1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver 4 * 5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/of_device.h> 10 #include <linux/delay.h> 11 #include <linux/mmc/mmc.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/pm_opp.h> 14 #include <linux/slab.h> 15 #include <linux/iopoll.h> 16 #include <linux/regulator/consumer.h> 17 #include <linux/interconnect.h> 18 #include <linux/pinctrl/consumer.h> 19 20 #include "sdhci-pltfm.h" 21 #include "cqhci.h" 22 23 #define CORE_MCI_VERSION 0x50 24 #define CORE_VERSION_MAJOR_SHIFT 28 25 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT) 26 #define CORE_VERSION_MINOR_MASK 0xff 27 28 #define CORE_MCI_GENERICS 0x70 29 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29) 30 31 #define HC_MODE_EN 0x1 32 #define CORE_POWER 0x0 33 #define CORE_SW_RST BIT(7) 34 #define FF_CLK_SW_RST_DIS BIT(13) 35 36 #define CORE_PWRCTL_BUS_OFF BIT(0) 37 #define CORE_PWRCTL_BUS_ON BIT(1) 38 #define CORE_PWRCTL_IO_LOW BIT(2) 39 #define CORE_PWRCTL_IO_HIGH BIT(3) 40 #define CORE_PWRCTL_BUS_SUCCESS BIT(0) 41 #define CORE_PWRCTL_BUS_FAIL BIT(1) 42 #define CORE_PWRCTL_IO_SUCCESS BIT(2) 43 #define CORE_PWRCTL_IO_FAIL BIT(3) 44 #define REQ_BUS_OFF BIT(0) 45 #define REQ_BUS_ON BIT(1) 46 #define REQ_IO_LOW BIT(2) 47 #define REQ_IO_HIGH BIT(3) 48 #define INT_MASK 0xf 49 #define MAX_PHASES 16 50 #define CORE_DLL_LOCK BIT(7) 51 #define CORE_DDR_DLL_LOCK BIT(11) 52 #define CORE_DLL_EN BIT(16) 53 #define CORE_CDR_EN BIT(17) 54 #define CORE_CK_OUT_EN BIT(18) 55 #define CORE_CDR_EXT_EN BIT(19) 56 #define CORE_DLL_PDN BIT(29) 57 #define CORE_DLL_RST BIT(30) 58 #define CORE_CMD_DAT_TRACK_SEL BIT(0) 59 60 #define CORE_DDR_CAL_EN BIT(0) 61 #define CORE_FLL_CYCLE_CNT BIT(18) 62 #define CORE_DLL_CLOCK_DISABLE BIT(21) 63 64 #define DLL_USR_CTL_POR_VAL 0x10800 65 #define ENABLE_DLL_LOCK_STATUS BIT(26) 66 #define FINE_TUNE_MODE_EN BIT(27) 67 #define BIAS_OK_SIGNAL BIT(29) 68 69 #define DLL_CONFIG_3_LOW_FREQ_VAL 0x08 70 #define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10 71 72 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c 73 #define CORE_CLK_PWRSAVE BIT(1) 74 #define CORE_HC_MCLK_SEL_DFLT (2 << 8) 75 #define CORE_HC_MCLK_SEL_HS400 (3 << 8) 76 #define CORE_HC_MCLK_SEL_MASK (3 << 8) 77 #define CORE_IO_PAD_PWR_SWITCH_EN BIT(15) 78 #define CORE_IO_PAD_PWR_SWITCH BIT(16) 79 #define CORE_HC_SELECT_IN_EN BIT(18) 80 #define CORE_HC_SELECT_IN_HS400 (6 << 19) 81 #define CORE_HC_SELECT_IN_MASK (7 << 19) 82 83 #define CORE_3_0V_SUPPORT BIT(25) 84 #define CORE_1_8V_SUPPORT BIT(26) 85 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT) 86 87 #define CORE_CSR_CDC_CTLR_CFG0 0x130 88 #define CORE_SW_TRIG_FULL_CALIB BIT(16) 89 #define CORE_HW_AUTOCAL_ENA BIT(17) 90 91 #define CORE_CSR_CDC_CTLR_CFG1 0x134 92 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138 93 #define CORE_TIMER_ENA BIT(16) 94 95 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C 96 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140 97 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144 98 #define CORE_CDC_OFFSET_CFG 0x14C 99 #define CORE_CSR_CDC_DELAY_CFG 0x150 100 #define CORE_CDC_SLAVE_DDA_CFG 0x160 101 #define CORE_CSR_CDC_STATUS0 0x164 102 #define CORE_CALIBRATION_DONE BIT(0) 103 104 #define CORE_CDC_ERROR_CODE_MASK 0x7000000 105 106 #define CORE_CSR_CDC_GEN_CFG 0x178 107 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0) 108 #define CORE_CDC_SWITCH_RC_EN BIT(1) 109 110 #define CORE_CDC_T4_DLY_SEL BIT(0) 111 #define CORE_CMDIN_RCLK_EN BIT(1) 112 #define CORE_START_CDC_TRAFFIC BIT(6) 113 114 #define CORE_PWRSAVE_DLL BIT(3) 115 116 #define DDR_CONFIG_POR_VAL 0x80040873 117 118 119 #define INVALID_TUNING_PHASE -1 120 #define SDHCI_MSM_MIN_CLOCK 400000 121 #define CORE_FREQ_100MHZ (100 * 1000 * 1000) 122 123 #define CDR_SELEXT_SHIFT 20 124 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT) 125 #define CMUX_SHIFT_PHASE_SHIFT 24 126 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT) 127 128 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50 129 130 /* Timeout value to avoid infinite waiting for pwr_irq */ 131 #define MSM_PWR_IRQ_TIMEOUT_MS 5000 132 133 /* Max load for eMMC Vdd-io supply */ 134 #define MMC_VQMMC_MAX_LOAD_UA 325000 135 136 #define msm_host_readl(msm_host, host, offset) \ 137 msm_host->var_ops->msm_readl_relaxed(host, offset) 138 139 #define msm_host_writel(msm_host, val, host, offset) \ 140 msm_host->var_ops->msm_writel_relaxed(val, host, offset) 141 142 /* CQHCI vendor specific registers */ 143 #define CQHCI_VENDOR_CFG1 0xA00 144 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13) 145 146 struct sdhci_msm_offset { 147 u32 core_hc_mode; 148 u32 core_mci_data_cnt; 149 u32 core_mci_status; 150 u32 core_mci_fifo_cnt; 151 u32 core_mci_version; 152 u32 core_generics; 153 u32 core_testbus_config; 154 u32 core_testbus_sel2_bit; 155 u32 core_testbus_ena; 156 u32 core_testbus_sel2; 157 u32 core_pwrctl_status; 158 u32 core_pwrctl_mask; 159 u32 core_pwrctl_clear; 160 u32 core_pwrctl_ctl; 161 u32 core_sdcc_debug_reg; 162 u32 core_dll_config; 163 u32 core_dll_status; 164 u32 core_vendor_spec; 165 u32 core_vendor_spec_adma_err_addr0; 166 u32 core_vendor_spec_adma_err_addr1; 167 u32 core_vendor_spec_func2; 168 u32 core_vendor_spec_capabilities0; 169 u32 core_ddr_200_cfg; 170 u32 core_vendor_spec3; 171 u32 core_dll_config_2; 172 u32 core_dll_config_3; 173 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */ 174 u32 core_ddr_config; 175 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */ 176 }; 177 178 static const struct sdhci_msm_offset sdhci_msm_v5_offset = { 179 .core_mci_data_cnt = 0x35c, 180 .core_mci_status = 0x324, 181 .core_mci_fifo_cnt = 0x308, 182 .core_mci_version = 0x318, 183 .core_generics = 0x320, 184 .core_testbus_config = 0x32c, 185 .core_testbus_sel2_bit = 3, 186 .core_testbus_ena = (1 << 31), 187 .core_testbus_sel2 = (1 << 3), 188 .core_pwrctl_status = 0x240, 189 .core_pwrctl_mask = 0x244, 190 .core_pwrctl_clear = 0x248, 191 .core_pwrctl_ctl = 0x24c, 192 .core_sdcc_debug_reg = 0x358, 193 .core_dll_config = 0x200, 194 .core_dll_status = 0x208, 195 .core_vendor_spec = 0x20c, 196 .core_vendor_spec_adma_err_addr0 = 0x214, 197 .core_vendor_spec_adma_err_addr1 = 0x218, 198 .core_vendor_spec_func2 = 0x210, 199 .core_vendor_spec_capabilities0 = 0x21c, 200 .core_ddr_200_cfg = 0x224, 201 .core_vendor_spec3 = 0x250, 202 .core_dll_config_2 = 0x254, 203 .core_dll_config_3 = 0x258, 204 .core_ddr_config = 0x25c, 205 .core_dll_usr_ctl = 0x388, 206 }; 207 208 static const struct sdhci_msm_offset sdhci_msm_mci_offset = { 209 .core_hc_mode = 0x78, 210 .core_mci_data_cnt = 0x30, 211 .core_mci_status = 0x34, 212 .core_mci_fifo_cnt = 0x44, 213 .core_mci_version = 0x050, 214 .core_generics = 0x70, 215 .core_testbus_config = 0x0cc, 216 .core_testbus_sel2_bit = 4, 217 .core_testbus_ena = (1 << 3), 218 .core_testbus_sel2 = (1 << 4), 219 .core_pwrctl_status = 0xdc, 220 .core_pwrctl_mask = 0xe0, 221 .core_pwrctl_clear = 0xe4, 222 .core_pwrctl_ctl = 0xe8, 223 .core_sdcc_debug_reg = 0x124, 224 .core_dll_config = 0x100, 225 .core_dll_status = 0x108, 226 .core_vendor_spec = 0x10c, 227 .core_vendor_spec_adma_err_addr0 = 0x114, 228 .core_vendor_spec_adma_err_addr1 = 0x118, 229 .core_vendor_spec_func2 = 0x110, 230 .core_vendor_spec_capabilities0 = 0x11c, 231 .core_ddr_200_cfg = 0x184, 232 .core_vendor_spec3 = 0x1b0, 233 .core_dll_config_2 = 0x1b4, 234 .core_ddr_config_old = 0x1b8, 235 .core_ddr_config = 0x1bc, 236 }; 237 238 struct sdhci_msm_variant_ops { 239 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset); 240 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host, 241 u32 offset); 242 }; 243 244 /* 245 * From V5, register spaces have changed. Wrap this info in a structure 246 * and choose the data_structure based on version info mentioned in DT. 247 */ 248 struct sdhci_msm_variant_info { 249 bool mci_removed; 250 bool restore_dll_config; 251 bool uses_tassadar_dll; 252 const struct sdhci_msm_variant_ops *var_ops; 253 const struct sdhci_msm_offset *offset; 254 }; 255 256 struct sdhci_msm_host { 257 struct platform_device *pdev; 258 void __iomem *core_mem; /* MSM SDCC mapped address */ 259 int pwr_irq; /* power irq */ 260 struct clk *bus_clk; /* SDHC bus voter clock */ 261 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/ 262 struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */ 263 unsigned long clk_rate; 264 struct mmc_host *mmc; 265 struct opp_table *opp_table; 266 bool has_opp_table; 267 bool use_14lpp_dll_reset; 268 bool tuning_done; 269 bool calibration_done; 270 u8 saved_tuning_phase; 271 bool use_cdclp533; 272 u32 curr_pwr_state; 273 u32 curr_io_level; 274 wait_queue_head_t pwr_irq_wait; 275 bool pwr_irq_flag; 276 u32 caps_0; 277 bool mci_removed; 278 bool restore_dll_config; 279 const struct sdhci_msm_variant_ops *var_ops; 280 const struct sdhci_msm_offset *offset; 281 bool use_cdr; 282 u32 transfer_mode; 283 bool updated_ddr_cfg; 284 bool uses_tassadar_dll; 285 u32 dll_config; 286 u32 ddr_config; 287 bool vqmmc_enabled; 288 }; 289 290 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host) 291 { 292 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 293 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 294 295 return msm_host->offset; 296 } 297 298 /* 299 * APIs to read/write to vendor specific registers which were there in the 300 * core_mem region before MCI was removed. 301 */ 302 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host, 303 u32 offset) 304 { 305 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 306 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 307 308 return readl_relaxed(msm_host->core_mem + offset); 309 } 310 311 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host, 312 u32 offset) 313 { 314 return readl_relaxed(host->ioaddr + offset); 315 } 316 317 static void sdhci_msm_mci_variant_writel_relaxed(u32 val, 318 struct sdhci_host *host, u32 offset) 319 { 320 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 321 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 322 323 writel_relaxed(val, msm_host->core_mem + offset); 324 } 325 326 static void sdhci_msm_v5_variant_writel_relaxed(u32 val, 327 struct sdhci_host *host, u32 offset) 328 { 329 writel_relaxed(val, host->ioaddr + offset); 330 } 331 332 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host, 333 unsigned int clock) 334 { 335 struct mmc_ios ios = host->mmc->ios; 336 /* 337 * The SDHC requires internal clock frequency to be double the 338 * actual clock that will be set for DDR mode. The controller 339 * uses the faster clock(100/400MHz) for some of its parts and 340 * send the actual required clock (50/200MHz) to the card. 341 */ 342 if (ios.timing == MMC_TIMING_UHS_DDR50 || 343 ios.timing == MMC_TIMING_MMC_DDR52 || 344 ios.timing == MMC_TIMING_MMC_HS400 || 345 host->flags & SDHCI_HS400_TUNING) 346 clock *= 2; 347 return clock; 348 } 349 350 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host, 351 unsigned int clock) 352 { 353 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 354 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 355 struct mmc_ios curr_ios = host->mmc->ios; 356 struct clk *core_clk = msm_host->bulk_clks[0].clk; 357 int rc; 358 359 clock = msm_get_clock_rate_for_bus_mode(host, clock); 360 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), clock); 361 if (rc) { 362 pr_err("%s: Failed to set clock at rate %u at timing %d\n", 363 mmc_hostname(host->mmc), clock, 364 curr_ios.timing); 365 return; 366 } 367 msm_host->clk_rate = clock; 368 pr_debug("%s: Setting clock at rate %lu at timing %d\n", 369 mmc_hostname(host->mmc), clk_get_rate(core_clk), 370 curr_ios.timing); 371 } 372 373 /* Platform specific tuning */ 374 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll) 375 { 376 u32 wait_cnt = 50; 377 u8 ck_out_en; 378 struct mmc_host *mmc = host->mmc; 379 const struct sdhci_msm_offset *msm_offset = 380 sdhci_priv_msm_offset(host); 381 382 /* Poll for CK_OUT_EN bit. max. poll time = 50us */ 383 ck_out_en = !!(readl_relaxed(host->ioaddr + 384 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 385 386 while (ck_out_en != poll) { 387 if (--wait_cnt == 0) { 388 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n", 389 mmc_hostname(mmc), poll); 390 return -ETIMEDOUT; 391 } 392 udelay(1); 393 394 ck_out_en = !!(readl_relaxed(host->ioaddr + 395 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 396 } 397 398 return 0; 399 } 400 401 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase) 402 { 403 int rc; 404 static const u8 grey_coded_phase_table[] = { 405 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 406 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8 407 }; 408 unsigned long flags; 409 u32 config; 410 struct mmc_host *mmc = host->mmc; 411 const struct sdhci_msm_offset *msm_offset = 412 sdhci_priv_msm_offset(host); 413 414 if (phase > 0xf) 415 return -EINVAL; 416 417 spin_lock_irqsave(&host->lock, flags); 418 419 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 420 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN); 421 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN); 422 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 423 424 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */ 425 rc = msm_dll_poll_ck_out_en(host, 0); 426 if (rc) 427 goto err_out; 428 429 /* 430 * Write the selected DLL clock output phase (0 ... 15) 431 * to CDR_SELEXT bit field of DLL_CONFIG register. 432 */ 433 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 434 config &= ~CDR_SELEXT_MASK; 435 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT; 436 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 437 438 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 439 config |= CORE_CK_OUT_EN; 440 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 441 442 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */ 443 rc = msm_dll_poll_ck_out_en(host, 1); 444 if (rc) 445 goto err_out; 446 447 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 448 config |= CORE_CDR_EN; 449 config &= ~CORE_CDR_EXT_EN; 450 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 451 goto out; 452 453 err_out: 454 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n", 455 mmc_hostname(mmc), phase); 456 out: 457 spin_unlock_irqrestore(&host->lock, flags); 458 return rc; 459 } 460 461 /* 462 * Find out the greatest range of consecuitive selected 463 * DLL clock output phases that can be used as sampling 464 * setting for SD3.0 UHS-I card read operation (in SDR104 465 * timing mode) or for eMMC4.5 card read operation (in 466 * HS400/HS200 timing mode). 467 * Select the 3/4 of the range and configure the DLL with the 468 * selected DLL clock output phase. 469 */ 470 471 static int msm_find_most_appropriate_phase(struct sdhci_host *host, 472 u8 *phase_table, u8 total_phases) 473 { 474 int ret; 475 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} }; 476 u8 phases_per_row[MAX_PHASES] = { 0 }; 477 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0; 478 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0; 479 bool phase_0_found = false, phase_15_found = false; 480 struct mmc_host *mmc = host->mmc; 481 482 if (!total_phases || (total_phases > MAX_PHASES)) { 483 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n", 484 mmc_hostname(mmc), total_phases); 485 return -EINVAL; 486 } 487 488 for (cnt = 0; cnt < total_phases; cnt++) { 489 ranges[row_index][col_index] = phase_table[cnt]; 490 phases_per_row[row_index] += 1; 491 col_index++; 492 493 if ((cnt + 1) == total_phases) { 494 continue; 495 /* check if next phase in phase_table is consecutive or not */ 496 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) { 497 row_index++; 498 col_index = 0; 499 } 500 } 501 502 if (row_index >= MAX_PHASES) 503 return -EINVAL; 504 505 /* Check if phase-0 is present in first valid window? */ 506 if (!ranges[0][0]) { 507 phase_0_found = true; 508 phase_0_raw_index = 0; 509 /* Check if cycle exist between 2 valid windows */ 510 for (cnt = 1; cnt <= row_index; cnt++) { 511 if (phases_per_row[cnt]) { 512 for (i = 0; i < phases_per_row[cnt]; i++) { 513 if (ranges[cnt][i] == 15) { 514 phase_15_found = true; 515 phase_15_raw_index = cnt; 516 break; 517 } 518 } 519 } 520 } 521 } 522 523 /* If 2 valid windows form cycle then merge them as single window */ 524 if (phase_0_found && phase_15_found) { 525 /* number of phases in raw where phase 0 is present */ 526 u8 phases_0 = phases_per_row[phase_0_raw_index]; 527 /* number of phases in raw where phase 15 is present */ 528 u8 phases_15 = phases_per_row[phase_15_raw_index]; 529 530 if (phases_0 + phases_15 >= MAX_PHASES) 531 /* 532 * If there are more than 1 phase windows then total 533 * number of phases in both the windows should not be 534 * more than or equal to MAX_PHASES. 535 */ 536 return -EINVAL; 537 538 /* Merge 2 cyclic windows */ 539 i = phases_15; 540 for (cnt = 0; cnt < phases_0; cnt++) { 541 ranges[phase_15_raw_index][i] = 542 ranges[phase_0_raw_index][cnt]; 543 if (++i >= MAX_PHASES) 544 break; 545 } 546 547 phases_per_row[phase_0_raw_index] = 0; 548 phases_per_row[phase_15_raw_index] = phases_15 + phases_0; 549 } 550 551 for (cnt = 0; cnt <= row_index; cnt++) { 552 if (phases_per_row[cnt] > curr_max) { 553 curr_max = phases_per_row[cnt]; 554 selected_row_index = cnt; 555 } 556 } 557 558 i = (curr_max * 3) / 4; 559 if (i) 560 i--; 561 562 ret = ranges[selected_row_index][i]; 563 564 if (ret >= MAX_PHASES) { 565 ret = -EINVAL; 566 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n", 567 mmc_hostname(mmc), ret); 568 } 569 570 return ret; 571 } 572 573 static inline void msm_cm_dll_set_freq(struct sdhci_host *host) 574 { 575 u32 mclk_freq = 0, config; 576 const struct sdhci_msm_offset *msm_offset = 577 sdhci_priv_msm_offset(host); 578 579 /* Program the MCLK value to MCLK_FREQ bit field */ 580 if (host->clock <= 112000000) 581 mclk_freq = 0; 582 else if (host->clock <= 125000000) 583 mclk_freq = 1; 584 else if (host->clock <= 137000000) 585 mclk_freq = 2; 586 else if (host->clock <= 150000000) 587 mclk_freq = 3; 588 else if (host->clock <= 162000000) 589 mclk_freq = 4; 590 else if (host->clock <= 175000000) 591 mclk_freq = 5; 592 else if (host->clock <= 187000000) 593 mclk_freq = 6; 594 else if (host->clock <= 200000000) 595 mclk_freq = 7; 596 597 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 598 config &= ~CMUX_SHIFT_PHASE_MASK; 599 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT; 600 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 601 } 602 603 /* Initialize the DLL (Programmable Delay Line) */ 604 static int msm_init_cm_dll(struct sdhci_host *host) 605 { 606 struct mmc_host *mmc = host->mmc; 607 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 608 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 609 int wait_cnt = 50; 610 unsigned long flags, xo_clk = 0; 611 u32 config; 612 const struct sdhci_msm_offset *msm_offset = 613 msm_host->offset; 614 615 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk)) 616 xo_clk = clk_get_rate(msm_host->xo_clk); 617 618 spin_lock_irqsave(&host->lock, flags); 619 620 /* 621 * Make sure that clock is always enabled when DLL 622 * tuning is in progress. Keeping PWRSAVE ON may 623 * turn off the clock. 624 */ 625 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 626 config &= ~CORE_CLK_PWRSAVE; 627 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 628 629 if (msm_host->dll_config) 630 writel_relaxed(msm_host->dll_config, 631 host->ioaddr + msm_offset->core_dll_config); 632 633 if (msm_host->use_14lpp_dll_reset) { 634 config = readl_relaxed(host->ioaddr + 635 msm_offset->core_dll_config); 636 config &= ~CORE_CK_OUT_EN; 637 writel_relaxed(config, host->ioaddr + 638 msm_offset->core_dll_config); 639 640 config = readl_relaxed(host->ioaddr + 641 msm_offset->core_dll_config_2); 642 config |= CORE_DLL_CLOCK_DISABLE; 643 writel_relaxed(config, host->ioaddr + 644 msm_offset->core_dll_config_2); 645 } 646 647 config = readl_relaxed(host->ioaddr + 648 msm_offset->core_dll_config); 649 config |= CORE_DLL_RST; 650 writel_relaxed(config, host->ioaddr + 651 msm_offset->core_dll_config); 652 653 config = readl_relaxed(host->ioaddr + 654 msm_offset->core_dll_config); 655 config |= CORE_DLL_PDN; 656 writel_relaxed(config, host->ioaddr + 657 msm_offset->core_dll_config); 658 659 if (!msm_host->dll_config) 660 msm_cm_dll_set_freq(host); 661 662 if (msm_host->use_14lpp_dll_reset && 663 !IS_ERR_OR_NULL(msm_host->xo_clk)) { 664 u32 mclk_freq = 0; 665 666 config = readl_relaxed(host->ioaddr + 667 msm_offset->core_dll_config_2); 668 config &= CORE_FLL_CYCLE_CNT; 669 if (config) 670 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8), 671 xo_clk); 672 else 673 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4), 674 xo_clk); 675 676 config = readl_relaxed(host->ioaddr + 677 msm_offset->core_dll_config_2); 678 config &= ~(0xFF << 10); 679 config |= mclk_freq << 10; 680 681 writel_relaxed(config, host->ioaddr + 682 msm_offset->core_dll_config_2); 683 /* wait for 5us before enabling DLL clock */ 684 udelay(5); 685 } 686 687 config = readl_relaxed(host->ioaddr + 688 msm_offset->core_dll_config); 689 config &= ~CORE_DLL_RST; 690 writel_relaxed(config, host->ioaddr + 691 msm_offset->core_dll_config); 692 693 config = readl_relaxed(host->ioaddr + 694 msm_offset->core_dll_config); 695 config &= ~CORE_DLL_PDN; 696 writel_relaxed(config, host->ioaddr + 697 msm_offset->core_dll_config); 698 699 if (msm_host->use_14lpp_dll_reset) { 700 if (!msm_host->dll_config) 701 msm_cm_dll_set_freq(host); 702 config = readl_relaxed(host->ioaddr + 703 msm_offset->core_dll_config_2); 704 config &= ~CORE_DLL_CLOCK_DISABLE; 705 writel_relaxed(config, host->ioaddr + 706 msm_offset->core_dll_config_2); 707 } 708 709 /* 710 * Configure DLL user control register to enable DLL status. 711 * This setting is applicable to SDCC v5.1 onwards only. 712 */ 713 if (msm_host->uses_tassadar_dll) { 714 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN | 715 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL; 716 writel_relaxed(config, host->ioaddr + 717 msm_offset->core_dll_usr_ctl); 718 719 config = readl_relaxed(host->ioaddr + 720 msm_offset->core_dll_config_3); 721 config &= ~0xFF; 722 if (msm_host->clk_rate < 150000000) 723 config |= DLL_CONFIG_3_LOW_FREQ_VAL; 724 else 725 config |= DLL_CONFIG_3_HIGH_FREQ_VAL; 726 writel_relaxed(config, host->ioaddr + 727 msm_offset->core_dll_config_3); 728 } 729 730 config = readl_relaxed(host->ioaddr + 731 msm_offset->core_dll_config); 732 config |= CORE_DLL_EN; 733 writel_relaxed(config, host->ioaddr + 734 msm_offset->core_dll_config); 735 736 config = readl_relaxed(host->ioaddr + 737 msm_offset->core_dll_config); 738 config |= CORE_CK_OUT_EN; 739 writel_relaxed(config, host->ioaddr + 740 msm_offset->core_dll_config); 741 742 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */ 743 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) & 744 CORE_DLL_LOCK)) { 745 /* max. wait for 50us sec for LOCK bit to be set */ 746 if (--wait_cnt == 0) { 747 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n", 748 mmc_hostname(mmc)); 749 spin_unlock_irqrestore(&host->lock, flags); 750 return -ETIMEDOUT; 751 } 752 udelay(1); 753 } 754 755 spin_unlock_irqrestore(&host->lock, flags); 756 return 0; 757 } 758 759 static void msm_hc_select_default(struct sdhci_host *host) 760 { 761 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 762 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 763 u32 config; 764 const struct sdhci_msm_offset *msm_offset = 765 msm_host->offset; 766 767 if (!msm_host->use_cdclp533) { 768 config = readl_relaxed(host->ioaddr + 769 msm_offset->core_vendor_spec3); 770 config &= ~CORE_PWRSAVE_DLL; 771 writel_relaxed(config, host->ioaddr + 772 msm_offset->core_vendor_spec3); 773 } 774 775 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 776 config &= ~CORE_HC_MCLK_SEL_MASK; 777 config |= CORE_HC_MCLK_SEL_DFLT; 778 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 779 780 /* 781 * Disable HC_SELECT_IN to be able to use the UHS mode select 782 * configuration from Host Control2 register for all other 783 * modes. 784 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field 785 * in VENDOR_SPEC_FUNC 786 */ 787 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 788 config &= ~CORE_HC_SELECT_IN_EN; 789 config &= ~CORE_HC_SELECT_IN_MASK; 790 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 791 792 /* 793 * Make sure above writes impacting free running MCLK are completed 794 * before changing the clk_rate at GCC. 795 */ 796 wmb(); 797 } 798 799 static void msm_hc_select_hs400(struct sdhci_host *host) 800 { 801 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 802 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 803 struct mmc_ios ios = host->mmc->ios; 804 u32 config, dll_lock; 805 int rc; 806 const struct sdhci_msm_offset *msm_offset = 807 msm_host->offset; 808 809 /* Select the divided clock (free running MCLK/2) */ 810 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 811 config &= ~CORE_HC_MCLK_SEL_MASK; 812 config |= CORE_HC_MCLK_SEL_HS400; 813 814 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 815 /* 816 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC 817 * register 818 */ 819 if ((msm_host->tuning_done || ios.enhanced_strobe) && 820 !msm_host->calibration_done) { 821 config = readl_relaxed(host->ioaddr + 822 msm_offset->core_vendor_spec); 823 config |= CORE_HC_SELECT_IN_HS400; 824 config |= CORE_HC_SELECT_IN_EN; 825 writel_relaxed(config, host->ioaddr + 826 msm_offset->core_vendor_spec); 827 } 828 if (!msm_host->clk_rate && !msm_host->use_cdclp533) { 829 /* 830 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in 831 * core_dll_status to be set. This should get set 832 * within 15 us at 200 MHz. 833 */ 834 rc = readl_relaxed_poll_timeout(host->ioaddr + 835 msm_offset->core_dll_status, 836 dll_lock, 837 (dll_lock & 838 (CORE_DLL_LOCK | 839 CORE_DDR_DLL_LOCK)), 10, 840 1000); 841 if (rc == -ETIMEDOUT) 842 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n", 843 mmc_hostname(host->mmc), dll_lock); 844 } 845 /* 846 * Make sure above writes impacting free running MCLK are completed 847 * before changing the clk_rate at GCC. 848 */ 849 wmb(); 850 } 851 852 /* 853 * sdhci_msm_hc_select_mode :- In general all timing modes are 854 * controlled via UHS mode select in Host Control2 register. 855 * eMMC specific HS200/HS400 doesn't have their respective modes 856 * defined here, hence we use these values. 857 * 858 * HS200 - SDR104 (Since they both are equivalent in functionality) 859 * HS400 - This involves multiple configurations 860 * Initially SDR104 - when tuning is required as HS200 861 * Then when switching to DDR @ 400MHz (HS400) we use 862 * the vendor specific HC_SELECT_IN to control the mode. 863 * 864 * In addition to controlling the modes we also need to select the 865 * correct input clock for DLL depending on the mode. 866 * 867 * HS400 - divided clock (free running MCLK/2) 868 * All other modes - default (free running MCLK) 869 */ 870 static void sdhci_msm_hc_select_mode(struct sdhci_host *host) 871 { 872 struct mmc_ios ios = host->mmc->ios; 873 874 if (ios.timing == MMC_TIMING_MMC_HS400 || 875 host->flags & SDHCI_HS400_TUNING) 876 msm_hc_select_hs400(host); 877 else 878 msm_hc_select_default(host); 879 } 880 881 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host) 882 { 883 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 884 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 885 u32 config, calib_done; 886 int ret; 887 const struct sdhci_msm_offset *msm_offset = 888 msm_host->offset; 889 890 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 891 892 /* 893 * Retuning in HS400 (DDR mode) will fail, just reset the 894 * tuning block and restore the saved tuning phase. 895 */ 896 ret = msm_init_cm_dll(host); 897 if (ret) 898 goto out; 899 900 /* Set the selected phase in delay line hw block */ 901 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 902 if (ret) 903 goto out; 904 905 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 906 config |= CORE_CMD_DAT_TRACK_SEL; 907 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 908 909 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 910 config &= ~CORE_CDC_T4_DLY_SEL; 911 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 912 913 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 914 config &= ~CORE_CDC_SWITCH_BYPASS_OFF; 915 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 916 917 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 918 config |= CORE_CDC_SWITCH_RC_EN; 919 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 920 921 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 922 config &= ~CORE_START_CDC_TRAFFIC; 923 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 924 925 /* Perform CDC Register Initialization Sequence */ 926 927 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 928 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1); 929 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 930 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1); 931 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG); 932 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG); 933 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG); 934 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG); 935 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG); 936 937 /* CDC HW Calibration */ 938 939 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 940 config |= CORE_SW_TRIG_FULL_CALIB; 941 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 942 943 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 944 config &= ~CORE_SW_TRIG_FULL_CALIB; 945 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 946 947 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 948 config |= CORE_HW_AUTOCAL_ENA; 949 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 950 951 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 952 config |= CORE_TIMER_ENA; 953 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 954 955 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0, 956 calib_done, 957 (calib_done & CORE_CALIBRATION_DONE), 958 1, 50); 959 960 if (ret == -ETIMEDOUT) { 961 pr_err("%s: %s: CDC calibration was not completed\n", 962 mmc_hostname(host->mmc), __func__); 963 goto out; 964 } 965 966 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0) 967 & CORE_CDC_ERROR_CODE_MASK; 968 if (ret) { 969 pr_err("%s: %s: CDC error code %d\n", 970 mmc_hostname(host->mmc), __func__, ret); 971 ret = -EINVAL; 972 goto out; 973 } 974 975 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 976 config |= CORE_START_CDC_TRAFFIC; 977 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 978 out: 979 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 980 __func__, ret); 981 return ret; 982 } 983 984 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host) 985 { 986 struct mmc_host *mmc = host->mmc; 987 u32 dll_status, config, ddr_cfg_offset; 988 int ret; 989 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 990 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 991 const struct sdhci_msm_offset *msm_offset = 992 sdhci_priv_msm_offset(host); 993 994 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 995 996 /* 997 * Currently the core_ddr_config register defaults to desired 998 * configuration on reset. Currently reprogramming the power on 999 * reset (POR) value in case it might have been modified by 1000 * bootloaders. In the future, if this changes, then the desired 1001 * values will need to be programmed appropriately. 1002 */ 1003 if (msm_host->updated_ddr_cfg) 1004 ddr_cfg_offset = msm_offset->core_ddr_config; 1005 else 1006 ddr_cfg_offset = msm_offset->core_ddr_config_old; 1007 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset); 1008 1009 if (mmc->ios.enhanced_strobe) { 1010 config = readl_relaxed(host->ioaddr + 1011 msm_offset->core_ddr_200_cfg); 1012 config |= CORE_CMDIN_RCLK_EN; 1013 writel_relaxed(config, host->ioaddr + 1014 msm_offset->core_ddr_200_cfg); 1015 } 1016 1017 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2); 1018 config |= CORE_DDR_CAL_EN; 1019 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2); 1020 1021 ret = readl_relaxed_poll_timeout(host->ioaddr + 1022 msm_offset->core_dll_status, 1023 dll_status, 1024 (dll_status & CORE_DDR_DLL_LOCK), 1025 10, 1000); 1026 1027 if (ret == -ETIMEDOUT) { 1028 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n", 1029 mmc_hostname(host->mmc), __func__); 1030 goto out; 1031 } 1032 1033 /* 1034 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3. 1035 * When MCLK is gated OFF, it is not gated for less than 0.5us 1036 * and MCLK must be switched on for at-least 1us before DATA 1037 * starts coming. Controllers with 14lpp and later tech DLL cannot 1038 * guarantee above requirement. So PWRSAVE_DLL should not be 1039 * turned on for host controllers using this DLL. 1040 */ 1041 if (!msm_host->use_14lpp_dll_reset) { 1042 config = readl_relaxed(host->ioaddr + 1043 msm_offset->core_vendor_spec3); 1044 config |= CORE_PWRSAVE_DLL; 1045 writel_relaxed(config, host->ioaddr + 1046 msm_offset->core_vendor_spec3); 1047 } 1048 1049 /* 1050 * Drain writebuffer to ensure above DLL calibration 1051 * and PWRSAVE DLL is enabled. 1052 */ 1053 wmb(); 1054 out: 1055 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1056 __func__, ret); 1057 return ret; 1058 } 1059 1060 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host) 1061 { 1062 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1063 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1064 struct mmc_host *mmc = host->mmc; 1065 int ret; 1066 u32 config; 1067 const struct sdhci_msm_offset *msm_offset = 1068 msm_host->offset; 1069 1070 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 1071 1072 /* 1073 * Retuning in HS400 (DDR mode) will fail, just reset the 1074 * tuning block and restore the saved tuning phase. 1075 */ 1076 ret = msm_init_cm_dll(host); 1077 if (ret) 1078 goto out; 1079 1080 if (!mmc->ios.enhanced_strobe) { 1081 /* Set the selected phase in delay line hw block */ 1082 ret = msm_config_cm_dll_phase(host, 1083 msm_host->saved_tuning_phase); 1084 if (ret) 1085 goto out; 1086 config = readl_relaxed(host->ioaddr + 1087 msm_offset->core_dll_config); 1088 config |= CORE_CMD_DAT_TRACK_SEL; 1089 writel_relaxed(config, host->ioaddr + 1090 msm_offset->core_dll_config); 1091 } 1092 1093 if (msm_host->use_cdclp533) 1094 ret = sdhci_msm_cdclp533_calibration(host); 1095 else 1096 ret = sdhci_msm_cm_dll_sdc4_calibration(host); 1097 out: 1098 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1099 __func__, ret); 1100 return ret; 1101 } 1102 1103 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host) 1104 { 1105 struct mmc_ios *ios = &host->mmc->ios; 1106 1107 /* 1108 * Tuning is required for SDR104, HS200 and HS400 cards and 1109 * if clock frequency is greater than 100MHz in these modes. 1110 */ 1111 if (host->clock <= CORE_FREQ_100MHZ || 1112 !(ios->timing == MMC_TIMING_MMC_HS400 || 1113 ios->timing == MMC_TIMING_MMC_HS200 || 1114 ios->timing == MMC_TIMING_UHS_SDR104) || 1115 ios->enhanced_strobe) 1116 return false; 1117 1118 return true; 1119 } 1120 1121 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host) 1122 { 1123 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1124 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1125 int ret; 1126 1127 /* 1128 * SDR DLL comes into picture only for timing modes which needs 1129 * tuning. 1130 */ 1131 if (!sdhci_msm_is_tuning_needed(host)) 1132 return 0; 1133 1134 /* Reset the tuning block */ 1135 ret = msm_init_cm_dll(host); 1136 if (ret) 1137 return ret; 1138 1139 /* Restore the tuning block */ 1140 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 1141 1142 return ret; 1143 } 1144 1145 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable) 1146 { 1147 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host); 1148 u32 config, oldconfig = readl_relaxed(host->ioaddr + 1149 msm_offset->core_dll_config); 1150 1151 config = oldconfig; 1152 if (enable) { 1153 config |= CORE_CDR_EN; 1154 config &= ~CORE_CDR_EXT_EN; 1155 } else { 1156 config &= ~CORE_CDR_EN; 1157 config |= CORE_CDR_EXT_EN; 1158 } 1159 1160 if (config != oldconfig) { 1161 writel_relaxed(config, host->ioaddr + 1162 msm_offset->core_dll_config); 1163 } 1164 } 1165 1166 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode) 1167 { 1168 struct sdhci_host *host = mmc_priv(mmc); 1169 int tuning_seq_cnt = 3; 1170 u8 phase, tuned_phases[16], tuned_phase_cnt = 0; 1171 int rc; 1172 struct mmc_ios ios = host->mmc->ios; 1173 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1174 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1175 1176 if (!sdhci_msm_is_tuning_needed(host)) { 1177 msm_host->use_cdr = false; 1178 sdhci_msm_set_cdr(host, false); 1179 return 0; 1180 } 1181 1182 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */ 1183 msm_host->use_cdr = true; 1184 1185 /* 1186 * Clear tuning_done flag before tuning to ensure proper 1187 * HS400 settings. 1188 */ 1189 msm_host->tuning_done = 0; 1190 1191 /* 1192 * For HS400 tuning in HS200 timing requires: 1193 * - select MCLK/2 in VENDOR_SPEC 1194 * - program MCLK to 400MHz (or nearest supported) in GCC 1195 */ 1196 if (host->flags & SDHCI_HS400_TUNING) { 1197 sdhci_msm_hc_select_mode(host); 1198 msm_set_clock_rate_for_bus_mode(host, ios.clock); 1199 host->flags &= ~SDHCI_HS400_TUNING; 1200 } 1201 1202 retry: 1203 /* First of all reset the tuning block */ 1204 rc = msm_init_cm_dll(host); 1205 if (rc) 1206 return rc; 1207 1208 phase = 0; 1209 do { 1210 /* Set the phase in delay line hw block */ 1211 rc = msm_config_cm_dll_phase(host, phase); 1212 if (rc) 1213 return rc; 1214 1215 rc = mmc_send_tuning(mmc, opcode, NULL); 1216 if (!rc) { 1217 /* Tuning is successful at this tuning point */ 1218 tuned_phases[tuned_phase_cnt++] = phase; 1219 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n", 1220 mmc_hostname(mmc), phase); 1221 } 1222 } while (++phase < ARRAY_SIZE(tuned_phases)); 1223 1224 if (tuned_phase_cnt) { 1225 rc = msm_find_most_appropriate_phase(host, tuned_phases, 1226 tuned_phase_cnt); 1227 if (rc < 0) 1228 return rc; 1229 else 1230 phase = rc; 1231 1232 /* 1233 * Finally set the selected phase in delay 1234 * line hw block. 1235 */ 1236 rc = msm_config_cm_dll_phase(host, phase); 1237 if (rc) 1238 return rc; 1239 msm_host->saved_tuning_phase = phase; 1240 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n", 1241 mmc_hostname(mmc), phase); 1242 } else { 1243 if (--tuning_seq_cnt) 1244 goto retry; 1245 /* Tuning failed */ 1246 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n", 1247 mmc_hostname(mmc)); 1248 rc = -EIO; 1249 } 1250 1251 if (!rc) 1252 msm_host->tuning_done = true; 1253 return rc; 1254 } 1255 1256 /* 1257 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation. 1258 * This needs to be done for both tuning and enhanced_strobe mode. 1259 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz 1260 * fixed feedback clock is used. 1261 */ 1262 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios) 1263 { 1264 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1265 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1266 int ret; 1267 1268 if (host->clock > CORE_FREQ_100MHZ && 1269 (msm_host->tuning_done || ios->enhanced_strobe) && 1270 !msm_host->calibration_done) { 1271 ret = sdhci_msm_hs400_dll_calibration(host); 1272 if (!ret) 1273 msm_host->calibration_done = true; 1274 else 1275 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n", 1276 mmc_hostname(host->mmc), ret); 1277 } 1278 } 1279 1280 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host, 1281 unsigned int uhs) 1282 { 1283 struct mmc_host *mmc = host->mmc; 1284 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1285 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1286 u16 ctrl_2; 1287 u32 config; 1288 const struct sdhci_msm_offset *msm_offset = 1289 msm_host->offset; 1290 1291 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); 1292 /* Select Bus Speed Mode for host */ 1293 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1294 switch (uhs) { 1295 case MMC_TIMING_UHS_SDR12: 1296 ctrl_2 |= SDHCI_CTRL_UHS_SDR12; 1297 break; 1298 case MMC_TIMING_UHS_SDR25: 1299 ctrl_2 |= SDHCI_CTRL_UHS_SDR25; 1300 break; 1301 case MMC_TIMING_UHS_SDR50: 1302 ctrl_2 |= SDHCI_CTRL_UHS_SDR50; 1303 break; 1304 case MMC_TIMING_MMC_HS400: 1305 case MMC_TIMING_MMC_HS200: 1306 case MMC_TIMING_UHS_SDR104: 1307 ctrl_2 |= SDHCI_CTRL_UHS_SDR104; 1308 break; 1309 case MMC_TIMING_UHS_DDR50: 1310 case MMC_TIMING_MMC_DDR52: 1311 ctrl_2 |= SDHCI_CTRL_UHS_DDR50; 1312 break; 1313 } 1314 1315 /* 1316 * When clock frequency is less than 100MHz, the feedback clock must be 1317 * provided and DLL must not be used so that tuning can be skipped. To 1318 * provide feedback clock, the mode selection can be any value less 1319 * than 3'b011 in bits [2:0] of HOST CONTROL2 register. 1320 */ 1321 if (host->clock <= CORE_FREQ_100MHZ) { 1322 if (uhs == MMC_TIMING_MMC_HS400 || 1323 uhs == MMC_TIMING_MMC_HS200 || 1324 uhs == MMC_TIMING_UHS_SDR104) 1325 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1326 /* 1327 * DLL is not required for clock <= 100MHz 1328 * Thus, make sure DLL it is disabled when not required 1329 */ 1330 config = readl_relaxed(host->ioaddr + 1331 msm_offset->core_dll_config); 1332 config |= CORE_DLL_RST; 1333 writel_relaxed(config, host->ioaddr + 1334 msm_offset->core_dll_config); 1335 1336 config = readl_relaxed(host->ioaddr + 1337 msm_offset->core_dll_config); 1338 config |= CORE_DLL_PDN; 1339 writel_relaxed(config, host->ioaddr + 1340 msm_offset->core_dll_config); 1341 1342 /* 1343 * The DLL needs to be restored and CDCLP533 recalibrated 1344 * when the clock frequency is set back to 400MHz. 1345 */ 1346 msm_host->calibration_done = false; 1347 } 1348 1349 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n", 1350 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2); 1351 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); 1352 1353 if (mmc->ios.timing == MMC_TIMING_MMC_HS400) 1354 sdhci_msm_hs400(host, &mmc->ios); 1355 } 1356 1357 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level) 1358 { 1359 struct platform_device *pdev = msm_host->pdev; 1360 int ret; 1361 1362 if (level) 1363 ret = pinctrl_pm_select_default_state(&pdev->dev); 1364 else 1365 ret = pinctrl_pm_select_sleep_state(&pdev->dev); 1366 1367 return ret; 1368 } 1369 1370 static int sdhci_msm_set_vmmc(struct mmc_host *mmc) 1371 { 1372 if (IS_ERR(mmc->supply.vmmc)) 1373 return 0; 1374 1375 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd); 1376 } 1377 1378 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host, 1379 struct mmc_host *mmc, bool level) 1380 { 1381 int ret; 1382 struct mmc_ios ios; 1383 1384 if (msm_host->vqmmc_enabled == level) 1385 return 0; 1386 1387 if (level) { 1388 /* Set the IO voltage regulator to default voltage level */ 1389 if (msm_host->caps_0 & CORE_3_0V_SUPPORT) 1390 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330; 1391 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT) 1392 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180; 1393 1394 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1395 ret = mmc_regulator_set_vqmmc(mmc, &ios); 1396 if (ret < 0) { 1397 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n", 1398 mmc_hostname(mmc), ret); 1399 goto out; 1400 } 1401 } 1402 ret = regulator_enable(mmc->supply.vqmmc); 1403 } else { 1404 ret = regulator_disable(mmc->supply.vqmmc); 1405 } 1406 1407 if (ret) 1408 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n", 1409 mmc_hostname(mmc), level ? "en":"dis", ret); 1410 else 1411 msm_host->vqmmc_enabled = level; 1412 out: 1413 return ret; 1414 } 1415 1416 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host, 1417 struct mmc_host *mmc, bool hpm) 1418 { 1419 int load, ret; 1420 1421 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0; 1422 ret = regulator_set_load(mmc->supply.vqmmc, load); 1423 if (ret) 1424 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n", 1425 mmc_hostname(mmc), ret); 1426 return ret; 1427 } 1428 1429 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host, 1430 struct mmc_host *mmc, bool level) 1431 { 1432 int ret; 1433 bool always_on; 1434 1435 if (IS_ERR(mmc->supply.vqmmc) || 1436 (mmc->ios.power_mode == MMC_POWER_UNDEFINED)) 1437 return 0; 1438 /* 1439 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM 1440 * and HPM modes by setting the corresponding load. 1441 * 1442 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off 1443 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off 1444 * gets invoked. Once eMMC is initialized (i.e. always_on == 1), 1445 * Vqmmc should remain ON, So just set the load instead of turning it 1446 * off/on. 1447 */ 1448 always_on = !mmc_card_is_removable(mmc) && 1449 mmc->card && mmc_card_mmc(mmc->card); 1450 1451 if (always_on) 1452 ret = msm_config_vqmmc_mode(msm_host, mmc, level); 1453 else 1454 ret = msm_toggle_vqmmc(msm_host, mmc, level); 1455 1456 return ret; 1457 } 1458 1459 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host) 1460 { 1461 init_waitqueue_head(&msm_host->pwr_irq_wait); 1462 } 1463 1464 static inline void sdhci_msm_complete_pwr_irq_wait( 1465 struct sdhci_msm_host *msm_host) 1466 { 1467 wake_up(&msm_host->pwr_irq_wait); 1468 } 1469 1470 /* 1471 * sdhci_msm_check_power_status API should be called when registers writes 1472 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens. 1473 * To what state the register writes will change the IO lines should be passed 1474 * as the argument req_type. This API will check whether the IO line's state 1475 * is already the expected state and will wait for power irq only if 1476 * power irq is expected to be triggered based on the current IO line state 1477 * and expected IO line state. 1478 */ 1479 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type) 1480 { 1481 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1482 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1483 bool done = false; 1484 u32 val = SWITCHABLE_SIGNALING_VOLTAGE; 1485 const struct sdhci_msm_offset *msm_offset = 1486 msm_host->offset; 1487 1488 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n", 1489 mmc_hostname(host->mmc), __func__, req_type, 1490 msm_host->curr_pwr_state, msm_host->curr_io_level); 1491 1492 /* 1493 * The power interrupt will not be generated for signal voltage 1494 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set. 1495 * Since sdhci-msm-v5, this bit has been removed and SW must consider 1496 * it as always set. 1497 */ 1498 if (!msm_host->mci_removed) 1499 val = msm_host_readl(msm_host, host, 1500 msm_offset->core_generics); 1501 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) && 1502 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) { 1503 return; 1504 } 1505 1506 /* 1507 * The IRQ for request type IO High/LOW will be generated when - 1508 * there is a state change in 1.8V enable bit (bit 3) of 1509 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0 1510 * which indicates 3.3V IO voltage. So, when MMC core layer tries 1511 * to set it to 3.3V before card detection happens, the 1512 * IRQ doesn't get triggered as there is no state change in this bit. 1513 * The driver already handles this case by changing the IO voltage 1514 * level to high as part of controller power up sequence. Hence, check 1515 * for host->pwr to handle a case where IO voltage high request is 1516 * issued even before controller power up. 1517 */ 1518 if ((req_type & REQ_IO_HIGH) && !host->pwr) { 1519 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n", 1520 mmc_hostname(host->mmc), req_type); 1521 return; 1522 } 1523 if ((req_type & msm_host->curr_pwr_state) || 1524 (req_type & msm_host->curr_io_level)) 1525 done = true; 1526 /* 1527 * This is needed here to handle cases where register writes will 1528 * not change the current bus state or io level of the controller. 1529 * In this case, no power irq will be triggerred and we should 1530 * not wait. 1531 */ 1532 if (!done) { 1533 if (!wait_event_timeout(msm_host->pwr_irq_wait, 1534 msm_host->pwr_irq_flag, 1535 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS))) 1536 dev_warn(&msm_host->pdev->dev, 1537 "%s: pwr_irq for req: (%d) timed out\n", 1538 mmc_hostname(host->mmc), req_type); 1539 } 1540 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc), 1541 __func__, req_type); 1542 } 1543 1544 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host) 1545 { 1546 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1547 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1548 const struct sdhci_msm_offset *msm_offset = 1549 msm_host->offset; 1550 1551 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n", 1552 mmc_hostname(host->mmc), 1553 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status), 1554 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask), 1555 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl)); 1556 } 1557 1558 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq) 1559 { 1560 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1561 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1562 struct mmc_host *mmc = host->mmc; 1563 u32 irq_status, irq_ack = 0; 1564 int retry = 10, ret; 1565 u32 pwr_state = 0, io_level = 0; 1566 u32 config; 1567 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1568 1569 irq_status = msm_host_readl(msm_host, host, 1570 msm_offset->core_pwrctl_status); 1571 irq_status &= INT_MASK; 1572 1573 msm_host_writel(msm_host, irq_status, host, 1574 msm_offset->core_pwrctl_clear); 1575 1576 /* 1577 * There is a rare HW scenario where the first clear pulse could be 1578 * lost when actual reset and clear/read of status register is 1579 * happening at a time. Hence, retry for at least 10 times to make 1580 * sure status register is cleared. Otherwise, this will result in 1581 * a spurious power IRQ resulting in system instability. 1582 */ 1583 while (irq_status & msm_host_readl(msm_host, host, 1584 msm_offset->core_pwrctl_status)) { 1585 if (retry == 0) { 1586 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n", 1587 mmc_hostname(host->mmc), irq_status); 1588 sdhci_msm_dump_pwr_ctrl_regs(host); 1589 WARN_ON(1); 1590 break; 1591 } 1592 msm_host_writel(msm_host, irq_status, host, 1593 msm_offset->core_pwrctl_clear); 1594 retry--; 1595 udelay(10); 1596 } 1597 1598 /* Handle BUS ON/OFF*/ 1599 if (irq_status & CORE_PWRCTL_BUS_ON) { 1600 pwr_state = REQ_BUS_ON; 1601 io_level = REQ_IO_HIGH; 1602 } 1603 if (irq_status & CORE_PWRCTL_BUS_OFF) { 1604 pwr_state = REQ_BUS_OFF; 1605 io_level = REQ_IO_LOW; 1606 } 1607 1608 if (pwr_state) { 1609 ret = sdhci_msm_set_vmmc(mmc); 1610 if (!ret) 1611 ret = sdhci_msm_set_vqmmc(msm_host, mmc, 1612 pwr_state & REQ_BUS_ON); 1613 if (!ret) 1614 ret = sdhci_msm_set_pincfg(msm_host, 1615 pwr_state & REQ_BUS_ON); 1616 if (!ret) 1617 irq_ack |= CORE_PWRCTL_BUS_SUCCESS; 1618 else 1619 irq_ack |= CORE_PWRCTL_BUS_FAIL; 1620 } 1621 1622 /* Handle IO LOW/HIGH */ 1623 if (irq_status & CORE_PWRCTL_IO_LOW) 1624 io_level = REQ_IO_LOW; 1625 1626 if (irq_status & CORE_PWRCTL_IO_HIGH) 1627 io_level = REQ_IO_HIGH; 1628 1629 if (io_level) 1630 irq_ack |= CORE_PWRCTL_IO_SUCCESS; 1631 1632 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) { 1633 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios); 1634 if (ret < 0) { 1635 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n", 1636 mmc_hostname(mmc), ret, 1637 mmc->ios.signal_voltage, mmc->ios.vdd, 1638 irq_status); 1639 irq_ack |= CORE_PWRCTL_IO_FAIL; 1640 } 1641 } 1642 1643 /* 1644 * The driver has to acknowledge the interrupt, switch voltages and 1645 * report back if it succeded or not to this register. The voltage 1646 * switches are handled by the sdhci core, so just report success. 1647 */ 1648 msm_host_writel(msm_host, irq_ack, host, 1649 msm_offset->core_pwrctl_ctl); 1650 1651 /* 1652 * If we don't have info regarding the voltage levels supported by 1653 * regulators, don't change the IO PAD PWR SWITCH. 1654 */ 1655 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1656 u32 new_config; 1657 /* 1658 * We should unset IO PAD PWR switch only if the register write 1659 * can set IO lines high and the regulator also switches to 3 V. 1660 * Else, we should keep the IO PAD PWR switch set. 1661 * This is applicable to certain targets where eMMC vccq supply 1662 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the 1663 * IO PAD PWR switch must be kept set to reflect actual 1664 * regulator voltage. This way, during initialization of 1665 * controllers with only 1.8V, we will set the IO PAD bit 1666 * without waiting for a REQ_IO_LOW. 1667 */ 1668 config = readl_relaxed(host->ioaddr + 1669 msm_offset->core_vendor_spec); 1670 new_config = config; 1671 1672 if ((io_level & REQ_IO_HIGH) && 1673 (msm_host->caps_0 & CORE_3_0V_SUPPORT)) 1674 new_config &= ~CORE_IO_PAD_PWR_SWITCH; 1675 else if ((io_level & REQ_IO_LOW) || 1676 (msm_host->caps_0 & CORE_1_8V_SUPPORT)) 1677 new_config |= CORE_IO_PAD_PWR_SWITCH; 1678 1679 if (config ^ new_config) 1680 writel_relaxed(new_config, host->ioaddr + 1681 msm_offset->core_vendor_spec); 1682 } 1683 1684 if (pwr_state) 1685 msm_host->curr_pwr_state = pwr_state; 1686 if (io_level) 1687 msm_host->curr_io_level = io_level; 1688 1689 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n", 1690 mmc_hostname(msm_host->mmc), __func__, irq, irq_status, 1691 irq_ack); 1692 } 1693 1694 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data) 1695 { 1696 struct sdhci_host *host = (struct sdhci_host *)data; 1697 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1698 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1699 1700 sdhci_msm_handle_pwr_irq(host, irq); 1701 msm_host->pwr_irq_flag = 1; 1702 sdhci_msm_complete_pwr_irq_wait(msm_host); 1703 1704 1705 return IRQ_HANDLED; 1706 } 1707 1708 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host) 1709 { 1710 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1711 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1712 struct clk *core_clk = msm_host->bulk_clks[0].clk; 1713 1714 return clk_round_rate(core_clk, ULONG_MAX); 1715 } 1716 1717 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host) 1718 { 1719 return SDHCI_MSM_MIN_CLOCK; 1720 } 1721 1722 /* 1723 * __sdhci_msm_set_clock - sdhci_msm clock control. 1724 * 1725 * Description: 1726 * MSM controller does not use internal divider and 1727 * instead directly control the GCC clock as per 1728 * HW recommendation. 1729 **/ 1730 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1731 { 1732 u16 clk; 1733 /* 1734 * Keep actual_clock as zero - 1735 * - since there is no divider used so no need of having actual_clock. 1736 * - MSM controller uses SDCLK for data timeout calculation. If 1737 * actual_clock is zero, host->clock is taken for calculation. 1738 */ 1739 host->mmc->actual_clock = 0; 1740 1741 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); 1742 1743 if (clock == 0) 1744 return; 1745 1746 /* 1747 * MSM controller do not use clock divider. 1748 * Thus read SDHCI_CLOCK_CONTROL and only enable 1749 * clock with no divider value programmed. 1750 */ 1751 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); 1752 sdhci_enable_clk(host, clk); 1753 } 1754 1755 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */ 1756 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1757 { 1758 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1759 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1760 1761 if (!clock) { 1762 msm_host->clk_rate = clock; 1763 goto out; 1764 } 1765 1766 sdhci_msm_hc_select_mode(host); 1767 1768 msm_set_clock_rate_for_bus_mode(host, clock); 1769 out: 1770 __sdhci_msm_set_clock(host, clock); 1771 } 1772 1773 /*****************************************************************************\ 1774 * * 1775 * MSM Command Queue Engine (CQE) * 1776 * * 1777 \*****************************************************************************/ 1778 1779 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask) 1780 { 1781 int cmd_error = 0; 1782 int data_error = 0; 1783 1784 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error)) 1785 return intmask; 1786 1787 cqhci_irq(host->mmc, intmask, cmd_error, data_error); 1788 return 0; 1789 } 1790 1791 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery) 1792 { 1793 struct sdhci_host *host = mmc_priv(mmc); 1794 unsigned long flags; 1795 u32 ctrl; 1796 1797 /* 1798 * When CQE is halted, the legacy SDHCI path operates only 1799 * on 16-byte descriptors in 64bit mode. 1800 */ 1801 if (host->flags & SDHCI_USE_64_BIT_DMA) 1802 host->desc_sz = 16; 1803 1804 spin_lock_irqsave(&host->lock, flags); 1805 1806 /* 1807 * During CQE command transfers, command complete bit gets latched. 1808 * So s/w should clear command complete interrupt status when CQE is 1809 * either halted or disabled. Otherwise unexpected SDCHI legacy 1810 * interrupt gets triggered when CQE is halted/disabled. 1811 */ 1812 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE); 1813 ctrl |= SDHCI_INT_RESPONSE; 1814 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE); 1815 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS); 1816 1817 spin_unlock_irqrestore(&host->lock, flags); 1818 1819 sdhci_cqe_disable(mmc, recovery); 1820 } 1821 1822 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = { 1823 .enable = sdhci_cqe_enable, 1824 .disable = sdhci_msm_cqe_disable, 1825 }; 1826 1827 static int sdhci_msm_cqe_add_host(struct sdhci_host *host, 1828 struct platform_device *pdev) 1829 { 1830 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1831 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1832 struct cqhci_host *cq_host; 1833 bool dma64; 1834 u32 cqcfg; 1835 int ret; 1836 1837 /* 1838 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors. 1839 * So ensure ADMA table is allocated for 16byte descriptors. 1840 */ 1841 if (host->caps & SDHCI_CAN_64BIT) 1842 host->alloc_desc_sz = 16; 1843 1844 ret = sdhci_setup_host(host); 1845 if (ret) 1846 return ret; 1847 1848 cq_host = cqhci_pltfm_init(pdev); 1849 if (IS_ERR(cq_host)) { 1850 ret = PTR_ERR(cq_host); 1851 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret); 1852 goto cleanup; 1853 } 1854 1855 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD; 1856 cq_host->ops = &sdhci_msm_cqhci_ops; 1857 1858 dma64 = host->flags & SDHCI_USE_64_BIT_DMA; 1859 1860 ret = cqhci_init(cq_host, host->mmc, dma64); 1861 if (ret) { 1862 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n", 1863 mmc_hostname(host->mmc), ret); 1864 goto cleanup; 1865 } 1866 1867 /* Disable cqe reset due to cqe enable signal */ 1868 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1); 1869 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN; 1870 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1); 1871 1872 /* 1873 * SDHC expects 12byte ADMA descriptors till CQE is enabled. 1874 * So limit desc_sz to 12 so that the data commands that are sent 1875 * during card initialization (before CQE gets enabled) would 1876 * get executed without any issues. 1877 */ 1878 if (host->flags & SDHCI_USE_64_BIT_DMA) 1879 host->desc_sz = 12; 1880 1881 ret = __sdhci_add_host(host); 1882 if (ret) 1883 goto cleanup; 1884 1885 dev_info(&pdev->dev, "%s: CQE init: success\n", 1886 mmc_hostname(host->mmc)); 1887 return ret; 1888 1889 cleanup: 1890 sdhci_cleanup_host(host); 1891 return ret; 1892 } 1893 1894 /* 1895 * Platform specific register write functions. This is so that, if any 1896 * register write needs to be followed up by platform specific actions, 1897 * they can be added here. These functions can go to sleep when writes 1898 * to certain registers are done. 1899 * These functions are relying on sdhci_set_ios not using spinlock. 1900 */ 1901 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg) 1902 { 1903 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1904 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1905 u32 req_type = 0; 1906 1907 switch (reg) { 1908 case SDHCI_HOST_CONTROL2: 1909 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW : 1910 REQ_IO_HIGH; 1911 break; 1912 case SDHCI_SOFTWARE_RESET: 1913 if (host->pwr && (val & SDHCI_RESET_ALL)) 1914 req_type = REQ_BUS_OFF; 1915 break; 1916 case SDHCI_POWER_CONTROL: 1917 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON; 1918 break; 1919 case SDHCI_TRANSFER_MODE: 1920 msm_host->transfer_mode = val; 1921 break; 1922 case SDHCI_COMMAND: 1923 if (!msm_host->use_cdr) 1924 break; 1925 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) && 1926 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 && 1927 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK) 1928 sdhci_msm_set_cdr(host, true); 1929 else 1930 sdhci_msm_set_cdr(host, false); 1931 break; 1932 } 1933 1934 if (req_type) { 1935 msm_host->pwr_irq_flag = 0; 1936 /* 1937 * Since this register write may trigger a power irq, ensure 1938 * all previous register writes are complete by this point. 1939 */ 1940 mb(); 1941 } 1942 return req_type; 1943 } 1944 1945 /* This function may sleep*/ 1946 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg) 1947 { 1948 u32 req_type = 0; 1949 1950 req_type = __sdhci_msm_check_write(host, val, reg); 1951 writew_relaxed(val, host->ioaddr + reg); 1952 1953 if (req_type) 1954 sdhci_msm_check_power_status(host, req_type); 1955 } 1956 1957 /* This function may sleep*/ 1958 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg) 1959 { 1960 u32 req_type = 0; 1961 1962 req_type = __sdhci_msm_check_write(host, val, reg); 1963 1964 writeb_relaxed(val, host->ioaddr + reg); 1965 1966 if (req_type) 1967 sdhci_msm_check_power_status(host, req_type); 1968 } 1969 1970 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host) 1971 { 1972 struct mmc_host *mmc = msm_host->mmc; 1973 struct regulator *supply = mmc->supply.vqmmc; 1974 u32 caps = 0, config; 1975 struct sdhci_host *host = mmc_priv(mmc); 1976 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1977 1978 if (!IS_ERR(mmc->supply.vqmmc)) { 1979 if (regulator_is_supported_voltage(supply, 1700000, 1950000)) 1980 caps |= CORE_1_8V_SUPPORT; 1981 if (regulator_is_supported_voltage(supply, 2700000, 3600000)) 1982 caps |= CORE_3_0V_SUPPORT; 1983 1984 if (!caps) 1985 pr_warn("%s: 1.8/3V not supported for vqmmc\n", 1986 mmc_hostname(mmc)); 1987 } 1988 1989 if (caps) { 1990 /* 1991 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH 1992 * bit can be used as required later on. 1993 */ 1994 u32 io_level = msm_host->curr_io_level; 1995 1996 config = readl_relaxed(host->ioaddr + 1997 msm_offset->core_vendor_spec); 1998 config |= CORE_IO_PAD_PWR_SWITCH_EN; 1999 2000 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT)) 2001 config &= ~CORE_IO_PAD_PWR_SWITCH; 2002 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT)) 2003 config |= CORE_IO_PAD_PWR_SWITCH; 2004 2005 writel_relaxed(config, 2006 host->ioaddr + msm_offset->core_vendor_spec); 2007 } 2008 msm_host->caps_0 |= caps; 2009 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps); 2010 } 2011 2012 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask) 2013 { 2014 if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL)) 2015 cqhci_deactivate(host->mmc); 2016 sdhci_reset(host, mask); 2017 } 2018 2019 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host) 2020 { 2021 int ret; 2022 2023 ret = mmc_regulator_get_supply(msm_host->mmc); 2024 if (ret) 2025 return ret; 2026 2027 sdhci_msm_set_regulator_caps(msm_host); 2028 2029 return 0; 2030 } 2031 2032 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc, 2033 struct mmc_ios *ios) 2034 { 2035 struct sdhci_host *host = mmc_priv(mmc); 2036 u16 ctrl, status; 2037 2038 /* 2039 * Signal Voltage Switching is only applicable for Host Controllers 2040 * v3.00 and above. 2041 */ 2042 if (host->version < SDHCI_SPEC_300) 2043 return 0; 2044 2045 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2046 2047 switch (ios->signal_voltage) { 2048 case MMC_SIGNAL_VOLTAGE_330: 2049 if (!(host->flags & SDHCI_SIGNALING_330)) 2050 return -EINVAL; 2051 2052 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */ 2053 ctrl &= ~SDHCI_CTRL_VDD_180; 2054 break; 2055 case MMC_SIGNAL_VOLTAGE_180: 2056 if (!(host->flags & SDHCI_SIGNALING_180)) 2057 return -EINVAL; 2058 2059 /* Enable 1.8V Signal Enable in the Host Control2 register */ 2060 ctrl |= SDHCI_CTRL_VDD_180; 2061 break; 2062 2063 default: 2064 return -EINVAL; 2065 } 2066 2067 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); 2068 2069 /* Wait for 5ms */ 2070 usleep_range(5000, 5500); 2071 2072 /* regulator output should be stable within 5 ms */ 2073 status = ctrl & SDHCI_CTRL_VDD_180; 2074 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2075 if ((ctrl & SDHCI_CTRL_VDD_180) == status) 2076 return 0; 2077 2078 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n", 2079 mmc_hostname(mmc)); 2080 2081 return -EAGAIN; 2082 } 2083 2084 #define DRIVER_NAME "sdhci_msm" 2085 #define SDHCI_MSM_DUMP(f, x...) \ 2086 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x) 2087 2088 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host) 2089 { 2090 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2091 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2092 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 2093 2094 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n"); 2095 2096 SDHCI_MSM_DUMP( 2097 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n", 2098 readl_relaxed(host->ioaddr + msm_offset->core_dll_status), 2099 readl_relaxed(host->ioaddr + msm_offset->core_dll_config), 2100 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2)); 2101 SDHCI_MSM_DUMP( 2102 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n", 2103 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3), 2104 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl), 2105 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config)); 2106 SDHCI_MSM_DUMP( 2107 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n", 2108 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec), 2109 readl_relaxed(host->ioaddr + 2110 msm_offset->core_vendor_spec_func2), 2111 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3)); 2112 } 2113 2114 static const struct sdhci_msm_variant_ops mci_var_ops = { 2115 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed, 2116 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed, 2117 }; 2118 2119 static const struct sdhci_msm_variant_ops v5_var_ops = { 2120 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed, 2121 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed, 2122 }; 2123 2124 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = { 2125 .var_ops = &mci_var_ops, 2126 .offset = &sdhci_msm_mci_offset, 2127 }; 2128 2129 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = { 2130 .mci_removed = true, 2131 .var_ops = &v5_var_ops, 2132 .offset = &sdhci_msm_v5_offset, 2133 }; 2134 2135 static const struct sdhci_msm_variant_info sdm845_sdhci_var = { 2136 .mci_removed = true, 2137 .restore_dll_config = true, 2138 .var_ops = &v5_var_ops, 2139 .offset = &sdhci_msm_v5_offset, 2140 }; 2141 2142 static const struct sdhci_msm_variant_info sm8250_sdhci_var = { 2143 .mci_removed = true, 2144 .uses_tassadar_dll = true, 2145 .var_ops = &v5_var_ops, 2146 .offset = &sdhci_msm_v5_offset, 2147 }; 2148 2149 static const struct of_device_id sdhci_msm_dt_match[] = { 2150 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var}, 2151 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var}, 2152 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var}, 2153 {.compatible = "qcom,sm8250-sdhci", .data = &sm8250_sdhci_var}, 2154 {}, 2155 }; 2156 2157 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match); 2158 2159 static const struct sdhci_ops sdhci_msm_ops = { 2160 .reset = sdhci_msm_reset, 2161 .set_clock = sdhci_msm_set_clock, 2162 .get_min_clock = sdhci_msm_get_min_clock, 2163 .get_max_clock = sdhci_msm_get_max_clock, 2164 .set_bus_width = sdhci_set_bus_width, 2165 .set_uhs_signaling = sdhci_msm_set_uhs_signaling, 2166 .write_w = sdhci_msm_writew, 2167 .write_b = sdhci_msm_writeb, 2168 .irq = sdhci_msm_cqe_irq, 2169 .dump_vendor_regs = sdhci_msm_dump_vendor_regs, 2170 .set_power = sdhci_set_power_noreg, 2171 }; 2172 2173 static const struct sdhci_pltfm_data sdhci_msm_pdata = { 2174 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION | 2175 SDHCI_QUIRK_SINGLE_POWER_WRITE | 2176 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN | 2177 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12, 2178 2179 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, 2180 .ops = &sdhci_msm_ops, 2181 }; 2182 2183 static inline void sdhci_msm_get_of_property(struct platform_device *pdev, 2184 struct sdhci_host *host) 2185 { 2186 struct device_node *node = pdev->dev.of_node; 2187 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2188 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2189 2190 if (of_property_read_u32(node, "qcom,ddr-config", 2191 &msm_host->ddr_config)) 2192 msm_host->ddr_config = DDR_CONFIG_POR_VAL; 2193 2194 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config); 2195 } 2196 2197 2198 static int sdhci_msm_probe(struct platform_device *pdev) 2199 { 2200 struct sdhci_host *host; 2201 struct sdhci_pltfm_host *pltfm_host; 2202 struct sdhci_msm_host *msm_host; 2203 struct clk *clk; 2204 int ret; 2205 u16 host_version, core_minor; 2206 u32 core_version, config; 2207 u8 core_major; 2208 const struct sdhci_msm_offset *msm_offset; 2209 const struct sdhci_msm_variant_info *var_info; 2210 struct device_node *node = pdev->dev.of_node; 2211 2212 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host)); 2213 if (IS_ERR(host)) 2214 return PTR_ERR(host); 2215 2216 host->sdma_boundary = 0; 2217 pltfm_host = sdhci_priv(host); 2218 msm_host = sdhci_pltfm_priv(pltfm_host); 2219 msm_host->mmc = host->mmc; 2220 msm_host->pdev = pdev; 2221 2222 ret = mmc_of_parse(host->mmc); 2223 if (ret) 2224 goto pltfm_free; 2225 2226 /* 2227 * Based on the compatible string, load the required msm host info from 2228 * the data associated with the version info. 2229 */ 2230 var_info = of_device_get_match_data(&pdev->dev); 2231 2232 msm_host->mci_removed = var_info->mci_removed; 2233 msm_host->restore_dll_config = var_info->restore_dll_config; 2234 msm_host->var_ops = var_info->var_ops; 2235 msm_host->offset = var_info->offset; 2236 msm_host->uses_tassadar_dll = var_info->uses_tassadar_dll; 2237 2238 msm_offset = msm_host->offset; 2239 2240 sdhci_get_of_property(pdev); 2241 sdhci_msm_get_of_property(pdev, host); 2242 2243 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE; 2244 2245 /* Setup SDCC bus voter clock. */ 2246 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus"); 2247 if (!IS_ERR(msm_host->bus_clk)) { 2248 /* Vote for max. clk rate for max. performance */ 2249 ret = clk_set_rate(msm_host->bus_clk, INT_MAX); 2250 if (ret) 2251 goto pltfm_free; 2252 ret = clk_prepare_enable(msm_host->bus_clk); 2253 if (ret) 2254 goto pltfm_free; 2255 } 2256 2257 /* Setup main peripheral bus clock */ 2258 clk = devm_clk_get(&pdev->dev, "iface"); 2259 if (IS_ERR(clk)) { 2260 ret = PTR_ERR(clk); 2261 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret); 2262 goto bus_clk_disable; 2263 } 2264 msm_host->bulk_clks[1].clk = clk; 2265 2266 /* Setup SDC MMC clock */ 2267 clk = devm_clk_get(&pdev->dev, "core"); 2268 if (IS_ERR(clk)) { 2269 ret = PTR_ERR(clk); 2270 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret); 2271 goto bus_clk_disable; 2272 } 2273 msm_host->bulk_clks[0].clk = clk; 2274 2275 /* Check for optional interconnect paths */ 2276 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL); 2277 if (ret) 2278 goto bus_clk_disable; 2279 2280 msm_host->opp_table = dev_pm_opp_set_clkname(&pdev->dev, "core"); 2281 if (IS_ERR(msm_host->opp_table)) { 2282 ret = PTR_ERR(msm_host->opp_table); 2283 goto bus_clk_disable; 2284 } 2285 2286 /* OPP table is optional */ 2287 ret = dev_pm_opp_of_add_table(&pdev->dev); 2288 if (!ret) { 2289 msm_host->has_opp_table = true; 2290 } else if (ret != -ENODEV) { 2291 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n"); 2292 goto opp_cleanup; 2293 } 2294 2295 /* Vote for maximum clock rate for maximum performance */ 2296 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX); 2297 if (ret) 2298 dev_warn(&pdev->dev, "core clock boost failed\n"); 2299 2300 clk = devm_clk_get(&pdev->dev, "cal"); 2301 if (IS_ERR(clk)) 2302 clk = NULL; 2303 msm_host->bulk_clks[2].clk = clk; 2304 2305 clk = devm_clk_get(&pdev->dev, "sleep"); 2306 if (IS_ERR(clk)) 2307 clk = NULL; 2308 msm_host->bulk_clks[3].clk = clk; 2309 2310 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2311 msm_host->bulk_clks); 2312 if (ret) 2313 goto opp_cleanup; 2314 2315 /* 2316 * xo clock is needed for FLL feature of cm_dll. 2317 * In case if xo clock is not mentioned in DT, warn and proceed. 2318 */ 2319 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo"); 2320 if (IS_ERR(msm_host->xo_clk)) { 2321 ret = PTR_ERR(msm_host->xo_clk); 2322 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret); 2323 } 2324 2325 if (!msm_host->mci_removed) { 2326 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1); 2327 if (IS_ERR(msm_host->core_mem)) { 2328 ret = PTR_ERR(msm_host->core_mem); 2329 goto clk_disable; 2330 } 2331 } 2332 2333 /* Reset the vendor spec register to power on reset state */ 2334 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL, 2335 host->ioaddr + msm_offset->core_vendor_spec); 2336 2337 if (!msm_host->mci_removed) { 2338 /* Set HC_MODE_EN bit in HC_MODE register */ 2339 msm_host_writel(msm_host, HC_MODE_EN, host, 2340 msm_offset->core_hc_mode); 2341 config = msm_host_readl(msm_host, host, 2342 msm_offset->core_hc_mode); 2343 config |= FF_CLK_SW_RST_DIS; 2344 msm_host_writel(msm_host, config, host, 2345 msm_offset->core_hc_mode); 2346 } 2347 2348 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION)); 2349 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n", 2350 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >> 2351 SDHCI_VENDOR_VER_SHIFT)); 2352 2353 core_version = msm_host_readl(msm_host, host, 2354 msm_offset->core_mci_version); 2355 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >> 2356 CORE_VERSION_MAJOR_SHIFT; 2357 core_minor = core_version & CORE_VERSION_MINOR_MASK; 2358 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n", 2359 core_version, core_major, core_minor); 2360 2361 if (core_major == 1 && core_minor >= 0x42) 2362 msm_host->use_14lpp_dll_reset = true; 2363 2364 /* 2365 * SDCC 5 controller with major version 1, minor version 0x34 and later 2366 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL. 2367 */ 2368 if (core_major == 1 && core_minor < 0x34) 2369 msm_host->use_cdclp533 = true; 2370 2371 /* 2372 * Support for some capabilities is not advertised by newer 2373 * controller versions and must be explicitly enabled. 2374 */ 2375 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) { 2376 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES); 2377 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT; 2378 writel_relaxed(config, host->ioaddr + 2379 msm_offset->core_vendor_spec_capabilities0); 2380 } 2381 2382 if (core_major == 1 && core_minor >= 0x49) 2383 msm_host->updated_ddr_cfg = true; 2384 2385 ret = sdhci_msm_register_vreg(msm_host); 2386 if (ret) 2387 goto clk_disable; 2388 2389 /* 2390 * Power on reset state may trigger power irq if previous status of 2391 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq 2392 * interrupt in GIC, any pending power irq interrupt should be 2393 * acknowledged. Otherwise power irq interrupt handler would be 2394 * fired prematurely. 2395 */ 2396 sdhci_msm_handle_pwr_irq(host, 0); 2397 2398 /* 2399 * Ensure that above writes are propogated before interrupt enablement 2400 * in GIC. 2401 */ 2402 mb(); 2403 2404 /* Setup IRQ for handling power/voltage tasks with PMIC */ 2405 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq"); 2406 if (msm_host->pwr_irq < 0) { 2407 ret = msm_host->pwr_irq; 2408 goto clk_disable; 2409 } 2410 2411 sdhci_msm_init_pwr_irq_wait(msm_host); 2412 /* Enable pwr irq interrupts */ 2413 msm_host_writel(msm_host, INT_MASK, host, 2414 msm_offset->core_pwrctl_mask); 2415 2416 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL, 2417 sdhci_msm_pwr_irq, IRQF_ONESHOT, 2418 dev_name(&pdev->dev), host); 2419 if (ret) { 2420 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret); 2421 goto clk_disable; 2422 } 2423 2424 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY; 2425 2426 pm_runtime_get_noresume(&pdev->dev); 2427 pm_runtime_set_active(&pdev->dev); 2428 pm_runtime_enable(&pdev->dev); 2429 pm_runtime_set_autosuspend_delay(&pdev->dev, 2430 MSM_MMC_AUTOSUSPEND_DELAY_MS); 2431 pm_runtime_use_autosuspend(&pdev->dev); 2432 2433 host->mmc_host_ops.start_signal_voltage_switch = 2434 sdhci_msm_start_signal_voltage_switch; 2435 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning; 2436 if (of_property_read_bool(node, "supports-cqe")) 2437 ret = sdhci_msm_cqe_add_host(host, pdev); 2438 else 2439 ret = sdhci_add_host(host); 2440 if (ret) 2441 goto pm_runtime_disable; 2442 2443 pm_runtime_mark_last_busy(&pdev->dev); 2444 pm_runtime_put_autosuspend(&pdev->dev); 2445 2446 return 0; 2447 2448 pm_runtime_disable: 2449 pm_runtime_disable(&pdev->dev); 2450 pm_runtime_set_suspended(&pdev->dev); 2451 pm_runtime_put_noidle(&pdev->dev); 2452 clk_disable: 2453 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2454 msm_host->bulk_clks); 2455 opp_cleanup: 2456 if (msm_host->has_opp_table) 2457 dev_pm_opp_of_remove_table(&pdev->dev); 2458 dev_pm_opp_put_clkname(msm_host->opp_table); 2459 bus_clk_disable: 2460 if (!IS_ERR(msm_host->bus_clk)) 2461 clk_disable_unprepare(msm_host->bus_clk); 2462 pltfm_free: 2463 sdhci_pltfm_free(pdev); 2464 return ret; 2465 } 2466 2467 static int sdhci_msm_remove(struct platform_device *pdev) 2468 { 2469 struct sdhci_host *host = platform_get_drvdata(pdev); 2470 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2471 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2472 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) == 2473 0xffffffff); 2474 2475 sdhci_remove_host(host, dead); 2476 2477 if (msm_host->has_opp_table) 2478 dev_pm_opp_of_remove_table(&pdev->dev); 2479 dev_pm_opp_put_clkname(msm_host->opp_table); 2480 pm_runtime_get_sync(&pdev->dev); 2481 pm_runtime_disable(&pdev->dev); 2482 pm_runtime_put_noidle(&pdev->dev); 2483 2484 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2485 msm_host->bulk_clks); 2486 if (!IS_ERR(msm_host->bus_clk)) 2487 clk_disable_unprepare(msm_host->bus_clk); 2488 sdhci_pltfm_free(pdev); 2489 return 0; 2490 } 2491 2492 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev) 2493 { 2494 struct sdhci_host *host = dev_get_drvdata(dev); 2495 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2496 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2497 2498 /* Drop the performance vote */ 2499 dev_pm_opp_set_rate(dev, 0); 2500 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2501 msm_host->bulk_clks); 2502 2503 return 0; 2504 } 2505 2506 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev) 2507 { 2508 struct sdhci_host *host = dev_get_drvdata(dev); 2509 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2510 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2511 int ret; 2512 2513 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2514 msm_host->bulk_clks); 2515 if (ret) 2516 return ret; 2517 /* 2518 * Whenever core-clock is gated dynamically, it's needed to 2519 * restore the SDR DLL settings when the clock is ungated. 2520 */ 2521 if (msm_host->restore_dll_config && msm_host->clk_rate) 2522 ret = sdhci_msm_restore_sdr_dll_config(host); 2523 2524 dev_pm_opp_set_rate(dev, msm_host->clk_rate); 2525 2526 return ret; 2527 } 2528 2529 static const struct dev_pm_ops sdhci_msm_pm_ops = { 2530 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 2531 pm_runtime_force_resume) 2532 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend, 2533 sdhci_msm_runtime_resume, 2534 NULL) 2535 }; 2536 2537 static struct platform_driver sdhci_msm_driver = { 2538 .probe = sdhci_msm_probe, 2539 .remove = sdhci_msm_remove, 2540 .driver = { 2541 .name = "sdhci_msm", 2542 .of_match_table = sdhci_msm_dt_match, 2543 .pm = &sdhci_msm_pm_ops, 2544 }, 2545 }; 2546 2547 module_platform_driver(sdhci_msm_driver); 2548 2549 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver"); 2550 MODULE_LICENSE("GPL v2"); 2551