xref: /openbmc/linux/drivers/mmc/host/sdhci-msm.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
3  *
4  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 #include <linux/module.h>
18 #include <linux/of_device.h>
19 #include <linux/delay.h>
20 #include <linux/mmc/mmc.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/slab.h>
23 #include <linux/iopoll.h>
24 #include <linux/regulator/consumer.h>
25 
26 #include "sdhci-pltfm.h"
27 
28 #define CORE_MCI_VERSION		0x50
29 #define CORE_VERSION_MAJOR_SHIFT	28
30 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
31 #define CORE_VERSION_MINOR_MASK		0xff
32 
33 #define CORE_MCI_GENERICS		0x70
34 #define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
35 
36 #define HC_MODE_EN		0x1
37 #define CORE_POWER		0x0
38 #define CORE_SW_RST		BIT(7)
39 #define FF_CLK_SW_RST_DIS	BIT(13)
40 
41 #define CORE_PWRCTL_BUS_OFF	BIT(0)
42 #define CORE_PWRCTL_BUS_ON	BIT(1)
43 #define CORE_PWRCTL_IO_LOW	BIT(2)
44 #define CORE_PWRCTL_IO_HIGH	BIT(3)
45 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
46 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
47 #define REQ_BUS_OFF		BIT(0)
48 #define REQ_BUS_ON		BIT(1)
49 #define REQ_IO_LOW		BIT(2)
50 #define REQ_IO_HIGH		BIT(3)
51 #define INT_MASK		0xf
52 #define MAX_PHASES		16
53 #define CORE_DLL_LOCK		BIT(7)
54 #define CORE_DDR_DLL_LOCK	BIT(11)
55 #define CORE_DLL_EN		BIT(16)
56 #define CORE_CDR_EN		BIT(17)
57 #define CORE_CK_OUT_EN		BIT(18)
58 #define CORE_CDR_EXT_EN		BIT(19)
59 #define CORE_DLL_PDN		BIT(29)
60 #define CORE_DLL_RST		BIT(30)
61 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
62 
63 #define CORE_DDR_CAL_EN		BIT(0)
64 #define CORE_FLL_CYCLE_CNT	BIT(18)
65 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
66 
67 #define CORE_VENDOR_SPEC_POR_VAL 0xa1c
68 #define CORE_CLK_PWRSAVE	BIT(1)
69 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
70 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
71 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
72 #define CORE_IO_PAD_PWR_SWITCH_EN	(1 << 15)
73 #define CORE_IO_PAD_PWR_SWITCH  (1 << 16)
74 #define CORE_HC_SELECT_IN_EN	BIT(18)
75 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
76 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
77 
78 #define CORE_3_0V_SUPPORT	(1 << 25)
79 #define CORE_1_8V_SUPPORT	(1 << 26)
80 #define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
81 
82 #define CORE_CSR_CDC_CTLR_CFG0		0x130
83 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
84 #define CORE_HW_AUTOCAL_ENA		BIT(17)
85 
86 #define CORE_CSR_CDC_CTLR_CFG1		0x134
87 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
88 #define CORE_TIMER_ENA			BIT(16)
89 
90 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
91 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
92 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
93 #define CORE_CDC_OFFSET_CFG		0x14C
94 #define CORE_CSR_CDC_DELAY_CFG		0x150
95 #define CORE_CDC_SLAVE_DDA_CFG		0x160
96 #define CORE_CSR_CDC_STATUS0		0x164
97 #define CORE_CALIBRATION_DONE		BIT(0)
98 
99 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
100 
101 #define CORE_CSR_CDC_GEN_CFG		0x178
102 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
103 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
104 
105 #define CORE_CDC_T4_DLY_SEL		BIT(0)
106 #define CORE_CMDIN_RCLK_EN		BIT(1)
107 #define CORE_START_CDC_TRAFFIC		BIT(6)
108 
109 #define CORE_PWRSAVE_DLL	BIT(3)
110 
111 #define DDR_CONFIG_POR_VAL	0x80040853
112 
113 
114 #define INVALID_TUNING_PHASE	-1
115 #define SDHCI_MSM_MIN_CLOCK	400000
116 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
117 
118 #define CDR_SELEXT_SHIFT	20
119 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
120 #define CMUX_SHIFT_PHASE_SHIFT	24
121 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
122 
123 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
124 
125 /* Timeout value to avoid infinite waiting for pwr_irq */
126 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
127 
128 #define msm_host_readl(msm_host, host, offset) \
129 	msm_host->var_ops->msm_readl_relaxed(host, offset)
130 
131 #define msm_host_writel(msm_host, val, host, offset) \
132 	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
133 
134 struct sdhci_msm_offset {
135 	u32 core_hc_mode;
136 	u32 core_mci_data_cnt;
137 	u32 core_mci_status;
138 	u32 core_mci_fifo_cnt;
139 	u32 core_mci_version;
140 	u32 core_generics;
141 	u32 core_testbus_config;
142 	u32 core_testbus_sel2_bit;
143 	u32 core_testbus_ena;
144 	u32 core_testbus_sel2;
145 	u32 core_pwrctl_status;
146 	u32 core_pwrctl_mask;
147 	u32 core_pwrctl_clear;
148 	u32 core_pwrctl_ctl;
149 	u32 core_sdcc_debug_reg;
150 	u32 core_dll_config;
151 	u32 core_dll_status;
152 	u32 core_vendor_spec;
153 	u32 core_vendor_spec_adma_err_addr0;
154 	u32 core_vendor_spec_adma_err_addr1;
155 	u32 core_vendor_spec_func2;
156 	u32 core_vendor_spec_capabilities0;
157 	u32 core_ddr_200_cfg;
158 	u32 core_vendor_spec3;
159 	u32 core_dll_config_2;
160 	u32 core_ddr_config;
161 	u32 core_ddr_config_2;
162 };
163 
164 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
165 	.core_mci_data_cnt = 0x35c,
166 	.core_mci_status = 0x324,
167 	.core_mci_fifo_cnt = 0x308,
168 	.core_mci_version = 0x318,
169 	.core_generics = 0x320,
170 	.core_testbus_config = 0x32c,
171 	.core_testbus_sel2_bit = 3,
172 	.core_testbus_ena = (1 << 31),
173 	.core_testbus_sel2 = (1 << 3),
174 	.core_pwrctl_status = 0x240,
175 	.core_pwrctl_mask = 0x244,
176 	.core_pwrctl_clear = 0x248,
177 	.core_pwrctl_ctl = 0x24c,
178 	.core_sdcc_debug_reg = 0x358,
179 	.core_dll_config = 0x200,
180 	.core_dll_status = 0x208,
181 	.core_vendor_spec = 0x20c,
182 	.core_vendor_spec_adma_err_addr0 = 0x214,
183 	.core_vendor_spec_adma_err_addr1 = 0x218,
184 	.core_vendor_spec_func2 = 0x210,
185 	.core_vendor_spec_capabilities0 = 0x21c,
186 	.core_ddr_200_cfg = 0x224,
187 	.core_vendor_spec3 = 0x250,
188 	.core_dll_config_2 = 0x254,
189 	.core_ddr_config = 0x258,
190 	.core_ddr_config_2 = 0x25c,
191 };
192 
193 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
194 	.core_hc_mode = 0x78,
195 	.core_mci_data_cnt = 0x30,
196 	.core_mci_status = 0x34,
197 	.core_mci_fifo_cnt = 0x44,
198 	.core_mci_version = 0x050,
199 	.core_generics = 0x70,
200 	.core_testbus_config = 0x0cc,
201 	.core_testbus_sel2_bit = 4,
202 	.core_testbus_ena = (1 << 3),
203 	.core_testbus_sel2 = (1 << 4),
204 	.core_pwrctl_status = 0xdc,
205 	.core_pwrctl_mask = 0xe0,
206 	.core_pwrctl_clear = 0xe4,
207 	.core_pwrctl_ctl = 0xe8,
208 	.core_sdcc_debug_reg = 0x124,
209 	.core_dll_config = 0x100,
210 	.core_dll_status = 0x108,
211 	.core_vendor_spec = 0x10c,
212 	.core_vendor_spec_adma_err_addr0 = 0x114,
213 	.core_vendor_spec_adma_err_addr1 = 0x118,
214 	.core_vendor_spec_func2 = 0x110,
215 	.core_vendor_spec_capabilities0 = 0x11c,
216 	.core_ddr_200_cfg = 0x184,
217 	.core_vendor_spec3 = 0x1b0,
218 	.core_dll_config_2 = 0x1b4,
219 	.core_ddr_config = 0x1b8,
220 	.core_ddr_config_2 = 0x1bc,
221 };
222 
223 struct sdhci_msm_variant_ops {
224 	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
225 	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
226 			u32 offset);
227 };
228 
229 /*
230  * From V5, register spaces have changed. Wrap this info in a structure
231  * and choose the data_structure based on version info mentioned in DT.
232  */
233 struct sdhci_msm_variant_info {
234 	bool mci_removed;
235 	const struct sdhci_msm_variant_ops *var_ops;
236 	const struct sdhci_msm_offset *offset;
237 };
238 
239 struct sdhci_msm_host {
240 	struct platform_device *pdev;
241 	void __iomem *core_mem;	/* MSM SDCC mapped address */
242 	int pwr_irq;		/* power irq */
243 	struct clk *bus_clk;	/* SDHC bus voter clock */
244 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
245 	struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
246 	unsigned long clk_rate;
247 	struct mmc_host *mmc;
248 	bool use_14lpp_dll_reset;
249 	bool tuning_done;
250 	bool calibration_done;
251 	u8 saved_tuning_phase;
252 	bool use_cdclp533;
253 	u32 curr_pwr_state;
254 	u32 curr_io_level;
255 	wait_queue_head_t pwr_irq_wait;
256 	bool pwr_irq_flag;
257 	u32 caps_0;
258 	bool mci_removed;
259 	const struct sdhci_msm_variant_ops *var_ops;
260 	const struct sdhci_msm_offset *offset;
261 };
262 
263 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
264 {
265 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
266 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
267 
268 	return msm_host->offset;
269 }
270 
271 /*
272  * APIs to read/write to vendor specific registers which were there in the
273  * core_mem region before MCI was removed.
274  */
275 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
276 		u32 offset)
277 {
278 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
279 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
280 
281 	return readl_relaxed(msm_host->core_mem + offset);
282 }
283 
284 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
285 		u32 offset)
286 {
287 	return readl_relaxed(host->ioaddr + offset);
288 }
289 
290 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
291 		struct sdhci_host *host, u32 offset)
292 {
293 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
294 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
295 
296 	writel_relaxed(val, msm_host->core_mem + offset);
297 }
298 
299 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
300 		struct sdhci_host *host, u32 offset)
301 {
302 	writel_relaxed(val, host->ioaddr + offset);
303 }
304 
305 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
306 						    unsigned int clock)
307 {
308 	struct mmc_ios ios = host->mmc->ios;
309 	/*
310 	 * The SDHC requires internal clock frequency to be double the
311 	 * actual clock that will be set for DDR mode. The controller
312 	 * uses the faster clock(100/400MHz) for some of its parts and
313 	 * send the actual required clock (50/200MHz) to the card.
314 	 */
315 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
316 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
317 	    ios.timing == MMC_TIMING_MMC_HS400 ||
318 	    host->flags & SDHCI_HS400_TUNING)
319 		clock *= 2;
320 	return clock;
321 }
322 
323 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
324 					    unsigned int clock)
325 {
326 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
327 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
328 	struct mmc_ios curr_ios = host->mmc->ios;
329 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
330 	int rc;
331 
332 	clock = msm_get_clock_rate_for_bus_mode(host, clock);
333 	rc = clk_set_rate(core_clk, clock);
334 	if (rc) {
335 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
336 		       mmc_hostname(host->mmc), clock,
337 		       curr_ios.timing);
338 		return;
339 	}
340 	msm_host->clk_rate = clock;
341 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
342 		 mmc_hostname(host->mmc), clk_get_rate(core_clk),
343 		 curr_ios.timing);
344 }
345 
346 /* Platform specific tuning */
347 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
348 {
349 	u32 wait_cnt = 50;
350 	u8 ck_out_en;
351 	struct mmc_host *mmc = host->mmc;
352 	const struct sdhci_msm_offset *msm_offset =
353 					sdhci_priv_msm_offset(host);
354 
355 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
356 	ck_out_en = !!(readl_relaxed(host->ioaddr +
357 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
358 
359 	while (ck_out_en != poll) {
360 		if (--wait_cnt == 0) {
361 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
362 			       mmc_hostname(mmc), poll);
363 			return -ETIMEDOUT;
364 		}
365 		udelay(1);
366 
367 		ck_out_en = !!(readl_relaxed(host->ioaddr +
368 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
369 	}
370 
371 	return 0;
372 }
373 
374 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
375 {
376 	int rc;
377 	static const u8 grey_coded_phase_table[] = {
378 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
379 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
380 	};
381 	unsigned long flags;
382 	u32 config;
383 	struct mmc_host *mmc = host->mmc;
384 	const struct sdhci_msm_offset *msm_offset =
385 					sdhci_priv_msm_offset(host);
386 
387 	if (phase > 0xf)
388 		return -EINVAL;
389 
390 	spin_lock_irqsave(&host->lock, flags);
391 
392 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
393 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
394 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
395 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
396 
397 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
398 	rc = msm_dll_poll_ck_out_en(host, 0);
399 	if (rc)
400 		goto err_out;
401 
402 	/*
403 	 * Write the selected DLL clock output phase (0 ... 15)
404 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
405 	 */
406 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
407 	config &= ~CDR_SELEXT_MASK;
408 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
409 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
410 
411 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
412 	config |= CORE_CK_OUT_EN;
413 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
414 
415 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
416 	rc = msm_dll_poll_ck_out_en(host, 1);
417 	if (rc)
418 		goto err_out;
419 
420 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
421 	config |= CORE_CDR_EN;
422 	config &= ~CORE_CDR_EXT_EN;
423 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
424 	goto out;
425 
426 err_out:
427 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
428 	       mmc_hostname(mmc), phase);
429 out:
430 	spin_unlock_irqrestore(&host->lock, flags);
431 	return rc;
432 }
433 
434 /*
435  * Find out the greatest range of consecuitive selected
436  * DLL clock output phases that can be used as sampling
437  * setting for SD3.0 UHS-I card read operation (in SDR104
438  * timing mode) or for eMMC4.5 card read operation (in
439  * HS400/HS200 timing mode).
440  * Select the 3/4 of the range and configure the DLL with the
441  * selected DLL clock output phase.
442  */
443 
444 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
445 					   u8 *phase_table, u8 total_phases)
446 {
447 	int ret;
448 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
449 	u8 phases_per_row[MAX_PHASES] = { 0 };
450 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
451 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
452 	bool phase_0_found = false, phase_15_found = false;
453 	struct mmc_host *mmc = host->mmc;
454 
455 	if (!total_phases || (total_phases > MAX_PHASES)) {
456 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
457 		       mmc_hostname(mmc), total_phases);
458 		return -EINVAL;
459 	}
460 
461 	for (cnt = 0; cnt < total_phases; cnt++) {
462 		ranges[row_index][col_index] = phase_table[cnt];
463 		phases_per_row[row_index] += 1;
464 		col_index++;
465 
466 		if ((cnt + 1) == total_phases) {
467 			continue;
468 		/* check if next phase in phase_table is consecutive or not */
469 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
470 			row_index++;
471 			col_index = 0;
472 		}
473 	}
474 
475 	if (row_index >= MAX_PHASES)
476 		return -EINVAL;
477 
478 	/* Check if phase-0 is present in first valid window? */
479 	if (!ranges[0][0]) {
480 		phase_0_found = true;
481 		phase_0_raw_index = 0;
482 		/* Check if cycle exist between 2 valid windows */
483 		for (cnt = 1; cnt <= row_index; cnt++) {
484 			if (phases_per_row[cnt]) {
485 				for (i = 0; i < phases_per_row[cnt]; i++) {
486 					if (ranges[cnt][i] == 15) {
487 						phase_15_found = true;
488 						phase_15_raw_index = cnt;
489 						break;
490 					}
491 				}
492 			}
493 		}
494 	}
495 
496 	/* If 2 valid windows form cycle then merge them as single window */
497 	if (phase_0_found && phase_15_found) {
498 		/* number of phases in raw where phase 0 is present */
499 		u8 phases_0 = phases_per_row[phase_0_raw_index];
500 		/* number of phases in raw where phase 15 is present */
501 		u8 phases_15 = phases_per_row[phase_15_raw_index];
502 
503 		if (phases_0 + phases_15 >= MAX_PHASES)
504 			/*
505 			 * If there are more than 1 phase windows then total
506 			 * number of phases in both the windows should not be
507 			 * more than or equal to MAX_PHASES.
508 			 */
509 			return -EINVAL;
510 
511 		/* Merge 2 cyclic windows */
512 		i = phases_15;
513 		for (cnt = 0; cnt < phases_0; cnt++) {
514 			ranges[phase_15_raw_index][i] =
515 			    ranges[phase_0_raw_index][cnt];
516 			if (++i >= MAX_PHASES)
517 				break;
518 		}
519 
520 		phases_per_row[phase_0_raw_index] = 0;
521 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
522 	}
523 
524 	for (cnt = 0; cnt <= row_index; cnt++) {
525 		if (phases_per_row[cnt] > curr_max) {
526 			curr_max = phases_per_row[cnt];
527 			selected_row_index = cnt;
528 		}
529 	}
530 
531 	i = (curr_max * 3) / 4;
532 	if (i)
533 		i--;
534 
535 	ret = ranges[selected_row_index][i];
536 
537 	if (ret >= MAX_PHASES) {
538 		ret = -EINVAL;
539 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
540 		       mmc_hostname(mmc), ret);
541 	}
542 
543 	return ret;
544 }
545 
546 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
547 {
548 	u32 mclk_freq = 0, config;
549 	const struct sdhci_msm_offset *msm_offset =
550 					sdhci_priv_msm_offset(host);
551 
552 	/* Program the MCLK value to MCLK_FREQ bit field */
553 	if (host->clock <= 112000000)
554 		mclk_freq = 0;
555 	else if (host->clock <= 125000000)
556 		mclk_freq = 1;
557 	else if (host->clock <= 137000000)
558 		mclk_freq = 2;
559 	else if (host->clock <= 150000000)
560 		mclk_freq = 3;
561 	else if (host->clock <= 162000000)
562 		mclk_freq = 4;
563 	else if (host->clock <= 175000000)
564 		mclk_freq = 5;
565 	else if (host->clock <= 187000000)
566 		mclk_freq = 6;
567 	else if (host->clock <= 200000000)
568 		mclk_freq = 7;
569 
570 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
571 	config &= ~CMUX_SHIFT_PHASE_MASK;
572 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
573 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
574 }
575 
576 /* Initialize the DLL (Programmable Delay Line) */
577 static int msm_init_cm_dll(struct sdhci_host *host)
578 {
579 	struct mmc_host *mmc = host->mmc;
580 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
581 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
582 	int wait_cnt = 50;
583 	unsigned long flags;
584 	u32 config;
585 	const struct sdhci_msm_offset *msm_offset =
586 					msm_host->offset;
587 
588 	spin_lock_irqsave(&host->lock, flags);
589 
590 	/*
591 	 * Make sure that clock is always enabled when DLL
592 	 * tuning is in progress. Keeping PWRSAVE ON may
593 	 * turn off the clock.
594 	 */
595 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
596 	config &= ~CORE_CLK_PWRSAVE;
597 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
598 
599 	if (msm_host->use_14lpp_dll_reset) {
600 		config = readl_relaxed(host->ioaddr +
601 				msm_offset->core_dll_config);
602 		config &= ~CORE_CK_OUT_EN;
603 		writel_relaxed(config, host->ioaddr +
604 				msm_offset->core_dll_config);
605 
606 		config = readl_relaxed(host->ioaddr +
607 				msm_offset->core_dll_config_2);
608 		config |= CORE_DLL_CLOCK_DISABLE;
609 		writel_relaxed(config, host->ioaddr +
610 				msm_offset->core_dll_config_2);
611 	}
612 
613 	config = readl_relaxed(host->ioaddr +
614 			msm_offset->core_dll_config);
615 	config |= CORE_DLL_RST;
616 	writel_relaxed(config, host->ioaddr +
617 			msm_offset->core_dll_config);
618 
619 	config = readl_relaxed(host->ioaddr +
620 			msm_offset->core_dll_config);
621 	config |= CORE_DLL_PDN;
622 	writel_relaxed(config, host->ioaddr +
623 			msm_offset->core_dll_config);
624 	msm_cm_dll_set_freq(host);
625 
626 	if (msm_host->use_14lpp_dll_reset &&
627 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
628 		u32 mclk_freq = 0;
629 
630 		config = readl_relaxed(host->ioaddr +
631 				msm_offset->core_dll_config_2);
632 		config &= CORE_FLL_CYCLE_CNT;
633 		if (config)
634 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
635 					clk_get_rate(msm_host->xo_clk));
636 		else
637 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
638 					clk_get_rate(msm_host->xo_clk));
639 
640 		config = readl_relaxed(host->ioaddr +
641 				msm_offset->core_dll_config_2);
642 		config &= ~(0xFF << 10);
643 		config |= mclk_freq << 10;
644 
645 		writel_relaxed(config, host->ioaddr +
646 				msm_offset->core_dll_config_2);
647 		/* wait for 5us before enabling DLL clock */
648 		udelay(5);
649 	}
650 
651 	config = readl_relaxed(host->ioaddr +
652 			msm_offset->core_dll_config);
653 	config &= ~CORE_DLL_RST;
654 	writel_relaxed(config, host->ioaddr +
655 			msm_offset->core_dll_config);
656 
657 	config = readl_relaxed(host->ioaddr +
658 			msm_offset->core_dll_config);
659 	config &= ~CORE_DLL_PDN;
660 	writel_relaxed(config, host->ioaddr +
661 			msm_offset->core_dll_config);
662 
663 	if (msm_host->use_14lpp_dll_reset) {
664 		msm_cm_dll_set_freq(host);
665 		config = readl_relaxed(host->ioaddr +
666 				msm_offset->core_dll_config_2);
667 		config &= ~CORE_DLL_CLOCK_DISABLE;
668 		writel_relaxed(config, host->ioaddr +
669 				msm_offset->core_dll_config_2);
670 	}
671 
672 	config = readl_relaxed(host->ioaddr +
673 			msm_offset->core_dll_config);
674 	config |= CORE_DLL_EN;
675 	writel_relaxed(config, host->ioaddr +
676 			msm_offset->core_dll_config);
677 
678 	config = readl_relaxed(host->ioaddr +
679 			msm_offset->core_dll_config);
680 	config |= CORE_CK_OUT_EN;
681 	writel_relaxed(config, host->ioaddr +
682 			msm_offset->core_dll_config);
683 
684 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
685 	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
686 		 CORE_DLL_LOCK)) {
687 		/* max. wait for 50us sec for LOCK bit to be set */
688 		if (--wait_cnt == 0) {
689 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
690 			       mmc_hostname(mmc));
691 			spin_unlock_irqrestore(&host->lock, flags);
692 			return -ETIMEDOUT;
693 		}
694 		udelay(1);
695 	}
696 
697 	spin_unlock_irqrestore(&host->lock, flags);
698 	return 0;
699 }
700 
701 static void msm_hc_select_default(struct sdhci_host *host)
702 {
703 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
704 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
705 	u32 config;
706 	const struct sdhci_msm_offset *msm_offset =
707 					msm_host->offset;
708 
709 	if (!msm_host->use_cdclp533) {
710 		config = readl_relaxed(host->ioaddr +
711 				msm_offset->core_vendor_spec3);
712 		config &= ~CORE_PWRSAVE_DLL;
713 		writel_relaxed(config, host->ioaddr +
714 				msm_offset->core_vendor_spec3);
715 	}
716 
717 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
718 	config &= ~CORE_HC_MCLK_SEL_MASK;
719 	config |= CORE_HC_MCLK_SEL_DFLT;
720 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
721 
722 	/*
723 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
724 	 * configuration from Host Control2 register for all other
725 	 * modes.
726 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
727 	 * in VENDOR_SPEC_FUNC
728 	 */
729 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
730 	config &= ~CORE_HC_SELECT_IN_EN;
731 	config &= ~CORE_HC_SELECT_IN_MASK;
732 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
733 
734 	/*
735 	 * Make sure above writes impacting free running MCLK are completed
736 	 * before changing the clk_rate at GCC.
737 	 */
738 	wmb();
739 }
740 
741 static void msm_hc_select_hs400(struct sdhci_host *host)
742 {
743 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
744 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
745 	struct mmc_ios ios = host->mmc->ios;
746 	u32 config, dll_lock;
747 	int rc;
748 	const struct sdhci_msm_offset *msm_offset =
749 					msm_host->offset;
750 
751 	/* Select the divided clock (free running MCLK/2) */
752 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
753 	config &= ~CORE_HC_MCLK_SEL_MASK;
754 	config |= CORE_HC_MCLK_SEL_HS400;
755 
756 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
757 	/*
758 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
759 	 * register
760 	 */
761 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
762 	    !msm_host->calibration_done) {
763 		config = readl_relaxed(host->ioaddr +
764 				msm_offset->core_vendor_spec);
765 		config |= CORE_HC_SELECT_IN_HS400;
766 		config |= CORE_HC_SELECT_IN_EN;
767 		writel_relaxed(config, host->ioaddr +
768 				msm_offset->core_vendor_spec);
769 	}
770 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
771 		/*
772 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
773 		 * core_dll_status to be set. This should get set
774 		 * within 15 us at 200 MHz.
775 		 */
776 		rc = readl_relaxed_poll_timeout(host->ioaddr +
777 						msm_offset->core_dll_status,
778 						dll_lock,
779 						(dll_lock &
780 						(CORE_DLL_LOCK |
781 						CORE_DDR_DLL_LOCK)), 10,
782 						1000);
783 		if (rc == -ETIMEDOUT)
784 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
785 			       mmc_hostname(host->mmc), dll_lock);
786 	}
787 	/*
788 	 * Make sure above writes impacting free running MCLK are completed
789 	 * before changing the clk_rate at GCC.
790 	 */
791 	wmb();
792 }
793 
794 /*
795  * sdhci_msm_hc_select_mode :- In general all timing modes are
796  * controlled via UHS mode select in Host Control2 register.
797  * eMMC specific HS200/HS400 doesn't have their respective modes
798  * defined here, hence we use these values.
799  *
800  * HS200 - SDR104 (Since they both are equivalent in functionality)
801  * HS400 - This involves multiple configurations
802  *		Initially SDR104 - when tuning is required as HS200
803  *		Then when switching to DDR @ 400MHz (HS400) we use
804  *		the vendor specific HC_SELECT_IN to control the mode.
805  *
806  * In addition to controlling the modes we also need to select the
807  * correct input clock for DLL depending on the mode.
808  *
809  * HS400 - divided clock (free running MCLK/2)
810  * All other modes - default (free running MCLK)
811  */
812 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
813 {
814 	struct mmc_ios ios = host->mmc->ios;
815 
816 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
817 	    host->flags & SDHCI_HS400_TUNING)
818 		msm_hc_select_hs400(host);
819 	else
820 		msm_hc_select_default(host);
821 }
822 
823 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
824 {
825 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
826 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
827 	u32 config, calib_done;
828 	int ret;
829 	const struct sdhci_msm_offset *msm_offset =
830 					msm_host->offset;
831 
832 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
833 
834 	/*
835 	 * Retuning in HS400 (DDR mode) will fail, just reset the
836 	 * tuning block and restore the saved tuning phase.
837 	 */
838 	ret = msm_init_cm_dll(host);
839 	if (ret)
840 		goto out;
841 
842 	/* Set the selected phase in delay line hw block */
843 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
844 	if (ret)
845 		goto out;
846 
847 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
848 	config |= CORE_CMD_DAT_TRACK_SEL;
849 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
850 
851 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
852 	config &= ~CORE_CDC_T4_DLY_SEL;
853 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
854 
855 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
856 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
857 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
858 
859 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
860 	config |= CORE_CDC_SWITCH_RC_EN;
861 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
862 
863 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
864 	config &= ~CORE_START_CDC_TRAFFIC;
865 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
866 
867 	/* Perform CDC Register Initialization Sequence */
868 
869 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
870 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
871 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
872 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
873 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
874 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
875 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
876 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
877 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
878 
879 	/* CDC HW Calibration */
880 
881 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
882 	config |= CORE_SW_TRIG_FULL_CALIB;
883 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
884 
885 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
886 	config &= ~CORE_SW_TRIG_FULL_CALIB;
887 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
888 
889 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
890 	config |= CORE_HW_AUTOCAL_ENA;
891 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
892 
893 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
894 	config |= CORE_TIMER_ENA;
895 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
896 
897 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
898 					 calib_done,
899 					 (calib_done & CORE_CALIBRATION_DONE),
900 					 1, 50);
901 
902 	if (ret == -ETIMEDOUT) {
903 		pr_err("%s: %s: CDC calibration was not completed\n",
904 		       mmc_hostname(host->mmc), __func__);
905 		goto out;
906 	}
907 
908 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
909 			& CORE_CDC_ERROR_CODE_MASK;
910 	if (ret) {
911 		pr_err("%s: %s: CDC error code %d\n",
912 		       mmc_hostname(host->mmc), __func__, ret);
913 		ret = -EINVAL;
914 		goto out;
915 	}
916 
917 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
918 	config |= CORE_START_CDC_TRAFFIC;
919 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
920 out:
921 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
922 		 __func__, ret);
923 	return ret;
924 }
925 
926 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
927 {
928 	struct mmc_host *mmc = host->mmc;
929 	u32 dll_status, config;
930 	int ret;
931 	const struct sdhci_msm_offset *msm_offset =
932 					sdhci_priv_msm_offset(host);
933 
934 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
935 
936 	/*
937 	 * Currently the core_ddr_config register defaults to desired
938 	 * configuration on reset. Currently reprogramming the power on
939 	 * reset (POR) value in case it might have been modified by
940 	 * bootloaders. In the future, if this changes, then the desired
941 	 * values will need to be programmed appropriately.
942 	 */
943 	writel_relaxed(DDR_CONFIG_POR_VAL, host->ioaddr +
944 			msm_offset->core_ddr_config);
945 
946 	if (mmc->ios.enhanced_strobe) {
947 		config = readl_relaxed(host->ioaddr +
948 				msm_offset->core_ddr_200_cfg);
949 		config |= CORE_CMDIN_RCLK_EN;
950 		writel_relaxed(config, host->ioaddr +
951 				msm_offset->core_ddr_200_cfg);
952 	}
953 
954 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
955 	config |= CORE_DDR_CAL_EN;
956 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
957 
958 	ret = readl_relaxed_poll_timeout(host->ioaddr +
959 					msm_offset->core_dll_status,
960 					dll_status,
961 					(dll_status & CORE_DDR_DLL_LOCK),
962 					10, 1000);
963 
964 	if (ret == -ETIMEDOUT) {
965 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
966 		       mmc_hostname(host->mmc), __func__);
967 		goto out;
968 	}
969 
970 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3);
971 	config |= CORE_PWRSAVE_DLL;
972 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec3);
973 
974 	/*
975 	 * Drain writebuffer to ensure above DLL calibration
976 	 * and PWRSAVE DLL is enabled.
977 	 */
978 	wmb();
979 out:
980 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
981 		 __func__, ret);
982 	return ret;
983 }
984 
985 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
986 {
987 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
988 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
989 	struct mmc_host *mmc = host->mmc;
990 	int ret;
991 	u32 config;
992 	const struct sdhci_msm_offset *msm_offset =
993 					msm_host->offset;
994 
995 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
996 
997 	/*
998 	 * Retuning in HS400 (DDR mode) will fail, just reset the
999 	 * tuning block and restore the saved tuning phase.
1000 	 */
1001 	ret = msm_init_cm_dll(host);
1002 	if (ret)
1003 		goto out;
1004 
1005 	if (!mmc->ios.enhanced_strobe) {
1006 		/* Set the selected phase in delay line hw block */
1007 		ret = msm_config_cm_dll_phase(host,
1008 					      msm_host->saved_tuning_phase);
1009 		if (ret)
1010 			goto out;
1011 		config = readl_relaxed(host->ioaddr +
1012 				msm_offset->core_dll_config);
1013 		config |= CORE_CMD_DAT_TRACK_SEL;
1014 		writel_relaxed(config, host->ioaddr +
1015 				msm_offset->core_dll_config);
1016 	}
1017 
1018 	if (msm_host->use_cdclp533)
1019 		ret = sdhci_msm_cdclp533_calibration(host);
1020 	else
1021 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1022 out:
1023 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1024 		 __func__, ret);
1025 	return ret;
1026 }
1027 
1028 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1029 {
1030 	struct sdhci_host *host = mmc_priv(mmc);
1031 	int tuning_seq_cnt = 3;
1032 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1033 	int rc;
1034 	struct mmc_ios ios = host->mmc->ios;
1035 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1036 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1037 
1038 	/*
1039 	 * Tuning is required for SDR104, HS200 and HS400 cards and
1040 	 * if clock frequency is greater than 100MHz in these modes.
1041 	 */
1042 	if (host->clock <= CORE_FREQ_100MHZ ||
1043 	    !(ios.timing == MMC_TIMING_MMC_HS400 ||
1044 	    ios.timing == MMC_TIMING_MMC_HS200 ||
1045 	    ios.timing == MMC_TIMING_UHS_SDR104))
1046 		return 0;
1047 
1048 	/*
1049 	 * For HS400 tuning in HS200 timing requires:
1050 	 * - select MCLK/2 in VENDOR_SPEC
1051 	 * - program MCLK to 400MHz (or nearest supported) in GCC
1052 	 */
1053 	if (host->flags & SDHCI_HS400_TUNING) {
1054 		sdhci_msm_hc_select_mode(host);
1055 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1056 		host->flags &= ~SDHCI_HS400_TUNING;
1057 	}
1058 
1059 retry:
1060 	/* First of all reset the tuning block */
1061 	rc = msm_init_cm_dll(host);
1062 	if (rc)
1063 		return rc;
1064 
1065 	phase = 0;
1066 	do {
1067 		/* Set the phase in delay line hw block */
1068 		rc = msm_config_cm_dll_phase(host, phase);
1069 		if (rc)
1070 			return rc;
1071 
1072 		msm_host->saved_tuning_phase = phase;
1073 		rc = mmc_send_tuning(mmc, opcode, NULL);
1074 		if (!rc) {
1075 			/* Tuning is successful at this tuning point */
1076 			tuned_phases[tuned_phase_cnt++] = phase;
1077 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1078 				 mmc_hostname(mmc), phase);
1079 		}
1080 	} while (++phase < ARRAY_SIZE(tuned_phases));
1081 
1082 	if (tuned_phase_cnt) {
1083 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1084 						     tuned_phase_cnt);
1085 		if (rc < 0)
1086 			return rc;
1087 		else
1088 			phase = rc;
1089 
1090 		/*
1091 		 * Finally set the selected phase in delay
1092 		 * line hw block.
1093 		 */
1094 		rc = msm_config_cm_dll_phase(host, phase);
1095 		if (rc)
1096 			return rc;
1097 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1098 			 mmc_hostname(mmc), phase);
1099 	} else {
1100 		if (--tuning_seq_cnt)
1101 			goto retry;
1102 		/* Tuning failed */
1103 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1104 		       mmc_hostname(mmc));
1105 		rc = -EIO;
1106 	}
1107 
1108 	if (!rc)
1109 		msm_host->tuning_done = true;
1110 	return rc;
1111 }
1112 
1113 /*
1114  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1115  * This needs to be done for both tuning and enhanced_strobe mode.
1116  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1117  * fixed feedback clock is used.
1118  */
1119 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1120 {
1121 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1122 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1123 	int ret;
1124 
1125 	if (host->clock > CORE_FREQ_100MHZ &&
1126 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1127 	    !msm_host->calibration_done) {
1128 		ret = sdhci_msm_hs400_dll_calibration(host);
1129 		if (!ret)
1130 			msm_host->calibration_done = true;
1131 		else
1132 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1133 			       mmc_hostname(host->mmc), ret);
1134 	}
1135 }
1136 
1137 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1138 					unsigned int uhs)
1139 {
1140 	struct mmc_host *mmc = host->mmc;
1141 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1142 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1143 	u16 ctrl_2;
1144 	u32 config;
1145 	const struct sdhci_msm_offset *msm_offset =
1146 					msm_host->offset;
1147 
1148 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1149 	/* Select Bus Speed Mode for host */
1150 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1151 	switch (uhs) {
1152 	case MMC_TIMING_UHS_SDR12:
1153 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1154 		break;
1155 	case MMC_TIMING_UHS_SDR25:
1156 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1157 		break;
1158 	case MMC_TIMING_UHS_SDR50:
1159 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1160 		break;
1161 	case MMC_TIMING_MMC_HS400:
1162 	case MMC_TIMING_MMC_HS200:
1163 	case MMC_TIMING_UHS_SDR104:
1164 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1165 		break;
1166 	case MMC_TIMING_UHS_DDR50:
1167 	case MMC_TIMING_MMC_DDR52:
1168 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1169 		break;
1170 	}
1171 
1172 	/*
1173 	 * When clock frequency is less than 100MHz, the feedback clock must be
1174 	 * provided and DLL must not be used so that tuning can be skipped. To
1175 	 * provide feedback clock, the mode selection can be any value less
1176 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1177 	 */
1178 	if (host->clock <= CORE_FREQ_100MHZ) {
1179 		if (uhs == MMC_TIMING_MMC_HS400 ||
1180 		    uhs == MMC_TIMING_MMC_HS200 ||
1181 		    uhs == MMC_TIMING_UHS_SDR104)
1182 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1183 		/*
1184 		 * DLL is not required for clock <= 100MHz
1185 		 * Thus, make sure DLL it is disabled when not required
1186 		 */
1187 		config = readl_relaxed(host->ioaddr +
1188 				msm_offset->core_dll_config);
1189 		config |= CORE_DLL_RST;
1190 		writel_relaxed(config, host->ioaddr +
1191 				msm_offset->core_dll_config);
1192 
1193 		config = readl_relaxed(host->ioaddr +
1194 				msm_offset->core_dll_config);
1195 		config |= CORE_DLL_PDN;
1196 		writel_relaxed(config, host->ioaddr +
1197 				msm_offset->core_dll_config);
1198 
1199 		/*
1200 		 * The DLL needs to be restored and CDCLP533 recalibrated
1201 		 * when the clock frequency is set back to 400MHz.
1202 		 */
1203 		msm_host->calibration_done = false;
1204 	}
1205 
1206 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1207 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1208 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1209 
1210 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1211 		sdhci_msm_hs400(host, &mmc->ios);
1212 }
1213 
1214 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1215 {
1216 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1217 }
1218 
1219 static inline void sdhci_msm_complete_pwr_irq_wait(
1220 		struct sdhci_msm_host *msm_host)
1221 {
1222 	wake_up(&msm_host->pwr_irq_wait);
1223 }
1224 
1225 /*
1226  * sdhci_msm_check_power_status API should be called when registers writes
1227  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1228  * To what state the register writes will change the IO lines should be passed
1229  * as the argument req_type. This API will check whether the IO line's state
1230  * is already the expected state and will wait for power irq only if
1231  * power irq is expected to be trigerred based on the current IO line state
1232  * and expected IO line state.
1233  */
1234 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1235 {
1236 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1237 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1238 	bool done = false;
1239 	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1240 	const struct sdhci_msm_offset *msm_offset =
1241 					msm_host->offset;
1242 
1243 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1244 			mmc_hostname(host->mmc), __func__, req_type,
1245 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1246 
1247 	/*
1248 	 * The power interrupt will not be generated for signal voltage
1249 	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1250 	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1251 	 * it as always set.
1252 	 */
1253 	if (!msm_host->mci_removed)
1254 		val = msm_host_readl(msm_host, host,
1255 				msm_offset->core_generics);
1256 	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1257 	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1258 		return;
1259 	}
1260 
1261 	/*
1262 	 * The IRQ for request type IO High/LOW will be generated when -
1263 	 * there is a state change in 1.8V enable bit (bit 3) of
1264 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1265 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1266 	 * to set it to 3.3V before card detection happens, the
1267 	 * IRQ doesn't get triggered as there is no state change in this bit.
1268 	 * The driver already handles this case by changing the IO voltage
1269 	 * level to high as part of controller power up sequence. Hence, check
1270 	 * for host->pwr to handle a case where IO voltage high request is
1271 	 * issued even before controller power up.
1272 	 */
1273 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1274 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1275 				mmc_hostname(host->mmc), req_type);
1276 		return;
1277 	}
1278 	if ((req_type & msm_host->curr_pwr_state) ||
1279 			(req_type & msm_host->curr_io_level))
1280 		done = true;
1281 	/*
1282 	 * This is needed here to handle cases where register writes will
1283 	 * not change the current bus state or io level of the controller.
1284 	 * In this case, no power irq will be triggerred and we should
1285 	 * not wait.
1286 	 */
1287 	if (!done) {
1288 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1289 				msm_host->pwr_irq_flag,
1290 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1291 			dev_warn(&msm_host->pdev->dev,
1292 				 "%s: pwr_irq for req: (%d) timed out\n",
1293 				 mmc_hostname(host->mmc), req_type);
1294 	}
1295 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1296 			__func__, req_type);
1297 }
1298 
1299 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1300 {
1301 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1302 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1303 	const struct sdhci_msm_offset *msm_offset =
1304 					msm_host->offset;
1305 
1306 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1307 		mmc_hostname(host->mmc),
1308 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1309 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1310 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1311 }
1312 
1313 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1314 {
1315 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1316 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1317 	u32 irq_status, irq_ack = 0;
1318 	int retry = 10;
1319 	u32 pwr_state = 0, io_level = 0;
1320 	u32 config;
1321 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1322 
1323 	irq_status = msm_host_readl(msm_host, host,
1324 			msm_offset->core_pwrctl_status);
1325 	irq_status &= INT_MASK;
1326 
1327 	msm_host_writel(msm_host, irq_status, host,
1328 			msm_offset->core_pwrctl_clear);
1329 
1330 	/*
1331 	 * There is a rare HW scenario where the first clear pulse could be
1332 	 * lost when actual reset and clear/read of status register is
1333 	 * happening at a time. Hence, retry for at least 10 times to make
1334 	 * sure status register is cleared. Otherwise, this will result in
1335 	 * a spurious power IRQ resulting in system instability.
1336 	 */
1337 	while (irq_status & msm_host_readl(msm_host, host,
1338 				msm_offset->core_pwrctl_status)) {
1339 		if (retry == 0) {
1340 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1341 					mmc_hostname(host->mmc), irq_status);
1342 			sdhci_msm_dump_pwr_ctrl_regs(host);
1343 			WARN_ON(1);
1344 			break;
1345 		}
1346 		msm_host_writel(msm_host, irq_status, host,
1347 			msm_offset->core_pwrctl_clear);
1348 		retry--;
1349 		udelay(10);
1350 	}
1351 
1352 	/* Handle BUS ON/OFF*/
1353 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1354 		pwr_state = REQ_BUS_ON;
1355 		io_level = REQ_IO_HIGH;
1356 		irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1357 	}
1358 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1359 		pwr_state = REQ_BUS_OFF;
1360 		io_level = REQ_IO_LOW;
1361 		irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1362 	}
1363 	/* Handle IO LOW/HIGH */
1364 	if (irq_status & CORE_PWRCTL_IO_LOW) {
1365 		io_level = REQ_IO_LOW;
1366 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1367 	}
1368 	if (irq_status & CORE_PWRCTL_IO_HIGH) {
1369 		io_level = REQ_IO_HIGH;
1370 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1371 	}
1372 
1373 	/*
1374 	 * The driver has to acknowledge the interrupt, switch voltages and
1375 	 * report back if it succeded or not to this register. The voltage
1376 	 * switches are handled by the sdhci core, so just report success.
1377 	 */
1378 	msm_host_writel(msm_host, irq_ack, host,
1379 			msm_offset->core_pwrctl_ctl);
1380 
1381 	/*
1382 	 * If we don't have info regarding the voltage levels supported by
1383 	 * regulators, don't change the IO PAD PWR SWITCH.
1384 	 */
1385 	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1386 		u32 new_config;
1387 		/*
1388 		 * We should unset IO PAD PWR switch only if the register write
1389 		 * can set IO lines high and the regulator also switches to 3 V.
1390 		 * Else, we should keep the IO PAD PWR switch set.
1391 		 * This is applicable to certain targets where eMMC vccq supply
1392 		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1393 		 * IO PAD PWR switch must be kept set to reflect actual
1394 		 * regulator voltage. This way, during initialization of
1395 		 * controllers with only 1.8V, we will set the IO PAD bit
1396 		 * without waiting for a REQ_IO_LOW.
1397 		 */
1398 		config = readl_relaxed(host->ioaddr +
1399 				msm_offset->core_vendor_spec);
1400 		new_config = config;
1401 
1402 		if ((io_level & REQ_IO_HIGH) &&
1403 				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1404 			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1405 		else if ((io_level & REQ_IO_LOW) ||
1406 				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1407 			new_config |= CORE_IO_PAD_PWR_SWITCH;
1408 
1409 		if (config ^ new_config)
1410 			writel_relaxed(new_config, host->ioaddr +
1411 					msm_offset->core_vendor_spec);
1412 	}
1413 
1414 	if (pwr_state)
1415 		msm_host->curr_pwr_state = pwr_state;
1416 	if (io_level)
1417 		msm_host->curr_io_level = io_level;
1418 
1419 	pr_debug("%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1420 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1421 		irq_ack);
1422 }
1423 
1424 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1425 {
1426 	struct sdhci_host *host = (struct sdhci_host *)data;
1427 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1428 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1429 
1430 	sdhci_msm_handle_pwr_irq(host, irq);
1431 	msm_host->pwr_irq_flag = 1;
1432 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1433 
1434 
1435 	return IRQ_HANDLED;
1436 }
1437 
1438 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1439 {
1440 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1441 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1442 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1443 
1444 	return clk_round_rate(core_clk, ULONG_MAX);
1445 }
1446 
1447 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1448 {
1449 	return SDHCI_MSM_MIN_CLOCK;
1450 }
1451 
1452 /**
1453  * __sdhci_msm_set_clock - sdhci_msm clock control.
1454  *
1455  * Description:
1456  * MSM controller does not use internal divider and
1457  * instead directly control the GCC clock as per
1458  * HW recommendation.
1459  **/
1460 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1461 {
1462 	u16 clk;
1463 	/*
1464 	 * Keep actual_clock as zero -
1465 	 * - since there is no divider used so no need of having actual_clock.
1466 	 * - MSM controller uses SDCLK for data timeout calculation. If
1467 	 *   actual_clock is zero, host->clock is taken for calculation.
1468 	 */
1469 	host->mmc->actual_clock = 0;
1470 
1471 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1472 
1473 	if (clock == 0)
1474 		return;
1475 
1476 	/*
1477 	 * MSM controller do not use clock divider.
1478 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1479 	 * clock with no divider value programmed.
1480 	 */
1481 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1482 	sdhci_enable_clk(host, clk);
1483 }
1484 
1485 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1486 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1487 {
1488 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1489 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1490 
1491 	if (!clock) {
1492 		msm_host->clk_rate = clock;
1493 		goto out;
1494 	}
1495 
1496 	sdhci_msm_hc_select_mode(host);
1497 
1498 	msm_set_clock_rate_for_bus_mode(host, clock);
1499 out:
1500 	__sdhci_msm_set_clock(host, clock);
1501 }
1502 
1503 /*
1504  * Platform specific register write functions. This is so that, if any
1505  * register write needs to be followed up by platform specific actions,
1506  * they can be added here. These functions can go to sleep when writes
1507  * to certain registers are done.
1508  * These functions are relying on sdhci_set_ios not using spinlock.
1509  */
1510 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
1511 {
1512 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1513 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1514 	u32 req_type = 0;
1515 
1516 	switch (reg) {
1517 	case SDHCI_HOST_CONTROL2:
1518 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
1519 			REQ_IO_HIGH;
1520 		break;
1521 	case SDHCI_SOFTWARE_RESET:
1522 		if (host->pwr && (val & SDHCI_RESET_ALL))
1523 			req_type = REQ_BUS_OFF;
1524 		break;
1525 	case SDHCI_POWER_CONTROL:
1526 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
1527 		break;
1528 	}
1529 
1530 	if (req_type) {
1531 		msm_host->pwr_irq_flag = 0;
1532 		/*
1533 		 * Since this register write may trigger a power irq, ensure
1534 		 * all previous register writes are complete by this point.
1535 		 */
1536 		mb();
1537 	}
1538 	return req_type;
1539 }
1540 
1541 /* This function may sleep*/
1542 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
1543 {
1544 	u32 req_type = 0;
1545 
1546 	req_type = __sdhci_msm_check_write(host, val, reg);
1547 	writew_relaxed(val, host->ioaddr + reg);
1548 
1549 	if (req_type)
1550 		sdhci_msm_check_power_status(host, req_type);
1551 }
1552 
1553 /* This function may sleep*/
1554 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
1555 {
1556 	u32 req_type = 0;
1557 
1558 	req_type = __sdhci_msm_check_write(host, val, reg);
1559 
1560 	writeb_relaxed(val, host->ioaddr + reg);
1561 
1562 	if (req_type)
1563 		sdhci_msm_check_power_status(host, req_type);
1564 }
1565 
1566 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
1567 {
1568 	struct mmc_host *mmc = msm_host->mmc;
1569 	struct regulator *supply = mmc->supply.vqmmc;
1570 	u32 caps = 0, config;
1571 	struct sdhci_host *host = mmc_priv(mmc);
1572 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1573 
1574 	if (!IS_ERR(mmc->supply.vqmmc)) {
1575 		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
1576 			caps |= CORE_1_8V_SUPPORT;
1577 		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
1578 			caps |= CORE_3_0V_SUPPORT;
1579 
1580 		if (!caps)
1581 			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
1582 					mmc_hostname(mmc));
1583 	}
1584 
1585 	if (caps) {
1586 		/*
1587 		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
1588 		 * bit can be used as required later on.
1589 		 */
1590 		u32 io_level = msm_host->curr_io_level;
1591 
1592 		config = readl_relaxed(host->ioaddr +
1593 				msm_offset->core_vendor_spec);
1594 		config |= CORE_IO_PAD_PWR_SWITCH_EN;
1595 
1596 		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
1597 			config &= ~CORE_IO_PAD_PWR_SWITCH;
1598 		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
1599 			config |= CORE_IO_PAD_PWR_SWITCH;
1600 
1601 		writel_relaxed(config,
1602 				host->ioaddr + msm_offset->core_vendor_spec);
1603 	}
1604 	msm_host->caps_0 |= caps;
1605 	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
1606 }
1607 
1608 static const struct sdhci_msm_variant_ops mci_var_ops = {
1609 	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
1610 	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
1611 };
1612 
1613 static const struct sdhci_msm_variant_ops v5_var_ops = {
1614 	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
1615 	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
1616 };
1617 
1618 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
1619 	.mci_removed = false,
1620 	.var_ops = &mci_var_ops,
1621 	.offset = &sdhci_msm_mci_offset,
1622 };
1623 
1624 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
1625 	.mci_removed = true,
1626 	.var_ops = &v5_var_ops,
1627 	.offset = &sdhci_msm_v5_offset,
1628 };
1629 
1630 static const struct of_device_id sdhci_msm_dt_match[] = {
1631 	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
1632 	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
1633 	{},
1634 };
1635 
1636 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
1637 
1638 static const struct sdhci_ops sdhci_msm_ops = {
1639 	.reset = sdhci_reset,
1640 	.set_clock = sdhci_msm_set_clock,
1641 	.get_min_clock = sdhci_msm_get_min_clock,
1642 	.get_max_clock = sdhci_msm_get_max_clock,
1643 	.set_bus_width = sdhci_set_bus_width,
1644 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
1645 	.write_w = sdhci_msm_writew,
1646 	.write_b = sdhci_msm_writeb,
1647 };
1648 
1649 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
1650 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1651 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
1652 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
1653 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
1654 	.ops = &sdhci_msm_ops,
1655 };
1656 
1657 static int sdhci_msm_probe(struct platform_device *pdev)
1658 {
1659 	struct sdhci_host *host;
1660 	struct sdhci_pltfm_host *pltfm_host;
1661 	struct sdhci_msm_host *msm_host;
1662 	struct resource *core_memres;
1663 	struct clk *clk;
1664 	int ret;
1665 	u16 host_version, core_minor;
1666 	u32 core_version, config;
1667 	u8 core_major;
1668 	const struct sdhci_msm_offset *msm_offset;
1669 	const struct sdhci_msm_variant_info *var_info;
1670 
1671 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
1672 	if (IS_ERR(host))
1673 		return PTR_ERR(host);
1674 
1675 	host->sdma_boundary = 0;
1676 	pltfm_host = sdhci_priv(host);
1677 	msm_host = sdhci_pltfm_priv(pltfm_host);
1678 	msm_host->mmc = host->mmc;
1679 	msm_host->pdev = pdev;
1680 
1681 	ret = mmc_of_parse(host->mmc);
1682 	if (ret)
1683 		goto pltfm_free;
1684 
1685 	/*
1686 	 * Based on the compatible string, load the required msm host info from
1687 	 * the data associated with the version info.
1688 	 */
1689 	var_info = of_device_get_match_data(&pdev->dev);
1690 
1691 	msm_host->mci_removed = var_info->mci_removed;
1692 	msm_host->var_ops = var_info->var_ops;
1693 	msm_host->offset = var_info->offset;
1694 
1695 	msm_offset = msm_host->offset;
1696 
1697 	sdhci_get_of_property(pdev);
1698 
1699 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
1700 
1701 	/* Setup SDCC bus voter clock. */
1702 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
1703 	if (!IS_ERR(msm_host->bus_clk)) {
1704 		/* Vote for max. clk rate for max. performance */
1705 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
1706 		if (ret)
1707 			goto pltfm_free;
1708 		ret = clk_prepare_enable(msm_host->bus_clk);
1709 		if (ret)
1710 			goto pltfm_free;
1711 	}
1712 
1713 	/* Setup main peripheral bus clock */
1714 	clk = devm_clk_get(&pdev->dev, "iface");
1715 	if (IS_ERR(clk)) {
1716 		ret = PTR_ERR(clk);
1717 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
1718 		goto bus_clk_disable;
1719 	}
1720 	msm_host->bulk_clks[1].clk = clk;
1721 
1722 	/* Setup SDC MMC clock */
1723 	clk = devm_clk_get(&pdev->dev, "core");
1724 	if (IS_ERR(clk)) {
1725 		ret = PTR_ERR(clk);
1726 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
1727 		goto bus_clk_disable;
1728 	}
1729 	msm_host->bulk_clks[0].clk = clk;
1730 
1731 	/* Vote for maximum clock rate for maximum performance */
1732 	ret = clk_set_rate(clk, INT_MAX);
1733 	if (ret)
1734 		dev_warn(&pdev->dev, "core clock boost failed\n");
1735 
1736 	clk = devm_clk_get(&pdev->dev, "cal");
1737 	if (IS_ERR(clk))
1738 		clk = NULL;
1739 	msm_host->bulk_clks[2].clk = clk;
1740 
1741 	clk = devm_clk_get(&pdev->dev, "sleep");
1742 	if (IS_ERR(clk))
1743 		clk = NULL;
1744 	msm_host->bulk_clks[3].clk = clk;
1745 
1746 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
1747 				      msm_host->bulk_clks);
1748 	if (ret)
1749 		goto bus_clk_disable;
1750 
1751 	/*
1752 	 * xo clock is needed for FLL feature of cm_dll.
1753 	 * In case if xo clock is not mentioned in DT, warn and proceed.
1754 	 */
1755 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
1756 	if (IS_ERR(msm_host->xo_clk)) {
1757 		ret = PTR_ERR(msm_host->xo_clk);
1758 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
1759 	}
1760 
1761 	if (!msm_host->mci_removed) {
1762 		core_memres = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1763 		msm_host->core_mem = devm_ioremap_resource(&pdev->dev,
1764 				core_memres);
1765 
1766 		if (IS_ERR(msm_host->core_mem)) {
1767 			ret = PTR_ERR(msm_host->core_mem);
1768 			goto clk_disable;
1769 		}
1770 	}
1771 
1772 	/* Reset the vendor spec register to power on reset state */
1773 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
1774 			host->ioaddr + msm_offset->core_vendor_spec);
1775 
1776 	if (!msm_host->mci_removed) {
1777 		/* Set HC_MODE_EN bit in HC_MODE register */
1778 		msm_host_writel(msm_host, HC_MODE_EN, host,
1779 				msm_offset->core_hc_mode);
1780 		config = msm_host_readl(msm_host, host,
1781 				msm_offset->core_hc_mode);
1782 		config |= FF_CLK_SW_RST_DIS;
1783 		msm_host_writel(msm_host, config, host,
1784 				msm_offset->core_hc_mode);
1785 	}
1786 
1787 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
1788 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
1789 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
1790 			       SDHCI_VENDOR_VER_SHIFT));
1791 
1792 	core_version = msm_host_readl(msm_host, host,
1793 			msm_offset->core_mci_version);
1794 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
1795 		      CORE_VERSION_MAJOR_SHIFT;
1796 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
1797 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
1798 		core_version, core_major, core_minor);
1799 
1800 	if (core_major == 1 && core_minor >= 0x42)
1801 		msm_host->use_14lpp_dll_reset = true;
1802 
1803 	/*
1804 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
1805 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
1806 	 */
1807 	if (core_major == 1 && core_minor < 0x34)
1808 		msm_host->use_cdclp533 = true;
1809 
1810 	/*
1811 	 * Support for some capabilities is not advertised by newer
1812 	 * controller versions and must be explicitly enabled.
1813 	 */
1814 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
1815 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
1816 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
1817 		writel_relaxed(config, host->ioaddr +
1818 				msm_offset->core_vendor_spec_capabilities0);
1819 	}
1820 
1821 	/*
1822 	 * Power on reset state may trigger power irq if previous status of
1823 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
1824 	 * interrupt in GIC, any pending power irq interrupt should be
1825 	 * acknowledged. Otherwise power irq interrupt handler would be
1826 	 * fired prematurely.
1827 	 */
1828 	sdhci_msm_handle_pwr_irq(host, 0);
1829 
1830 	/*
1831 	 * Ensure that above writes are propogated before interrupt enablement
1832 	 * in GIC.
1833 	 */
1834 	mb();
1835 
1836 	/* Setup IRQ for handling power/voltage tasks with PMIC */
1837 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
1838 	if (msm_host->pwr_irq < 0) {
1839 		dev_err(&pdev->dev, "Get pwr_irq failed (%d)\n",
1840 			msm_host->pwr_irq);
1841 		ret = msm_host->pwr_irq;
1842 		goto clk_disable;
1843 	}
1844 
1845 	sdhci_msm_init_pwr_irq_wait(msm_host);
1846 	/* Enable pwr irq interrupts */
1847 	msm_host_writel(msm_host, INT_MASK, host,
1848 		msm_offset->core_pwrctl_mask);
1849 
1850 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
1851 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
1852 					dev_name(&pdev->dev), host);
1853 	if (ret) {
1854 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
1855 		goto clk_disable;
1856 	}
1857 
1858 	pm_runtime_get_noresume(&pdev->dev);
1859 	pm_runtime_set_active(&pdev->dev);
1860 	pm_runtime_enable(&pdev->dev);
1861 	pm_runtime_set_autosuspend_delay(&pdev->dev,
1862 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
1863 	pm_runtime_use_autosuspend(&pdev->dev);
1864 
1865 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
1866 	ret = sdhci_add_host(host);
1867 	if (ret)
1868 		goto pm_runtime_disable;
1869 	sdhci_msm_set_regulator_caps(msm_host);
1870 
1871 	pm_runtime_mark_last_busy(&pdev->dev);
1872 	pm_runtime_put_autosuspend(&pdev->dev);
1873 
1874 	return 0;
1875 
1876 pm_runtime_disable:
1877 	pm_runtime_disable(&pdev->dev);
1878 	pm_runtime_set_suspended(&pdev->dev);
1879 	pm_runtime_put_noidle(&pdev->dev);
1880 clk_disable:
1881 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1882 				   msm_host->bulk_clks);
1883 bus_clk_disable:
1884 	if (!IS_ERR(msm_host->bus_clk))
1885 		clk_disable_unprepare(msm_host->bus_clk);
1886 pltfm_free:
1887 	sdhci_pltfm_free(pdev);
1888 	return ret;
1889 }
1890 
1891 static int sdhci_msm_remove(struct platform_device *pdev)
1892 {
1893 	struct sdhci_host *host = platform_get_drvdata(pdev);
1894 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1895 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1896 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
1897 		    0xffffffff);
1898 
1899 	sdhci_remove_host(host, dead);
1900 
1901 	pm_runtime_get_sync(&pdev->dev);
1902 	pm_runtime_disable(&pdev->dev);
1903 	pm_runtime_put_noidle(&pdev->dev);
1904 
1905 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1906 				   msm_host->bulk_clks);
1907 	if (!IS_ERR(msm_host->bus_clk))
1908 		clk_disable_unprepare(msm_host->bus_clk);
1909 	sdhci_pltfm_free(pdev);
1910 	return 0;
1911 }
1912 
1913 #ifdef CONFIG_PM
1914 static int sdhci_msm_runtime_suspend(struct device *dev)
1915 {
1916 	struct sdhci_host *host = dev_get_drvdata(dev);
1917 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1918 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1919 
1920 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1921 				   msm_host->bulk_clks);
1922 
1923 	return 0;
1924 }
1925 
1926 static int sdhci_msm_runtime_resume(struct device *dev)
1927 {
1928 	struct sdhci_host *host = dev_get_drvdata(dev);
1929 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1930 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1931 
1932 	return clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
1933 				       msm_host->bulk_clks);
1934 }
1935 #endif
1936 
1937 static const struct dev_pm_ops sdhci_msm_pm_ops = {
1938 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1939 				pm_runtime_force_resume)
1940 	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
1941 			   sdhci_msm_runtime_resume,
1942 			   NULL)
1943 };
1944 
1945 static struct platform_driver sdhci_msm_driver = {
1946 	.probe = sdhci_msm_probe,
1947 	.remove = sdhci_msm_remove,
1948 	.driver = {
1949 		   .name = "sdhci_msm",
1950 		   .of_match_table = sdhci_msm_dt_match,
1951 		   .pm = &sdhci_msm_pm_ops,
1952 	},
1953 };
1954 
1955 module_platform_driver(sdhci_msm_driver);
1956 
1957 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
1958 MODULE_LICENSE("GPL v2");
1959