1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver 4 * 5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/of_device.h> 10 #include <linux/delay.h> 11 #include <linux/mmc/mmc.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/pm_opp.h> 14 #include <linux/slab.h> 15 #include <linux/iopoll.h> 16 #include <linux/regulator/consumer.h> 17 #include <linux/interconnect.h> 18 #include <linux/pinctrl/consumer.h> 19 20 #include "sdhci-pltfm.h" 21 #include "cqhci.h" 22 23 #define CORE_MCI_VERSION 0x50 24 #define CORE_VERSION_MAJOR_SHIFT 28 25 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT) 26 #define CORE_VERSION_MINOR_MASK 0xff 27 28 #define CORE_MCI_GENERICS 0x70 29 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29) 30 31 #define HC_MODE_EN 0x1 32 #define CORE_POWER 0x0 33 #define CORE_SW_RST BIT(7) 34 #define FF_CLK_SW_RST_DIS BIT(13) 35 36 #define CORE_PWRCTL_BUS_OFF BIT(0) 37 #define CORE_PWRCTL_BUS_ON BIT(1) 38 #define CORE_PWRCTL_IO_LOW BIT(2) 39 #define CORE_PWRCTL_IO_HIGH BIT(3) 40 #define CORE_PWRCTL_BUS_SUCCESS BIT(0) 41 #define CORE_PWRCTL_BUS_FAIL BIT(1) 42 #define CORE_PWRCTL_IO_SUCCESS BIT(2) 43 #define CORE_PWRCTL_IO_FAIL BIT(3) 44 #define REQ_BUS_OFF BIT(0) 45 #define REQ_BUS_ON BIT(1) 46 #define REQ_IO_LOW BIT(2) 47 #define REQ_IO_HIGH BIT(3) 48 #define INT_MASK 0xf 49 #define MAX_PHASES 16 50 #define CORE_DLL_LOCK BIT(7) 51 #define CORE_DDR_DLL_LOCK BIT(11) 52 #define CORE_DLL_EN BIT(16) 53 #define CORE_CDR_EN BIT(17) 54 #define CORE_CK_OUT_EN BIT(18) 55 #define CORE_CDR_EXT_EN BIT(19) 56 #define CORE_DLL_PDN BIT(29) 57 #define CORE_DLL_RST BIT(30) 58 #define CORE_CMD_DAT_TRACK_SEL BIT(0) 59 60 #define CORE_DDR_CAL_EN BIT(0) 61 #define CORE_FLL_CYCLE_CNT BIT(18) 62 #define CORE_DLL_CLOCK_DISABLE BIT(21) 63 64 #define DLL_USR_CTL_POR_VAL 0x10800 65 #define ENABLE_DLL_LOCK_STATUS BIT(26) 66 #define FINE_TUNE_MODE_EN BIT(27) 67 #define BIAS_OK_SIGNAL BIT(29) 68 69 #define DLL_CONFIG_3_LOW_FREQ_VAL 0x08 70 #define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10 71 72 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c 73 #define CORE_CLK_PWRSAVE BIT(1) 74 #define CORE_HC_MCLK_SEL_DFLT (2 << 8) 75 #define CORE_HC_MCLK_SEL_HS400 (3 << 8) 76 #define CORE_HC_MCLK_SEL_MASK (3 << 8) 77 #define CORE_IO_PAD_PWR_SWITCH_EN BIT(15) 78 #define CORE_IO_PAD_PWR_SWITCH BIT(16) 79 #define CORE_HC_SELECT_IN_EN BIT(18) 80 #define CORE_HC_SELECT_IN_HS400 (6 << 19) 81 #define CORE_HC_SELECT_IN_MASK (7 << 19) 82 83 #define CORE_3_0V_SUPPORT BIT(25) 84 #define CORE_1_8V_SUPPORT BIT(26) 85 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT) 86 87 #define CORE_CSR_CDC_CTLR_CFG0 0x130 88 #define CORE_SW_TRIG_FULL_CALIB BIT(16) 89 #define CORE_HW_AUTOCAL_ENA BIT(17) 90 91 #define CORE_CSR_CDC_CTLR_CFG1 0x134 92 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138 93 #define CORE_TIMER_ENA BIT(16) 94 95 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C 96 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140 97 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144 98 #define CORE_CDC_OFFSET_CFG 0x14C 99 #define CORE_CSR_CDC_DELAY_CFG 0x150 100 #define CORE_CDC_SLAVE_DDA_CFG 0x160 101 #define CORE_CSR_CDC_STATUS0 0x164 102 #define CORE_CALIBRATION_DONE BIT(0) 103 104 #define CORE_CDC_ERROR_CODE_MASK 0x7000000 105 106 #define CORE_CSR_CDC_GEN_CFG 0x178 107 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0) 108 #define CORE_CDC_SWITCH_RC_EN BIT(1) 109 110 #define CORE_CDC_T4_DLY_SEL BIT(0) 111 #define CORE_CMDIN_RCLK_EN BIT(1) 112 #define CORE_START_CDC_TRAFFIC BIT(6) 113 114 #define CORE_PWRSAVE_DLL BIT(3) 115 116 #define DDR_CONFIG_POR_VAL 0x80040873 117 118 119 #define INVALID_TUNING_PHASE -1 120 #define SDHCI_MSM_MIN_CLOCK 400000 121 #define CORE_FREQ_100MHZ (100 * 1000 * 1000) 122 123 #define CDR_SELEXT_SHIFT 20 124 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT) 125 #define CMUX_SHIFT_PHASE_SHIFT 24 126 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT) 127 128 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50 129 130 /* Timeout value to avoid infinite waiting for pwr_irq */ 131 #define MSM_PWR_IRQ_TIMEOUT_MS 5000 132 133 /* Max load for eMMC Vdd-io supply */ 134 #define MMC_VQMMC_MAX_LOAD_UA 325000 135 136 #define msm_host_readl(msm_host, host, offset) \ 137 msm_host->var_ops->msm_readl_relaxed(host, offset) 138 139 #define msm_host_writel(msm_host, val, host, offset) \ 140 msm_host->var_ops->msm_writel_relaxed(val, host, offset) 141 142 /* CQHCI vendor specific registers */ 143 #define CQHCI_VENDOR_CFG1 0xA00 144 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13) 145 146 struct sdhci_msm_offset { 147 u32 core_hc_mode; 148 u32 core_mci_data_cnt; 149 u32 core_mci_status; 150 u32 core_mci_fifo_cnt; 151 u32 core_mci_version; 152 u32 core_generics; 153 u32 core_testbus_config; 154 u32 core_testbus_sel2_bit; 155 u32 core_testbus_ena; 156 u32 core_testbus_sel2; 157 u32 core_pwrctl_status; 158 u32 core_pwrctl_mask; 159 u32 core_pwrctl_clear; 160 u32 core_pwrctl_ctl; 161 u32 core_sdcc_debug_reg; 162 u32 core_dll_config; 163 u32 core_dll_status; 164 u32 core_vendor_spec; 165 u32 core_vendor_spec_adma_err_addr0; 166 u32 core_vendor_spec_adma_err_addr1; 167 u32 core_vendor_spec_func2; 168 u32 core_vendor_spec_capabilities0; 169 u32 core_ddr_200_cfg; 170 u32 core_vendor_spec3; 171 u32 core_dll_config_2; 172 u32 core_dll_config_3; 173 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */ 174 u32 core_ddr_config; 175 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */ 176 }; 177 178 static const struct sdhci_msm_offset sdhci_msm_v5_offset = { 179 .core_mci_data_cnt = 0x35c, 180 .core_mci_status = 0x324, 181 .core_mci_fifo_cnt = 0x308, 182 .core_mci_version = 0x318, 183 .core_generics = 0x320, 184 .core_testbus_config = 0x32c, 185 .core_testbus_sel2_bit = 3, 186 .core_testbus_ena = (1 << 31), 187 .core_testbus_sel2 = (1 << 3), 188 .core_pwrctl_status = 0x240, 189 .core_pwrctl_mask = 0x244, 190 .core_pwrctl_clear = 0x248, 191 .core_pwrctl_ctl = 0x24c, 192 .core_sdcc_debug_reg = 0x358, 193 .core_dll_config = 0x200, 194 .core_dll_status = 0x208, 195 .core_vendor_spec = 0x20c, 196 .core_vendor_spec_adma_err_addr0 = 0x214, 197 .core_vendor_spec_adma_err_addr1 = 0x218, 198 .core_vendor_spec_func2 = 0x210, 199 .core_vendor_spec_capabilities0 = 0x21c, 200 .core_ddr_200_cfg = 0x224, 201 .core_vendor_spec3 = 0x250, 202 .core_dll_config_2 = 0x254, 203 .core_dll_config_3 = 0x258, 204 .core_ddr_config = 0x25c, 205 .core_dll_usr_ctl = 0x388, 206 }; 207 208 static const struct sdhci_msm_offset sdhci_msm_mci_offset = { 209 .core_hc_mode = 0x78, 210 .core_mci_data_cnt = 0x30, 211 .core_mci_status = 0x34, 212 .core_mci_fifo_cnt = 0x44, 213 .core_mci_version = 0x050, 214 .core_generics = 0x70, 215 .core_testbus_config = 0x0cc, 216 .core_testbus_sel2_bit = 4, 217 .core_testbus_ena = (1 << 3), 218 .core_testbus_sel2 = (1 << 4), 219 .core_pwrctl_status = 0xdc, 220 .core_pwrctl_mask = 0xe0, 221 .core_pwrctl_clear = 0xe4, 222 .core_pwrctl_ctl = 0xe8, 223 .core_sdcc_debug_reg = 0x124, 224 .core_dll_config = 0x100, 225 .core_dll_status = 0x108, 226 .core_vendor_spec = 0x10c, 227 .core_vendor_spec_adma_err_addr0 = 0x114, 228 .core_vendor_spec_adma_err_addr1 = 0x118, 229 .core_vendor_spec_func2 = 0x110, 230 .core_vendor_spec_capabilities0 = 0x11c, 231 .core_ddr_200_cfg = 0x184, 232 .core_vendor_spec3 = 0x1b0, 233 .core_dll_config_2 = 0x1b4, 234 .core_ddr_config_old = 0x1b8, 235 .core_ddr_config = 0x1bc, 236 }; 237 238 struct sdhci_msm_variant_ops { 239 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset); 240 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host, 241 u32 offset); 242 }; 243 244 /* 245 * From V5, register spaces have changed. Wrap this info in a structure 246 * and choose the data_structure based on version info mentioned in DT. 247 */ 248 struct sdhci_msm_variant_info { 249 bool mci_removed; 250 bool restore_dll_config; 251 bool uses_tassadar_dll; 252 const struct sdhci_msm_variant_ops *var_ops; 253 const struct sdhci_msm_offset *offset; 254 }; 255 256 struct sdhci_msm_host { 257 struct platform_device *pdev; 258 void __iomem *core_mem; /* MSM SDCC mapped address */ 259 int pwr_irq; /* power irq */ 260 struct clk *bus_clk; /* SDHC bus voter clock */ 261 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/ 262 struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */ 263 unsigned long clk_rate; 264 struct mmc_host *mmc; 265 struct opp_table *opp_table; 266 bool use_14lpp_dll_reset; 267 bool tuning_done; 268 bool calibration_done; 269 u8 saved_tuning_phase; 270 bool use_cdclp533; 271 u32 curr_pwr_state; 272 u32 curr_io_level; 273 wait_queue_head_t pwr_irq_wait; 274 bool pwr_irq_flag; 275 u32 caps_0; 276 bool mci_removed; 277 bool restore_dll_config; 278 const struct sdhci_msm_variant_ops *var_ops; 279 const struct sdhci_msm_offset *offset; 280 bool use_cdr; 281 u32 transfer_mode; 282 bool updated_ddr_cfg; 283 bool uses_tassadar_dll; 284 u32 dll_config; 285 u32 ddr_config; 286 bool vqmmc_enabled; 287 }; 288 289 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host) 290 { 291 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 292 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 293 294 return msm_host->offset; 295 } 296 297 /* 298 * APIs to read/write to vendor specific registers which were there in the 299 * core_mem region before MCI was removed. 300 */ 301 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host, 302 u32 offset) 303 { 304 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 305 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 306 307 return readl_relaxed(msm_host->core_mem + offset); 308 } 309 310 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host, 311 u32 offset) 312 { 313 return readl_relaxed(host->ioaddr + offset); 314 } 315 316 static void sdhci_msm_mci_variant_writel_relaxed(u32 val, 317 struct sdhci_host *host, u32 offset) 318 { 319 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 320 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 321 322 writel_relaxed(val, msm_host->core_mem + offset); 323 } 324 325 static void sdhci_msm_v5_variant_writel_relaxed(u32 val, 326 struct sdhci_host *host, u32 offset) 327 { 328 writel_relaxed(val, host->ioaddr + offset); 329 } 330 331 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host, 332 unsigned int clock) 333 { 334 struct mmc_ios ios = host->mmc->ios; 335 /* 336 * The SDHC requires internal clock frequency to be double the 337 * actual clock that will be set for DDR mode. The controller 338 * uses the faster clock(100/400MHz) for some of its parts and 339 * send the actual required clock (50/200MHz) to the card. 340 */ 341 if (ios.timing == MMC_TIMING_UHS_DDR50 || 342 ios.timing == MMC_TIMING_MMC_DDR52 || 343 ios.timing == MMC_TIMING_MMC_HS400 || 344 host->flags & SDHCI_HS400_TUNING) 345 clock *= 2; 346 return clock; 347 } 348 349 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host, 350 unsigned int clock) 351 { 352 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 353 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 354 struct mmc_ios curr_ios = host->mmc->ios; 355 struct clk *core_clk = msm_host->bulk_clks[0].clk; 356 int rc; 357 358 clock = msm_get_clock_rate_for_bus_mode(host, clock); 359 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), clock); 360 if (rc) { 361 pr_err("%s: Failed to set clock at rate %u at timing %d\n", 362 mmc_hostname(host->mmc), clock, 363 curr_ios.timing); 364 return; 365 } 366 msm_host->clk_rate = clock; 367 pr_debug("%s: Setting clock at rate %lu at timing %d\n", 368 mmc_hostname(host->mmc), clk_get_rate(core_clk), 369 curr_ios.timing); 370 } 371 372 /* Platform specific tuning */ 373 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll) 374 { 375 u32 wait_cnt = 50; 376 u8 ck_out_en; 377 struct mmc_host *mmc = host->mmc; 378 const struct sdhci_msm_offset *msm_offset = 379 sdhci_priv_msm_offset(host); 380 381 /* Poll for CK_OUT_EN bit. max. poll time = 50us */ 382 ck_out_en = !!(readl_relaxed(host->ioaddr + 383 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 384 385 while (ck_out_en != poll) { 386 if (--wait_cnt == 0) { 387 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n", 388 mmc_hostname(mmc), poll); 389 return -ETIMEDOUT; 390 } 391 udelay(1); 392 393 ck_out_en = !!(readl_relaxed(host->ioaddr + 394 msm_offset->core_dll_config) & CORE_CK_OUT_EN); 395 } 396 397 return 0; 398 } 399 400 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase) 401 { 402 int rc; 403 static const u8 grey_coded_phase_table[] = { 404 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 405 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8 406 }; 407 unsigned long flags; 408 u32 config; 409 struct mmc_host *mmc = host->mmc; 410 const struct sdhci_msm_offset *msm_offset = 411 sdhci_priv_msm_offset(host); 412 413 if (phase > 0xf) 414 return -EINVAL; 415 416 spin_lock_irqsave(&host->lock, flags); 417 418 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 419 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN); 420 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN); 421 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 422 423 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */ 424 rc = msm_dll_poll_ck_out_en(host, 0); 425 if (rc) 426 goto err_out; 427 428 /* 429 * Write the selected DLL clock output phase (0 ... 15) 430 * to CDR_SELEXT bit field of DLL_CONFIG register. 431 */ 432 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 433 config &= ~CDR_SELEXT_MASK; 434 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT; 435 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 436 437 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 438 config |= CORE_CK_OUT_EN; 439 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 440 441 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */ 442 rc = msm_dll_poll_ck_out_en(host, 1); 443 if (rc) 444 goto err_out; 445 446 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 447 config |= CORE_CDR_EN; 448 config &= ~CORE_CDR_EXT_EN; 449 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 450 goto out; 451 452 err_out: 453 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n", 454 mmc_hostname(mmc), phase); 455 out: 456 spin_unlock_irqrestore(&host->lock, flags); 457 return rc; 458 } 459 460 /* 461 * Find out the greatest range of consecuitive selected 462 * DLL clock output phases that can be used as sampling 463 * setting for SD3.0 UHS-I card read operation (in SDR104 464 * timing mode) or for eMMC4.5 card read operation (in 465 * HS400/HS200 timing mode). 466 * Select the 3/4 of the range and configure the DLL with the 467 * selected DLL clock output phase. 468 */ 469 470 static int msm_find_most_appropriate_phase(struct sdhci_host *host, 471 u8 *phase_table, u8 total_phases) 472 { 473 int ret; 474 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} }; 475 u8 phases_per_row[MAX_PHASES] = { 0 }; 476 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0; 477 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0; 478 bool phase_0_found = false, phase_15_found = false; 479 struct mmc_host *mmc = host->mmc; 480 481 if (!total_phases || (total_phases > MAX_PHASES)) { 482 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n", 483 mmc_hostname(mmc), total_phases); 484 return -EINVAL; 485 } 486 487 for (cnt = 0; cnt < total_phases; cnt++) { 488 ranges[row_index][col_index] = phase_table[cnt]; 489 phases_per_row[row_index] += 1; 490 col_index++; 491 492 if ((cnt + 1) == total_phases) { 493 continue; 494 /* check if next phase in phase_table is consecutive or not */ 495 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) { 496 row_index++; 497 col_index = 0; 498 } 499 } 500 501 if (row_index >= MAX_PHASES) 502 return -EINVAL; 503 504 /* Check if phase-0 is present in first valid window? */ 505 if (!ranges[0][0]) { 506 phase_0_found = true; 507 phase_0_raw_index = 0; 508 /* Check if cycle exist between 2 valid windows */ 509 for (cnt = 1; cnt <= row_index; cnt++) { 510 if (phases_per_row[cnt]) { 511 for (i = 0; i < phases_per_row[cnt]; i++) { 512 if (ranges[cnt][i] == 15) { 513 phase_15_found = true; 514 phase_15_raw_index = cnt; 515 break; 516 } 517 } 518 } 519 } 520 } 521 522 /* If 2 valid windows form cycle then merge them as single window */ 523 if (phase_0_found && phase_15_found) { 524 /* number of phases in raw where phase 0 is present */ 525 u8 phases_0 = phases_per_row[phase_0_raw_index]; 526 /* number of phases in raw where phase 15 is present */ 527 u8 phases_15 = phases_per_row[phase_15_raw_index]; 528 529 if (phases_0 + phases_15 >= MAX_PHASES) 530 /* 531 * If there are more than 1 phase windows then total 532 * number of phases in both the windows should not be 533 * more than or equal to MAX_PHASES. 534 */ 535 return -EINVAL; 536 537 /* Merge 2 cyclic windows */ 538 i = phases_15; 539 for (cnt = 0; cnt < phases_0; cnt++) { 540 ranges[phase_15_raw_index][i] = 541 ranges[phase_0_raw_index][cnt]; 542 if (++i >= MAX_PHASES) 543 break; 544 } 545 546 phases_per_row[phase_0_raw_index] = 0; 547 phases_per_row[phase_15_raw_index] = phases_15 + phases_0; 548 } 549 550 for (cnt = 0; cnt <= row_index; cnt++) { 551 if (phases_per_row[cnt] > curr_max) { 552 curr_max = phases_per_row[cnt]; 553 selected_row_index = cnt; 554 } 555 } 556 557 i = (curr_max * 3) / 4; 558 if (i) 559 i--; 560 561 ret = ranges[selected_row_index][i]; 562 563 if (ret >= MAX_PHASES) { 564 ret = -EINVAL; 565 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n", 566 mmc_hostname(mmc), ret); 567 } 568 569 return ret; 570 } 571 572 static inline void msm_cm_dll_set_freq(struct sdhci_host *host) 573 { 574 u32 mclk_freq = 0, config; 575 const struct sdhci_msm_offset *msm_offset = 576 sdhci_priv_msm_offset(host); 577 578 /* Program the MCLK value to MCLK_FREQ bit field */ 579 if (host->clock <= 112000000) 580 mclk_freq = 0; 581 else if (host->clock <= 125000000) 582 mclk_freq = 1; 583 else if (host->clock <= 137000000) 584 mclk_freq = 2; 585 else if (host->clock <= 150000000) 586 mclk_freq = 3; 587 else if (host->clock <= 162000000) 588 mclk_freq = 4; 589 else if (host->clock <= 175000000) 590 mclk_freq = 5; 591 else if (host->clock <= 187000000) 592 mclk_freq = 6; 593 else if (host->clock <= 200000000) 594 mclk_freq = 7; 595 596 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 597 config &= ~CMUX_SHIFT_PHASE_MASK; 598 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT; 599 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 600 } 601 602 /* Initialize the DLL (Programmable Delay Line) */ 603 static int msm_init_cm_dll(struct sdhci_host *host) 604 { 605 struct mmc_host *mmc = host->mmc; 606 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 607 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 608 int wait_cnt = 50; 609 unsigned long flags, xo_clk = 0; 610 u32 config; 611 const struct sdhci_msm_offset *msm_offset = 612 msm_host->offset; 613 614 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk)) 615 xo_clk = clk_get_rate(msm_host->xo_clk); 616 617 spin_lock_irqsave(&host->lock, flags); 618 619 /* 620 * Make sure that clock is always enabled when DLL 621 * tuning is in progress. Keeping PWRSAVE ON may 622 * turn off the clock. 623 */ 624 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 625 config &= ~CORE_CLK_PWRSAVE; 626 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 627 628 if (msm_host->dll_config) 629 writel_relaxed(msm_host->dll_config, 630 host->ioaddr + msm_offset->core_dll_config); 631 632 if (msm_host->use_14lpp_dll_reset) { 633 config = readl_relaxed(host->ioaddr + 634 msm_offset->core_dll_config); 635 config &= ~CORE_CK_OUT_EN; 636 writel_relaxed(config, host->ioaddr + 637 msm_offset->core_dll_config); 638 639 config = readl_relaxed(host->ioaddr + 640 msm_offset->core_dll_config_2); 641 config |= CORE_DLL_CLOCK_DISABLE; 642 writel_relaxed(config, host->ioaddr + 643 msm_offset->core_dll_config_2); 644 } 645 646 config = readl_relaxed(host->ioaddr + 647 msm_offset->core_dll_config); 648 config |= CORE_DLL_RST; 649 writel_relaxed(config, host->ioaddr + 650 msm_offset->core_dll_config); 651 652 config = readl_relaxed(host->ioaddr + 653 msm_offset->core_dll_config); 654 config |= CORE_DLL_PDN; 655 writel_relaxed(config, host->ioaddr + 656 msm_offset->core_dll_config); 657 658 if (!msm_host->dll_config) 659 msm_cm_dll_set_freq(host); 660 661 if (msm_host->use_14lpp_dll_reset && 662 !IS_ERR_OR_NULL(msm_host->xo_clk)) { 663 u32 mclk_freq = 0; 664 665 config = readl_relaxed(host->ioaddr + 666 msm_offset->core_dll_config_2); 667 config &= CORE_FLL_CYCLE_CNT; 668 if (config) 669 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8), 670 xo_clk); 671 else 672 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4), 673 xo_clk); 674 675 config = readl_relaxed(host->ioaddr + 676 msm_offset->core_dll_config_2); 677 config &= ~(0xFF << 10); 678 config |= mclk_freq << 10; 679 680 writel_relaxed(config, host->ioaddr + 681 msm_offset->core_dll_config_2); 682 /* wait for 5us before enabling DLL clock */ 683 udelay(5); 684 } 685 686 config = readl_relaxed(host->ioaddr + 687 msm_offset->core_dll_config); 688 config &= ~CORE_DLL_RST; 689 writel_relaxed(config, host->ioaddr + 690 msm_offset->core_dll_config); 691 692 config = readl_relaxed(host->ioaddr + 693 msm_offset->core_dll_config); 694 config &= ~CORE_DLL_PDN; 695 writel_relaxed(config, host->ioaddr + 696 msm_offset->core_dll_config); 697 698 if (msm_host->use_14lpp_dll_reset) { 699 if (!msm_host->dll_config) 700 msm_cm_dll_set_freq(host); 701 config = readl_relaxed(host->ioaddr + 702 msm_offset->core_dll_config_2); 703 config &= ~CORE_DLL_CLOCK_DISABLE; 704 writel_relaxed(config, host->ioaddr + 705 msm_offset->core_dll_config_2); 706 } 707 708 /* 709 * Configure DLL user control register to enable DLL status. 710 * This setting is applicable to SDCC v5.1 onwards only. 711 */ 712 if (msm_host->uses_tassadar_dll) { 713 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN | 714 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL; 715 writel_relaxed(config, host->ioaddr + 716 msm_offset->core_dll_usr_ctl); 717 718 config = readl_relaxed(host->ioaddr + 719 msm_offset->core_dll_config_3); 720 config &= ~0xFF; 721 if (msm_host->clk_rate < 150000000) 722 config |= DLL_CONFIG_3_LOW_FREQ_VAL; 723 else 724 config |= DLL_CONFIG_3_HIGH_FREQ_VAL; 725 writel_relaxed(config, host->ioaddr + 726 msm_offset->core_dll_config_3); 727 } 728 729 config = readl_relaxed(host->ioaddr + 730 msm_offset->core_dll_config); 731 config |= CORE_DLL_EN; 732 writel_relaxed(config, host->ioaddr + 733 msm_offset->core_dll_config); 734 735 config = readl_relaxed(host->ioaddr + 736 msm_offset->core_dll_config); 737 config |= CORE_CK_OUT_EN; 738 writel_relaxed(config, host->ioaddr + 739 msm_offset->core_dll_config); 740 741 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */ 742 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) & 743 CORE_DLL_LOCK)) { 744 /* max. wait for 50us sec for LOCK bit to be set */ 745 if (--wait_cnt == 0) { 746 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n", 747 mmc_hostname(mmc)); 748 spin_unlock_irqrestore(&host->lock, flags); 749 return -ETIMEDOUT; 750 } 751 udelay(1); 752 } 753 754 spin_unlock_irqrestore(&host->lock, flags); 755 return 0; 756 } 757 758 static void msm_hc_select_default(struct sdhci_host *host) 759 { 760 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 761 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 762 u32 config; 763 const struct sdhci_msm_offset *msm_offset = 764 msm_host->offset; 765 766 if (!msm_host->use_cdclp533) { 767 config = readl_relaxed(host->ioaddr + 768 msm_offset->core_vendor_spec3); 769 config &= ~CORE_PWRSAVE_DLL; 770 writel_relaxed(config, host->ioaddr + 771 msm_offset->core_vendor_spec3); 772 } 773 774 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 775 config &= ~CORE_HC_MCLK_SEL_MASK; 776 config |= CORE_HC_MCLK_SEL_DFLT; 777 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 778 779 /* 780 * Disable HC_SELECT_IN to be able to use the UHS mode select 781 * configuration from Host Control2 register for all other 782 * modes. 783 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field 784 * in VENDOR_SPEC_FUNC 785 */ 786 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 787 config &= ~CORE_HC_SELECT_IN_EN; 788 config &= ~CORE_HC_SELECT_IN_MASK; 789 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 790 791 /* 792 * Make sure above writes impacting free running MCLK are completed 793 * before changing the clk_rate at GCC. 794 */ 795 wmb(); 796 } 797 798 static void msm_hc_select_hs400(struct sdhci_host *host) 799 { 800 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 801 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 802 struct mmc_ios ios = host->mmc->ios; 803 u32 config, dll_lock; 804 int rc; 805 const struct sdhci_msm_offset *msm_offset = 806 msm_host->offset; 807 808 /* Select the divided clock (free running MCLK/2) */ 809 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec); 810 config &= ~CORE_HC_MCLK_SEL_MASK; 811 config |= CORE_HC_MCLK_SEL_HS400; 812 813 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec); 814 /* 815 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC 816 * register 817 */ 818 if ((msm_host->tuning_done || ios.enhanced_strobe) && 819 !msm_host->calibration_done) { 820 config = readl_relaxed(host->ioaddr + 821 msm_offset->core_vendor_spec); 822 config |= CORE_HC_SELECT_IN_HS400; 823 config |= CORE_HC_SELECT_IN_EN; 824 writel_relaxed(config, host->ioaddr + 825 msm_offset->core_vendor_spec); 826 } 827 if (!msm_host->clk_rate && !msm_host->use_cdclp533) { 828 /* 829 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in 830 * core_dll_status to be set. This should get set 831 * within 15 us at 200 MHz. 832 */ 833 rc = readl_relaxed_poll_timeout(host->ioaddr + 834 msm_offset->core_dll_status, 835 dll_lock, 836 (dll_lock & 837 (CORE_DLL_LOCK | 838 CORE_DDR_DLL_LOCK)), 10, 839 1000); 840 if (rc == -ETIMEDOUT) 841 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n", 842 mmc_hostname(host->mmc), dll_lock); 843 } 844 /* 845 * Make sure above writes impacting free running MCLK are completed 846 * before changing the clk_rate at GCC. 847 */ 848 wmb(); 849 } 850 851 /* 852 * sdhci_msm_hc_select_mode :- In general all timing modes are 853 * controlled via UHS mode select in Host Control2 register. 854 * eMMC specific HS200/HS400 doesn't have their respective modes 855 * defined here, hence we use these values. 856 * 857 * HS200 - SDR104 (Since they both are equivalent in functionality) 858 * HS400 - This involves multiple configurations 859 * Initially SDR104 - when tuning is required as HS200 860 * Then when switching to DDR @ 400MHz (HS400) we use 861 * the vendor specific HC_SELECT_IN to control the mode. 862 * 863 * In addition to controlling the modes we also need to select the 864 * correct input clock for DLL depending on the mode. 865 * 866 * HS400 - divided clock (free running MCLK/2) 867 * All other modes - default (free running MCLK) 868 */ 869 static void sdhci_msm_hc_select_mode(struct sdhci_host *host) 870 { 871 struct mmc_ios ios = host->mmc->ios; 872 873 if (ios.timing == MMC_TIMING_MMC_HS400 || 874 host->flags & SDHCI_HS400_TUNING) 875 msm_hc_select_hs400(host); 876 else 877 msm_hc_select_default(host); 878 } 879 880 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host) 881 { 882 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 883 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 884 u32 config, calib_done; 885 int ret; 886 const struct sdhci_msm_offset *msm_offset = 887 msm_host->offset; 888 889 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 890 891 /* 892 * Retuning in HS400 (DDR mode) will fail, just reset the 893 * tuning block and restore the saved tuning phase. 894 */ 895 ret = msm_init_cm_dll(host); 896 if (ret) 897 goto out; 898 899 /* Set the selected phase in delay line hw block */ 900 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 901 if (ret) 902 goto out; 903 904 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config); 905 config |= CORE_CMD_DAT_TRACK_SEL; 906 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config); 907 908 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 909 config &= ~CORE_CDC_T4_DLY_SEL; 910 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 911 912 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 913 config &= ~CORE_CDC_SWITCH_BYPASS_OFF; 914 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 915 916 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); 917 config |= CORE_CDC_SWITCH_RC_EN; 918 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); 919 920 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 921 config &= ~CORE_START_CDC_TRAFFIC; 922 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 923 924 /* Perform CDC Register Initialization Sequence */ 925 926 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 927 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1); 928 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 929 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1); 930 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG); 931 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG); 932 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG); 933 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG); 934 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG); 935 936 /* CDC HW Calibration */ 937 938 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 939 config |= CORE_SW_TRIG_FULL_CALIB; 940 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 941 942 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 943 config &= ~CORE_SW_TRIG_FULL_CALIB; 944 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 945 946 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 947 config |= CORE_HW_AUTOCAL_ENA; 948 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); 949 950 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 951 config |= CORE_TIMER_ENA; 952 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); 953 954 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0, 955 calib_done, 956 (calib_done & CORE_CALIBRATION_DONE), 957 1, 50); 958 959 if (ret == -ETIMEDOUT) { 960 pr_err("%s: %s: CDC calibration was not completed\n", 961 mmc_hostname(host->mmc), __func__); 962 goto out; 963 } 964 965 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0) 966 & CORE_CDC_ERROR_CODE_MASK; 967 if (ret) { 968 pr_err("%s: %s: CDC error code %d\n", 969 mmc_hostname(host->mmc), __func__, ret); 970 ret = -EINVAL; 971 goto out; 972 } 973 974 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg); 975 config |= CORE_START_CDC_TRAFFIC; 976 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg); 977 out: 978 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 979 __func__, ret); 980 return ret; 981 } 982 983 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host) 984 { 985 struct mmc_host *mmc = host->mmc; 986 u32 dll_status, config, ddr_cfg_offset; 987 int ret; 988 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 989 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 990 const struct sdhci_msm_offset *msm_offset = 991 sdhci_priv_msm_offset(host); 992 993 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 994 995 /* 996 * Currently the core_ddr_config register defaults to desired 997 * configuration on reset. Currently reprogramming the power on 998 * reset (POR) value in case it might have been modified by 999 * bootloaders. In the future, if this changes, then the desired 1000 * values will need to be programmed appropriately. 1001 */ 1002 if (msm_host->updated_ddr_cfg) 1003 ddr_cfg_offset = msm_offset->core_ddr_config; 1004 else 1005 ddr_cfg_offset = msm_offset->core_ddr_config_old; 1006 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset); 1007 1008 if (mmc->ios.enhanced_strobe) { 1009 config = readl_relaxed(host->ioaddr + 1010 msm_offset->core_ddr_200_cfg); 1011 config |= CORE_CMDIN_RCLK_EN; 1012 writel_relaxed(config, host->ioaddr + 1013 msm_offset->core_ddr_200_cfg); 1014 } 1015 1016 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2); 1017 config |= CORE_DDR_CAL_EN; 1018 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2); 1019 1020 ret = readl_relaxed_poll_timeout(host->ioaddr + 1021 msm_offset->core_dll_status, 1022 dll_status, 1023 (dll_status & CORE_DDR_DLL_LOCK), 1024 10, 1000); 1025 1026 if (ret == -ETIMEDOUT) { 1027 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n", 1028 mmc_hostname(host->mmc), __func__); 1029 goto out; 1030 } 1031 1032 /* 1033 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3. 1034 * When MCLK is gated OFF, it is not gated for less than 0.5us 1035 * and MCLK must be switched on for at-least 1us before DATA 1036 * starts coming. Controllers with 14lpp and later tech DLL cannot 1037 * guarantee above requirement. So PWRSAVE_DLL should not be 1038 * turned on for host controllers using this DLL. 1039 */ 1040 if (!msm_host->use_14lpp_dll_reset) { 1041 config = readl_relaxed(host->ioaddr + 1042 msm_offset->core_vendor_spec3); 1043 config |= CORE_PWRSAVE_DLL; 1044 writel_relaxed(config, host->ioaddr + 1045 msm_offset->core_vendor_spec3); 1046 } 1047 1048 /* 1049 * Drain writebuffer to ensure above DLL calibration 1050 * and PWRSAVE DLL is enabled. 1051 */ 1052 wmb(); 1053 out: 1054 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1055 __func__, ret); 1056 return ret; 1057 } 1058 1059 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host) 1060 { 1061 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1062 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1063 struct mmc_host *mmc = host->mmc; 1064 int ret; 1065 u32 config; 1066 const struct sdhci_msm_offset *msm_offset = 1067 msm_host->offset; 1068 1069 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); 1070 1071 /* 1072 * Retuning in HS400 (DDR mode) will fail, just reset the 1073 * tuning block and restore the saved tuning phase. 1074 */ 1075 ret = msm_init_cm_dll(host); 1076 if (ret) 1077 goto out; 1078 1079 if (!mmc->ios.enhanced_strobe) { 1080 /* Set the selected phase in delay line hw block */ 1081 ret = msm_config_cm_dll_phase(host, 1082 msm_host->saved_tuning_phase); 1083 if (ret) 1084 goto out; 1085 config = readl_relaxed(host->ioaddr + 1086 msm_offset->core_dll_config); 1087 config |= CORE_CMD_DAT_TRACK_SEL; 1088 writel_relaxed(config, host->ioaddr + 1089 msm_offset->core_dll_config); 1090 } 1091 1092 if (msm_host->use_cdclp533) 1093 ret = sdhci_msm_cdclp533_calibration(host); 1094 else 1095 ret = sdhci_msm_cm_dll_sdc4_calibration(host); 1096 out: 1097 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), 1098 __func__, ret); 1099 return ret; 1100 } 1101 1102 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host) 1103 { 1104 struct mmc_ios *ios = &host->mmc->ios; 1105 1106 /* 1107 * Tuning is required for SDR104, HS200 and HS400 cards and 1108 * if clock frequency is greater than 100MHz in these modes. 1109 */ 1110 if (host->clock <= CORE_FREQ_100MHZ || 1111 !(ios->timing == MMC_TIMING_MMC_HS400 || 1112 ios->timing == MMC_TIMING_MMC_HS200 || 1113 ios->timing == MMC_TIMING_UHS_SDR104) || 1114 ios->enhanced_strobe) 1115 return false; 1116 1117 return true; 1118 } 1119 1120 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host) 1121 { 1122 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1123 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1124 int ret; 1125 1126 /* 1127 * SDR DLL comes into picture only for timing modes which needs 1128 * tuning. 1129 */ 1130 if (!sdhci_msm_is_tuning_needed(host)) 1131 return 0; 1132 1133 /* Reset the tuning block */ 1134 ret = msm_init_cm_dll(host); 1135 if (ret) 1136 return ret; 1137 1138 /* Restore the tuning block */ 1139 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); 1140 1141 return ret; 1142 } 1143 1144 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable) 1145 { 1146 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host); 1147 u32 config, oldconfig = readl_relaxed(host->ioaddr + 1148 msm_offset->core_dll_config); 1149 1150 config = oldconfig; 1151 if (enable) { 1152 config |= CORE_CDR_EN; 1153 config &= ~CORE_CDR_EXT_EN; 1154 } else { 1155 config &= ~CORE_CDR_EN; 1156 config |= CORE_CDR_EXT_EN; 1157 } 1158 1159 if (config != oldconfig) { 1160 writel_relaxed(config, host->ioaddr + 1161 msm_offset->core_dll_config); 1162 } 1163 } 1164 1165 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode) 1166 { 1167 struct sdhci_host *host = mmc_priv(mmc); 1168 int tuning_seq_cnt = 10; 1169 u8 phase, tuned_phases[16], tuned_phase_cnt = 0; 1170 int rc; 1171 struct mmc_ios ios = host->mmc->ios; 1172 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1173 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1174 1175 if (!sdhci_msm_is_tuning_needed(host)) { 1176 msm_host->use_cdr = false; 1177 sdhci_msm_set_cdr(host, false); 1178 return 0; 1179 } 1180 1181 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */ 1182 msm_host->use_cdr = true; 1183 1184 /* 1185 * Clear tuning_done flag before tuning to ensure proper 1186 * HS400 settings. 1187 */ 1188 msm_host->tuning_done = 0; 1189 1190 /* 1191 * For HS400 tuning in HS200 timing requires: 1192 * - select MCLK/2 in VENDOR_SPEC 1193 * - program MCLK to 400MHz (or nearest supported) in GCC 1194 */ 1195 if (host->flags & SDHCI_HS400_TUNING) { 1196 sdhci_msm_hc_select_mode(host); 1197 msm_set_clock_rate_for_bus_mode(host, ios.clock); 1198 host->flags &= ~SDHCI_HS400_TUNING; 1199 } 1200 1201 retry: 1202 /* First of all reset the tuning block */ 1203 rc = msm_init_cm_dll(host); 1204 if (rc) 1205 return rc; 1206 1207 phase = 0; 1208 do { 1209 /* Set the phase in delay line hw block */ 1210 rc = msm_config_cm_dll_phase(host, phase); 1211 if (rc) 1212 return rc; 1213 1214 rc = mmc_send_tuning(mmc, opcode, NULL); 1215 if (!rc) { 1216 /* Tuning is successful at this tuning point */ 1217 tuned_phases[tuned_phase_cnt++] = phase; 1218 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n", 1219 mmc_hostname(mmc), phase); 1220 } 1221 } while (++phase < ARRAY_SIZE(tuned_phases)); 1222 1223 if (tuned_phase_cnt) { 1224 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) { 1225 /* 1226 * All phases valid is _almost_ as bad as no phases 1227 * valid. Probably all phases are not really reliable 1228 * but we didn't detect where the unreliable place is. 1229 * That means we'll essentially be guessing and hoping 1230 * we get a good phase. Better to try a few times. 1231 */ 1232 dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n", 1233 mmc_hostname(mmc)); 1234 if (--tuning_seq_cnt) { 1235 tuned_phase_cnt = 0; 1236 goto retry; 1237 } 1238 } 1239 1240 rc = msm_find_most_appropriate_phase(host, tuned_phases, 1241 tuned_phase_cnt); 1242 if (rc < 0) 1243 return rc; 1244 else 1245 phase = rc; 1246 1247 /* 1248 * Finally set the selected phase in delay 1249 * line hw block. 1250 */ 1251 rc = msm_config_cm_dll_phase(host, phase); 1252 if (rc) 1253 return rc; 1254 msm_host->saved_tuning_phase = phase; 1255 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n", 1256 mmc_hostname(mmc), phase); 1257 } else { 1258 if (--tuning_seq_cnt) 1259 goto retry; 1260 /* Tuning failed */ 1261 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n", 1262 mmc_hostname(mmc)); 1263 rc = -EIO; 1264 } 1265 1266 if (!rc) 1267 msm_host->tuning_done = true; 1268 return rc; 1269 } 1270 1271 /* 1272 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation. 1273 * This needs to be done for both tuning and enhanced_strobe mode. 1274 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz 1275 * fixed feedback clock is used. 1276 */ 1277 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios) 1278 { 1279 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1280 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1281 int ret; 1282 1283 if (host->clock > CORE_FREQ_100MHZ && 1284 (msm_host->tuning_done || ios->enhanced_strobe) && 1285 !msm_host->calibration_done) { 1286 ret = sdhci_msm_hs400_dll_calibration(host); 1287 if (!ret) 1288 msm_host->calibration_done = true; 1289 else 1290 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n", 1291 mmc_hostname(host->mmc), ret); 1292 } 1293 } 1294 1295 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host, 1296 unsigned int uhs) 1297 { 1298 struct mmc_host *mmc = host->mmc; 1299 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1300 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1301 u16 ctrl_2; 1302 u32 config; 1303 const struct sdhci_msm_offset *msm_offset = 1304 msm_host->offset; 1305 1306 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); 1307 /* Select Bus Speed Mode for host */ 1308 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1309 switch (uhs) { 1310 case MMC_TIMING_UHS_SDR12: 1311 ctrl_2 |= SDHCI_CTRL_UHS_SDR12; 1312 break; 1313 case MMC_TIMING_UHS_SDR25: 1314 ctrl_2 |= SDHCI_CTRL_UHS_SDR25; 1315 break; 1316 case MMC_TIMING_UHS_SDR50: 1317 ctrl_2 |= SDHCI_CTRL_UHS_SDR50; 1318 break; 1319 case MMC_TIMING_MMC_HS400: 1320 case MMC_TIMING_MMC_HS200: 1321 case MMC_TIMING_UHS_SDR104: 1322 ctrl_2 |= SDHCI_CTRL_UHS_SDR104; 1323 break; 1324 case MMC_TIMING_UHS_DDR50: 1325 case MMC_TIMING_MMC_DDR52: 1326 ctrl_2 |= SDHCI_CTRL_UHS_DDR50; 1327 break; 1328 } 1329 1330 /* 1331 * When clock frequency is less than 100MHz, the feedback clock must be 1332 * provided and DLL must not be used so that tuning can be skipped. To 1333 * provide feedback clock, the mode selection can be any value less 1334 * than 3'b011 in bits [2:0] of HOST CONTROL2 register. 1335 */ 1336 if (host->clock <= CORE_FREQ_100MHZ) { 1337 if (uhs == MMC_TIMING_MMC_HS400 || 1338 uhs == MMC_TIMING_MMC_HS200 || 1339 uhs == MMC_TIMING_UHS_SDR104) 1340 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; 1341 /* 1342 * DLL is not required for clock <= 100MHz 1343 * Thus, make sure DLL it is disabled when not required 1344 */ 1345 config = readl_relaxed(host->ioaddr + 1346 msm_offset->core_dll_config); 1347 config |= CORE_DLL_RST; 1348 writel_relaxed(config, host->ioaddr + 1349 msm_offset->core_dll_config); 1350 1351 config = readl_relaxed(host->ioaddr + 1352 msm_offset->core_dll_config); 1353 config |= CORE_DLL_PDN; 1354 writel_relaxed(config, host->ioaddr + 1355 msm_offset->core_dll_config); 1356 1357 /* 1358 * The DLL needs to be restored and CDCLP533 recalibrated 1359 * when the clock frequency is set back to 400MHz. 1360 */ 1361 msm_host->calibration_done = false; 1362 } 1363 1364 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n", 1365 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2); 1366 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); 1367 1368 if (mmc->ios.timing == MMC_TIMING_MMC_HS400) 1369 sdhci_msm_hs400(host, &mmc->ios); 1370 } 1371 1372 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level) 1373 { 1374 struct platform_device *pdev = msm_host->pdev; 1375 int ret; 1376 1377 if (level) 1378 ret = pinctrl_pm_select_default_state(&pdev->dev); 1379 else 1380 ret = pinctrl_pm_select_sleep_state(&pdev->dev); 1381 1382 return ret; 1383 } 1384 1385 static int sdhci_msm_set_vmmc(struct mmc_host *mmc) 1386 { 1387 if (IS_ERR(mmc->supply.vmmc)) 1388 return 0; 1389 1390 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd); 1391 } 1392 1393 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host, 1394 struct mmc_host *mmc, bool level) 1395 { 1396 int ret; 1397 struct mmc_ios ios; 1398 1399 if (msm_host->vqmmc_enabled == level) 1400 return 0; 1401 1402 if (level) { 1403 /* Set the IO voltage regulator to default voltage level */ 1404 if (msm_host->caps_0 & CORE_3_0V_SUPPORT) 1405 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330; 1406 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT) 1407 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180; 1408 1409 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1410 ret = mmc_regulator_set_vqmmc(mmc, &ios); 1411 if (ret < 0) { 1412 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n", 1413 mmc_hostname(mmc), ret); 1414 goto out; 1415 } 1416 } 1417 ret = regulator_enable(mmc->supply.vqmmc); 1418 } else { 1419 ret = regulator_disable(mmc->supply.vqmmc); 1420 } 1421 1422 if (ret) 1423 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n", 1424 mmc_hostname(mmc), level ? "en":"dis", ret); 1425 else 1426 msm_host->vqmmc_enabled = level; 1427 out: 1428 return ret; 1429 } 1430 1431 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host, 1432 struct mmc_host *mmc, bool hpm) 1433 { 1434 int load, ret; 1435 1436 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0; 1437 ret = regulator_set_load(mmc->supply.vqmmc, load); 1438 if (ret) 1439 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n", 1440 mmc_hostname(mmc), ret); 1441 return ret; 1442 } 1443 1444 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host, 1445 struct mmc_host *mmc, bool level) 1446 { 1447 int ret; 1448 bool always_on; 1449 1450 if (IS_ERR(mmc->supply.vqmmc) || 1451 (mmc->ios.power_mode == MMC_POWER_UNDEFINED)) 1452 return 0; 1453 /* 1454 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM 1455 * and HPM modes by setting the corresponding load. 1456 * 1457 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off 1458 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off 1459 * gets invoked. Once eMMC is initialized (i.e. always_on == 1), 1460 * Vqmmc should remain ON, So just set the load instead of turning it 1461 * off/on. 1462 */ 1463 always_on = !mmc_card_is_removable(mmc) && 1464 mmc->card && mmc_card_mmc(mmc->card); 1465 1466 if (always_on) 1467 ret = msm_config_vqmmc_mode(msm_host, mmc, level); 1468 else 1469 ret = msm_toggle_vqmmc(msm_host, mmc, level); 1470 1471 return ret; 1472 } 1473 1474 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host) 1475 { 1476 init_waitqueue_head(&msm_host->pwr_irq_wait); 1477 } 1478 1479 static inline void sdhci_msm_complete_pwr_irq_wait( 1480 struct sdhci_msm_host *msm_host) 1481 { 1482 wake_up(&msm_host->pwr_irq_wait); 1483 } 1484 1485 /* 1486 * sdhci_msm_check_power_status API should be called when registers writes 1487 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens. 1488 * To what state the register writes will change the IO lines should be passed 1489 * as the argument req_type. This API will check whether the IO line's state 1490 * is already the expected state and will wait for power irq only if 1491 * power irq is expected to be triggered based on the current IO line state 1492 * and expected IO line state. 1493 */ 1494 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type) 1495 { 1496 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1497 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1498 bool done = false; 1499 u32 val = SWITCHABLE_SIGNALING_VOLTAGE; 1500 const struct sdhci_msm_offset *msm_offset = 1501 msm_host->offset; 1502 1503 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n", 1504 mmc_hostname(host->mmc), __func__, req_type, 1505 msm_host->curr_pwr_state, msm_host->curr_io_level); 1506 1507 /* 1508 * The power interrupt will not be generated for signal voltage 1509 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set. 1510 * Since sdhci-msm-v5, this bit has been removed and SW must consider 1511 * it as always set. 1512 */ 1513 if (!msm_host->mci_removed) 1514 val = msm_host_readl(msm_host, host, 1515 msm_offset->core_generics); 1516 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) && 1517 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) { 1518 return; 1519 } 1520 1521 /* 1522 * The IRQ for request type IO High/LOW will be generated when - 1523 * there is a state change in 1.8V enable bit (bit 3) of 1524 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0 1525 * which indicates 3.3V IO voltage. So, when MMC core layer tries 1526 * to set it to 3.3V before card detection happens, the 1527 * IRQ doesn't get triggered as there is no state change in this bit. 1528 * The driver already handles this case by changing the IO voltage 1529 * level to high as part of controller power up sequence. Hence, check 1530 * for host->pwr to handle a case where IO voltage high request is 1531 * issued even before controller power up. 1532 */ 1533 if ((req_type & REQ_IO_HIGH) && !host->pwr) { 1534 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n", 1535 mmc_hostname(host->mmc), req_type); 1536 return; 1537 } 1538 if ((req_type & msm_host->curr_pwr_state) || 1539 (req_type & msm_host->curr_io_level)) 1540 done = true; 1541 /* 1542 * This is needed here to handle cases where register writes will 1543 * not change the current bus state or io level of the controller. 1544 * In this case, no power irq will be triggerred and we should 1545 * not wait. 1546 */ 1547 if (!done) { 1548 if (!wait_event_timeout(msm_host->pwr_irq_wait, 1549 msm_host->pwr_irq_flag, 1550 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS))) 1551 dev_warn(&msm_host->pdev->dev, 1552 "%s: pwr_irq for req: (%d) timed out\n", 1553 mmc_hostname(host->mmc), req_type); 1554 } 1555 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc), 1556 __func__, req_type); 1557 } 1558 1559 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host) 1560 { 1561 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1562 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1563 const struct sdhci_msm_offset *msm_offset = 1564 msm_host->offset; 1565 1566 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n", 1567 mmc_hostname(host->mmc), 1568 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status), 1569 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask), 1570 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl)); 1571 } 1572 1573 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq) 1574 { 1575 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1576 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1577 struct mmc_host *mmc = host->mmc; 1578 u32 irq_status, irq_ack = 0; 1579 int retry = 10, ret; 1580 u32 pwr_state = 0, io_level = 0; 1581 u32 config; 1582 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1583 1584 irq_status = msm_host_readl(msm_host, host, 1585 msm_offset->core_pwrctl_status); 1586 irq_status &= INT_MASK; 1587 1588 msm_host_writel(msm_host, irq_status, host, 1589 msm_offset->core_pwrctl_clear); 1590 1591 /* 1592 * There is a rare HW scenario where the first clear pulse could be 1593 * lost when actual reset and clear/read of status register is 1594 * happening at a time. Hence, retry for at least 10 times to make 1595 * sure status register is cleared. Otherwise, this will result in 1596 * a spurious power IRQ resulting in system instability. 1597 */ 1598 while (irq_status & msm_host_readl(msm_host, host, 1599 msm_offset->core_pwrctl_status)) { 1600 if (retry == 0) { 1601 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n", 1602 mmc_hostname(host->mmc), irq_status); 1603 sdhci_msm_dump_pwr_ctrl_regs(host); 1604 WARN_ON(1); 1605 break; 1606 } 1607 msm_host_writel(msm_host, irq_status, host, 1608 msm_offset->core_pwrctl_clear); 1609 retry--; 1610 udelay(10); 1611 } 1612 1613 /* Handle BUS ON/OFF*/ 1614 if (irq_status & CORE_PWRCTL_BUS_ON) { 1615 pwr_state = REQ_BUS_ON; 1616 io_level = REQ_IO_HIGH; 1617 } 1618 if (irq_status & CORE_PWRCTL_BUS_OFF) { 1619 pwr_state = REQ_BUS_OFF; 1620 io_level = REQ_IO_LOW; 1621 } 1622 1623 if (pwr_state) { 1624 ret = sdhci_msm_set_vmmc(mmc); 1625 if (!ret) 1626 ret = sdhci_msm_set_vqmmc(msm_host, mmc, 1627 pwr_state & REQ_BUS_ON); 1628 if (!ret) 1629 ret = sdhci_msm_set_pincfg(msm_host, 1630 pwr_state & REQ_BUS_ON); 1631 if (!ret) 1632 irq_ack |= CORE_PWRCTL_BUS_SUCCESS; 1633 else 1634 irq_ack |= CORE_PWRCTL_BUS_FAIL; 1635 } 1636 1637 /* Handle IO LOW/HIGH */ 1638 if (irq_status & CORE_PWRCTL_IO_LOW) 1639 io_level = REQ_IO_LOW; 1640 1641 if (irq_status & CORE_PWRCTL_IO_HIGH) 1642 io_level = REQ_IO_HIGH; 1643 1644 if (io_level) 1645 irq_ack |= CORE_PWRCTL_IO_SUCCESS; 1646 1647 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) { 1648 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios); 1649 if (ret < 0) { 1650 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n", 1651 mmc_hostname(mmc), ret, 1652 mmc->ios.signal_voltage, mmc->ios.vdd, 1653 irq_status); 1654 irq_ack |= CORE_PWRCTL_IO_FAIL; 1655 } 1656 } 1657 1658 /* 1659 * The driver has to acknowledge the interrupt, switch voltages and 1660 * report back if it succeded or not to this register. The voltage 1661 * switches are handled by the sdhci core, so just report success. 1662 */ 1663 msm_host_writel(msm_host, irq_ack, host, 1664 msm_offset->core_pwrctl_ctl); 1665 1666 /* 1667 * If we don't have info regarding the voltage levels supported by 1668 * regulators, don't change the IO PAD PWR SWITCH. 1669 */ 1670 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { 1671 u32 new_config; 1672 /* 1673 * We should unset IO PAD PWR switch only if the register write 1674 * can set IO lines high and the regulator also switches to 3 V. 1675 * Else, we should keep the IO PAD PWR switch set. 1676 * This is applicable to certain targets where eMMC vccq supply 1677 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the 1678 * IO PAD PWR switch must be kept set to reflect actual 1679 * regulator voltage. This way, during initialization of 1680 * controllers with only 1.8V, we will set the IO PAD bit 1681 * without waiting for a REQ_IO_LOW. 1682 */ 1683 config = readl_relaxed(host->ioaddr + 1684 msm_offset->core_vendor_spec); 1685 new_config = config; 1686 1687 if ((io_level & REQ_IO_HIGH) && 1688 (msm_host->caps_0 & CORE_3_0V_SUPPORT)) 1689 new_config &= ~CORE_IO_PAD_PWR_SWITCH; 1690 else if ((io_level & REQ_IO_LOW) || 1691 (msm_host->caps_0 & CORE_1_8V_SUPPORT)) 1692 new_config |= CORE_IO_PAD_PWR_SWITCH; 1693 1694 if (config ^ new_config) 1695 writel_relaxed(new_config, host->ioaddr + 1696 msm_offset->core_vendor_spec); 1697 } 1698 1699 if (pwr_state) 1700 msm_host->curr_pwr_state = pwr_state; 1701 if (io_level) 1702 msm_host->curr_io_level = io_level; 1703 1704 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n", 1705 mmc_hostname(msm_host->mmc), __func__, irq, irq_status, 1706 irq_ack); 1707 } 1708 1709 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data) 1710 { 1711 struct sdhci_host *host = (struct sdhci_host *)data; 1712 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1713 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1714 1715 sdhci_msm_handle_pwr_irq(host, irq); 1716 msm_host->pwr_irq_flag = 1; 1717 sdhci_msm_complete_pwr_irq_wait(msm_host); 1718 1719 1720 return IRQ_HANDLED; 1721 } 1722 1723 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host) 1724 { 1725 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1726 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1727 struct clk *core_clk = msm_host->bulk_clks[0].clk; 1728 1729 return clk_round_rate(core_clk, ULONG_MAX); 1730 } 1731 1732 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host) 1733 { 1734 return SDHCI_MSM_MIN_CLOCK; 1735 } 1736 1737 /* 1738 * __sdhci_msm_set_clock - sdhci_msm clock control. 1739 * 1740 * Description: 1741 * MSM controller does not use internal divider and 1742 * instead directly control the GCC clock as per 1743 * HW recommendation. 1744 **/ 1745 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1746 { 1747 u16 clk; 1748 /* 1749 * Keep actual_clock as zero - 1750 * - since there is no divider used so no need of having actual_clock. 1751 * - MSM controller uses SDCLK for data timeout calculation. If 1752 * actual_clock is zero, host->clock is taken for calculation. 1753 */ 1754 host->mmc->actual_clock = 0; 1755 1756 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); 1757 1758 if (clock == 0) 1759 return; 1760 1761 /* 1762 * MSM controller do not use clock divider. 1763 * Thus read SDHCI_CLOCK_CONTROL and only enable 1764 * clock with no divider value programmed. 1765 */ 1766 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); 1767 sdhci_enable_clk(host, clk); 1768 } 1769 1770 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */ 1771 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) 1772 { 1773 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1774 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1775 1776 if (!clock) { 1777 msm_host->clk_rate = clock; 1778 goto out; 1779 } 1780 1781 sdhci_msm_hc_select_mode(host); 1782 1783 msm_set_clock_rate_for_bus_mode(host, clock); 1784 out: 1785 __sdhci_msm_set_clock(host, clock); 1786 } 1787 1788 /*****************************************************************************\ 1789 * * 1790 * MSM Command Queue Engine (CQE) * 1791 * * 1792 \*****************************************************************************/ 1793 1794 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask) 1795 { 1796 int cmd_error = 0; 1797 int data_error = 0; 1798 1799 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error)) 1800 return intmask; 1801 1802 cqhci_irq(host->mmc, intmask, cmd_error, data_error); 1803 return 0; 1804 } 1805 1806 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery) 1807 { 1808 struct sdhci_host *host = mmc_priv(mmc); 1809 unsigned long flags; 1810 u32 ctrl; 1811 1812 /* 1813 * When CQE is halted, the legacy SDHCI path operates only 1814 * on 16-byte descriptors in 64bit mode. 1815 */ 1816 if (host->flags & SDHCI_USE_64_BIT_DMA) 1817 host->desc_sz = 16; 1818 1819 spin_lock_irqsave(&host->lock, flags); 1820 1821 /* 1822 * During CQE command transfers, command complete bit gets latched. 1823 * So s/w should clear command complete interrupt status when CQE is 1824 * either halted or disabled. Otherwise unexpected SDCHI legacy 1825 * interrupt gets triggered when CQE is halted/disabled. 1826 */ 1827 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE); 1828 ctrl |= SDHCI_INT_RESPONSE; 1829 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE); 1830 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS); 1831 1832 spin_unlock_irqrestore(&host->lock, flags); 1833 1834 sdhci_cqe_disable(mmc, recovery); 1835 } 1836 1837 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = { 1838 .enable = sdhci_cqe_enable, 1839 .disable = sdhci_msm_cqe_disable, 1840 }; 1841 1842 static int sdhci_msm_cqe_add_host(struct sdhci_host *host, 1843 struct platform_device *pdev) 1844 { 1845 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1846 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1847 struct cqhci_host *cq_host; 1848 bool dma64; 1849 u32 cqcfg; 1850 int ret; 1851 1852 /* 1853 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors. 1854 * So ensure ADMA table is allocated for 16byte descriptors. 1855 */ 1856 if (host->caps & SDHCI_CAN_64BIT) 1857 host->alloc_desc_sz = 16; 1858 1859 ret = sdhci_setup_host(host); 1860 if (ret) 1861 return ret; 1862 1863 cq_host = cqhci_pltfm_init(pdev); 1864 if (IS_ERR(cq_host)) { 1865 ret = PTR_ERR(cq_host); 1866 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret); 1867 goto cleanup; 1868 } 1869 1870 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD; 1871 cq_host->ops = &sdhci_msm_cqhci_ops; 1872 1873 dma64 = host->flags & SDHCI_USE_64_BIT_DMA; 1874 1875 ret = cqhci_init(cq_host, host->mmc, dma64); 1876 if (ret) { 1877 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n", 1878 mmc_hostname(host->mmc), ret); 1879 goto cleanup; 1880 } 1881 1882 /* Disable cqe reset due to cqe enable signal */ 1883 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1); 1884 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN; 1885 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1); 1886 1887 /* 1888 * SDHC expects 12byte ADMA descriptors till CQE is enabled. 1889 * So limit desc_sz to 12 so that the data commands that are sent 1890 * during card initialization (before CQE gets enabled) would 1891 * get executed without any issues. 1892 */ 1893 if (host->flags & SDHCI_USE_64_BIT_DMA) 1894 host->desc_sz = 12; 1895 1896 ret = __sdhci_add_host(host); 1897 if (ret) 1898 goto cleanup; 1899 1900 dev_info(&pdev->dev, "%s: CQE init: success\n", 1901 mmc_hostname(host->mmc)); 1902 return ret; 1903 1904 cleanup: 1905 sdhci_cleanup_host(host); 1906 return ret; 1907 } 1908 1909 /* 1910 * Platform specific register write functions. This is so that, if any 1911 * register write needs to be followed up by platform specific actions, 1912 * they can be added here. These functions can go to sleep when writes 1913 * to certain registers are done. 1914 * These functions are relying on sdhci_set_ios not using spinlock. 1915 */ 1916 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg) 1917 { 1918 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 1919 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 1920 u32 req_type = 0; 1921 1922 switch (reg) { 1923 case SDHCI_HOST_CONTROL2: 1924 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW : 1925 REQ_IO_HIGH; 1926 break; 1927 case SDHCI_SOFTWARE_RESET: 1928 if (host->pwr && (val & SDHCI_RESET_ALL)) 1929 req_type = REQ_BUS_OFF; 1930 break; 1931 case SDHCI_POWER_CONTROL: 1932 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON; 1933 break; 1934 case SDHCI_TRANSFER_MODE: 1935 msm_host->transfer_mode = val; 1936 break; 1937 case SDHCI_COMMAND: 1938 if (!msm_host->use_cdr) 1939 break; 1940 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) && 1941 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 && 1942 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK) 1943 sdhci_msm_set_cdr(host, true); 1944 else 1945 sdhci_msm_set_cdr(host, false); 1946 break; 1947 } 1948 1949 if (req_type) { 1950 msm_host->pwr_irq_flag = 0; 1951 /* 1952 * Since this register write may trigger a power irq, ensure 1953 * all previous register writes are complete by this point. 1954 */ 1955 mb(); 1956 } 1957 return req_type; 1958 } 1959 1960 /* This function may sleep*/ 1961 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg) 1962 { 1963 u32 req_type = 0; 1964 1965 req_type = __sdhci_msm_check_write(host, val, reg); 1966 writew_relaxed(val, host->ioaddr + reg); 1967 1968 if (req_type) 1969 sdhci_msm_check_power_status(host, req_type); 1970 } 1971 1972 /* This function may sleep*/ 1973 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg) 1974 { 1975 u32 req_type = 0; 1976 1977 req_type = __sdhci_msm_check_write(host, val, reg); 1978 1979 writeb_relaxed(val, host->ioaddr + reg); 1980 1981 if (req_type) 1982 sdhci_msm_check_power_status(host, req_type); 1983 } 1984 1985 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host) 1986 { 1987 struct mmc_host *mmc = msm_host->mmc; 1988 struct regulator *supply = mmc->supply.vqmmc; 1989 u32 caps = 0, config; 1990 struct sdhci_host *host = mmc_priv(mmc); 1991 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 1992 1993 if (!IS_ERR(mmc->supply.vqmmc)) { 1994 if (regulator_is_supported_voltage(supply, 1700000, 1950000)) 1995 caps |= CORE_1_8V_SUPPORT; 1996 if (regulator_is_supported_voltage(supply, 2700000, 3600000)) 1997 caps |= CORE_3_0V_SUPPORT; 1998 1999 if (!caps) 2000 pr_warn("%s: 1.8/3V not supported for vqmmc\n", 2001 mmc_hostname(mmc)); 2002 } 2003 2004 if (caps) { 2005 /* 2006 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH 2007 * bit can be used as required later on. 2008 */ 2009 u32 io_level = msm_host->curr_io_level; 2010 2011 config = readl_relaxed(host->ioaddr + 2012 msm_offset->core_vendor_spec); 2013 config |= CORE_IO_PAD_PWR_SWITCH_EN; 2014 2015 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT)) 2016 config &= ~CORE_IO_PAD_PWR_SWITCH; 2017 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT)) 2018 config |= CORE_IO_PAD_PWR_SWITCH; 2019 2020 writel_relaxed(config, 2021 host->ioaddr + msm_offset->core_vendor_spec); 2022 } 2023 msm_host->caps_0 |= caps; 2024 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps); 2025 } 2026 2027 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask) 2028 { 2029 if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL)) 2030 cqhci_deactivate(host->mmc); 2031 sdhci_reset(host, mask); 2032 } 2033 2034 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host) 2035 { 2036 int ret; 2037 2038 ret = mmc_regulator_get_supply(msm_host->mmc); 2039 if (ret) 2040 return ret; 2041 2042 sdhci_msm_set_regulator_caps(msm_host); 2043 2044 return 0; 2045 } 2046 2047 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc, 2048 struct mmc_ios *ios) 2049 { 2050 struct sdhci_host *host = mmc_priv(mmc); 2051 u16 ctrl, status; 2052 2053 /* 2054 * Signal Voltage Switching is only applicable for Host Controllers 2055 * v3.00 and above. 2056 */ 2057 if (host->version < SDHCI_SPEC_300) 2058 return 0; 2059 2060 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2061 2062 switch (ios->signal_voltage) { 2063 case MMC_SIGNAL_VOLTAGE_330: 2064 if (!(host->flags & SDHCI_SIGNALING_330)) 2065 return -EINVAL; 2066 2067 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */ 2068 ctrl &= ~SDHCI_CTRL_VDD_180; 2069 break; 2070 case MMC_SIGNAL_VOLTAGE_180: 2071 if (!(host->flags & SDHCI_SIGNALING_180)) 2072 return -EINVAL; 2073 2074 /* Enable 1.8V Signal Enable in the Host Control2 register */ 2075 ctrl |= SDHCI_CTRL_VDD_180; 2076 break; 2077 2078 default: 2079 return -EINVAL; 2080 } 2081 2082 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); 2083 2084 /* Wait for 5ms */ 2085 usleep_range(5000, 5500); 2086 2087 /* regulator output should be stable within 5 ms */ 2088 status = ctrl & SDHCI_CTRL_VDD_180; 2089 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); 2090 if ((ctrl & SDHCI_CTRL_VDD_180) == status) 2091 return 0; 2092 2093 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n", 2094 mmc_hostname(mmc)); 2095 2096 return -EAGAIN; 2097 } 2098 2099 #define DRIVER_NAME "sdhci_msm" 2100 #define SDHCI_MSM_DUMP(f, x...) \ 2101 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x) 2102 2103 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host) 2104 { 2105 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2106 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2107 const struct sdhci_msm_offset *msm_offset = msm_host->offset; 2108 2109 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n"); 2110 2111 SDHCI_MSM_DUMP( 2112 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n", 2113 readl_relaxed(host->ioaddr + msm_offset->core_dll_status), 2114 readl_relaxed(host->ioaddr + msm_offset->core_dll_config), 2115 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2)); 2116 SDHCI_MSM_DUMP( 2117 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n", 2118 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3), 2119 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl), 2120 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config)); 2121 SDHCI_MSM_DUMP( 2122 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n", 2123 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec), 2124 readl_relaxed(host->ioaddr + 2125 msm_offset->core_vendor_spec_func2), 2126 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3)); 2127 } 2128 2129 static const struct sdhci_msm_variant_ops mci_var_ops = { 2130 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed, 2131 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed, 2132 }; 2133 2134 static const struct sdhci_msm_variant_ops v5_var_ops = { 2135 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed, 2136 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed, 2137 }; 2138 2139 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = { 2140 .var_ops = &mci_var_ops, 2141 .offset = &sdhci_msm_mci_offset, 2142 }; 2143 2144 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = { 2145 .mci_removed = true, 2146 .var_ops = &v5_var_ops, 2147 .offset = &sdhci_msm_v5_offset, 2148 }; 2149 2150 static const struct sdhci_msm_variant_info sdm845_sdhci_var = { 2151 .mci_removed = true, 2152 .restore_dll_config = true, 2153 .var_ops = &v5_var_ops, 2154 .offset = &sdhci_msm_v5_offset, 2155 }; 2156 2157 static const struct sdhci_msm_variant_info sm8250_sdhci_var = { 2158 .mci_removed = true, 2159 .uses_tassadar_dll = true, 2160 .var_ops = &v5_var_ops, 2161 .offset = &sdhci_msm_v5_offset, 2162 }; 2163 2164 static const struct of_device_id sdhci_msm_dt_match[] = { 2165 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var}, 2166 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var}, 2167 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var}, 2168 {.compatible = "qcom,sm8250-sdhci", .data = &sm8250_sdhci_var}, 2169 {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var}, 2170 {}, 2171 }; 2172 2173 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match); 2174 2175 static const struct sdhci_ops sdhci_msm_ops = { 2176 .reset = sdhci_msm_reset, 2177 .set_clock = sdhci_msm_set_clock, 2178 .get_min_clock = sdhci_msm_get_min_clock, 2179 .get_max_clock = sdhci_msm_get_max_clock, 2180 .set_bus_width = sdhci_set_bus_width, 2181 .set_uhs_signaling = sdhci_msm_set_uhs_signaling, 2182 .write_w = sdhci_msm_writew, 2183 .write_b = sdhci_msm_writeb, 2184 .irq = sdhci_msm_cqe_irq, 2185 .dump_vendor_regs = sdhci_msm_dump_vendor_regs, 2186 .set_power = sdhci_set_power_noreg, 2187 }; 2188 2189 static const struct sdhci_pltfm_data sdhci_msm_pdata = { 2190 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION | 2191 SDHCI_QUIRK_SINGLE_POWER_WRITE | 2192 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN | 2193 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12, 2194 2195 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, 2196 .ops = &sdhci_msm_ops, 2197 }; 2198 2199 static inline void sdhci_msm_get_of_property(struct platform_device *pdev, 2200 struct sdhci_host *host) 2201 { 2202 struct device_node *node = pdev->dev.of_node; 2203 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2204 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2205 2206 if (of_property_read_u32(node, "qcom,ddr-config", 2207 &msm_host->ddr_config)) 2208 msm_host->ddr_config = DDR_CONFIG_POR_VAL; 2209 2210 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config); 2211 } 2212 2213 2214 static int sdhci_msm_probe(struct platform_device *pdev) 2215 { 2216 struct sdhci_host *host; 2217 struct sdhci_pltfm_host *pltfm_host; 2218 struct sdhci_msm_host *msm_host; 2219 struct clk *clk; 2220 int ret; 2221 u16 host_version, core_minor; 2222 u32 core_version, config; 2223 u8 core_major; 2224 const struct sdhci_msm_offset *msm_offset; 2225 const struct sdhci_msm_variant_info *var_info; 2226 struct device_node *node = pdev->dev.of_node; 2227 2228 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host)); 2229 if (IS_ERR(host)) 2230 return PTR_ERR(host); 2231 2232 host->sdma_boundary = 0; 2233 pltfm_host = sdhci_priv(host); 2234 msm_host = sdhci_pltfm_priv(pltfm_host); 2235 msm_host->mmc = host->mmc; 2236 msm_host->pdev = pdev; 2237 2238 ret = mmc_of_parse(host->mmc); 2239 if (ret) 2240 goto pltfm_free; 2241 2242 /* 2243 * Based on the compatible string, load the required msm host info from 2244 * the data associated with the version info. 2245 */ 2246 var_info = of_device_get_match_data(&pdev->dev); 2247 2248 msm_host->mci_removed = var_info->mci_removed; 2249 msm_host->restore_dll_config = var_info->restore_dll_config; 2250 msm_host->var_ops = var_info->var_ops; 2251 msm_host->offset = var_info->offset; 2252 msm_host->uses_tassadar_dll = var_info->uses_tassadar_dll; 2253 2254 msm_offset = msm_host->offset; 2255 2256 sdhci_get_of_property(pdev); 2257 sdhci_msm_get_of_property(pdev, host); 2258 2259 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE; 2260 2261 /* Setup SDCC bus voter clock. */ 2262 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus"); 2263 if (!IS_ERR(msm_host->bus_clk)) { 2264 /* Vote for max. clk rate for max. performance */ 2265 ret = clk_set_rate(msm_host->bus_clk, INT_MAX); 2266 if (ret) 2267 goto pltfm_free; 2268 ret = clk_prepare_enable(msm_host->bus_clk); 2269 if (ret) 2270 goto pltfm_free; 2271 } 2272 2273 /* Setup main peripheral bus clock */ 2274 clk = devm_clk_get(&pdev->dev, "iface"); 2275 if (IS_ERR(clk)) { 2276 ret = PTR_ERR(clk); 2277 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret); 2278 goto bus_clk_disable; 2279 } 2280 msm_host->bulk_clks[1].clk = clk; 2281 2282 /* Setup SDC MMC clock */ 2283 clk = devm_clk_get(&pdev->dev, "core"); 2284 if (IS_ERR(clk)) { 2285 ret = PTR_ERR(clk); 2286 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret); 2287 goto bus_clk_disable; 2288 } 2289 msm_host->bulk_clks[0].clk = clk; 2290 2291 /* Check for optional interconnect paths */ 2292 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL); 2293 if (ret) 2294 goto bus_clk_disable; 2295 2296 msm_host->opp_table = dev_pm_opp_set_clkname(&pdev->dev, "core"); 2297 if (IS_ERR(msm_host->opp_table)) { 2298 ret = PTR_ERR(msm_host->opp_table); 2299 goto bus_clk_disable; 2300 } 2301 2302 /* OPP table is optional */ 2303 ret = dev_pm_opp_of_add_table(&pdev->dev); 2304 if (ret && ret != -ENODEV) { 2305 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n"); 2306 goto opp_put_clkname; 2307 } 2308 2309 /* Vote for maximum clock rate for maximum performance */ 2310 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX); 2311 if (ret) 2312 dev_warn(&pdev->dev, "core clock boost failed\n"); 2313 2314 clk = devm_clk_get(&pdev->dev, "cal"); 2315 if (IS_ERR(clk)) 2316 clk = NULL; 2317 msm_host->bulk_clks[2].clk = clk; 2318 2319 clk = devm_clk_get(&pdev->dev, "sleep"); 2320 if (IS_ERR(clk)) 2321 clk = NULL; 2322 msm_host->bulk_clks[3].clk = clk; 2323 2324 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2325 msm_host->bulk_clks); 2326 if (ret) 2327 goto opp_cleanup; 2328 2329 /* 2330 * xo clock is needed for FLL feature of cm_dll. 2331 * In case if xo clock is not mentioned in DT, warn and proceed. 2332 */ 2333 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo"); 2334 if (IS_ERR(msm_host->xo_clk)) { 2335 ret = PTR_ERR(msm_host->xo_clk); 2336 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret); 2337 } 2338 2339 if (!msm_host->mci_removed) { 2340 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1); 2341 if (IS_ERR(msm_host->core_mem)) { 2342 ret = PTR_ERR(msm_host->core_mem); 2343 goto clk_disable; 2344 } 2345 } 2346 2347 /* Reset the vendor spec register to power on reset state */ 2348 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL, 2349 host->ioaddr + msm_offset->core_vendor_spec); 2350 2351 if (!msm_host->mci_removed) { 2352 /* Set HC_MODE_EN bit in HC_MODE register */ 2353 msm_host_writel(msm_host, HC_MODE_EN, host, 2354 msm_offset->core_hc_mode); 2355 config = msm_host_readl(msm_host, host, 2356 msm_offset->core_hc_mode); 2357 config |= FF_CLK_SW_RST_DIS; 2358 msm_host_writel(msm_host, config, host, 2359 msm_offset->core_hc_mode); 2360 } 2361 2362 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION)); 2363 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n", 2364 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >> 2365 SDHCI_VENDOR_VER_SHIFT)); 2366 2367 core_version = msm_host_readl(msm_host, host, 2368 msm_offset->core_mci_version); 2369 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >> 2370 CORE_VERSION_MAJOR_SHIFT; 2371 core_minor = core_version & CORE_VERSION_MINOR_MASK; 2372 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n", 2373 core_version, core_major, core_minor); 2374 2375 if (core_major == 1 && core_minor >= 0x42) 2376 msm_host->use_14lpp_dll_reset = true; 2377 2378 /* 2379 * SDCC 5 controller with major version 1, minor version 0x34 and later 2380 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL. 2381 */ 2382 if (core_major == 1 && core_minor < 0x34) 2383 msm_host->use_cdclp533 = true; 2384 2385 /* 2386 * Support for some capabilities is not advertised by newer 2387 * controller versions and must be explicitly enabled. 2388 */ 2389 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) { 2390 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES); 2391 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT; 2392 writel_relaxed(config, host->ioaddr + 2393 msm_offset->core_vendor_spec_capabilities0); 2394 } 2395 2396 if (core_major == 1 && core_minor >= 0x49) 2397 msm_host->updated_ddr_cfg = true; 2398 2399 ret = sdhci_msm_register_vreg(msm_host); 2400 if (ret) 2401 goto clk_disable; 2402 2403 /* 2404 * Power on reset state may trigger power irq if previous status of 2405 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq 2406 * interrupt in GIC, any pending power irq interrupt should be 2407 * acknowledged. Otherwise power irq interrupt handler would be 2408 * fired prematurely. 2409 */ 2410 sdhci_msm_handle_pwr_irq(host, 0); 2411 2412 /* 2413 * Ensure that above writes are propogated before interrupt enablement 2414 * in GIC. 2415 */ 2416 mb(); 2417 2418 /* Setup IRQ for handling power/voltage tasks with PMIC */ 2419 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq"); 2420 if (msm_host->pwr_irq < 0) { 2421 ret = msm_host->pwr_irq; 2422 goto clk_disable; 2423 } 2424 2425 sdhci_msm_init_pwr_irq_wait(msm_host); 2426 /* Enable pwr irq interrupts */ 2427 msm_host_writel(msm_host, INT_MASK, host, 2428 msm_offset->core_pwrctl_mask); 2429 2430 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL, 2431 sdhci_msm_pwr_irq, IRQF_ONESHOT, 2432 dev_name(&pdev->dev), host); 2433 if (ret) { 2434 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret); 2435 goto clk_disable; 2436 } 2437 2438 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY; 2439 2440 pm_runtime_get_noresume(&pdev->dev); 2441 pm_runtime_set_active(&pdev->dev); 2442 pm_runtime_enable(&pdev->dev); 2443 pm_runtime_set_autosuspend_delay(&pdev->dev, 2444 MSM_MMC_AUTOSUSPEND_DELAY_MS); 2445 pm_runtime_use_autosuspend(&pdev->dev); 2446 2447 host->mmc_host_ops.start_signal_voltage_switch = 2448 sdhci_msm_start_signal_voltage_switch; 2449 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning; 2450 if (of_property_read_bool(node, "supports-cqe")) 2451 ret = sdhci_msm_cqe_add_host(host, pdev); 2452 else 2453 ret = sdhci_add_host(host); 2454 if (ret) 2455 goto pm_runtime_disable; 2456 2457 pm_runtime_mark_last_busy(&pdev->dev); 2458 pm_runtime_put_autosuspend(&pdev->dev); 2459 2460 return 0; 2461 2462 pm_runtime_disable: 2463 pm_runtime_disable(&pdev->dev); 2464 pm_runtime_set_suspended(&pdev->dev); 2465 pm_runtime_put_noidle(&pdev->dev); 2466 clk_disable: 2467 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2468 msm_host->bulk_clks); 2469 opp_cleanup: 2470 dev_pm_opp_of_remove_table(&pdev->dev); 2471 opp_put_clkname: 2472 dev_pm_opp_put_clkname(msm_host->opp_table); 2473 bus_clk_disable: 2474 if (!IS_ERR(msm_host->bus_clk)) 2475 clk_disable_unprepare(msm_host->bus_clk); 2476 pltfm_free: 2477 sdhci_pltfm_free(pdev); 2478 return ret; 2479 } 2480 2481 static int sdhci_msm_remove(struct platform_device *pdev) 2482 { 2483 struct sdhci_host *host = platform_get_drvdata(pdev); 2484 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2485 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2486 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) == 2487 0xffffffff); 2488 2489 sdhci_remove_host(host, dead); 2490 2491 dev_pm_opp_of_remove_table(&pdev->dev); 2492 dev_pm_opp_put_clkname(msm_host->opp_table); 2493 pm_runtime_get_sync(&pdev->dev); 2494 pm_runtime_disable(&pdev->dev); 2495 pm_runtime_put_noidle(&pdev->dev); 2496 2497 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2498 msm_host->bulk_clks); 2499 if (!IS_ERR(msm_host->bus_clk)) 2500 clk_disable_unprepare(msm_host->bus_clk); 2501 sdhci_pltfm_free(pdev); 2502 return 0; 2503 } 2504 2505 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev) 2506 { 2507 struct sdhci_host *host = dev_get_drvdata(dev); 2508 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2509 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2510 2511 /* Drop the performance vote */ 2512 dev_pm_opp_set_rate(dev, 0); 2513 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), 2514 msm_host->bulk_clks); 2515 2516 return 0; 2517 } 2518 2519 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev) 2520 { 2521 struct sdhci_host *host = dev_get_drvdata(dev); 2522 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); 2523 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); 2524 int ret; 2525 2526 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), 2527 msm_host->bulk_clks); 2528 if (ret) 2529 return ret; 2530 /* 2531 * Whenever core-clock is gated dynamically, it's needed to 2532 * restore the SDR DLL settings when the clock is ungated. 2533 */ 2534 if (msm_host->restore_dll_config && msm_host->clk_rate) 2535 ret = sdhci_msm_restore_sdr_dll_config(host); 2536 2537 dev_pm_opp_set_rate(dev, msm_host->clk_rate); 2538 2539 return ret; 2540 } 2541 2542 static const struct dev_pm_ops sdhci_msm_pm_ops = { 2543 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 2544 pm_runtime_force_resume) 2545 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend, 2546 sdhci_msm_runtime_resume, 2547 NULL) 2548 }; 2549 2550 static struct platform_driver sdhci_msm_driver = { 2551 .probe = sdhci_msm_probe, 2552 .remove = sdhci_msm_remove, 2553 .driver = { 2554 .name = "sdhci_msm", 2555 .of_match_table = sdhci_msm_dt_match, 2556 .pm = &sdhci_msm_pm_ops, 2557 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2558 }, 2559 }; 2560 2561 module_platform_driver(sdhci_msm_driver); 2562 2563 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver"); 2564 MODULE_LICENSE("GPL v2"); 2565