1 /* 2 * drivers/mmc/host/omap_hsmmc.c 3 * 4 * Driver for OMAP2430/3430 MMC controller. 5 * 6 * Copyright (C) 2007 Texas Instruments. 7 * 8 * Authors: 9 * Syed Mohammed Khasim <x0khasim@ti.com> 10 * Madhusudhan <madhu.cr@ti.com> 11 * Mohit Jalori <mjalori@ti.com> 12 * 13 * This file is licensed under the terms of the GNU General Public License 14 * version 2. This program is licensed "as is" without any warranty of any 15 * kind, whether express or implied. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/debugfs.h> 22 #include <linux/dmaengine.h> 23 #include <linux/seq_file.h> 24 #include <linux/sizes.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/platform_device.h> 29 #include <linux/timer.h> 30 #include <linux/clk.h> 31 #include <linux/of.h> 32 #include <linux/of_irq.h> 33 #include <linux/of_device.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/core.h> 36 #include <linux/mmc/mmc.h> 37 #include <linux/mmc/slot-gpio.h> 38 #include <linux/io.h> 39 #include <linux/irq.h> 40 #include <linux/regulator/consumer.h> 41 #include <linux/pinctrl/consumer.h> 42 #include <linux/pm_runtime.h> 43 #include <linux/pm_wakeirq.h> 44 #include <linux/platform_data/hsmmc-omap.h> 45 46 /* OMAP HSMMC Host Controller Registers */ 47 #define OMAP_HSMMC_SYSSTATUS 0x0014 48 #define OMAP_HSMMC_CON 0x002C 49 #define OMAP_HSMMC_SDMASA 0x0100 50 #define OMAP_HSMMC_BLK 0x0104 51 #define OMAP_HSMMC_ARG 0x0108 52 #define OMAP_HSMMC_CMD 0x010C 53 #define OMAP_HSMMC_RSP10 0x0110 54 #define OMAP_HSMMC_RSP32 0x0114 55 #define OMAP_HSMMC_RSP54 0x0118 56 #define OMAP_HSMMC_RSP76 0x011C 57 #define OMAP_HSMMC_DATA 0x0120 58 #define OMAP_HSMMC_PSTATE 0x0124 59 #define OMAP_HSMMC_HCTL 0x0128 60 #define OMAP_HSMMC_SYSCTL 0x012C 61 #define OMAP_HSMMC_STAT 0x0130 62 #define OMAP_HSMMC_IE 0x0134 63 #define OMAP_HSMMC_ISE 0x0138 64 #define OMAP_HSMMC_AC12 0x013C 65 #define OMAP_HSMMC_CAPA 0x0140 66 67 #define VS18 (1 << 26) 68 #define VS30 (1 << 25) 69 #define HSS (1 << 21) 70 #define SDVS18 (0x5 << 9) 71 #define SDVS30 (0x6 << 9) 72 #define SDVS33 (0x7 << 9) 73 #define SDVS_MASK 0x00000E00 74 #define SDVSCLR 0xFFFFF1FF 75 #define SDVSDET 0x00000400 76 #define AUTOIDLE 0x1 77 #define SDBP (1 << 8) 78 #define DTO 0xe 79 #define ICE 0x1 80 #define ICS 0x2 81 #define CEN (1 << 2) 82 #define CLKD_MAX 0x3FF /* max clock divisor: 1023 */ 83 #define CLKD_MASK 0x0000FFC0 84 #define CLKD_SHIFT 6 85 #define DTO_MASK 0x000F0000 86 #define DTO_SHIFT 16 87 #define INIT_STREAM (1 << 1) 88 #define ACEN_ACMD23 (2 << 2) 89 #define DP_SELECT (1 << 21) 90 #define DDIR (1 << 4) 91 #define DMAE 0x1 92 #define MSBS (1 << 5) 93 #define BCE (1 << 1) 94 #define FOUR_BIT (1 << 1) 95 #define HSPE (1 << 2) 96 #define IWE (1 << 24) 97 #define DDR (1 << 19) 98 #define CLKEXTFREE (1 << 16) 99 #define CTPL (1 << 11) 100 #define DW8 (1 << 5) 101 #define OD 0x1 102 #define STAT_CLEAR 0xFFFFFFFF 103 #define INIT_STREAM_CMD 0x00000000 104 #define DUAL_VOLT_OCR_BIT 7 105 #define SRC (1 << 25) 106 #define SRD (1 << 26) 107 #define SOFTRESET (1 << 1) 108 109 /* PSTATE */ 110 #define DLEV_DAT(x) (1 << (20 + (x))) 111 112 /* Interrupt masks for IE and ISE register */ 113 #define CC_EN (1 << 0) 114 #define TC_EN (1 << 1) 115 #define BWR_EN (1 << 4) 116 #define BRR_EN (1 << 5) 117 #define CIRQ_EN (1 << 8) 118 #define ERR_EN (1 << 15) 119 #define CTO_EN (1 << 16) 120 #define CCRC_EN (1 << 17) 121 #define CEB_EN (1 << 18) 122 #define CIE_EN (1 << 19) 123 #define DTO_EN (1 << 20) 124 #define DCRC_EN (1 << 21) 125 #define DEB_EN (1 << 22) 126 #define ACE_EN (1 << 24) 127 #define CERR_EN (1 << 28) 128 #define BADA_EN (1 << 29) 129 130 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\ 131 DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \ 132 BRR_EN | BWR_EN | TC_EN | CC_EN) 133 134 #define CNI (1 << 7) 135 #define ACIE (1 << 4) 136 #define ACEB (1 << 3) 137 #define ACCE (1 << 2) 138 #define ACTO (1 << 1) 139 #define ACNE (1 << 0) 140 141 #define MMC_AUTOSUSPEND_DELAY 100 142 #define MMC_TIMEOUT_MS 20 /* 20 mSec */ 143 #define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */ 144 #define OMAP_MMC_MIN_CLOCK 400000 145 #define OMAP_MMC_MAX_CLOCK 52000000 146 #define DRIVER_NAME "omap_hsmmc" 147 148 /* 149 * One controller can have multiple slots, like on some omap boards using 150 * omap.c controller driver. Luckily this is not currently done on any known 151 * omap_hsmmc.c device. 152 */ 153 #define mmc_pdata(host) host->pdata 154 155 /* 156 * MMC Host controller read/write API's 157 */ 158 #define OMAP_HSMMC_READ(base, reg) \ 159 __raw_readl((base) + OMAP_HSMMC_##reg) 160 161 #define OMAP_HSMMC_WRITE(base, reg, val) \ 162 __raw_writel((val), (base) + OMAP_HSMMC_##reg) 163 164 struct omap_hsmmc_next { 165 unsigned int dma_len; 166 s32 cookie; 167 }; 168 169 struct omap_hsmmc_host { 170 struct device *dev; 171 struct mmc_host *mmc; 172 struct mmc_request *mrq; 173 struct mmc_command *cmd; 174 struct mmc_data *data; 175 struct clk *fclk; 176 struct clk *dbclk; 177 struct regulator *pbias; 178 bool pbias_enabled; 179 void __iomem *base; 180 bool vqmmc_enabled; 181 resource_size_t mapbase; 182 spinlock_t irq_lock; /* Prevent races with irq handler */ 183 unsigned int dma_len; 184 unsigned int dma_sg_idx; 185 unsigned char bus_mode; 186 unsigned char power_mode; 187 int suspended; 188 u32 con; 189 u32 hctl; 190 u32 sysctl; 191 u32 capa; 192 int irq; 193 int wake_irq; 194 int use_dma, dma_ch; 195 struct dma_chan *tx_chan; 196 struct dma_chan *rx_chan; 197 int response_busy; 198 int context_loss; 199 int reqs_blocked; 200 int req_in_progress; 201 unsigned long clk_rate; 202 unsigned int flags; 203 #define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */ 204 #define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */ 205 struct omap_hsmmc_next next_data; 206 struct omap_hsmmc_platform_data *pdata; 207 }; 208 209 struct omap_mmc_of_data { 210 u32 reg_offset; 211 u8 controller_flags; 212 }; 213 214 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host); 215 216 static int omap_hsmmc_enable_supply(struct mmc_host *mmc) 217 { 218 int ret; 219 struct omap_hsmmc_host *host = mmc_priv(mmc); 220 struct mmc_ios *ios = &mmc->ios; 221 222 if (!IS_ERR(mmc->supply.vmmc)) { 223 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 224 if (ret) 225 return ret; 226 } 227 228 /* Enable interface voltage rail, if needed */ 229 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { 230 ret = regulator_enable(mmc->supply.vqmmc); 231 if (ret) { 232 dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n"); 233 goto err_vqmmc; 234 } 235 host->vqmmc_enabled = true; 236 } 237 238 return 0; 239 240 err_vqmmc: 241 if (!IS_ERR(mmc->supply.vmmc)) 242 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 243 244 return ret; 245 } 246 247 static int omap_hsmmc_disable_supply(struct mmc_host *mmc) 248 { 249 int ret; 250 int status; 251 struct omap_hsmmc_host *host = mmc_priv(mmc); 252 253 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { 254 ret = regulator_disable(mmc->supply.vqmmc); 255 if (ret) { 256 dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n"); 257 return ret; 258 } 259 host->vqmmc_enabled = false; 260 } 261 262 if (!IS_ERR(mmc->supply.vmmc)) { 263 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 264 if (ret) 265 goto err_set_ocr; 266 } 267 268 return 0; 269 270 err_set_ocr: 271 if (!IS_ERR(mmc->supply.vqmmc)) { 272 status = regulator_enable(mmc->supply.vqmmc); 273 if (status) 274 dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n"); 275 } 276 277 return ret; 278 } 279 280 static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on) 281 { 282 int ret; 283 284 if (IS_ERR(host->pbias)) 285 return 0; 286 287 if (power_on) { 288 if (!host->pbias_enabled) { 289 ret = regulator_enable(host->pbias); 290 if (ret) { 291 dev_err(host->dev, "pbias reg enable fail\n"); 292 return ret; 293 } 294 host->pbias_enabled = true; 295 } 296 } else { 297 if (host->pbias_enabled) { 298 ret = regulator_disable(host->pbias); 299 if (ret) { 300 dev_err(host->dev, "pbias reg disable fail\n"); 301 return ret; 302 } 303 host->pbias_enabled = false; 304 } 305 } 306 307 return 0; 308 } 309 310 static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on) 311 { 312 struct mmc_host *mmc = host->mmc; 313 int ret = 0; 314 315 /* 316 * If we don't see a Vcc regulator, assume it's a fixed 317 * voltage always-on regulator. 318 */ 319 if (IS_ERR(mmc->supply.vmmc)) 320 return 0; 321 322 ret = omap_hsmmc_set_pbias(host, false); 323 if (ret) 324 return ret; 325 326 /* 327 * Assume Vcc regulator is used only to power the card ... OMAP 328 * VDDS is used to power the pins, optionally with a transceiver to 329 * support cards using voltages other than VDDS (1.8V nominal). When a 330 * transceiver is used, DAT3..7 are muxed as transceiver control pins. 331 * 332 * In some cases this regulator won't support enable/disable; 333 * e.g. it's a fixed rail for a WLAN chip. 334 * 335 * In other cases vcc_aux switches interface power. Example, for 336 * eMMC cards it represents VccQ. Sometimes transceivers or SDIO 337 * chips/cards need an interface voltage rail too. 338 */ 339 if (power_on) { 340 ret = omap_hsmmc_enable_supply(mmc); 341 if (ret) 342 return ret; 343 344 ret = omap_hsmmc_set_pbias(host, true); 345 if (ret) 346 goto err_set_voltage; 347 } else { 348 ret = omap_hsmmc_disable_supply(mmc); 349 if (ret) 350 return ret; 351 } 352 353 return 0; 354 355 err_set_voltage: 356 omap_hsmmc_disable_supply(mmc); 357 358 return ret; 359 } 360 361 static int omap_hsmmc_disable_boot_regulator(struct regulator *reg) 362 { 363 int ret; 364 365 if (IS_ERR(reg)) 366 return 0; 367 368 if (regulator_is_enabled(reg)) { 369 ret = regulator_enable(reg); 370 if (ret) 371 return ret; 372 373 ret = regulator_disable(reg); 374 if (ret) 375 return ret; 376 } 377 378 return 0; 379 } 380 381 static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host) 382 { 383 struct mmc_host *mmc = host->mmc; 384 int ret; 385 386 /* 387 * disable regulators enabled during boot and get the usecount 388 * right so that regulators can be enabled/disabled by checking 389 * the return value of regulator_is_enabled 390 */ 391 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc); 392 if (ret) { 393 dev_err(host->dev, "fail to disable boot enabled vmmc reg\n"); 394 return ret; 395 } 396 397 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc); 398 if (ret) { 399 dev_err(host->dev, 400 "fail to disable boot enabled vmmc_aux reg\n"); 401 return ret; 402 } 403 404 ret = omap_hsmmc_disable_boot_regulator(host->pbias); 405 if (ret) { 406 dev_err(host->dev, 407 "failed to disable boot enabled pbias reg\n"); 408 return ret; 409 } 410 411 return 0; 412 } 413 414 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host) 415 { 416 int ret; 417 struct mmc_host *mmc = host->mmc; 418 419 420 ret = mmc_regulator_get_supply(mmc); 421 if (ret) 422 return ret; 423 424 /* Allow an aux regulator */ 425 if (IS_ERR(mmc->supply.vqmmc)) { 426 mmc->supply.vqmmc = devm_regulator_get_optional(host->dev, 427 "vmmc_aux"); 428 if (IS_ERR(mmc->supply.vqmmc)) { 429 ret = PTR_ERR(mmc->supply.vqmmc); 430 if ((ret != -ENODEV) && host->dev->of_node) 431 return ret; 432 dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n", 433 PTR_ERR(mmc->supply.vqmmc)); 434 } 435 } 436 437 host->pbias = devm_regulator_get_optional(host->dev, "pbias"); 438 if (IS_ERR(host->pbias)) { 439 ret = PTR_ERR(host->pbias); 440 if ((ret != -ENODEV) && host->dev->of_node) { 441 dev_err(host->dev, 442 "SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n"); 443 return ret; 444 } 445 dev_dbg(host->dev, "unable to get pbias regulator %ld\n", 446 PTR_ERR(host->pbias)); 447 } 448 449 /* For eMMC do not power off when not in sleep state */ 450 if (mmc_pdata(host)->no_regulator_off_init) 451 return 0; 452 453 ret = omap_hsmmc_disable_boot_regulators(host); 454 if (ret) 455 return ret; 456 457 return 0; 458 } 459 460 /* 461 * Start clock to the card 462 */ 463 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host) 464 { 465 OMAP_HSMMC_WRITE(host->base, SYSCTL, 466 OMAP_HSMMC_READ(host->base, SYSCTL) | CEN); 467 } 468 469 /* 470 * Stop clock to the card 471 */ 472 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host) 473 { 474 OMAP_HSMMC_WRITE(host->base, SYSCTL, 475 OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN); 476 if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0) 477 dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n"); 478 } 479 480 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host, 481 struct mmc_command *cmd) 482 { 483 u32 irq_mask = INT_EN_MASK; 484 unsigned long flags; 485 486 if (host->use_dma) 487 irq_mask &= ~(BRR_EN | BWR_EN); 488 489 /* Disable timeout for erases */ 490 if (cmd->opcode == MMC_ERASE) 491 irq_mask &= ~DTO_EN; 492 493 spin_lock_irqsave(&host->irq_lock, flags); 494 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 495 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask); 496 497 /* latch pending CIRQ, but don't signal MMC core */ 498 if (host->flags & HSMMC_SDIO_IRQ_ENABLED) 499 irq_mask |= CIRQ_EN; 500 OMAP_HSMMC_WRITE(host->base, IE, irq_mask); 501 spin_unlock_irqrestore(&host->irq_lock, flags); 502 } 503 504 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host) 505 { 506 u32 irq_mask = 0; 507 unsigned long flags; 508 509 spin_lock_irqsave(&host->irq_lock, flags); 510 /* no transfer running but need to keep cirq if enabled */ 511 if (host->flags & HSMMC_SDIO_IRQ_ENABLED) 512 irq_mask |= CIRQ_EN; 513 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask); 514 OMAP_HSMMC_WRITE(host->base, IE, irq_mask); 515 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 516 spin_unlock_irqrestore(&host->irq_lock, flags); 517 } 518 519 /* Calculate divisor for the given clock frequency */ 520 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios) 521 { 522 u16 dsor = 0; 523 524 if (ios->clock) { 525 dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock); 526 if (dsor > CLKD_MAX) 527 dsor = CLKD_MAX; 528 } 529 530 return dsor; 531 } 532 533 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host) 534 { 535 struct mmc_ios *ios = &host->mmc->ios; 536 unsigned long regval; 537 unsigned long timeout; 538 unsigned long clkdiv; 539 540 dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock); 541 542 omap_hsmmc_stop_clock(host); 543 544 regval = OMAP_HSMMC_READ(host->base, SYSCTL); 545 regval = regval & ~(CLKD_MASK | DTO_MASK); 546 clkdiv = calc_divisor(host, ios); 547 regval = regval | (clkdiv << 6) | (DTO << 16); 548 OMAP_HSMMC_WRITE(host->base, SYSCTL, regval); 549 OMAP_HSMMC_WRITE(host->base, SYSCTL, 550 OMAP_HSMMC_READ(host->base, SYSCTL) | ICE); 551 552 /* Wait till the ICS bit is set */ 553 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS); 554 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS 555 && time_before(jiffies, timeout)) 556 cpu_relax(); 557 558 /* 559 * Enable High-Speed Support 560 * Pre-Requisites 561 * - Controller should support High-Speed-Enable Bit 562 * - Controller should not be using DDR Mode 563 * - Controller should advertise that it supports High Speed 564 * in capabilities register 565 * - MMC/SD clock coming out of controller > 25MHz 566 */ 567 if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) && 568 (ios->timing != MMC_TIMING_MMC_DDR52) && 569 (ios->timing != MMC_TIMING_UHS_DDR50) && 570 ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) { 571 regval = OMAP_HSMMC_READ(host->base, HCTL); 572 if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000) 573 regval |= HSPE; 574 else 575 regval &= ~HSPE; 576 577 OMAP_HSMMC_WRITE(host->base, HCTL, regval); 578 } 579 580 omap_hsmmc_start_clock(host); 581 } 582 583 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host) 584 { 585 struct mmc_ios *ios = &host->mmc->ios; 586 u32 con; 587 588 con = OMAP_HSMMC_READ(host->base, CON); 589 if (ios->timing == MMC_TIMING_MMC_DDR52 || 590 ios->timing == MMC_TIMING_UHS_DDR50) 591 con |= DDR; /* configure in DDR mode */ 592 else 593 con &= ~DDR; 594 switch (ios->bus_width) { 595 case MMC_BUS_WIDTH_8: 596 OMAP_HSMMC_WRITE(host->base, CON, con | DW8); 597 break; 598 case MMC_BUS_WIDTH_4: 599 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8); 600 OMAP_HSMMC_WRITE(host->base, HCTL, 601 OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT); 602 break; 603 case MMC_BUS_WIDTH_1: 604 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8); 605 OMAP_HSMMC_WRITE(host->base, HCTL, 606 OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT); 607 break; 608 } 609 } 610 611 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host) 612 { 613 struct mmc_ios *ios = &host->mmc->ios; 614 u32 con; 615 616 con = OMAP_HSMMC_READ(host->base, CON); 617 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) 618 OMAP_HSMMC_WRITE(host->base, CON, con | OD); 619 else 620 OMAP_HSMMC_WRITE(host->base, CON, con & ~OD); 621 } 622 623 #ifdef CONFIG_PM 624 625 /* 626 * Restore the MMC host context, if it was lost as result of a 627 * power state change. 628 */ 629 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host) 630 { 631 struct mmc_ios *ios = &host->mmc->ios; 632 u32 hctl, capa; 633 unsigned long timeout; 634 635 if (host->con == OMAP_HSMMC_READ(host->base, CON) && 636 host->hctl == OMAP_HSMMC_READ(host->base, HCTL) && 637 host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) && 638 host->capa == OMAP_HSMMC_READ(host->base, CAPA)) 639 return 0; 640 641 host->context_loss++; 642 643 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) { 644 if (host->power_mode != MMC_POWER_OFF && 645 (1 << ios->vdd) <= MMC_VDD_23_24) 646 hctl = SDVS18; 647 else 648 hctl = SDVS30; 649 capa = VS30 | VS18; 650 } else { 651 hctl = SDVS18; 652 capa = VS18; 653 } 654 655 if (host->mmc->caps & MMC_CAP_SDIO_IRQ) 656 hctl |= IWE; 657 658 OMAP_HSMMC_WRITE(host->base, HCTL, 659 OMAP_HSMMC_READ(host->base, HCTL) | hctl); 660 661 OMAP_HSMMC_WRITE(host->base, CAPA, 662 OMAP_HSMMC_READ(host->base, CAPA) | capa); 663 664 OMAP_HSMMC_WRITE(host->base, HCTL, 665 OMAP_HSMMC_READ(host->base, HCTL) | SDBP); 666 667 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS); 668 while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP 669 && time_before(jiffies, timeout)) 670 ; 671 672 OMAP_HSMMC_WRITE(host->base, ISE, 0); 673 OMAP_HSMMC_WRITE(host->base, IE, 0); 674 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 675 676 /* Do not initialize card-specific things if the power is off */ 677 if (host->power_mode == MMC_POWER_OFF) 678 goto out; 679 680 omap_hsmmc_set_bus_width(host); 681 682 omap_hsmmc_set_clock(host); 683 684 omap_hsmmc_set_bus_mode(host); 685 686 out: 687 dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n", 688 host->context_loss); 689 return 0; 690 } 691 692 /* 693 * Save the MMC host context (store the number of power state changes so far). 694 */ 695 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host) 696 { 697 host->con = OMAP_HSMMC_READ(host->base, CON); 698 host->hctl = OMAP_HSMMC_READ(host->base, HCTL); 699 host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL); 700 host->capa = OMAP_HSMMC_READ(host->base, CAPA); 701 } 702 703 #else 704 705 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host) 706 { 707 } 708 709 #endif 710 711 /* 712 * Send init stream sequence to card 713 * before sending IDLE command 714 */ 715 static void send_init_stream(struct omap_hsmmc_host *host) 716 { 717 int reg = 0; 718 unsigned long timeout; 719 720 disable_irq(host->irq); 721 722 OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK); 723 OMAP_HSMMC_WRITE(host->base, CON, 724 OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM); 725 OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD); 726 727 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS); 728 while ((reg != CC_EN) && time_before(jiffies, timeout)) 729 reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN; 730 731 OMAP_HSMMC_WRITE(host->base, CON, 732 OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM); 733 734 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 735 OMAP_HSMMC_READ(host->base, STAT); 736 737 enable_irq(host->irq); 738 } 739 740 static ssize_t 741 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr, 742 char *buf) 743 { 744 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev); 745 struct omap_hsmmc_host *host = mmc_priv(mmc); 746 747 return sprintf(buf, "%s\n", mmc_pdata(host)->name); 748 } 749 750 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL); 751 752 /* 753 * Configure the response type and send the cmd. 754 */ 755 static void 756 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd, 757 struct mmc_data *data) 758 { 759 int cmdreg = 0, resptype = 0, cmdtype = 0; 760 761 dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n", 762 mmc_hostname(host->mmc), cmd->opcode, cmd->arg); 763 host->cmd = cmd; 764 765 omap_hsmmc_enable_irq(host, cmd); 766 767 host->response_busy = 0; 768 if (cmd->flags & MMC_RSP_PRESENT) { 769 if (cmd->flags & MMC_RSP_136) 770 resptype = 1; 771 else if (cmd->flags & MMC_RSP_BUSY) { 772 resptype = 3; 773 host->response_busy = 1; 774 } else 775 resptype = 2; 776 } 777 778 /* 779 * Unlike OMAP1 controller, the cmdtype does not seem to be based on 780 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need 781 * a val of 0x3, rest 0x0. 782 */ 783 if (cmd == host->mrq->stop) 784 cmdtype = 0x3; 785 786 cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22); 787 788 if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) && 789 host->mrq->sbc) { 790 cmdreg |= ACEN_ACMD23; 791 OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg); 792 } 793 if (data) { 794 cmdreg |= DP_SELECT | MSBS | BCE; 795 if (data->flags & MMC_DATA_READ) 796 cmdreg |= DDIR; 797 else 798 cmdreg &= ~(DDIR); 799 } 800 801 if (host->use_dma) 802 cmdreg |= DMAE; 803 804 host->req_in_progress = 1; 805 806 OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg); 807 OMAP_HSMMC_WRITE(host->base, CMD, cmdreg); 808 } 809 810 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host, 811 struct mmc_data *data) 812 { 813 return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan; 814 } 815 816 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq) 817 { 818 int dma_ch; 819 unsigned long flags; 820 821 spin_lock_irqsave(&host->irq_lock, flags); 822 host->req_in_progress = 0; 823 dma_ch = host->dma_ch; 824 spin_unlock_irqrestore(&host->irq_lock, flags); 825 826 omap_hsmmc_disable_irq(host); 827 /* Do not complete the request if DMA is still in progress */ 828 if (mrq->data && host->use_dma && dma_ch != -1) 829 return; 830 host->mrq = NULL; 831 mmc_request_done(host->mmc, mrq); 832 } 833 834 /* 835 * Notify the transfer complete to MMC core 836 */ 837 static void 838 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data) 839 { 840 if (!data) { 841 struct mmc_request *mrq = host->mrq; 842 843 /* TC before CC from CMD6 - don't know why, but it happens */ 844 if (host->cmd && host->cmd->opcode == 6 && 845 host->response_busy) { 846 host->response_busy = 0; 847 return; 848 } 849 850 omap_hsmmc_request_done(host, mrq); 851 return; 852 } 853 854 host->data = NULL; 855 856 if (!data->error) 857 data->bytes_xfered += data->blocks * (data->blksz); 858 else 859 data->bytes_xfered = 0; 860 861 if (data->stop && (data->error || !host->mrq->sbc)) 862 omap_hsmmc_start_command(host, data->stop, NULL); 863 else 864 omap_hsmmc_request_done(host, data->mrq); 865 } 866 867 /* 868 * Notify the core about command completion 869 */ 870 static void 871 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd) 872 { 873 if (host->mrq->sbc && (host->cmd == host->mrq->sbc) && 874 !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) { 875 host->cmd = NULL; 876 omap_hsmmc_start_dma_transfer(host); 877 omap_hsmmc_start_command(host, host->mrq->cmd, 878 host->mrq->data); 879 return; 880 } 881 882 host->cmd = NULL; 883 884 if (cmd->flags & MMC_RSP_PRESENT) { 885 if (cmd->flags & MMC_RSP_136) { 886 /* response type 2 */ 887 cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10); 888 cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32); 889 cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54); 890 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76); 891 } else { 892 /* response types 1, 1b, 3, 4, 5, 6 */ 893 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10); 894 } 895 } 896 if ((host->data == NULL && !host->response_busy) || cmd->error) 897 omap_hsmmc_request_done(host, host->mrq); 898 } 899 900 /* 901 * DMA clean up for command errors 902 */ 903 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno) 904 { 905 int dma_ch; 906 unsigned long flags; 907 908 host->data->error = errno; 909 910 spin_lock_irqsave(&host->irq_lock, flags); 911 dma_ch = host->dma_ch; 912 host->dma_ch = -1; 913 spin_unlock_irqrestore(&host->irq_lock, flags); 914 915 if (host->use_dma && dma_ch != -1) { 916 struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data); 917 918 dmaengine_terminate_all(chan); 919 dma_unmap_sg(chan->device->dev, 920 host->data->sg, host->data->sg_len, 921 mmc_get_dma_dir(host->data)); 922 923 host->data->host_cookie = 0; 924 } 925 host->data = NULL; 926 } 927 928 /* 929 * Readable error output 930 */ 931 #ifdef CONFIG_MMC_DEBUG 932 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status) 933 { 934 /* --- means reserved bit without definition at documentation */ 935 static const char *omap_hsmmc_status_bits[] = { 936 "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" , 937 "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI", 938 "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" , 939 "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---" 940 }; 941 char res[256]; 942 char *buf = res; 943 int len, i; 944 945 len = sprintf(buf, "MMC IRQ 0x%x :", status); 946 buf += len; 947 948 for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++) 949 if (status & (1 << i)) { 950 len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]); 951 buf += len; 952 } 953 954 dev_vdbg(mmc_dev(host->mmc), "%s\n", res); 955 } 956 #else 957 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, 958 u32 status) 959 { 960 } 961 #endif /* CONFIG_MMC_DEBUG */ 962 963 /* 964 * MMC controller internal state machines reset 965 * 966 * Used to reset command or data internal state machines, using respectively 967 * SRC or SRD bit of SYSCTL register 968 * Can be called from interrupt context 969 */ 970 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host, 971 unsigned long bit) 972 { 973 unsigned long i = 0; 974 unsigned long limit = MMC_TIMEOUT_US; 975 976 OMAP_HSMMC_WRITE(host->base, SYSCTL, 977 OMAP_HSMMC_READ(host->base, SYSCTL) | bit); 978 979 /* 980 * OMAP4 ES2 and greater has an updated reset logic. 981 * Monitor a 0->1 transition first 982 */ 983 if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) { 984 while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit)) 985 && (i++ < limit)) 986 udelay(1); 987 } 988 i = 0; 989 990 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) && 991 (i++ < limit)) 992 udelay(1); 993 994 if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit) 995 dev_err(mmc_dev(host->mmc), 996 "Timeout waiting on controller reset in %s\n", 997 __func__); 998 } 999 1000 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host, 1001 int err, int end_cmd) 1002 { 1003 if (end_cmd) { 1004 omap_hsmmc_reset_controller_fsm(host, SRC); 1005 if (host->cmd) 1006 host->cmd->error = err; 1007 } 1008 1009 if (host->data) { 1010 omap_hsmmc_reset_controller_fsm(host, SRD); 1011 omap_hsmmc_dma_cleanup(host, err); 1012 } else if (host->mrq && host->mrq->cmd) 1013 host->mrq->cmd->error = err; 1014 } 1015 1016 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status) 1017 { 1018 struct mmc_data *data; 1019 int end_cmd = 0, end_trans = 0; 1020 int error = 0; 1021 1022 data = host->data; 1023 dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status); 1024 1025 if (status & ERR_EN) { 1026 omap_hsmmc_dbg_report_irq(host, status); 1027 1028 if (status & (CTO_EN | CCRC_EN | CEB_EN)) 1029 end_cmd = 1; 1030 if (host->data || host->response_busy) { 1031 end_trans = !end_cmd; 1032 host->response_busy = 0; 1033 } 1034 if (status & (CTO_EN | DTO_EN)) 1035 hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd); 1036 else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN | 1037 BADA_EN)) 1038 hsmmc_command_incomplete(host, -EILSEQ, end_cmd); 1039 1040 if (status & ACE_EN) { 1041 u32 ac12; 1042 ac12 = OMAP_HSMMC_READ(host->base, AC12); 1043 if (!(ac12 & ACNE) && host->mrq->sbc) { 1044 end_cmd = 1; 1045 if (ac12 & ACTO) 1046 error = -ETIMEDOUT; 1047 else if (ac12 & (ACCE | ACEB | ACIE)) 1048 error = -EILSEQ; 1049 host->mrq->sbc->error = error; 1050 hsmmc_command_incomplete(host, error, end_cmd); 1051 } 1052 dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12); 1053 } 1054 } 1055 1056 OMAP_HSMMC_WRITE(host->base, STAT, status); 1057 if (end_cmd || ((status & CC_EN) && host->cmd)) 1058 omap_hsmmc_cmd_done(host, host->cmd); 1059 if ((end_trans || (status & TC_EN)) && host->mrq) 1060 omap_hsmmc_xfer_done(host, data); 1061 } 1062 1063 /* 1064 * MMC controller IRQ handler 1065 */ 1066 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id) 1067 { 1068 struct omap_hsmmc_host *host = dev_id; 1069 int status; 1070 1071 status = OMAP_HSMMC_READ(host->base, STAT); 1072 while (status & (INT_EN_MASK | CIRQ_EN)) { 1073 if (host->req_in_progress) 1074 omap_hsmmc_do_irq(host, status); 1075 1076 if (status & CIRQ_EN) 1077 mmc_signal_sdio_irq(host->mmc); 1078 1079 /* Flush posted write */ 1080 status = OMAP_HSMMC_READ(host->base, STAT); 1081 } 1082 1083 return IRQ_HANDLED; 1084 } 1085 1086 static void set_sd_bus_power(struct omap_hsmmc_host *host) 1087 { 1088 unsigned long i; 1089 1090 OMAP_HSMMC_WRITE(host->base, HCTL, 1091 OMAP_HSMMC_READ(host->base, HCTL) | SDBP); 1092 for (i = 0; i < loops_per_jiffy; i++) { 1093 if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP) 1094 break; 1095 cpu_relax(); 1096 } 1097 } 1098 1099 /* 1100 * Switch MMC interface voltage ... only relevant for MMC1. 1101 * 1102 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver. 1103 * The MMC2 transceiver controls are used instead of DAT4..DAT7. 1104 * Some chips, like eMMC ones, use internal transceivers. 1105 */ 1106 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd) 1107 { 1108 u32 reg_val = 0; 1109 int ret; 1110 1111 /* Disable the clocks */ 1112 clk_disable_unprepare(host->dbclk); 1113 1114 /* Turn the power off */ 1115 ret = omap_hsmmc_set_power(host, 0); 1116 1117 /* Turn the power ON with given VDD 1.8 or 3.0v */ 1118 if (!ret) 1119 ret = omap_hsmmc_set_power(host, 1); 1120 clk_prepare_enable(host->dbclk); 1121 1122 if (ret != 0) 1123 goto err; 1124 1125 OMAP_HSMMC_WRITE(host->base, HCTL, 1126 OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR); 1127 reg_val = OMAP_HSMMC_READ(host->base, HCTL); 1128 1129 /* 1130 * If a MMC dual voltage card is detected, the set_ios fn calls 1131 * this fn with VDD bit set for 1.8V. Upon card removal from the 1132 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF. 1133 * 1134 * Cope with a bit of slop in the range ... per data sheets: 1135 * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max, 1136 * but recommended values are 1.71V to 1.89V 1137 * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max, 1138 * but recommended values are 2.7V to 3.3V 1139 * 1140 * Board setup code shouldn't permit anything very out-of-range. 1141 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the 1142 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V. 1143 */ 1144 if ((1 << vdd) <= MMC_VDD_23_24) 1145 reg_val |= SDVS18; 1146 else 1147 reg_val |= SDVS30; 1148 1149 OMAP_HSMMC_WRITE(host->base, HCTL, reg_val); 1150 set_sd_bus_power(host); 1151 1152 return 0; 1153 err: 1154 dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n"); 1155 return ret; 1156 } 1157 1158 static void omap_hsmmc_dma_callback(void *param) 1159 { 1160 struct omap_hsmmc_host *host = param; 1161 struct dma_chan *chan; 1162 struct mmc_data *data; 1163 int req_in_progress; 1164 1165 spin_lock_irq(&host->irq_lock); 1166 if (host->dma_ch < 0) { 1167 spin_unlock_irq(&host->irq_lock); 1168 return; 1169 } 1170 1171 data = host->mrq->data; 1172 chan = omap_hsmmc_get_dma_chan(host, data); 1173 if (!data->host_cookie) 1174 dma_unmap_sg(chan->device->dev, 1175 data->sg, data->sg_len, 1176 mmc_get_dma_dir(data)); 1177 1178 req_in_progress = host->req_in_progress; 1179 host->dma_ch = -1; 1180 spin_unlock_irq(&host->irq_lock); 1181 1182 /* If DMA has finished after TC, complete the request */ 1183 if (!req_in_progress) { 1184 struct mmc_request *mrq = host->mrq; 1185 1186 host->mrq = NULL; 1187 mmc_request_done(host->mmc, mrq); 1188 } 1189 } 1190 1191 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host, 1192 struct mmc_data *data, 1193 struct omap_hsmmc_next *next, 1194 struct dma_chan *chan) 1195 { 1196 int dma_len; 1197 1198 if (!next && data->host_cookie && 1199 data->host_cookie != host->next_data.cookie) { 1200 dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d" 1201 " host->next_data.cookie %d\n", 1202 __func__, data->host_cookie, host->next_data.cookie); 1203 data->host_cookie = 0; 1204 } 1205 1206 /* Check if next job is already prepared */ 1207 if (next || data->host_cookie != host->next_data.cookie) { 1208 dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len, 1209 mmc_get_dma_dir(data)); 1210 1211 } else { 1212 dma_len = host->next_data.dma_len; 1213 host->next_data.dma_len = 0; 1214 } 1215 1216 1217 if (dma_len == 0) 1218 return -EINVAL; 1219 1220 if (next) { 1221 next->dma_len = dma_len; 1222 data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie; 1223 } else 1224 host->dma_len = dma_len; 1225 1226 return 0; 1227 } 1228 1229 /* 1230 * Routine to configure and start DMA for the MMC card 1231 */ 1232 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host, 1233 struct mmc_request *req) 1234 { 1235 struct dma_async_tx_descriptor *tx; 1236 int ret = 0, i; 1237 struct mmc_data *data = req->data; 1238 struct dma_chan *chan; 1239 struct dma_slave_config cfg = { 1240 .src_addr = host->mapbase + OMAP_HSMMC_DATA, 1241 .dst_addr = host->mapbase + OMAP_HSMMC_DATA, 1242 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 1243 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 1244 .src_maxburst = data->blksz / 4, 1245 .dst_maxburst = data->blksz / 4, 1246 }; 1247 1248 /* Sanity check: all the SG entries must be aligned by block size. */ 1249 for (i = 0; i < data->sg_len; i++) { 1250 struct scatterlist *sgl; 1251 1252 sgl = data->sg + i; 1253 if (sgl->length % data->blksz) 1254 return -EINVAL; 1255 } 1256 if ((data->blksz % 4) != 0) 1257 /* REVISIT: The MMC buffer increments only when MSB is written. 1258 * Return error for blksz which is non multiple of four. 1259 */ 1260 return -EINVAL; 1261 1262 BUG_ON(host->dma_ch != -1); 1263 1264 chan = omap_hsmmc_get_dma_chan(host, data); 1265 1266 ret = dmaengine_slave_config(chan, &cfg); 1267 if (ret) 1268 return ret; 1269 1270 ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan); 1271 if (ret) 1272 return ret; 1273 1274 tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len, 1275 data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, 1276 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1277 if (!tx) { 1278 dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n"); 1279 /* FIXME: cleanup */ 1280 return -1; 1281 } 1282 1283 tx->callback = omap_hsmmc_dma_callback; 1284 tx->callback_param = host; 1285 1286 /* Does not fail */ 1287 dmaengine_submit(tx); 1288 1289 host->dma_ch = 1; 1290 1291 return 0; 1292 } 1293 1294 static void set_data_timeout(struct omap_hsmmc_host *host, 1295 unsigned long long timeout_ns, 1296 unsigned int timeout_clks) 1297 { 1298 unsigned long long timeout = timeout_ns; 1299 unsigned int cycle_ns; 1300 uint32_t reg, clkd, dto = 0; 1301 1302 reg = OMAP_HSMMC_READ(host->base, SYSCTL); 1303 clkd = (reg & CLKD_MASK) >> CLKD_SHIFT; 1304 if (clkd == 0) 1305 clkd = 1; 1306 1307 cycle_ns = 1000000000 / (host->clk_rate / clkd); 1308 do_div(timeout, cycle_ns); 1309 timeout += timeout_clks; 1310 if (timeout) { 1311 while ((timeout & 0x80000000) == 0) { 1312 dto += 1; 1313 timeout <<= 1; 1314 } 1315 dto = 31 - dto; 1316 timeout <<= 1; 1317 if (timeout && dto) 1318 dto += 1; 1319 if (dto >= 13) 1320 dto -= 13; 1321 else 1322 dto = 0; 1323 if (dto > 14) 1324 dto = 14; 1325 } 1326 1327 reg &= ~DTO_MASK; 1328 reg |= dto << DTO_SHIFT; 1329 OMAP_HSMMC_WRITE(host->base, SYSCTL, reg); 1330 } 1331 1332 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host) 1333 { 1334 struct mmc_request *req = host->mrq; 1335 struct dma_chan *chan; 1336 1337 if (!req->data) 1338 return; 1339 OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz) 1340 | (req->data->blocks << 16)); 1341 set_data_timeout(host, req->data->timeout_ns, 1342 req->data->timeout_clks); 1343 chan = omap_hsmmc_get_dma_chan(host, req->data); 1344 dma_async_issue_pending(chan); 1345 } 1346 1347 /* 1348 * Configure block length for MMC/SD cards and initiate the transfer. 1349 */ 1350 static int 1351 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req) 1352 { 1353 int ret; 1354 unsigned long long timeout; 1355 1356 host->data = req->data; 1357 1358 if (req->data == NULL) { 1359 OMAP_HSMMC_WRITE(host->base, BLK, 0); 1360 if (req->cmd->flags & MMC_RSP_BUSY) { 1361 timeout = req->cmd->busy_timeout * NSEC_PER_MSEC; 1362 1363 /* 1364 * Set an arbitrary 100ms data timeout for commands with 1365 * busy signal and no indication of busy_timeout. 1366 */ 1367 if (!timeout) 1368 timeout = 100000000U; 1369 1370 set_data_timeout(host, timeout, 0); 1371 } 1372 return 0; 1373 } 1374 1375 if (host->use_dma) { 1376 ret = omap_hsmmc_setup_dma_transfer(host, req); 1377 if (ret != 0) { 1378 dev_err(mmc_dev(host->mmc), "MMC start dma failure\n"); 1379 return ret; 1380 } 1381 } 1382 return 0; 1383 } 1384 1385 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq, 1386 int err) 1387 { 1388 struct omap_hsmmc_host *host = mmc_priv(mmc); 1389 struct mmc_data *data = mrq->data; 1390 1391 if (host->use_dma && data->host_cookie) { 1392 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data); 1393 1394 dma_unmap_sg(c->device->dev, data->sg, data->sg_len, 1395 mmc_get_dma_dir(data)); 1396 data->host_cookie = 0; 1397 } 1398 } 1399 1400 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq) 1401 { 1402 struct omap_hsmmc_host *host = mmc_priv(mmc); 1403 1404 if (mrq->data->host_cookie) { 1405 mrq->data->host_cookie = 0; 1406 return ; 1407 } 1408 1409 if (host->use_dma) { 1410 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data); 1411 1412 if (omap_hsmmc_pre_dma_transfer(host, mrq->data, 1413 &host->next_data, c)) 1414 mrq->data->host_cookie = 0; 1415 } 1416 } 1417 1418 /* 1419 * Request function. for read/write operation 1420 */ 1421 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req) 1422 { 1423 struct omap_hsmmc_host *host = mmc_priv(mmc); 1424 int err; 1425 1426 BUG_ON(host->req_in_progress); 1427 BUG_ON(host->dma_ch != -1); 1428 if (host->reqs_blocked) 1429 host->reqs_blocked = 0; 1430 WARN_ON(host->mrq != NULL); 1431 host->mrq = req; 1432 host->clk_rate = clk_get_rate(host->fclk); 1433 err = omap_hsmmc_prepare_data(host, req); 1434 if (err) { 1435 req->cmd->error = err; 1436 if (req->data) 1437 req->data->error = err; 1438 host->mrq = NULL; 1439 mmc_request_done(mmc, req); 1440 return; 1441 } 1442 if (req->sbc && !(host->flags & AUTO_CMD23)) { 1443 omap_hsmmc_start_command(host, req->sbc, NULL); 1444 return; 1445 } 1446 1447 omap_hsmmc_start_dma_transfer(host); 1448 omap_hsmmc_start_command(host, req->cmd, req->data); 1449 } 1450 1451 /* Routine to configure clock values. Exposed API to core */ 1452 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1453 { 1454 struct omap_hsmmc_host *host = mmc_priv(mmc); 1455 int do_send_init_stream = 0; 1456 1457 if (ios->power_mode != host->power_mode) { 1458 switch (ios->power_mode) { 1459 case MMC_POWER_OFF: 1460 omap_hsmmc_set_power(host, 0); 1461 break; 1462 case MMC_POWER_UP: 1463 omap_hsmmc_set_power(host, 1); 1464 break; 1465 case MMC_POWER_ON: 1466 do_send_init_stream = 1; 1467 break; 1468 } 1469 host->power_mode = ios->power_mode; 1470 } 1471 1472 /* FIXME: set registers based only on changes to ios */ 1473 1474 omap_hsmmc_set_bus_width(host); 1475 1476 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) { 1477 /* Only MMC1 can interface at 3V without some flavor 1478 * of external transceiver; but they all handle 1.8V. 1479 */ 1480 if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) && 1481 (ios->vdd == DUAL_VOLT_OCR_BIT)) { 1482 /* 1483 * The mmc_select_voltage fn of the core does 1484 * not seem to set the power_mode to 1485 * MMC_POWER_UP upon recalculating the voltage. 1486 * vdd 1.8v. 1487 */ 1488 if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0) 1489 dev_dbg(mmc_dev(host->mmc), 1490 "Switch operation failed\n"); 1491 } 1492 } 1493 1494 omap_hsmmc_set_clock(host); 1495 1496 if (do_send_init_stream) 1497 send_init_stream(host); 1498 1499 omap_hsmmc_set_bus_mode(host); 1500 } 1501 1502 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card) 1503 { 1504 struct omap_hsmmc_host *host = mmc_priv(mmc); 1505 1506 if (card->type == MMC_TYPE_SDIO || card->type == MMC_TYPE_SD_COMBO) { 1507 struct device_node *np = mmc_dev(mmc)->of_node; 1508 1509 /* 1510 * REVISIT: should be moved to sdio core and made more 1511 * general e.g. by expanding the DT bindings of child nodes 1512 * to provide a mechanism to provide this information: 1513 * Documentation/devicetree/bindings/mmc/mmc-card.yaml 1514 */ 1515 1516 np = of_get_compatible_child(np, "ti,wl1251"); 1517 if (np) { 1518 /* 1519 * We have TI wl1251 attached to MMC3. Pass this 1520 * information to the SDIO core because it can't be 1521 * probed by normal methods. 1522 */ 1523 1524 dev_info(host->dev, "found wl1251\n"); 1525 card->quirks |= MMC_QUIRK_NONSTD_SDIO; 1526 card->cccr.wide_bus = 1; 1527 card->cis.vendor = 0x104c; 1528 card->cis.device = 0x9066; 1529 card->cis.blksize = 512; 1530 card->cis.max_dtr = 24000000; 1531 card->ocr = 0x80; 1532 of_node_put(np); 1533 } 1534 } 1535 } 1536 1537 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable) 1538 { 1539 struct omap_hsmmc_host *host = mmc_priv(mmc); 1540 u32 irq_mask, con; 1541 unsigned long flags; 1542 1543 spin_lock_irqsave(&host->irq_lock, flags); 1544 1545 con = OMAP_HSMMC_READ(host->base, CON); 1546 irq_mask = OMAP_HSMMC_READ(host->base, ISE); 1547 if (enable) { 1548 host->flags |= HSMMC_SDIO_IRQ_ENABLED; 1549 irq_mask |= CIRQ_EN; 1550 con |= CTPL | CLKEXTFREE; 1551 } else { 1552 host->flags &= ~HSMMC_SDIO_IRQ_ENABLED; 1553 irq_mask &= ~CIRQ_EN; 1554 con &= ~(CTPL | CLKEXTFREE); 1555 } 1556 OMAP_HSMMC_WRITE(host->base, CON, con); 1557 OMAP_HSMMC_WRITE(host->base, IE, irq_mask); 1558 1559 /* 1560 * if enable, piggy back detection on current request 1561 * but always disable immediately 1562 */ 1563 if (!host->req_in_progress || !enable) 1564 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask); 1565 1566 /* flush posted write */ 1567 OMAP_HSMMC_READ(host->base, IE); 1568 1569 spin_unlock_irqrestore(&host->irq_lock, flags); 1570 } 1571 1572 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host) 1573 { 1574 int ret; 1575 1576 /* 1577 * For omaps with wake-up path, wakeirq will be irq from pinctrl and 1578 * for other omaps, wakeirq will be from GPIO (dat line remuxed to 1579 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state 1580 * with functional clock disabled. 1581 */ 1582 if (!host->dev->of_node || !host->wake_irq) 1583 return -ENODEV; 1584 1585 ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq); 1586 if (ret) { 1587 dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n"); 1588 goto err; 1589 } 1590 1591 /* 1592 * Some omaps don't have wake-up path from deeper idle states 1593 * and need to remux SDIO DAT1 to GPIO for wake-up from idle. 1594 */ 1595 if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) { 1596 struct pinctrl *p = devm_pinctrl_get(host->dev); 1597 if (IS_ERR(p)) { 1598 ret = PTR_ERR(p); 1599 goto err_free_irq; 1600 } 1601 1602 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) { 1603 dev_info(host->dev, "missing idle pinctrl state\n"); 1604 devm_pinctrl_put(p); 1605 ret = -EINVAL; 1606 goto err_free_irq; 1607 } 1608 devm_pinctrl_put(p); 1609 } 1610 1611 OMAP_HSMMC_WRITE(host->base, HCTL, 1612 OMAP_HSMMC_READ(host->base, HCTL) | IWE); 1613 return 0; 1614 1615 err_free_irq: 1616 dev_pm_clear_wake_irq(host->dev); 1617 err: 1618 dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n"); 1619 host->wake_irq = 0; 1620 return ret; 1621 } 1622 1623 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host) 1624 { 1625 u32 hctl, capa, value; 1626 1627 /* Only MMC1 supports 3.0V */ 1628 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) { 1629 hctl = SDVS30; 1630 capa = VS30 | VS18; 1631 } else { 1632 hctl = SDVS18; 1633 capa = VS18; 1634 } 1635 1636 value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK; 1637 OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl); 1638 1639 value = OMAP_HSMMC_READ(host->base, CAPA); 1640 OMAP_HSMMC_WRITE(host->base, CAPA, value | capa); 1641 1642 /* Set SD bus power bit */ 1643 set_sd_bus_power(host); 1644 } 1645 1646 static int omap_hsmmc_multi_io_quirk(struct mmc_card *card, 1647 unsigned int direction, int blk_size) 1648 { 1649 /* This controller can't do multiblock reads due to hw bugs */ 1650 if (direction == MMC_DATA_READ) 1651 return 1; 1652 1653 return blk_size; 1654 } 1655 1656 static struct mmc_host_ops omap_hsmmc_ops = { 1657 .post_req = omap_hsmmc_post_req, 1658 .pre_req = omap_hsmmc_pre_req, 1659 .request = omap_hsmmc_request, 1660 .set_ios = omap_hsmmc_set_ios, 1661 .get_cd = mmc_gpio_get_cd, 1662 .get_ro = mmc_gpio_get_ro, 1663 .init_card = omap_hsmmc_init_card, 1664 .enable_sdio_irq = omap_hsmmc_enable_sdio_irq, 1665 }; 1666 1667 #ifdef CONFIG_DEBUG_FS 1668 1669 static int mmc_regs_show(struct seq_file *s, void *data) 1670 { 1671 struct mmc_host *mmc = s->private; 1672 struct omap_hsmmc_host *host = mmc_priv(mmc); 1673 1674 seq_printf(s, "mmc%d:\n", mmc->index); 1675 seq_printf(s, "sdio irq mode\t%s\n", 1676 (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling"); 1677 1678 if (mmc->caps & MMC_CAP_SDIO_IRQ) { 1679 seq_printf(s, "sdio irq \t%s\n", 1680 (host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled" 1681 : "disabled"); 1682 } 1683 seq_printf(s, "ctx_loss:\t%d\n", host->context_loss); 1684 1685 pm_runtime_get_sync(host->dev); 1686 seq_puts(s, "\nregs:\n"); 1687 seq_printf(s, "CON:\t\t0x%08x\n", 1688 OMAP_HSMMC_READ(host->base, CON)); 1689 seq_printf(s, "PSTATE:\t\t0x%08x\n", 1690 OMAP_HSMMC_READ(host->base, PSTATE)); 1691 seq_printf(s, "HCTL:\t\t0x%08x\n", 1692 OMAP_HSMMC_READ(host->base, HCTL)); 1693 seq_printf(s, "SYSCTL:\t\t0x%08x\n", 1694 OMAP_HSMMC_READ(host->base, SYSCTL)); 1695 seq_printf(s, "IE:\t\t0x%08x\n", 1696 OMAP_HSMMC_READ(host->base, IE)); 1697 seq_printf(s, "ISE:\t\t0x%08x\n", 1698 OMAP_HSMMC_READ(host->base, ISE)); 1699 seq_printf(s, "CAPA:\t\t0x%08x\n", 1700 OMAP_HSMMC_READ(host->base, CAPA)); 1701 1702 pm_runtime_mark_last_busy(host->dev); 1703 pm_runtime_put_autosuspend(host->dev); 1704 1705 return 0; 1706 } 1707 1708 DEFINE_SHOW_ATTRIBUTE(mmc_regs); 1709 1710 static void omap_hsmmc_debugfs(struct mmc_host *mmc) 1711 { 1712 if (mmc->debugfs_root) 1713 debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root, 1714 mmc, &mmc_regs_fops); 1715 } 1716 1717 #else 1718 1719 static void omap_hsmmc_debugfs(struct mmc_host *mmc) 1720 { 1721 } 1722 1723 #endif 1724 1725 #ifdef CONFIG_OF 1726 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = { 1727 /* See 35xx errata 2.1.1.128 in SPRZ278F */ 1728 .controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ, 1729 }; 1730 1731 static const struct omap_mmc_of_data omap4_mmc_of_data = { 1732 .reg_offset = 0x100, 1733 }; 1734 static const struct omap_mmc_of_data am33xx_mmc_of_data = { 1735 .reg_offset = 0x100, 1736 .controller_flags = OMAP_HSMMC_SWAKEUP_MISSING, 1737 }; 1738 1739 static const struct of_device_id omap_mmc_of_match[] = { 1740 { 1741 .compatible = "ti,omap2-hsmmc", 1742 }, 1743 { 1744 .compatible = "ti,omap3-pre-es3-hsmmc", 1745 .data = &omap3_pre_es3_mmc_of_data, 1746 }, 1747 { 1748 .compatible = "ti,omap3-hsmmc", 1749 }, 1750 { 1751 .compatible = "ti,omap4-hsmmc", 1752 .data = &omap4_mmc_of_data, 1753 }, 1754 { 1755 .compatible = "ti,am33xx-hsmmc", 1756 .data = &am33xx_mmc_of_data, 1757 }, 1758 {}, 1759 }; 1760 MODULE_DEVICE_TABLE(of, omap_mmc_of_match); 1761 1762 static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev) 1763 { 1764 struct omap_hsmmc_platform_data *pdata, *legacy; 1765 struct device_node *np = dev->of_node; 1766 1767 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 1768 if (!pdata) 1769 return ERR_PTR(-ENOMEM); /* out of memory */ 1770 1771 legacy = dev_get_platdata(dev); 1772 if (legacy && legacy->name) 1773 pdata->name = legacy->name; 1774 1775 if (of_find_property(np, "ti,dual-volt", NULL)) 1776 pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT; 1777 1778 if (of_find_property(np, "ti,non-removable", NULL)) { 1779 pdata->nonremovable = true; 1780 pdata->no_regulator_off_init = true; 1781 } 1782 1783 if (of_find_property(np, "ti,needs-special-reset", NULL)) 1784 pdata->features |= HSMMC_HAS_UPDATED_RESET; 1785 1786 if (of_find_property(np, "ti,needs-special-hs-handling", NULL)) 1787 pdata->features |= HSMMC_HAS_HSPE_SUPPORT; 1788 1789 return pdata; 1790 } 1791 #else 1792 static inline struct omap_hsmmc_platform_data 1793 *of_get_hsmmc_pdata(struct device *dev) 1794 { 1795 return ERR_PTR(-EINVAL); 1796 } 1797 #endif 1798 1799 static int omap_hsmmc_probe(struct platform_device *pdev) 1800 { 1801 struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data; 1802 struct mmc_host *mmc; 1803 struct omap_hsmmc_host *host = NULL; 1804 struct resource *res; 1805 int ret, irq; 1806 const struct of_device_id *match; 1807 const struct omap_mmc_of_data *data; 1808 void __iomem *base; 1809 1810 match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev); 1811 if (match) { 1812 pdata = of_get_hsmmc_pdata(&pdev->dev); 1813 1814 if (IS_ERR(pdata)) 1815 return PTR_ERR(pdata); 1816 1817 if (match->data) { 1818 data = match->data; 1819 pdata->reg_offset = data->reg_offset; 1820 pdata->controller_flags |= data->controller_flags; 1821 } 1822 } 1823 1824 if (pdata == NULL) { 1825 dev_err(&pdev->dev, "Platform Data is missing\n"); 1826 return -ENXIO; 1827 } 1828 1829 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1830 irq = platform_get_irq(pdev, 0); 1831 if (res == NULL || irq < 0) 1832 return -ENXIO; 1833 1834 base = devm_ioremap_resource(&pdev->dev, res); 1835 if (IS_ERR(base)) 1836 return PTR_ERR(base); 1837 1838 mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev); 1839 if (!mmc) { 1840 ret = -ENOMEM; 1841 goto err; 1842 } 1843 1844 ret = mmc_of_parse(mmc); 1845 if (ret) 1846 goto err1; 1847 1848 host = mmc_priv(mmc); 1849 host->mmc = mmc; 1850 host->pdata = pdata; 1851 host->dev = &pdev->dev; 1852 host->use_dma = 1; 1853 host->dma_ch = -1; 1854 host->irq = irq; 1855 host->mapbase = res->start + pdata->reg_offset; 1856 host->base = base + pdata->reg_offset; 1857 host->power_mode = MMC_POWER_OFF; 1858 host->next_data.cookie = 1; 1859 host->pbias_enabled = false; 1860 host->vqmmc_enabled = false; 1861 1862 platform_set_drvdata(pdev, host); 1863 1864 if (pdev->dev.of_node) 1865 host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1); 1866 1867 mmc->ops = &omap_hsmmc_ops; 1868 1869 mmc->f_min = OMAP_MMC_MIN_CLOCK; 1870 1871 if (pdata->max_freq > 0) 1872 mmc->f_max = pdata->max_freq; 1873 else if (mmc->f_max == 0) 1874 mmc->f_max = OMAP_MMC_MAX_CLOCK; 1875 1876 spin_lock_init(&host->irq_lock); 1877 1878 host->fclk = devm_clk_get(&pdev->dev, "fck"); 1879 if (IS_ERR(host->fclk)) { 1880 ret = PTR_ERR(host->fclk); 1881 host->fclk = NULL; 1882 goto err1; 1883 } 1884 1885 if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) { 1886 dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n"); 1887 omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk; 1888 } 1889 1890 device_init_wakeup(&pdev->dev, true); 1891 pm_runtime_enable(host->dev); 1892 pm_runtime_get_sync(host->dev); 1893 pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY); 1894 pm_runtime_use_autosuspend(host->dev); 1895 1896 omap_hsmmc_context_save(host); 1897 1898 host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck"); 1899 /* 1900 * MMC can still work without debounce clock. 1901 */ 1902 if (IS_ERR(host->dbclk)) { 1903 host->dbclk = NULL; 1904 } else if (clk_prepare_enable(host->dbclk) != 0) { 1905 dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n"); 1906 host->dbclk = NULL; 1907 } 1908 1909 /* Set this to a value that allows allocating an entire descriptor 1910 * list within a page (zero order allocation). */ 1911 mmc->max_segs = 64; 1912 1913 mmc->max_blk_size = 512; /* Block Length at max can be 1024 */ 1914 mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */ 1915 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count; 1916 1917 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED | 1918 MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_CMD23; 1919 1920 mmc->caps |= mmc_pdata(host)->caps; 1921 if (mmc->caps & MMC_CAP_8_BIT_DATA) 1922 mmc->caps |= MMC_CAP_4_BIT_DATA; 1923 1924 if (mmc_pdata(host)->nonremovable) 1925 mmc->caps |= MMC_CAP_NONREMOVABLE; 1926 1927 mmc->pm_caps |= mmc_pdata(host)->pm_caps; 1928 1929 omap_hsmmc_conf_bus_power(host); 1930 1931 host->rx_chan = dma_request_chan(&pdev->dev, "rx"); 1932 if (IS_ERR(host->rx_chan)) { 1933 dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n"); 1934 ret = PTR_ERR(host->rx_chan); 1935 goto err_irq; 1936 } 1937 1938 host->tx_chan = dma_request_chan(&pdev->dev, "tx"); 1939 if (IS_ERR(host->tx_chan)) { 1940 dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n"); 1941 ret = PTR_ERR(host->tx_chan); 1942 goto err_irq; 1943 } 1944 1945 /* 1946 * Limit the maximum segment size to the lower of the request size 1947 * and the DMA engine device segment size limits. In reality, with 1948 * 32-bit transfers, the DMA engine can do longer segments than this 1949 * but there is no way to represent that in the DMA model - if we 1950 * increase this figure here, we get warnings from the DMA API debug. 1951 */ 1952 mmc->max_seg_size = min3(mmc->max_req_size, 1953 dma_get_max_seg_size(host->rx_chan->device->dev), 1954 dma_get_max_seg_size(host->tx_chan->device->dev)); 1955 1956 /* Request IRQ for MMC operations */ 1957 ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0, 1958 mmc_hostname(mmc), host); 1959 if (ret) { 1960 dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n"); 1961 goto err_irq; 1962 } 1963 1964 ret = omap_hsmmc_reg_get(host); 1965 if (ret) 1966 goto err_irq; 1967 1968 if (!mmc->ocr_avail) 1969 mmc->ocr_avail = mmc_pdata(host)->ocr_mask; 1970 1971 omap_hsmmc_disable_irq(host); 1972 1973 /* 1974 * For now, only support SDIO interrupt if we have a separate 1975 * wake-up interrupt configured from device tree. This is because 1976 * the wake-up interrupt is needed for idle state and some 1977 * platforms need special quirks. And we don't want to add new 1978 * legacy mux platform init code callbacks any longer as we 1979 * are moving to DT based booting anyways. 1980 */ 1981 ret = omap_hsmmc_configure_wake_irq(host); 1982 if (!ret) 1983 mmc->caps |= MMC_CAP_SDIO_IRQ; 1984 1985 mmc_add_host(mmc); 1986 1987 if (mmc_pdata(host)->name != NULL) { 1988 ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name); 1989 if (ret < 0) 1990 goto err_slot_name; 1991 } 1992 1993 omap_hsmmc_debugfs(mmc); 1994 pm_runtime_mark_last_busy(host->dev); 1995 pm_runtime_put_autosuspend(host->dev); 1996 1997 return 0; 1998 1999 err_slot_name: 2000 mmc_remove_host(mmc); 2001 err_irq: 2002 device_init_wakeup(&pdev->dev, false); 2003 if (!IS_ERR_OR_NULL(host->tx_chan)) 2004 dma_release_channel(host->tx_chan); 2005 if (!IS_ERR_OR_NULL(host->rx_chan)) 2006 dma_release_channel(host->rx_chan); 2007 pm_runtime_dont_use_autosuspend(host->dev); 2008 pm_runtime_put_sync(host->dev); 2009 pm_runtime_disable(host->dev); 2010 clk_disable_unprepare(host->dbclk); 2011 err1: 2012 mmc_free_host(mmc); 2013 err: 2014 return ret; 2015 } 2016 2017 static int omap_hsmmc_remove(struct platform_device *pdev) 2018 { 2019 struct omap_hsmmc_host *host = platform_get_drvdata(pdev); 2020 2021 pm_runtime_get_sync(host->dev); 2022 mmc_remove_host(host->mmc); 2023 2024 dma_release_channel(host->tx_chan); 2025 dma_release_channel(host->rx_chan); 2026 2027 dev_pm_clear_wake_irq(host->dev); 2028 pm_runtime_dont_use_autosuspend(host->dev); 2029 pm_runtime_put_sync(host->dev); 2030 pm_runtime_disable(host->dev); 2031 device_init_wakeup(&pdev->dev, false); 2032 clk_disable_unprepare(host->dbclk); 2033 2034 mmc_free_host(host->mmc); 2035 2036 return 0; 2037 } 2038 2039 #ifdef CONFIG_PM_SLEEP 2040 static int omap_hsmmc_suspend(struct device *dev) 2041 { 2042 struct omap_hsmmc_host *host = dev_get_drvdata(dev); 2043 2044 if (!host) 2045 return 0; 2046 2047 pm_runtime_get_sync(host->dev); 2048 2049 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) { 2050 OMAP_HSMMC_WRITE(host->base, ISE, 0); 2051 OMAP_HSMMC_WRITE(host->base, IE, 0); 2052 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 2053 OMAP_HSMMC_WRITE(host->base, HCTL, 2054 OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP); 2055 } 2056 2057 clk_disable_unprepare(host->dbclk); 2058 2059 pm_runtime_put_sync(host->dev); 2060 return 0; 2061 } 2062 2063 /* Routine to resume the MMC device */ 2064 static int omap_hsmmc_resume(struct device *dev) 2065 { 2066 struct omap_hsmmc_host *host = dev_get_drvdata(dev); 2067 2068 if (!host) 2069 return 0; 2070 2071 pm_runtime_get_sync(host->dev); 2072 2073 clk_prepare_enable(host->dbclk); 2074 2075 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) 2076 omap_hsmmc_conf_bus_power(host); 2077 2078 pm_runtime_mark_last_busy(host->dev); 2079 pm_runtime_put_autosuspend(host->dev); 2080 return 0; 2081 } 2082 #endif 2083 2084 #ifdef CONFIG_PM 2085 static int omap_hsmmc_runtime_suspend(struct device *dev) 2086 { 2087 struct omap_hsmmc_host *host; 2088 unsigned long flags; 2089 int ret = 0; 2090 2091 host = dev_get_drvdata(dev); 2092 omap_hsmmc_context_save(host); 2093 dev_dbg(dev, "disabled\n"); 2094 2095 spin_lock_irqsave(&host->irq_lock, flags); 2096 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) && 2097 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) { 2098 /* disable sdio irq handling to prevent race */ 2099 OMAP_HSMMC_WRITE(host->base, ISE, 0); 2100 OMAP_HSMMC_WRITE(host->base, IE, 0); 2101 2102 if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) { 2103 /* 2104 * dat1 line low, pending sdio irq 2105 * race condition: possible irq handler running on 2106 * multi-core, abort 2107 */ 2108 dev_dbg(dev, "pending sdio irq, abort suspend\n"); 2109 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 2110 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN); 2111 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN); 2112 pm_runtime_mark_last_busy(dev); 2113 ret = -EBUSY; 2114 goto abort; 2115 } 2116 2117 pinctrl_pm_select_idle_state(dev); 2118 } else { 2119 pinctrl_pm_select_idle_state(dev); 2120 } 2121 2122 abort: 2123 spin_unlock_irqrestore(&host->irq_lock, flags); 2124 return ret; 2125 } 2126 2127 static int omap_hsmmc_runtime_resume(struct device *dev) 2128 { 2129 struct omap_hsmmc_host *host; 2130 unsigned long flags; 2131 2132 host = dev_get_drvdata(dev); 2133 omap_hsmmc_context_restore(host); 2134 dev_dbg(dev, "enabled\n"); 2135 2136 spin_lock_irqsave(&host->irq_lock, flags); 2137 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) && 2138 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) { 2139 2140 pinctrl_select_default_state(host->dev); 2141 2142 /* irq lost, if pinmux incorrect */ 2143 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 2144 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN); 2145 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN); 2146 } else { 2147 pinctrl_select_default_state(host->dev); 2148 } 2149 spin_unlock_irqrestore(&host->irq_lock, flags); 2150 return 0; 2151 } 2152 #endif 2153 2154 static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = { 2155 SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume) 2156 SET_RUNTIME_PM_OPS(omap_hsmmc_runtime_suspend, omap_hsmmc_runtime_resume, NULL) 2157 }; 2158 2159 static struct platform_driver omap_hsmmc_driver = { 2160 .probe = omap_hsmmc_probe, 2161 .remove = omap_hsmmc_remove, 2162 .driver = { 2163 .name = DRIVER_NAME, 2164 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2165 .pm = &omap_hsmmc_dev_pm_ops, 2166 .of_match_table = of_match_ptr(omap_mmc_of_match), 2167 }, 2168 }; 2169 2170 module_platform_driver(omap_hsmmc_driver); 2171 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver"); 2172 MODULE_LICENSE("GPL"); 2173 MODULE_ALIAS("platform:" DRIVER_NAME); 2174 MODULE_AUTHOR("Texas Instruments Inc"); 2175