1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Secure Digital Host Controller Interface ACPI driver. 4 * 5 * Copyright (c) 2012, Intel Corporation. 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/init.h> 10 #include <linux/export.h> 11 #include <linux/module.h> 12 #include <linux/device.h> 13 #include <linux/platform_device.h> 14 #include <linux/ioport.h> 15 #include <linux/io.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/compiler.h> 18 #include <linux/stddef.h> 19 #include <linux/bitops.h> 20 #include <linux/types.h> 21 #include <linux/err.h> 22 #include <linux/interrupt.h> 23 #include <linux/acpi.h> 24 #include <linux/pm.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/delay.h> 27 #include <linux/dmi.h> 28 29 #include <linux/mmc/host.h> 30 #include <linux/mmc/pm.h> 31 #include <linux/mmc/slot-gpio.h> 32 33 #ifdef CONFIG_X86 34 #include <linux/platform_data/x86/soc.h> 35 #include <asm/iosf_mbi.h> 36 #endif 37 38 #include "sdhci.h" 39 40 enum { 41 SDHCI_ACPI_SD_CD = BIT(0), 42 SDHCI_ACPI_RUNTIME_PM = BIT(1), 43 SDHCI_ACPI_SD_CD_OVERRIDE_LEVEL = BIT(2), 44 }; 45 46 struct sdhci_acpi_chip { 47 const struct sdhci_ops *ops; 48 unsigned int quirks; 49 unsigned int quirks2; 50 unsigned long caps; 51 unsigned int caps2; 52 mmc_pm_flag_t pm_caps; 53 }; 54 55 struct sdhci_acpi_slot { 56 const struct sdhci_acpi_chip *chip; 57 unsigned int quirks; 58 unsigned int quirks2; 59 unsigned long caps; 60 unsigned int caps2; 61 mmc_pm_flag_t pm_caps; 62 unsigned int flags; 63 size_t priv_size; 64 int (*probe_slot)(struct platform_device *, struct acpi_device *); 65 int (*remove_slot)(struct platform_device *); 66 int (*free_slot)(struct platform_device *pdev); 67 int (*setup_host)(struct platform_device *pdev); 68 }; 69 70 struct sdhci_acpi_host { 71 struct sdhci_host *host; 72 const struct sdhci_acpi_slot *slot; 73 struct platform_device *pdev; 74 bool use_runtime_pm; 75 bool is_intel; 76 bool reset_signal_volt_on_suspend; 77 unsigned long private[] ____cacheline_aligned; 78 }; 79 80 enum { 81 DMI_QUIRK_RESET_SD_SIGNAL_VOLT_ON_SUSP = BIT(0), 82 DMI_QUIRK_SD_NO_WRITE_PROTECT = BIT(1), 83 }; 84 85 static inline void *sdhci_acpi_priv(struct sdhci_acpi_host *c) 86 { 87 return (void *)c->private; 88 } 89 90 static inline bool sdhci_acpi_flag(struct sdhci_acpi_host *c, unsigned int flag) 91 { 92 return c->slot && (c->slot->flags & flag); 93 } 94 95 #define INTEL_DSM_HS_CAPS_SDR25 BIT(0) 96 #define INTEL_DSM_HS_CAPS_DDR50 BIT(1) 97 #define INTEL_DSM_HS_CAPS_SDR50 BIT(2) 98 #define INTEL_DSM_HS_CAPS_SDR104 BIT(3) 99 100 enum { 101 INTEL_DSM_FNS = 0, 102 INTEL_DSM_V18_SWITCH = 3, 103 INTEL_DSM_V33_SWITCH = 4, 104 INTEL_DSM_HS_CAPS = 8, 105 }; 106 107 struct intel_host { 108 u32 dsm_fns; 109 u32 hs_caps; 110 }; 111 112 static const guid_t intel_dsm_guid = 113 GUID_INIT(0xF6C13EA5, 0x65CD, 0x461F, 114 0xAB, 0x7A, 0x29, 0xF7, 0xE8, 0xD5, 0xBD, 0x61); 115 116 static int __intel_dsm(struct intel_host *intel_host, struct device *dev, 117 unsigned int fn, u32 *result) 118 { 119 union acpi_object *obj; 120 int err = 0; 121 122 obj = acpi_evaluate_dsm(ACPI_HANDLE(dev), &intel_dsm_guid, 0, fn, NULL); 123 if (!obj) 124 return -EOPNOTSUPP; 125 126 if (obj->type == ACPI_TYPE_INTEGER) { 127 *result = obj->integer.value; 128 } else if (obj->type == ACPI_TYPE_BUFFER && obj->buffer.length > 0) { 129 size_t len = min_t(size_t, obj->buffer.length, 4); 130 131 *result = 0; 132 memcpy(result, obj->buffer.pointer, len); 133 } else { 134 dev_err(dev, "%s DSM fn %u obj->type %d obj->buffer.length %d\n", 135 __func__, fn, obj->type, obj->buffer.length); 136 err = -EINVAL; 137 } 138 139 ACPI_FREE(obj); 140 141 return err; 142 } 143 144 static int intel_dsm(struct intel_host *intel_host, struct device *dev, 145 unsigned int fn, u32 *result) 146 { 147 if (fn > 31 || !(intel_host->dsm_fns & (1 << fn))) 148 return -EOPNOTSUPP; 149 150 return __intel_dsm(intel_host, dev, fn, result); 151 } 152 153 static void intel_dsm_init(struct intel_host *intel_host, struct device *dev, 154 struct mmc_host *mmc) 155 { 156 int err; 157 158 intel_host->hs_caps = ~0; 159 160 err = __intel_dsm(intel_host, dev, INTEL_DSM_FNS, &intel_host->dsm_fns); 161 if (err) { 162 pr_debug("%s: DSM not supported, error %d\n", 163 mmc_hostname(mmc), err); 164 return; 165 } 166 167 pr_debug("%s: DSM function mask %#x\n", 168 mmc_hostname(mmc), intel_host->dsm_fns); 169 170 intel_dsm(intel_host, dev, INTEL_DSM_HS_CAPS, &intel_host->hs_caps); 171 } 172 173 static int intel_start_signal_voltage_switch(struct mmc_host *mmc, 174 struct mmc_ios *ios) 175 { 176 struct device *dev = mmc_dev(mmc); 177 struct sdhci_acpi_host *c = dev_get_drvdata(dev); 178 struct intel_host *intel_host = sdhci_acpi_priv(c); 179 unsigned int fn; 180 u32 result = 0; 181 int err; 182 183 err = sdhci_start_signal_voltage_switch(mmc, ios); 184 if (err) 185 return err; 186 187 switch (ios->signal_voltage) { 188 case MMC_SIGNAL_VOLTAGE_330: 189 fn = INTEL_DSM_V33_SWITCH; 190 break; 191 case MMC_SIGNAL_VOLTAGE_180: 192 fn = INTEL_DSM_V18_SWITCH; 193 break; 194 default: 195 return 0; 196 } 197 198 err = intel_dsm(intel_host, dev, fn, &result); 199 pr_debug("%s: %s DSM fn %u error %d result %u\n", 200 mmc_hostname(mmc), __func__, fn, err, result); 201 202 return 0; 203 } 204 205 static void sdhci_acpi_int_hw_reset(struct sdhci_host *host) 206 { 207 u8 reg; 208 209 reg = sdhci_readb(host, SDHCI_POWER_CONTROL); 210 reg |= 0x10; 211 sdhci_writeb(host, reg, SDHCI_POWER_CONTROL); 212 /* For eMMC, minimum is 1us but give it 9us for good measure */ 213 udelay(9); 214 reg &= ~0x10; 215 sdhci_writeb(host, reg, SDHCI_POWER_CONTROL); 216 /* For eMMC, minimum is 200us but give it 300us for good measure */ 217 usleep_range(300, 1000); 218 } 219 220 static const struct sdhci_ops sdhci_acpi_ops_dflt = { 221 .set_clock = sdhci_set_clock, 222 .set_bus_width = sdhci_set_bus_width, 223 .reset = sdhci_reset, 224 .set_uhs_signaling = sdhci_set_uhs_signaling, 225 }; 226 227 static const struct sdhci_ops sdhci_acpi_ops_int = { 228 .set_clock = sdhci_set_clock, 229 .set_bus_width = sdhci_set_bus_width, 230 .reset = sdhci_reset, 231 .set_uhs_signaling = sdhci_set_uhs_signaling, 232 .hw_reset = sdhci_acpi_int_hw_reset, 233 }; 234 235 static const struct sdhci_acpi_chip sdhci_acpi_chip_int = { 236 .ops = &sdhci_acpi_ops_int, 237 }; 238 239 #ifdef CONFIG_X86 240 241 #define BYT_IOSF_SCCEP 0x63 242 #define BYT_IOSF_OCP_NETCTRL0 0x1078 243 #define BYT_IOSF_OCP_TIMEOUT_BASE GENMASK(10, 8) 244 245 static void sdhci_acpi_byt_setting(struct device *dev) 246 { 247 u32 val = 0; 248 249 if (!soc_intel_is_byt()) 250 return; 251 252 if (iosf_mbi_read(BYT_IOSF_SCCEP, MBI_CR_READ, BYT_IOSF_OCP_NETCTRL0, 253 &val)) { 254 dev_err(dev, "%s read error\n", __func__); 255 return; 256 } 257 258 if (!(val & BYT_IOSF_OCP_TIMEOUT_BASE)) 259 return; 260 261 val &= ~BYT_IOSF_OCP_TIMEOUT_BASE; 262 263 if (iosf_mbi_write(BYT_IOSF_SCCEP, MBI_CR_WRITE, BYT_IOSF_OCP_NETCTRL0, 264 val)) { 265 dev_err(dev, "%s write error\n", __func__); 266 return; 267 } 268 269 dev_dbg(dev, "%s completed\n", __func__); 270 } 271 272 static bool sdhci_acpi_byt_defer(struct device *dev) 273 { 274 if (!soc_intel_is_byt()) 275 return false; 276 277 if (!iosf_mbi_available()) 278 return true; 279 280 sdhci_acpi_byt_setting(dev); 281 282 return false; 283 } 284 285 #else 286 287 static inline void sdhci_acpi_byt_setting(struct device *dev) 288 { 289 } 290 291 static inline bool sdhci_acpi_byt_defer(struct device *dev) 292 { 293 return false; 294 } 295 296 #endif 297 298 static int bxt_get_cd(struct mmc_host *mmc) 299 { 300 int gpio_cd = mmc_gpio_get_cd(mmc); 301 302 if (!gpio_cd) 303 return 0; 304 305 return sdhci_get_cd_nogpio(mmc); 306 } 307 308 static int intel_probe_slot(struct platform_device *pdev, struct acpi_device *adev) 309 { 310 struct sdhci_acpi_host *c = platform_get_drvdata(pdev); 311 struct intel_host *intel_host = sdhci_acpi_priv(c); 312 struct sdhci_host *host = c->host; 313 314 if (acpi_dev_hid_uid_match(adev, "80860F14", "1") && 315 sdhci_readl(host, SDHCI_CAPABILITIES) == 0x446cc8b2 && 316 sdhci_readl(host, SDHCI_CAPABILITIES_1) == 0x00000807) 317 host->timeout_clk = 1000; /* 1000 kHz i.e. 1 MHz */ 318 319 if (acpi_dev_hid_uid_match(adev, "80865ACA", NULL)) 320 host->mmc_host_ops.get_cd = bxt_get_cd; 321 322 intel_dsm_init(intel_host, &pdev->dev, host->mmc); 323 324 host->mmc_host_ops.start_signal_voltage_switch = 325 intel_start_signal_voltage_switch; 326 327 c->is_intel = true; 328 329 return 0; 330 } 331 332 static int intel_setup_host(struct platform_device *pdev) 333 { 334 struct sdhci_acpi_host *c = platform_get_drvdata(pdev); 335 struct intel_host *intel_host = sdhci_acpi_priv(c); 336 337 if (!(intel_host->hs_caps & INTEL_DSM_HS_CAPS_SDR25)) 338 c->host->mmc->caps &= ~MMC_CAP_UHS_SDR25; 339 340 if (!(intel_host->hs_caps & INTEL_DSM_HS_CAPS_SDR50)) 341 c->host->mmc->caps &= ~MMC_CAP_UHS_SDR50; 342 343 if (!(intel_host->hs_caps & INTEL_DSM_HS_CAPS_DDR50)) 344 c->host->mmc->caps &= ~MMC_CAP_UHS_DDR50; 345 346 if (!(intel_host->hs_caps & INTEL_DSM_HS_CAPS_SDR104)) 347 c->host->mmc->caps &= ~MMC_CAP_UHS_SDR104; 348 349 return 0; 350 } 351 352 static const struct sdhci_acpi_slot sdhci_acpi_slot_int_emmc = { 353 .chip = &sdhci_acpi_chip_int, 354 .caps = MMC_CAP_8_BIT_DATA | MMC_CAP_NONREMOVABLE | 355 MMC_CAP_HW_RESET | MMC_CAP_1_8V_DDR | 356 MMC_CAP_CMD_DURING_TFR | MMC_CAP_WAIT_WHILE_BUSY, 357 .flags = SDHCI_ACPI_RUNTIME_PM, 358 .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC | 359 SDHCI_QUIRK_NO_LED, 360 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | 361 SDHCI_QUIRK2_STOP_WITH_TC | 362 SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400, 363 .probe_slot = intel_probe_slot, 364 .setup_host = intel_setup_host, 365 .priv_size = sizeof(struct intel_host), 366 }; 367 368 static const struct sdhci_acpi_slot sdhci_acpi_slot_int_sdio = { 369 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION | 370 SDHCI_QUIRK_NO_LED | 371 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, 372 .quirks2 = SDHCI_QUIRK2_HOST_OFF_CARD_ON, 373 .caps = MMC_CAP_NONREMOVABLE | MMC_CAP_POWER_OFF_CARD | 374 MMC_CAP_WAIT_WHILE_BUSY, 375 .flags = SDHCI_ACPI_RUNTIME_PM, 376 .pm_caps = MMC_PM_KEEP_POWER, 377 .probe_slot = intel_probe_slot, 378 .setup_host = intel_setup_host, 379 .priv_size = sizeof(struct intel_host), 380 }; 381 382 static const struct sdhci_acpi_slot sdhci_acpi_slot_int_sd = { 383 .flags = SDHCI_ACPI_SD_CD | SDHCI_ACPI_SD_CD_OVERRIDE_LEVEL | 384 SDHCI_ACPI_RUNTIME_PM, 385 .quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC | 386 SDHCI_QUIRK_NO_LED, 387 .quirks2 = SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON | 388 SDHCI_QUIRK2_STOP_WITH_TC, 389 .caps = MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_AGGRESSIVE_PM, 390 .probe_slot = intel_probe_slot, 391 .setup_host = intel_setup_host, 392 .priv_size = sizeof(struct intel_host), 393 }; 394 395 #define VENDOR_SPECIFIC_PWRCTL_CLEAR_REG 0x1a8 396 #define VENDOR_SPECIFIC_PWRCTL_CTL_REG 0x1ac 397 static irqreturn_t sdhci_acpi_qcom_handler(int irq, void *ptr) 398 { 399 struct sdhci_host *host = ptr; 400 401 sdhci_writel(host, 0x3, VENDOR_SPECIFIC_PWRCTL_CLEAR_REG); 402 sdhci_writel(host, 0x1, VENDOR_SPECIFIC_PWRCTL_CTL_REG); 403 404 return IRQ_HANDLED; 405 } 406 407 static int qcom_probe_slot(struct platform_device *pdev, struct acpi_device *adev) 408 { 409 struct sdhci_acpi_host *c = platform_get_drvdata(pdev); 410 struct sdhci_host *host = c->host; 411 int *irq = sdhci_acpi_priv(c); 412 413 *irq = -EINVAL; 414 415 if (!acpi_dev_hid_uid_match(adev, "QCOM8051", NULL)) 416 return 0; 417 418 *irq = platform_get_irq(pdev, 1); 419 if (*irq < 0) 420 return 0; 421 422 return request_threaded_irq(*irq, NULL, sdhci_acpi_qcom_handler, 423 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 424 "sdhci_qcom", host); 425 } 426 427 static int qcom_free_slot(struct platform_device *pdev) 428 { 429 struct device *dev = &pdev->dev; 430 struct sdhci_acpi_host *c = platform_get_drvdata(pdev); 431 struct sdhci_host *host = c->host; 432 struct acpi_device *adev; 433 int *irq = sdhci_acpi_priv(c); 434 435 adev = ACPI_COMPANION(dev); 436 if (!adev) 437 return -ENODEV; 438 439 if (!acpi_dev_hid_uid_match(adev, "QCOM8051", NULL)) 440 return 0; 441 442 if (*irq < 0) 443 return 0; 444 445 free_irq(*irq, host); 446 return 0; 447 } 448 449 static const struct sdhci_acpi_slot sdhci_acpi_slot_qcom_sd_3v = { 450 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION, 451 .quirks2 = SDHCI_QUIRK2_NO_1_8_V, 452 .caps = MMC_CAP_NONREMOVABLE, 453 .priv_size = sizeof(int), 454 .probe_slot = qcom_probe_slot, 455 .free_slot = qcom_free_slot, 456 }; 457 458 static const struct sdhci_acpi_slot sdhci_acpi_slot_qcom_sd = { 459 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION, 460 .caps = MMC_CAP_NONREMOVABLE, 461 }; 462 463 struct amd_sdhci_host { 464 bool tuned_clock; 465 bool dll_enabled; 466 }; 467 468 /* AMD sdhci reset dll register. */ 469 #define SDHCI_AMD_RESET_DLL_REGISTER 0x908 470 471 static int amd_select_drive_strength(struct mmc_card *card, 472 unsigned int max_dtr, int host_drv, 473 int card_drv, int *host_driver_strength) 474 { 475 struct sdhci_host *host = mmc_priv(card->host); 476 u16 preset, preset_driver_strength; 477 478 /* 479 * This method is only called by mmc_select_hs200 so we only need to 480 * read from the HS200 (SDR104) preset register. 481 * 482 * Firmware that has "invalid/default" presets return a driver strength 483 * of A. This matches the previously hard coded value. 484 */ 485 preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR104); 486 preset_driver_strength = FIELD_GET(SDHCI_PRESET_DRV_MASK, preset); 487 488 /* 489 * We want the controller driver strength to match the card's driver 490 * strength so they have similar rise/fall times. 491 * 492 * The controller driver strength set by this method is sticky for all 493 * timings after this method is called. This unfortunately means that 494 * while HS400 tuning is in progress we end up with mismatched driver 495 * strengths between the controller and the card. HS400 tuning requires 496 * switching from HS400->DDR52->HS->HS200->HS400. So the driver mismatch 497 * happens while in DDR52 and HS modes. This has not been observed to 498 * cause problems. Enabling presets would fix this issue. 499 */ 500 *host_driver_strength = preset_driver_strength; 501 502 /* 503 * The resulting card driver strength is only set when switching the 504 * card's timing to HS200 or HS400. The card will use the default driver 505 * strength (B) for any other mode. 506 */ 507 return preset_driver_strength; 508 } 509 510 static void sdhci_acpi_amd_hs400_dll(struct sdhci_host *host, bool enable) 511 { 512 struct sdhci_acpi_host *acpi_host = sdhci_priv(host); 513 struct amd_sdhci_host *amd_host = sdhci_acpi_priv(acpi_host); 514 515 /* AMD Platform requires dll setting */ 516 sdhci_writel(host, 0x40003210, SDHCI_AMD_RESET_DLL_REGISTER); 517 usleep_range(10, 20); 518 if (enable) 519 sdhci_writel(host, 0x40033210, SDHCI_AMD_RESET_DLL_REGISTER); 520 521 amd_host->dll_enabled = enable; 522 } 523 524 /* 525 * The initialization sequence for HS400 is: 526 * HS->HS200->Perform Tuning->HS->HS400 527 * 528 * The re-tuning sequence is: 529 * HS400->DDR52->HS->HS200->Perform Tuning->HS->HS400 530 * 531 * The AMD eMMC Controller can only use the tuned clock while in HS200 and HS400 532 * mode. If we switch to a different mode, we need to disable the tuned clock. 533 * If we have previously performed tuning and switch back to HS200 or 534 * HS400, we can re-enable the tuned clock. 535 * 536 */ 537 static void amd_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 538 { 539 struct sdhci_host *host = mmc_priv(mmc); 540 struct sdhci_acpi_host *acpi_host = sdhci_priv(host); 541 struct amd_sdhci_host *amd_host = sdhci_acpi_priv(acpi_host); 542 unsigned int old_timing = host->timing; 543 u16 val; 544 545 sdhci_set_ios(mmc, ios); 546 547 if (old_timing != host->timing && amd_host->tuned_clock) { 548 if (host->timing == MMC_TIMING_MMC_HS400 || 549 host->timing == MMC_TIMING_MMC_HS200) { 550 val = sdhci_readw(host, SDHCI_HOST_CONTROL2); 551 val |= SDHCI_CTRL_TUNED_CLK; 552 sdhci_writew(host, val, SDHCI_HOST_CONTROL2); 553 } else { 554 val = sdhci_readw(host, SDHCI_HOST_CONTROL2); 555 val &= ~SDHCI_CTRL_TUNED_CLK; 556 sdhci_writew(host, val, SDHCI_HOST_CONTROL2); 557 } 558 559 /* DLL is only required for HS400 */ 560 if (host->timing == MMC_TIMING_MMC_HS400 && 561 !amd_host->dll_enabled) 562 sdhci_acpi_amd_hs400_dll(host, true); 563 } 564 } 565 566 static int amd_sdhci_execute_tuning(struct mmc_host *mmc, u32 opcode) 567 { 568 int err; 569 struct sdhci_host *host = mmc_priv(mmc); 570 struct sdhci_acpi_host *acpi_host = sdhci_priv(host); 571 struct amd_sdhci_host *amd_host = sdhci_acpi_priv(acpi_host); 572 573 amd_host->tuned_clock = false; 574 575 err = sdhci_execute_tuning(mmc, opcode); 576 577 if (!err && !host->tuning_err) 578 amd_host->tuned_clock = true; 579 580 return err; 581 } 582 583 static void amd_sdhci_reset(struct sdhci_host *host, u8 mask) 584 { 585 struct sdhci_acpi_host *acpi_host = sdhci_priv(host); 586 struct amd_sdhci_host *amd_host = sdhci_acpi_priv(acpi_host); 587 588 if (mask & SDHCI_RESET_ALL) { 589 amd_host->tuned_clock = false; 590 sdhci_acpi_amd_hs400_dll(host, false); 591 } 592 593 sdhci_reset(host, mask); 594 } 595 596 static const struct sdhci_ops sdhci_acpi_ops_amd = { 597 .set_clock = sdhci_set_clock, 598 .set_bus_width = sdhci_set_bus_width, 599 .reset = amd_sdhci_reset, 600 .set_uhs_signaling = sdhci_set_uhs_signaling, 601 }; 602 603 static const struct sdhci_acpi_chip sdhci_acpi_chip_amd = { 604 .ops = &sdhci_acpi_ops_amd, 605 }; 606 607 static int sdhci_acpi_emmc_amd_probe_slot(struct platform_device *pdev, 608 struct acpi_device *adev) 609 { 610 struct sdhci_acpi_host *c = platform_get_drvdata(pdev); 611 struct sdhci_host *host = c->host; 612 613 sdhci_read_caps(host); 614 if (host->caps1 & SDHCI_SUPPORT_DDR50) 615 host->mmc->caps = MMC_CAP_1_8V_DDR; 616 617 if ((host->caps1 & SDHCI_SUPPORT_SDR104) && 618 (host->mmc->caps & MMC_CAP_1_8V_DDR)) 619 host->mmc->caps2 = MMC_CAP2_HS400_1_8V; 620 621 /* 622 * There are two types of presets out in the wild: 623 * 1) Default/broken presets. 624 * These presets have two sets of problems: 625 * a) The clock divisor for SDR12, SDR25, and SDR50 is too small. 626 * This results in clock frequencies that are 2x higher than 627 * acceptable. i.e., SDR12 = 25 MHz, SDR25 = 50 MHz, SDR50 = 628 * 100 MHz.x 629 * b) The HS200 and HS400 driver strengths don't match. 630 * By default, the SDR104 preset register has a driver strength of 631 * A, but the (internal) HS400 preset register has a driver 632 * strength of B. As part of initializing HS400, HS200 tuning 633 * needs to be performed. Having different driver strengths 634 * between tuning and operation is wrong. It results in different 635 * rise/fall times that lead to incorrect sampling. 636 * 2) Firmware with properly initialized presets. 637 * These presets have proper clock divisors. i.e., SDR12 => 12MHz, 638 * SDR25 => 25 MHz, SDR50 => 50 MHz. Additionally the HS200 and 639 * HS400 preset driver strengths match. 640 * 641 * Enabling presets for HS400 doesn't work for the following reasons: 642 * 1) sdhci_set_ios has a hard coded list of timings that are used 643 * to determine if presets should be enabled. 644 * 2) sdhci_get_preset_value is using a non-standard register to 645 * read out HS400 presets. The AMD controller doesn't support this 646 * non-standard register. In fact, it doesn't expose the HS400 647 * preset register anywhere in the SDHCI memory map. This results 648 * in reading a garbage value and using the wrong presets. 649 * 650 * Since HS400 and HS200 presets must be identical, we could 651 * instead use the SDR104 preset register. 652 * 653 * If the above issues are resolved we could remove this quirk for 654 * firmware that has valid presets (i.e., SDR12 <= 12 MHz). 655 */ 656 host->quirks2 |= SDHCI_QUIRK2_PRESET_VALUE_BROKEN; 657 658 host->mmc_host_ops.select_drive_strength = amd_select_drive_strength; 659 host->mmc_host_ops.set_ios = amd_set_ios; 660 host->mmc_host_ops.execute_tuning = amd_sdhci_execute_tuning; 661 return 0; 662 } 663 664 static const struct sdhci_acpi_slot sdhci_acpi_slot_amd_emmc = { 665 .chip = &sdhci_acpi_chip_amd, 666 .caps = MMC_CAP_8_BIT_DATA | MMC_CAP_NONREMOVABLE, 667 .quirks = SDHCI_QUIRK_32BIT_DMA_ADDR | 668 SDHCI_QUIRK_32BIT_DMA_SIZE | 669 SDHCI_QUIRK_32BIT_ADMA_SIZE, 670 .quirks2 = SDHCI_QUIRK2_BROKEN_64_BIT_DMA, 671 .probe_slot = sdhci_acpi_emmc_amd_probe_slot, 672 .priv_size = sizeof(struct amd_sdhci_host), 673 }; 674 675 struct sdhci_acpi_uid_slot { 676 const char *hid; 677 const char *uid; 678 const struct sdhci_acpi_slot *slot; 679 }; 680 681 static const struct sdhci_acpi_uid_slot sdhci_acpi_uids[] = { 682 { "80865ACA", NULL, &sdhci_acpi_slot_int_sd }, 683 { "80865ACC", NULL, &sdhci_acpi_slot_int_emmc }, 684 { "80865AD0", NULL, &sdhci_acpi_slot_int_sdio }, 685 { "80860F14" , "1" , &sdhci_acpi_slot_int_emmc }, 686 { "80860F14" , "2" , &sdhci_acpi_slot_int_sdio }, 687 { "80860F14" , "3" , &sdhci_acpi_slot_int_sd }, 688 { "80860F16" , NULL, &sdhci_acpi_slot_int_sd }, 689 { "INT33BB" , "2" , &sdhci_acpi_slot_int_sdio }, 690 { "INT33BB" , "3" , &sdhci_acpi_slot_int_sd }, 691 { "INT33C6" , NULL, &sdhci_acpi_slot_int_sdio }, 692 { "INT3436" , NULL, &sdhci_acpi_slot_int_sdio }, 693 { "INT344D" , NULL, &sdhci_acpi_slot_int_sdio }, 694 { "PNP0FFF" , "3" , &sdhci_acpi_slot_int_sd }, 695 { "PNP0D40" }, 696 { "QCOM8051", NULL, &sdhci_acpi_slot_qcom_sd_3v }, 697 { "QCOM8052", NULL, &sdhci_acpi_slot_qcom_sd }, 698 { "AMDI0040", NULL, &sdhci_acpi_slot_amd_emmc }, 699 { "AMDI0041", NULL, &sdhci_acpi_slot_amd_emmc }, 700 { }, 701 }; 702 703 static const struct acpi_device_id sdhci_acpi_ids[] = { 704 { "80865ACA" }, 705 { "80865ACC" }, 706 { "80865AD0" }, 707 { "80860F14" }, 708 { "80860F16" }, 709 { "INT33BB" }, 710 { "INT33C6" }, 711 { "INT3436" }, 712 { "INT344D" }, 713 { "PNP0D40" }, 714 { "QCOM8051" }, 715 { "QCOM8052" }, 716 { "AMDI0040" }, 717 { "AMDI0041" }, 718 { }, 719 }; 720 MODULE_DEVICE_TABLE(acpi, sdhci_acpi_ids); 721 722 static const struct dmi_system_id sdhci_acpi_quirks[] = { 723 { 724 /* 725 * The Lenovo Miix 320-10ICR has a bug in the _PS0 method of 726 * the SHC1 ACPI device, this bug causes it to reprogram the 727 * wrong LDO (DLDO3) to 1.8V if 1.8V modes are used and the 728 * card is (runtime) suspended + resumed. DLDO3 is used for 729 * the LCD and setting it to 1.8V causes the LCD to go black. 730 */ 731 .matches = { 732 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 733 DMI_MATCH(DMI_PRODUCT_VERSION, "Lenovo MIIX 320-10ICR"), 734 }, 735 .driver_data = (void *)DMI_QUIRK_RESET_SD_SIGNAL_VOLT_ON_SUSP, 736 }, 737 { 738 /* 739 * The Acer Aspire Switch 10 (SW5-012) microSD slot always 740 * reports the card being write-protected even though microSD 741 * cards do not have a write-protect switch at all. 742 */ 743 .matches = { 744 DMI_MATCH(DMI_SYS_VENDOR, "Acer"), 745 DMI_MATCH(DMI_PRODUCT_NAME, "Aspire SW5-012"), 746 }, 747 .driver_data = (void *)DMI_QUIRK_SD_NO_WRITE_PROTECT, 748 }, 749 { 750 /* 751 * The Toshiba WT8-B's microSD slot always reports the card being 752 * write-protected. 753 */ 754 .matches = { 755 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), 756 DMI_MATCH(DMI_PRODUCT_NAME, "TOSHIBA ENCORE 2 WT8-B"), 757 }, 758 .driver_data = (void *)DMI_QUIRK_SD_NO_WRITE_PROTECT, 759 }, 760 {} /* Terminating entry */ 761 }; 762 763 static const struct sdhci_acpi_slot *sdhci_acpi_get_slot(struct acpi_device *adev) 764 { 765 const struct sdhci_acpi_uid_slot *u; 766 767 for (u = sdhci_acpi_uids; u->hid; u++) { 768 if (acpi_dev_hid_uid_match(adev, u->hid, u->uid)) 769 return u->slot; 770 } 771 return NULL; 772 } 773 774 static int sdhci_acpi_probe(struct platform_device *pdev) 775 { 776 struct device *dev = &pdev->dev; 777 const struct sdhci_acpi_slot *slot; 778 const struct dmi_system_id *id; 779 struct acpi_device *device; 780 struct sdhci_acpi_host *c; 781 struct sdhci_host *host; 782 struct resource *iomem; 783 resource_size_t len; 784 size_t priv_size; 785 int quirks = 0; 786 int err; 787 788 device = ACPI_COMPANION(dev); 789 if (!device) 790 return -ENODEV; 791 792 id = dmi_first_match(sdhci_acpi_quirks); 793 if (id) 794 quirks = (long)id->driver_data; 795 796 slot = sdhci_acpi_get_slot(device); 797 798 /* Power on the SDHCI controller and its children */ 799 acpi_device_fix_up_power_extended(device); 800 801 if (sdhci_acpi_byt_defer(dev)) 802 return -EPROBE_DEFER; 803 804 iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 805 if (!iomem) 806 return -ENOMEM; 807 808 len = resource_size(iomem); 809 if (len < 0x100) 810 dev_err(dev, "Invalid iomem size!\n"); 811 812 if (!devm_request_mem_region(dev, iomem->start, len, dev_name(dev))) 813 return -ENOMEM; 814 815 priv_size = slot ? slot->priv_size : 0; 816 host = sdhci_alloc_host(dev, sizeof(struct sdhci_acpi_host) + priv_size); 817 if (IS_ERR(host)) 818 return PTR_ERR(host); 819 820 c = sdhci_priv(host); 821 c->host = host; 822 c->slot = slot; 823 c->pdev = pdev; 824 c->use_runtime_pm = sdhci_acpi_flag(c, SDHCI_ACPI_RUNTIME_PM); 825 826 platform_set_drvdata(pdev, c); 827 828 host->hw_name = "ACPI"; 829 host->ops = &sdhci_acpi_ops_dflt; 830 host->irq = platform_get_irq(pdev, 0); 831 if (host->irq < 0) { 832 err = host->irq; 833 goto err_free; 834 } 835 836 host->ioaddr = devm_ioremap(dev, iomem->start, 837 resource_size(iomem)); 838 if (host->ioaddr == NULL) { 839 err = -ENOMEM; 840 goto err_free; 841 } 842 843 if (c->slot) { 844 if (c->slot->probe_slot) { 845 err = c->slot->probe_slot(pdev, device); 846 if (err) 847 goto err_free; 848 } 849 if (c->slot->chip) { 850 host->ops = c->slot->chip->ops; 851 host->quirks |= c->slot->chip->quirks; 852 host->quirks2 |= c->slot->chip->quirks2; 853 host->mmc->caps |= c->slot->chip->caps; 854 host->mmc->caps2 |= c->slot->chip->caps2; 855 host->mmc->pm_caps |= c->slot->chip->pm_caps; 856 } 857 host->quirks |= c->slot->quirks; 858 host->quirks2 |= c->slot->quirks2; 859 host->mmc->caps |= c->slot->caps; 860 host->mmc->caps2 |= c->slot->caps2; 861 host->mmc->pm_caps |= c->slot->pm_caps; 862 } 863 864 host->mmc->caps2 |= MMC_CAP2_NO_PRESCAN_POWERUP; 865 866 if (sdhci_acpi_flag(c, SDHCI_ACPI_SD_CD)) { 867 bool v = sdhci_acpi_flag(c, SDHCI_ACPI_SD_CD_OVERRIDE_LEVEL); 868 869 err = mmc_gpiod_request_cd(host->mmc, NULL, 0, v, 0); 870 if (err) { 871 if (err == -EPROBE_DEFER) 872 goto err_free; 873 dev_warn(dev, "failed to setup card detect gpio\n"); 874 c->use_runtime_pm = false; 875 } 876 877 if (quirks & DMI_QUIRK_RESET_SD_SIGNAL_VOLT_ON_SUSP) 878 c->reset_signal_volt_on_suspend = true; 879 880 if (quirks & DMI_QUIRK_SD_NO_WRITE_PROTECT) 881 host->mmc->caps2 |= MMC_CAP2_NO_WRITE_PROTECT; 882 } 883 884 err = sdhci_setup_host(host); 885 if (err) 886 goto err_free; 887 888 if (c->slot && c->slot->setup_host) { 889 err = c->slot->setup_host(pdev); 890 if (err) 891 goto err_cleanup; 892 } 893 894 err = __sdhci_add_host(host); 895 if (err) 896 goto err_cleanup; 897 898 if (c->use_runtime_pm) { 899 pm_runtime_set_active(dev); 900 pm_suspend_ignore_children(dev, 1); 901 pm_runtime_set_autosuspend_delay(dev, 50); 902 pm_runtime_use_autosuspend(dev); 903 pm_runtime_enable(dev); 904 } 905 906 device_enable_async_suspend(dev); 907 908 return 0; 909 910 err_cleanup: 911 sdhci_cleanup_host(c->host); 912 err_free: 913 if (c->slot && c->slot->free_slot) 914 c->slot->free_slot(pdev); 915 916 sdhci_free_host(c->host); 917 return err; 918 } 919 920 static void sdhci_acpi_remove(struct platform_device *pdev) 921 { 922 struct sdhci_acpi_host *c = platform_get_drvdata(pdev); 923 struct device *dev = &pdev->dev; 924 int dead; 925 926 if (c->use_runtime_pm) { 927 pm_runtime_get_sync(dev); 928 pm_runtime_disable(dev); 929 pm_runtime_put_noidle(dev); 930 } 931 932 if (c->slot && c->slot->remove_slot) 933 c->slot->remove_slot(pdev); 934 935 dead = (sdhci_readl(c->host, SDHCI_INT_STATUS) == ~0); 936 sdhci_remove_host(c->host, dead); 937 938 if (c->slot && c->slot->free_slot) 939 c->slot->free_slot(pdev); 940 941 sdhci_free_host(c->host); 942 } 943 944 static void __maybe_unused sdhci_acpi_reset_signal_voltage_if_needed( 945 struct device *dev) 946 { 947 struct sdhci_acpi_host *c = dev_get_drvdata(dev); 948 struct sdhci_host *host = c->host; 949 950 if (c->is_intel && c->reset_signal_volt_on_suspend && 951 host->mmc->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_330) { 952 struct intel_host *intel_host = sdhci_acpi_priv(c); 953 unsigned int fn = INTEL_DSM_V33_SWITCH; 954 u32 result = 0; 955 956 intel_dsm(intel_host, dev, fn, &result); 957 } 958 } 959 960 #ifdef CONFIG_PM_SLEEP 961 962 static int sdhci_acpi_suspend(struct device *dev) 963 { 964 struct sdhci_acpi_host *c = dev_get_drvdata(dev); 965 struct sdhci_host *host = c->host; 966 int ret; 967 968 if (host->tuning_mode != SDHCI_TUNING_MODE_3) 969 mmc_retune_needed(host->mmc); 970 971 ret = sdhci_suspend_host(host); 972 if (ret) 973 return ret; 974 975 sdhci_acpi_reset_signal_voltage_if_needed(dev); 976 return 0; 977 } 978 979 static int sdhci_acpi_resume(struct device *dev) 980 { 981 struct sdhci_acpi_host *c = dev_get_drvdata(dev); 982 983 sdhci_acpi_byt_setting(&c->pdev->dev); 984 985 return sdhci_resume_host(c->host); 986 } 987 988 #endif 989 990 #ifdef CONFIG_PM 991 992 static int sdhci_acpi_runtime_suspend(struct device *dev) 993 { 994 struct sdhci_acpi_host *c = dev_get_drvdata(dev); 995 struct sdhci_host *host = c->host; 996 int ret; 997 998 if (host->tuning_mode != SDHCI_TUNING_MODE_3) 999 mmc_retune_needed(host->mmc); 1000 1001 ret = sdhci_runtime_suspend_host(host); 1002 if (ret) 1003 return ret; 1004 1005 sdhci_acpi_reset_signal_voltage_if_needed(dev); 1006 return 0; 1007 } 1008 1009 static int sdhci_acpi_runtime_resume(struct device *dev) 1010 { 1011 struct sdhci_acpi_host *c = dev_get_drvdata(dev); 1012 1013 sdhci_acpi_byt_setting(&c->pdev->dev); 1014 1015 return sdhci_runtime_resume_host(c->host, 0); 1016 } 1017 1018 #endif 1019 1020 static const struct dev_pm_ops sdhci_acpi_pm_ops = { 1021 SET_SYSTEM_SLEEP_PM_OPS(sdhci_acpi_suspend, sdhci_acpi_resume) 1022 SET_RUNTIME_PM_OPS(sdhci_acpi_runtime_suspend, 1023 sdhci_acpi_runtime_resume, NULL) 1024 }; 1025 1026 static struct platform_driver sdhci_acpi_driver = { 1027 .driver = { 1028 .name = "sdhci-acpi", 1029 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 1030 .acpi_match_table = sdhci_acpi_ids, 1031 .pm = &sdhci_acpi_pm_ops, 1032 }, 1033 .probe = sdhci_acpi_probe, 1034 .remove_new = sdhci_acpi_remove, 1035 }; 1036 1037 module_platform_driver(sdhci_acpi_driver); 1038 1039 MODULE_DESCRIPTION("Secure Digital Host Controller Interface ACPI driver"); 1040 MODULE_AUTHOR("Adrian Hunter"); 1041 MODULE_LICENSE("GPL v2"); 1042