops, 2177 }, 2178 }; 2179 2180 module_platform_driver(sdhci_msm_driver); 2181 2182 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver"); 2183 MODULE_LICENSE("GPL v2"); 2184