xref: /openbmc/linux/drivers/mmc/host/omap_hsmmc.c (revision f7c35abe)
1 /*
2  * drivers/mmc/host/omap_hsmmc.c
3  *
4  * Driver for OMAP2430/3430 MMC controller.
5  *
6  * Copyright (C) 2007 Texas Instruments.
7  *
8  * Authors:
9  *	Syed Mohammed Khasim	<x0khasim@ti.com>
10  *	Madhusudhan		<madhu.cr@ti.com>
11  *	Mohit Jalori		<mjalori@ti.com>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/sizes.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/timer.h>
30 #include <linux/clk.h>
31 #include <linux/of.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_device.h>
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/core.h>
37 #include <linux/mmc/mmc.h>
38 #include <linux/mmc/slot-gpio.h>
39 #include <linux/io.h>
40 #include <linux/irq.h>
41 #include <linux/gpio.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/pinctrl/consumer.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/pm_wakeirq.h>
46 #include <linux/platform_data/hsmmc-omap.h>
47 
48 /* OMAP HSMMC Host Controller Registers */
49 #define OMAP_HSMMC_SYSSTATUS	0x0014
50 #define OMAP_HSMMC_CON		0x002C
51 #define OMAP_HSMMC_SDMASA	0x0100
52 #define OMAP_HSMMC_BLK		0x0104
53 #define OMAP_HSMMC_ARG		0x0108
54 #define OMAP_HSMMC_CMD		0x010C
55 #define OMAP_HSMMC_RSP10	0x0110
56 #define OMAP_HSMMC_RSP32	0x0114
57 #define OMAP_HSMMC_RSP54	0x0118
58 #define OMAP_HSMMC_RSP76	0x011C
59 #define OMAP_HSMMC_DATA		0x0120
60 #define OMAP_HSMMC_PSTATE	0x0124
61 #define OMAP_HSMMC_HCTL		0x0128
62 #define OMAP_HSMMC_SYSCTL	0x012C
63 #define OMAP_HSMMC_STAT		0x0130
64 #define OMAP_HSMMC_IE		0x0134
65 #define OMAP_HSMMC_ISE		0x0138
66 #define OMAP_HSMMC_AC12		0x013C
67 #define OMAP_HSMMC_CAPA		0x0140
68 
69 #define VS18			(1 << 26)
70 #define VS30			(1 << 25)
71 #define HSS			(1 << 21)
72 #define SDVS18			(0x5 << 9)
73 #define SDVS30			(0x6 << 9)
74 #define SDVS33			(0x7 << 9)
75 #define SDVS_MASK		0x00000E00
76 #define SDVSCLR			0xFFFFF1FF
77 #define SDVSDET			0x00000400
78 #define AUTOIDLE		0x1
79 #define SDBP			(1 << 8)
80 #define DTO			0xe
81 #define ICE			0x1
82 #define ICS			0x2
83 #define CEN			(1 << 2)
84 #define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
85 #define CLKD_MASK		0x0000FFC0
86 #define CLKD_SHIFT		6
87 #define DTO_MASK		0x000F0000
88 #define DTO_SHIFT		16
89 #define INIT_STREAM		(1 << 1)
90 #define ACEN_ACMD23		(2 << 2)
91 #define DP_SELECT		(1 << 21)
92 #define DDIR			(1 << 4)
93 #define DMAE			0x1
94 #define MSBS			(1 << 5)
95 #define BCE			(1 << 1)
96 #define FOUR_BIT		(1 << 1)
97 #define HSPE			(1 << 2)
98 #define IWE			(1 << 24)
99 #define DDR			(1 << 19)
100 #define CLKEXTFREE		(1 << 16)
101 #define CTPL			(1 << 11)
102 #define DW8			(1 << 5)
103 #define OD			0x1
104 #define STAT_CLEAR		0xFFFFFFFF
105 #define INIT_STREAM_CMD		0x00000000
106 #define DUAL_VOLT_OCR_BIT	7
107 #define SRC			(1 << 25)
108 #define SRD			(1 << 26)
109 #define SOFTRESET		(1 << 1)
110 
111 /* PSTATE */
112 #define DLEV_DAT(x)		(1 << (20 + (x)))
113 
114 /* Interrupt masks for IE and ISE register */
115 #define CC_EN			(1 << 0)
116 #define TC_EN			(1 << 1)
117 #define BWR_EN			(1 << 4)
118 #define BRR_EN			(1 << 5)
119 #define CIRQ_EN			(1 << 8)
120 #define ERR_EN			(1 << 15)
121 #define CTO_EN			(1 << 16)
122 #define CCRC_EN			(1 << 17)
123 #define CEB_EN			(1 << 18)
124 #define CIE_EN			(1 << 19)
125 #define DTO_EN			(1 << 20)
126 #define DCRC_EN			(1 << 21)
127 #define DEB_EN			(1 << 22)
128 #define ACE_EN			(1 << 24)
129 #define CERR_EN			(1 << 28)
130 #define BADA_EN			(1 << 29)
131 
132 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
133 		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
134 		BRR_EN | BWR_EN | TC_EN | CC_EN)
135 
136 #define CNI	(1 << 7)
137 #define ACIE	(1 << 4)
138 #define ACEB	(1 << 3)
139 #define ACCE	(1 << 2)
140 #define ACTO	(1 << 1)
141 #define ACNE	(1 << 0)
142 
143 #define MMC_AUTOSUSPEND_DELAY	100
144 #define MMC_TIMEOUT_MS		20		/* 20 mSec */
145 #define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
146 #define OMAP_MMC_MIN_CLOCK	400000
147 #define OMAP_MMC_MAX_CLOCK	52000000
148 #define DRIVER_NAME		"omap_hsmmc"
149 
150 #define VDD_1V8			1800000		/* 180000 uV */
151 #define VDD_3V0			3000000		/* 300000 uV */
152 #define VDD_165_195		(ffs(MMC_VDD_165_195) - 1)
153 
154 /*
155  * One controller can have multiple slots, like on some omap boards using
156  * omap.c controller driver. Luckily this is not currently done on any known
157  * omap_hsmmc.c device.
158  */
159 #define mmc_pdata(host)		host->pdata
160 
161 /*
162  * MMC Host controller read/write API's
163  */
164 #define OMAP_HSMMC_READ(base, reg)	\
165 	__raw_readl((base) + OMAP_HSMMC_##reg)
166 
167 #define OMAP_HSMMC_WRITE(base, reg, val) \
168 	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
169 
170 struct omap_hsmmc_next {
171 	unsigned int	dma_len;
172 	s32		cookie;
173 };
174 
175 struct omap_hsmmc_host {
176 	struct	device		*dev;
177 	struct	mmc_host	*mmc;
178 	struct	mmc_request	*mrq;
179 	struct	mmc_command	*cmd;
180 	struct	mmc_data	*data;
181 	struct	clk		*fclk;
182 	struct	clk		*dbclk;
183 	struct	regulator	*pbias;
184 	bool			pbias_enabled;
185 	void	__iomem		*base;
186 	int			vqmmc_enabled;
187 	resource_size_t		mapbase;
188 	spinlock_t		irq_lock; /* Prevent races with irq handler */
189 	unsigned int		dma_len;
190 	unsigned int		dma_sg_idx;
191 	unsigned char		bus_mode;
192 	unsigned char		power_mode;
193 	int			suspended;
194 	u32			con;
195 	u32			hctl;
196 	u32			sysctl;
197 	u32			capa;
198 	int			irq;
199 	int			wake_irq;
200 	int			use_dma, dma_ch;
201 	struct dma_chan		*tx_chan;
202 	struct dma_chan		*rx_chan;
203 	int			response_busy;
204 	int			context_loss;
205 	int			protect_card;
206 	int			reqs_blocked;
207 	int			req_in_progress;
208 	unsigned long		clk_rate;
209 	unsigned int		flags;
210 #define AUTO_CMD23		(1 << 0)        /* Auto CMD23 support */
211 #define HSMMC_SDIO_IRQ_ENABLED	(1 << 1)        /* SDIO irq enabled */
212 	struct omap_hsmmc_next	next_data;
213 	struct	omap_hsmmc_platform_data	*pdata;
214 
215 	/* return MMC cover switch state, can be NULL if not supported.
216 	 *
217 	 * possible return values:
218 	 *   0 - closed
219 	 *   1 - open
220 	 */
221 	int (*get_cover_state)(struct device *dev);
222 
223 	int (*card_detect)(struct device *dev);
224 };
225 
226 struct omap_mmc_of_data {
227 	u32 reg_offset;
228 	u8 controller_flags;
229 };
230 
231 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
232 
233 static int omap_hsmmc_card_detect(struct device *dev)
234 {
235 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
236 
237 	return mmc_gpio_get_cd(host->mmc);
238 }
239 
240 static int omap_hsmmc_get_cover_state(struct device *dev)
241 {
242 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
243 
244 	return mmc_gpio_get_cd(host->mmc);
245 }
246 
247 static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
248 {
249 	int ret;
250 	struct omap_hsmmc_host *host = mmc_priv(mmc);
251 	struct mmc_ios *ios = &mmc->ios;
252 
253 	if (mmc->supply.vmmc) {
254 		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
255 		if (ret)
256 			return ret;
257 	}
258 
259 	/* Enable interface voltage rail, if needed */
260 	if (mmc->supply.vqmmc && !host->vqmmc_enabled) {
261 		ret = regulator_enable(mmc->supply.vqmmc);
262 		if (ret) {
263 			dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
264 			goto err_vqmmc;
265 		}
266 		host->vqmmc_enabled = 1;
267 	}
268 
269 	return 0;
270 
271 err_vqmmc:
272 	if (mmc->supply.vmmc)
273 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
274 
275 	return ret;
276 }
277 
278 static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
279 {
280 	int ret;
281 	int status;
282 	struct omap_hsmmc_host *host = mmc_priv(mmc);
283 
284 	if (mmc->supply.vqmmc && host->vqmmc_enabled) {
285 		ret = regulator_disable(mmc->supply.vqmmc);
286 		if (ret) {
287 			dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
288 			return ret;
289 		}
290 		host->vqmmc_enabled = 0;
291 	}
292 
293 	if (mmc->supply.vmmc) {
294 		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
295 		if (ret)
296 			goto err_set_ocr;
297 	}
298 
299 	return 0;
300 
301 err_set_ocr:
302 	if (mmc->supply.vqmmc) {
303 		status = regulator_enable(mmc->supply.vqmmc);
304 		if (status)
305 			dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
306 	}
307 
308 	return ret;
309 }
310 
311 static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on,
312 				int vdd)
313 {
314 	int ret;
315 
316 	if (!host->pbias)
317 		return 0;
318 
319 	if (power_on) {
320 		if (vdd <= VDD_165_195)
321 			ret = regulator_set_voltage(host->pbias, VDD_1V8,
322 						    VDD_1V8);
323 		else
324 			ret = regulator_set_voltage(host->pbias, VDD_3V0,
325 						    VDD_3V0);
326 		if (ret < 0) {
327 			dev_err(host->dev, "pbias set voltage fail\n");
328 			return ret;
329 		}
330 
331 		if (host->pbias_enabled == 0) {
332 			ret = regulator_enable(host->pbias);
333 			if (ret) {
334 				dev_err(host->dev, "pbias reg enable fail\n");
335 				return ret;
336 			}
337 			host->pbias_enabled = 1;
338 		}
339 	} else {
340 		if (host->pbias_enabled == 1) {
341 			ret = regulator_disable(host->pbias);
342 			if (ret) {
343 				dev_err(host->dev, "pbias reg disable fail\n");
344 				return ret;
345 			}
346 			host->pbias_enabled = 0;
347 		}
348 	}
349 
350 	return 0;
351 }
352 
353 static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on,
354 				int vdd)
355 {
356 	struct mmc_host *mmc = host->mmc;
357 	int ret = 0;
358 
359 	if (mmc_pdata(host)->set_power)
360 		return mmc_pdata(host)->set_power(host->dev, power_on, vdd);
361 
362 	/*
363 	 * If we don't see a Vcc regulator, assume it's a fixed
364 	 * voltage always-on regulator.
365 	 */
366 	if (!mmc->supply.vmmc)
367 		return 0;
368 
369 	if (mmc_pdata(host)->before_set_reg)
370 		mmc_pdata(host)->before_set_reg(host->dev, power_on, vdd);
371 
372 	ret = omap_hsmmc_set_pbias(host, false, 0);
373 	if (ret)
374 		return ret;
375 
376 	/*
377 	 * Assume Vcc regulator is used only to power the card ... OMAP
378 	 * VDDS is used to power the pins, optionally with a transceiver to
379 	 * support cards using voltages other than VDDS (1.8V nominal).  When a
380 	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
381 	 *
382 	 * In some cases this regulator won't support enable/disable;
383 	 * e.g. it's a fixed rail for a WLAN chip.
384 	 *
385 	 * In other cases vcc_aux switches interface power.  Example, for
386 	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
387 	 * chips/cards need an interface voltage rail too.
388 	 */
389 	if (power_on) {
390 		ret = omap_hsmmc_enable_supply(mmc);
391 		if (ret)
392 			return ret;
393 
394 		ret = omap_hsmmc_set_pbias(host, true, vdd);
395 		if (ret)
396 			goto err_set_voltage;
397 	} else {
398 		ret = omap_hsmmc_disable_supply(mmc);
399 		if (ret)
400 			return ret;
401 	}
402 
403 	if (mmc_pdata(host)->after_set_reg)
404 		mmc_pdata(host)->after_set_reg(host->dev, power_on, vdd);
405 
406 	return 0;
407 
408 err_set_voltage:
409 	omap_hsmmc_disable_supply(mmc);
410 
411 	return ret;
412 }
413 
414 static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
415 {
416 	int ret;
417 
418 	if (!reg)
419 		return 0;
420 
421 	if (regulator_is_enabled(reg)) {
422 		ret = regulator_enable(reg);
423 		if (ret)
424 			return ret;
425 
426 		ret = regulator_disable(reg);
427 		if (ret)
428 			return ret;
429 	}
430 
431 	return 0;
432 }
433 
434 static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
435 {
436 	struct mmc_host *mmc = host->mmc;
437 	int ret;
438 
439 	/*
440 	 * disable regulators enabled during boot and get the usecount
441 	 * right so that regulators can be enabled/disabled by checking
442 	 * the return value of regulator_is_enabled
443 	 */
444 	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
445 	if (ret) {
446 		dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
447 		return ret;
448 	}
449 
450 	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
451 	if (ret) {
452 		dev_err(host->dev,
453 			"fail to disable boot enabled vmmc_aux reg\n");
454 		return ret;
455 	}
456 
457 	ret = omap_hsmmc_disable_boot_regulator(host->pbias);
458 	if (ret) {
459 		dev_err(host->dev,
460 			"failed to disable boot enabled pbias reg\n");
461 		return ret;
462 	}
463 
464 	return 0;
465 }
466 
467 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
468 {
469 	int ocr_value = 0;
470 	int ret;
471 	struct mmc_host *mmc = host->mmc;
472 
473 	if (mmc_pdata(host)->set_power)
474 		return 0;
475 
476 	mmc->supply.vmmc = devm_regulator_get_optional(host->dev, "vmmc");
477 	if (IS_ERR(mmc->supply.vmmc)) {
478 		ret = PTR_ERR(mmc->supply.vmmc);
479 		if ((ret != -ENODEV) && host->dev->of_node)
480 			return ret;
481 		dev_dbg(host->dev, "unable to get vmmc regulator %ld\n",
482 			PTR_ERR(mmc->supply.vmmc));
483 		mmc->supply.vmmc = NULL;
484 	} else {
485 		ocr_value = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
486 		if (ocr_value > 0)
487 			mmc_pdata(host)->ocr_mask = ocr_value;
488 	}
489 
490 	/* Allow an aux regulator */
491 	mmc->supply.vqmmc = devm_regulator_get_optional(host->dev, "vmmc_aux");
492 	if (IS_ERR(mmc->supply.vqmmc)) {
493 		ret = PTR_ERR(mmc->supply.vqmmc);
494 		if ((ret != -ENODEV) && host->dev->of_node)
495 			return ret;
496 		dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
497 			PTR_ERR(mmc->supply.vqmmc));
498 		mmc->supply.vqmmc = NULL;
499 	}
500 
501 	host->pbias = devm_regulator_get_optional(host->dev, "pbias");
502 	if (IS_ERR(host->pbias)) {
503 		ret = PTR_ERR(host->pbias);
504 		if ((ret != -ENODEV) && host->dev->of_node) {
505 			dev_err(host->dev,
506 			"SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
507 			return ret;
508 		}
509 		dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
510 			PTR_ERR(host->pbias));
511 		host->pbias = NULL;
512 	}
513 
514 	/* For eMMC do not power off when not in sleep state */
515 	if (mmc_pdata(host)->no_regulator_off_init)
516 		return 0;
517 
518 	ret = omap_hsmmc_disable_boot_regulators(host);
519 	if (ret)
520 		return ret;
521 
522 	return 0;
523 }
524 
525 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id);
526 
527 static int omap_hsmmc_gpio_init(struct mmc_host *mmc,
528 				struct omap_hsmmc_host *host,
529 				struct omap_hsmmc_platform_data *pdata)
530 {
531 	int ret;
532 
533 	if (gpio_is_valid(pdata->gpio_cod)) {
534 		ret = mmc_gpio_request_cd(mmc, pdata->gpio_cod, 0);
535 		if (ret)
536 			return ret;
537 
538 		host->get_cover_state = omap_hsmmc_get_cover_state;
539 		mmc_gpio_set_cd_isr(mmc, omap_hsmmc_cover_irq);
540 	} else if (gpio_is_valid(pdata->gpio_cd)) {
541 		ret = mmc_gpio_request_cd(mmc, pdata->gpio_cd, 0);
542 		if (ret)
543 			return ret;
544 
545 		host->card_detect = omap_hsmmc_card_detect;
546 	}
547 
548 	if (gpio_is_valid(pdata->gpio_wp)) {
549 		ret = mmc_gpio_request_ro(mmc, pdata->gpio_wp);
550 		if (ret)
551 			return ret;
552 	}
553 
554 	return 0;
555 }
556 
557 /*
558  * Start clock to the card
559  */
560 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
561 {
562 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
563 		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
564 }
565 
566 /*
567  * Stop clock to the card
568  */
569 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
570 {
571 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
572 		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
573 	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
574 		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
575 }
576 
577 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
578 				  struct mmc_command *cmd)
579 {
580 	u32 irq_mask = INT_EN_MASK;
581 	unsigned long flags;
582 
583 	if (host->use_dma)
584 		irq_mask &= ~(BRR_EN | BWR_EN);
585 
586 	/* Disable timeout for erases */
587 	if (cmd->opcode == MMC_ERASE)
588 		irq_mask &= ~DTO_EN;
589 
590 	spin_lock_irqsave(&host->irq_lock, flags);
591 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
592 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
593 
594 	/* latch pending CIRQ, but don't signal MMC core */
595 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
596 		irq_mask |= CIRQ_EN;
597 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
598 	spin_unlock_irqrestore(&host->irq_lock, flags);
599 }
600 
601 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
602 {
603 	u32 irq_mask = 0;
604 	unsigned long flags;
605 
606 	spin_lock_irqsave(&host->irq_lock, flags);
607 	/* no transfer running but need to keep cirq if enabled */
608 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
609 		irq_mask |= CIRQ_EN;
610 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
611 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
612 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
613 	spin_unlock_irqrestore(&host->irq_lock, flags);
614 }
615 
616 /* Calculate divisor for the given clock frequency */
617 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
618 {
619 	u16 dsor = 0;
620 
621 	if (ios->clock) {
622 		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
623 		if (dsor > CLKD_MAX)
624 			dsor = CLKD_MAX;
625 	}
626 
627 	return dsor;
628 }
629 
630 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
631 {
632 	struct mmc_ios *ios = &host->mmc->ios;
633 	unsigned long regval;
634 	unsigned long timeout;
635 	unsigned long clkdiv;
636 
637 	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
638 
639 	omap_hsmmc_stop_clock(host);
640 
641 	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
642 	regval = regval & ~(CLKD_MASK | DTO_MASK);
643 	clkdiv = calc_divisor(host, ios);
644 	regval = regval | (clkdiv << 6) | (DTO << 16);
645 	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
646 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
647 		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
648 
649 	/* Wait till the ICS bit is set */
650 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
651 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
652 		&& time_before(jiffies, timeout))
653 		cpu_relax();
654 
655 	/*
656 	 * Enable High-Speed Support
657 	 * Pre-Requisites
658 	 *	- Controller should support High-Speed-Enable Bit
659 	 *	- Controller should not be using DDR Mode
660 	 *	- Controller should advertise that it supports High Speed
661 	 *	  in capabilities register
662 	 *	- MMC/SD clock coming out of controller > 25MHz
663 	 */
664 	if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
665 	    (ios->timing != MMC_TIMING_MMC_DDR52) &&
666 	    (ios->timing != MMC_TIMING_UHS_DDR50) &&
667 	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
668 		regval = OMAP_HSMMC_READ(host->base, HCTL);
669 		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
670 			regval |= HSPE;
671 		else
672 			regval &= ~HSPE;
673 
674 		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
675 	}
676 
677 	omap_hsmmc_start_clock(host);
678 }
679 
680 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
681 {
682 	struct mmc_ios *ios = &host->mmc->ios;
683 	u32 con;
684 
685 	con = OMAP_HSMMC_READ(host->base, CON);
686 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
687 	    ios->timing == MMC_TIMING_UHS_DDR50)
688 		con |= DDR;	/* configure in DDR mode */
689 	else
690 		con &= ~DDR;
691 	switch (ios->bus_width) {
692 	case MMC_BUS_WIDTH_8:
693 		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
694 		break;
695 	case MMC_BUS_WIDTH_4:
696 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
697 		OMAP_HSMMC_WRITE(host->base, HCTL,
698 			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
699 		break;
700 	case MMC_BUS_WIDTH_1:
701 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
702 		OMAP_HSMMC_WRITE(host->base, HCTL,
703 			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
704 		break;
705 	}
706 }
707 
708 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
709 {
710 	struct mmc_ios *ios = &host->mmc->ios;
711 	u32 con;
712 
713 	con = OMAP_HSMMC_READ(host->base, CON);
714 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
715 		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
716 	else
717 		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
718 }
719 
720 #ifdef CONFIG_PM
721 
722 /*
723  * Restore the MMC host context, if it was lost as result of a
724  * power state change.
725  */
726 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
727 {
728 	struct mmc_ios *ios = &host->mmc->ios;
729 	u32 hctl, capa;
730 	unsigned long timeout;
731 
732 	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
733 	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
734 	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
735 	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
736 		return 0;
737 
738 	host->context_loss++;
739 
740 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
741 		if (host->power_mode != MMC_POWER_OFF &&
742 		    (1 << ios->vdd) <= MMC_VDD_23_24)
743 			hctl = SDVS18;
744 		else
745 			hctl = SDVS30;
746 		capa = VS30 | VS18;
747 	} else {
748 		hctl = SDVS18;
749 		capa = VS18;
750 	}
751 
752 	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
753 		hctl |= IWE;
754 
755 	OMAP_HSMMC_WRITE(host->base, HCTL,
756 			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
757 
758 	OMAP_HSMMC_WRITE(host->base, CAPA,
759 			OMAP_HSMMC_READ(host->base, CAPA) | capa);
760 
761 	OMAP_HSMMC_WRITE(host->base, HCTL,
762 			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
763 
764 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
765 	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
766 		&& time_before(jiffies, timeout))
767 		;
768 
769 	OMAP_HSMMC_WRITE(host->base, ISE, 0);
770 	OMAP_HSMMC_WRITE(host->base, IE, 0);
771 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
772 
773 	/* Do not initialize card-specific things if the power is off */
774 	if (host->power_mode == MMC_POWER_OFF)
775 		goto out;
776 
777 	omap_hsmmc_set_bus_width(host);
778 
779 	omap_hsmmc_set_clock(host);
780 
781 	omap_hsmmc_set_bus_mode(host);
782 
783 out:
784 	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
785 		host->context_loss);
786 	return 0;
787 }
788 
789 /*
790  * Save the MMC host context (store the number of power state changes so far).
791  */
792 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
793 {
794 	host->con =  OMAP_HSMMC_READ(host->base, CON);
795 	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
796 	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
797 	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
798 }
799 
800 #else
801 
802 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
803 {
804 	return 0;
805 }
806 
807 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
808 {
809 }
810 
811 #endif
812 
813 /*
814  * Send init stream sequence to card
815  * before sending IDLE command
816  */
817 static void send_init_stream(struct omap_hsmmc_host *host)
818 {
819 	int reg = 0;
820 	unsigned long timeout;
821 
822 	if (host->protect_card)
823 		return;
824 
825 	disable_irq(host->irq);
826 
827 	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
828 	OMAP_HSMMC_WRITE(host->base, CON,
829 		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
830 	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
831 
832 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
833 	while ((reg != CC_EN) && time_before(jiffies, timeout))
834 		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
835 
836 	OMAP_HSMMC_WRITE(host->base, CON,
837 		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
838 
839 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
840 	OMAP_HSMMC_READ(host->base, STAT);
841 
842 	enable_irq(host->irq);
843 }
844 
845 static inline
846 int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
847 {
848 	int r = 1;
849 
850 	if (host->get_cover_state)
851 		r = host->get_cover_state(host->dev);
852 	return r;
853 }
854 
855 static ssize_t
856 omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
857 			   char *buf)
858 {
859 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
860 	struct omap_hsmmc_host *host = mmc_priv(mmc);
861 
862 	return sprintf(buf, "%s\n",
863 			omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
864 }
865 
866 static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
867 
868 static ssize_t
869 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
870 			char *buf)
871 {
872 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
873 	struct omap_hsmmc_host *host = mmc_priv(mmc);
874 
875 	return sprintf(buf, "%s\n", mmc_pdata(host)->name);
876 }
877 
878 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
879 
880 /*
881  * Configure the response type and send the cmd.
882  */
883 static void
884 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
885 	struct mmc_data *data)
886 {
887 	int cmdreg = 0, resptype = 0, cmdtype = 0;
888 
889 	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
890 		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
891 	host->cmd = cmd;
892 
893 	omap_hsmmc_enable_irq(host, cmd);
894 
895 	host->response_busy = 0;
896 	if (cmd->flags & MMC_RSP_PRESENT) {
897 		if (cmd->flags & MMC_RSP_136)
898 			resptype = 1;
899 		else if (cmd->flags & MMC_RSP_BUSY) {
900 			resptype = 3;
901 			host->response_busy = 1;
902 		} else
903 			resptype = 2;
904 	}
905 
906 	/*
907 	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
908 	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
909 	 * a val of 0x3, rest 0x0.
910 	 */
911 	if (cmd == host->mrq->stop)
912 		cmdtype = 0x3;
913 
914 	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
915 
916 	if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
917 	    host->mrq->sbc) {
918 		cmdreg |= ACEN_ACMD23;
919 		OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
920 	}
921 	if (data) {
922 		cmdreg |= DP_SELECT | MSBS | BCE;
923 		if (data->flags & MMC_DATA_READ)
924 			cmdreg |= DDIR;
925 		else
926 			cmdreg &= ~(DDIR);
927 	}
928 
929 	if (host->use_dma)
930 		cmdreg |= DMAE;
931 
932 	host->req_in_progress = 1;
933 
934 	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
935 	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
936 }
937 
938 static int
939 omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
940 {
941 	if (data->flags & MMC_DATA_WRITE)
942 		return DMA_TO_DEVICE;
943 	else
944 		return DMA_FROM_DEVICE;
945 }
946 
947 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
948 	struct mmc_data *data)
949 {
950 	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
951 }
952 
953 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
954 {
955 	int dma_ch;
956 	unsigned long flags;
957 
958 	spin_lock_irqsave(&host->irq_lock, flags);
959 	host->req_in_progress = 0;
960 	dma_ch = host->dma_ch;
961 	spin_unlock_irqrestore(&host->irq_lock, flags);
962 
963 	omap_hsmmc_disable_irq(host);
964 	/* Do not complete the request if DMA is still in progress */
965 	if (mrq->data && host->use_dma && dma_ch != -1)
966 		return;
967 	host->mrq = NULL;
968 	mmc_request_done(host->mmc, mrq);
969 }
970 
971 /*
972  * Notify the transfer complete to MMC core
973  */
974 static void
975 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
976 {
977 	if (!data) {
978 		struct mmc_request *mrq = host->mrq;
979 
980 		/* TC before CC from CMD6 - don't know why, but it happens */
981 		if (host->cmd && host->cmd->opcode == 6 &&
982 		    host->response_busy) {
983 			host->response_busy = 0;
984 			return;
985 		}
986 
987 		omap_hsmmc_request_done(host, mrq);
988 		return;
989 	}
990 
991 	host->data = NULL;
992 
993 	if (!data->error)
994 		data->bytes_xfered += data->blocks * (data->blksz);
995 	else
996 		data->bytes_xfered = 0;
997 
998 	if (data->stop && (data->error || !host->mrq->sbc))
999 		omap_hsmmc_start_command(host, data->stop, NULL);
1000 	else
1001 		omap_hsmmc_request_done(host, data->mrq);
1002 }
1003 
1004 /*
1005  * Notify the core about command completion
1006  */
1007 static void
1008 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
1009 {
1010 	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
1011 	    !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
1012 		host->cmd = NULL;
1013 		omap_hsmmc_start_dma_transfer(host);
1014 		omap_hsmmc_start_command(host, host->mrq->cmd,
1015 						host->mrq->data);
1016 		return;
1017 	}
1018 
1019 	host->cmd = NULL;
1020 
1021 	if (cmd->flags & MMC_RSP_PRESENT) {
1022 		if (cmd->flags & MMC_RSP_136) {
1023 			/* response type 2 */
1024 			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
1025 			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
1026 			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
1027 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
1028 		} else {
1029 			/* response types 1, 1b, 3, 4, 5, 6 */
1030 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
1031 		}
1032 	}
1033 	if ((host->data == NULL && !host->response_busy) || cmd->error)
1034 		omap_hsmmc_request_done(host, host->mrq);
1035 }
1036 
1037 /*
1038  * DMA clean up for command errors
1039  */
1040 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
1041 {
1042 	int dma_ch;
1043 	unsigned long flags;
1044 
1045 	host->data->error = errno;
1046 
1047 	spin_lock_irqsave(&host->irq_lock, flags);
1048 	dma_ch = host->dma_ch;
1049 	host->dma_ch = -1;
1050 	spin_unlock_irqrestore(&host->irq_lock, flags);
1051 
1052 	if (host->use_dma && dma_ch != -1) {
1053 		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
1054 
1055 		dmaengine_terminate_all(chan);
1056 		dma_unmap_sg(chan->device->dev,
1057 			host->data->sg, host->data->sg_len,
1058 			omap_hsmmc_get_dma_dir(host, host->data));
1059 
1060 		host->data->host_cookie = 0;
1061 	}
1062 	host->data = NULL;
1063 }
1064 
1065 /*
1066  * Readable error output
1067  */
1068 #ifdef CONFIG_MMC_DEBUG
1069 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
1070 {
1071 	/* --- means reserved bit without definition at documentation */
1072 	static const char *omap_hsmmc_status_bits[] = {
1073 		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
1074 		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
1075 		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
1076 		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
1077 	};
1078 	char res[256];
1079 	char *buf = res;
1080 	int len, i;
1081 
1082 	len = sprintf(buf, "MMC IRQ 0x%x :", status);
1083 	buf += len;
1084 
1085 	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
1086 		if (status & (1 << i)) {
1087 			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
1088 			buf += len;
1089 		}
1090 
1091 	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
1092 }
1093 #else
1094 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
1095 					     u32 status)
1096 {
1097 }
1098 #endif  /* CONFIG_MMC_DEBUG */
1099 
1100 /*
1101  * MMC controller internal state machines reset
1102  *
1103  * Used to reset command or data internal state machines, using respectively
1104  *  SRC or SRD bit of SYSCTL register
1105  * Can be called from interrupt context
1106  */
1107 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
1108 						   unsigned long bit)
1109 {
1110 	unsigned long i = 0;
1111 	unsigned long limit = MMC_TIMEOUT_US;
1112 
1113 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
1114 			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
1115 
1116 	/*
1117 	 * OMAP4 ES2 and greater has an updated reset logic.
1118 	 * Monitor a 0->1 transition first
1119 	 */
1120 	if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
1121 		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
1122 					&& (i++ < limit))
1123 			udelay(1);
1124 	}
1125 	i = 0;
1126 
1127 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
1128 		(i++ < limit))
1129 		udelay(1);
1130 
1131 	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1132 		dev_err(mmc_dev(host->mmc),
1133 			"Timeout waiting on controller reset in %s\n",
1134 			__func__);
1135 }
1136 
1137 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1138 					int err, int end_cmd)
1139 {
1140 	if (end_cmd) {
1141 		omap_hsmmc_reset_controller_fsm(host, SRC);
1142 		if (host->cmd)
1143 			host->cmd->error = err;
1144 	}
1145 
1146 	if (host->data) {
1147 		omap_hsmmc_reset_controller_fsm(host, SRD);
1148 		omap_hsmmc_dma_cleanup(host, err);
1149 	} else if (host->mrq && host->mrq->cmd)
1150 		host->mrq->cmd->error = err;
1151 }
1152 
1153 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1154 {
1155 	struct mmc_data *data;
1156 	int end_cmd = 0, end_trans = 0;
1157 	int error = 0;
1158 
1159 	data = host->data;
1160 	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1161 
1162 	if (status & ERR_EN) {
1163 		omap_hsmmc_dbg_report_irq(host, status);
1164 
1165 		if (status & (CTO_EN | CCRC_EN | CEB_EN))
1166 			end_cmd = 1;
1167 		if (host->data || host->response_busy) {
1168 			end_trans = !end_cmd;
1169 			host->response_busy = 0;
1170 		}
1171 		if (status & (CTO_EN | DTO_EN))
1172 			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1173 		else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1174 				   BADA_EN))
1175 			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1176 
1177 		if (status & ACE_EN) {
1178 			u32 ac12;
1179 			ac12 = OMAP_HSMMC_READ(host->base, AC12);
1180 			if (!(ac12 & ACNE) && host->mrq->sbc) {
1181 				end_cmd = 1;
1182 				if (ac12 & ACTO)
1183 					error =  -ETIMEDOUT;
1184 				else if (ac12 & (ACCE | ACEB | ACIE))
1185 					error = -EILSEQ;
1186 				host->mrq->sbc->error = error;
1187 				hsmmc_command_incomplete(host, error, end_cmd);
1188 			}
1189 			dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1190 		}
1191 	}
1192 
1193 	OMAP_HSMMC_WRITE(host->base, STAT, status);
1194 	if (end_cmd || ((status & CC_EN) && host->cmd))
1195 		omap_hsmmc_cmd_done(host, host->cmd);
1196 	if ((end_trans || (status & TC_EN)) && host->mrq)
1197 		omap_hsmmc_xfer_done(host, data);
1198 }
1199 
1200 /*
1201  * MMC controller IRQ handler
1202  */
1203 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1204 {
1205 	struct omap_hsmmc_host *host = dev_id;
1206 	int status;
1207 
1208 	status = OMAP_HSMMC_READ(host->base, STAT);
1209 	while (status & (INT_EN_MASK | CIRQ_EN)) {
1210 		if (host->req_in_progress)
1211 			omap_hsmmc_do_irq(host, status);
1212 
1213 		if (status & CIRQ_EN)
1214 			mmc_signal_sdio_irq(host->mmc);
1215 
1216 		/* Flush posted write */
1217 		status = OMAP_HSMMC_READ(host->base, STAT);
1218 	}
1219 
1220 	return IRQ_HANDLED;
1221 }
1222 
1223 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1224 {
1225 	unsigned long i;
1226 
1227 	OMAP_HSMMC_WRITE(host->base, HCTL,
1228 			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1229 	for (i = 0; i < loops_per_jiffy; i++) {
1230 		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1231 			break;
1232 		cpu_relax();
1233 	}
1234 }
1235 
1236 /*
1237  * Switch MMC interface voltage ... only relevant for MMC1.
1238  *
1239  * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1240  * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1241  * Some chips, like eMMC ones, use internal transceivers.
1242  */
1243 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1244 {
1245 	u32 reg_val = 0;
1246 	int ret;
1247 
1248 	/* Disable the clocks */
1249 	if (host->dbclk)
1250 		clk_disable_unprepare(host->dbclk);
1251 
1252 	/* Turn the power off */
1253 	ret = omap_hsmmc_set_power(host, 0, 0);
1254 
1255 	/* Turn the power ON with given VDD 1.8 or 3.0v */
1256 	if (!ret)
1257 		ret = omap_hsmmc_set_power(host, 1, vdd);
1258 	if (host->dbclk)
1259 		clk_prepare_enable(host->dbclk);
1260 
1261 	if (ret != 0)
1262 		goto err;
1263 
1264 	OMAP_HSMMC_WRITE(host->base, HCTL,
1265 		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1266 	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1267 
1268 	/*
1269 	 * If a MMC dual voltage card is detected, the set_ios fn calls
1270 	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1271 	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1272 	 *
1273 	 * Cope with a bit of slop in the range ... per data sheets:
1274 	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1275 	 *    but recommended values are 1.71V to 1.89V
1276 	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1277 	 *    but recommended values are 2.7V to 3.3V
1278 	 *
1279 	 * Board setup code shouldn't permit anything very out-of-range.
1280 	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1281 	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1282 	 */
1283 	if ((1 << vdd) <= MMC_VDD_23_24)
1284 		reg_val |= SDVS18;
1285 	else
1286 		reg_val |= SDVS30;
1287 
1288 	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1289 	set_sd_bus_power(host);
1290 
1291 	return 0;
1292 err:
1293 	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1294 	return ret;
1295 }
1296 
1297 /* Protect the card while the cover is open */
1298 static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1299 {
1300 	if (!host->get_cover_state)
1301 		return;
1302 
1303 	host->reqs_blocked = 0;
1304 	if (host->get_cover_state(host->dev)) {
1305 		if (host->protect_card) {
1306 			dev_info(host->dev, "%s: cover is closed, "
1307 					 "card is now accessible\n",
1308 					 mmc_hostname(host->mmc));
1309 			host->protect_card = 0;
1310 		}
1311 	} else {
1312 		if (!host->protect_card) {
1313 			dev_info(host->dev, "%s: cover is open, "
1314 					 "card is now inaccessible\n",
1315 					 mmc_hostname(host->mmc));
1316 			host->protect_card = 1;
1317 		}
1318 	}
1319 }
1320 
1321 /*
1322  * irq handler when (cell-phone) cover is mounted/removed
1323  */
1324 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id)
1325 {
1326 	struct omap_hsmmc_host *host = dev_id;
1327 
1328 	sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1329 
1330 	omap_hsmmc_protect_card(host);
1331 	mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1332 	return IRQ_HANDLED;
1333 }
1334 
1335 static void omap_hsmmc_dma_callback(void *param)
1336 {
1337 	struct omap_hsmmc_host *host = param;
1338 	struct dma_chan *chan;
1339 	struct mmc_data *data;
1340 	int req_in_progress;
1341 
1342 	spin_lock_irq(&host->irq_lock);
1343 	if (host->dma_ch < 0) {
1344 		spin_unlock_irq(&host->irq_lock);
1345 		return;
1346 	}
1347 
1348 	data = host->mrq->data;
1349 	chan = omap_hsmmc_get_dma_chan(host, data);
1350 	if (!data->host_cookie)
1351 		dma_unmap_sg(chan->device->dev,
1352 			     data->sg, data->sg_len,
1353 			     omap_hsmmc_get_dma_dir(host, data));
1354 
1355 	req_in_progress = host->req_in_progress;
1356 	host->dma_ch = -1;
1357 	spin_unlock_irq(&host->irq_lock);
1358 
1359 	/* If DMA has finished after TC, complete the request */
1360 	if (!req_in_progress) {
1361 		struct mmc_request *mrq = host->mrq;
1362 
1363 		host->mrq = NULL;
1364 		mmc_request_done(host->mmc, mrq);
1365 	}
1366 }
1367 
1368 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1369 				       struct mmc_data *data,
1370 				       struct omap_hsmmc_next *next,
1371 				       struct dma_chan *chan)
1372 {
1373 	int dma_len;
1374 
1375 	if (!next && data->host_cookie &&
1376 	    data->host_cookie != host->next_data.cookie) {
1377 		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1378 		       " host->next_data.cookie %d\n",
1379 		       __func__, data->host_cookie, host->next_data.cookie);
1380 		data->host_cookie = 0;
1381 	}
1382 
1383 	/* Check if next job is already prepared */
1384 	if (next || data->host_cookie != host->next_data.cookie) {
1385 		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1386 				     omap_hsmmc_get_dma_dir(host, data));
1387 
1388 	} else {
1389 		dma_len = host->next_data.dma_len;
1390 		host->next_data.dma_len = 0;
1391 	}
1392 
1393 
1394 	if (dma_len == 0)
1395 		return -EINVAL;
1396 
1397 	if (next) {
1398 		next->dma_len = dma_len;
1399 		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1400 	} else
1401 		host->dma_len = dma_len;
1402 
1403 	return 0;
1404 }
1405 
1406 /*
1407  * Routine to configure and start DMA for the MMC card
1408  */
1409 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1410 					struct mmc_request *req)
1411 {
1412 	struct dma_async_tx_descriptor *tx;
1413 	int ret = 0, i;
1414 	struct mmc_data *data = req->data;
1415 	struct dma_chan *chan;
1416 	struct dma_slave_config cfg = {
1417 		.src_addr = host->mapbase + OMAP_HSMMC_DATA,
1418 		.dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1419 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1420 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1421 		.src_maxburst = data->blksz / 4,
1422 		.dst_maxburst = data->blksz / 4,
1423 	};
1424 
1425 	/* Sanity check: all the SG entries must be aligned by block size. */
1426 	for (i = 0; i < data->sg_len; i++) {
1427 		struct scatterlist *sgl;
1428 
1429 		sgl = data->sg + i;
1430 		if (sgl->length % data->blksz)
1431 			return -EINVAL;
1432 	}
1433 	if ((data->blksz % 4) != 0)
1434 		/* REVISIT: The MMC buffer increments only when MSB is written.
1435 		 * Return error for blksz which is non multiple of four.
1436 		 */
1437 		return -EINVAL;
1438 
1439 	BUG_ON(host->dma_ch != -1);
1440 
1441 	chan = omap_hsmmc_get_dma_chan(host, data);
1442 
1443 	ret = dmaengine_slave_config(chan, &cfg);
1444 	if (ret)
1445 		return ret;
1446 
1447 	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1448 	if (ret)
1449 		return ret;
1450 
1451 	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1452 		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1453 		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1454 	if (!tx) {
1455 		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1456 		/* FIXME: cleanup */
1457 		return -1;
1458 	}
1459 
1460 	tx->callback = omap_hsmmc_dma_callback;
1461 	tx->callback_param = host;
1462 
1463 	/* Does not fail */
1464 	dmaengine_submit(tx);
1465 
1466 	host->dma_ch = 1;
1467 
1468 	return 0;
1469 }
1470 
1471 static void set_data_timeout(struct omap_hsmmc_host *host,
1472 			     unsigned long long timeout_ns,
1473 			     unsigned int timeout_clks)
1474 {
1475 	unsigned long long timeout = timeout_ns;
1476 	unsigned int cycle_ns;
1477 	uint32_t reg, clkd, dto = 0;
1478 
1479 	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1480 	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1481 	if (clkd == 0)
1482 		clkd = 1;
1483 
1484 	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1485 	do_div(timeout, cycle_ns);
1486 	timeout += timeout_clks;
1487 	if (timeout) {
1488 		while ((timeout & 0x80000000) == 0) {
1489 			dto += 1;
1490 			timeout <<= 1;
1491 		}
1492 		dto = 31 - dto;
1493 		timeout <<= 1;
1494 		if (timeout && dto)
1495 			dto += 1;
1496 		if (dto >= 13)
1497 			dto -= 13;
1498 		else
1499 			dto = 0;
1500 		if (dto > 14)
1501 			dto = 14;
1502 	}
1503 
1504 	reg &= ~DTO_MASK;
1505 	reg |= dto << DTO_SHIFT;
1506 	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1507 }
1508 
1509 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1510 {
1511 	struct mmc_request *req = host->mrq;
1512 	struct dma_chan *chan;
1513 
1514 	if (!req->data)
1515 		return;
1516 	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1517 				| (req->data->blocks << 16));
1518 	set_data_timeout(host, req->data->timeout_ns,
1519 				req->data->timeout_clks);
1520 	chan = omap_hsmmc_get_dma_chan(host, req->data);
1521 	dma_async_issue_pending(chan);
1522 }
1523 
1524 /*
1525  * Configure block length for MMC/SD cards and initiate the transfer.
1526  */
1527 static int
1528 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1529 {
1530 	int ret;
1531 	unsigned long long timeout;
1532 
1533 	host->data = req->data;
1534 
1535 	if (req->data == NULL) {
1536 		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1537 		if (req->cmd->flags & MMC_RSP_BUSY) {
1538 			timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1539 
1540 			/*
1541 			 * Set an arbitrary 100ms data timeout for commands with
1542 			 * busy signal and no indication of busy_timeout.
1543 			 */
1544 			if (!timeout)
1545 				timeout = 100000000U;
1546 
1547 			set_data_timeout(host, timeout, 0);
1548 		}
1549 		return 0;
1550 	}
1551 
1552 	if (host->use_dma) {
1553 		ret = omap_hsmmc_setup_dma_transfer(host, req);
1554 		if (ret != 0) {
1555 			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1556 			return ret;
1557 		}
1558 	}
1559 	return 0;
1560 }
1561 
1562 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1563 				int err)
1564 {
1565 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1566 	struct mmc_data *data = mrq->data;
1567 
1568 	if (host->use_dma && data->host_cookie) {
1569 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1570 
1571 		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1572 			     omap_hsmmc_get_dma_dir(host, data));
1573 		data->host_cookie = 0;
1574 	}
1575 }
1576 
1577 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
1578 {
1579 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1580 
1581 	if (mrq->data->host_cookie) {
1582 		mrq->data->host_cookie = 0;
1583 		return ;
1584 	}
1585 
1586 	if (host->use_dma) {
1587 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1588 
1589 		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1590 						&host->next_data, c))
1591 			mrq->data->host_cookie = 0;
1592 	}
1593 }
1594 
1595 /*
1596  * Request function. for read/write operation
1597  */
1598 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1599 {
1600 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1601 	int err;
1602 
1603 	BUG_ON(host->req_in_progress);
1604 	BUG_ON(host->dma_ch != -1);
1605 	if (host->protect_card) {
1606 		if (host->reqs_blocked < 3) {
1607 			/*
1608 			 * Ensure the controller is left in a consistent
1609 			 * state by resetting the command and data state
1610 			 * machines.
1611 			 */
1612 			omap_hsmmc_reset_controller_fsm(host, SRD);
1613 			omap_hsmmc_reset_controller_fsm(host, SRC);
1614 			host->reqs_blocked += 1;
1615 		}
1616 		req->cmd->error = -EBADF;
1617 		if (req->data)
1618 			req->data->error = -EBADF;
1619 		req->cmd->retries = 0;
1620 		mmc_request_done(mmc, req);
1621 		return;
1622 	} else if (host->reqs_blocked)
1623 		host->reqs_blocked = 0;
1624 	WARN_ON(host->mrq != NULL);
1625 	host->mrq = req;
1626 	host->clk_rate = clk_get_rate(host->fclk);
1627 	err = omap_hsmmc_prepare_data(host, req);
1628 	if (err) {
1629 		req->cmd->error = err;
1630 		if (req->data)
1631 			req->data->error = err;
1632 		host->mrq = NULL;
1633 		mmc_request_done(mmc, req);
1634 		return;
1635 	}
1636 	if (req->sbc && !(host->flags & AUTO_CMD23)) {
1637 		omap_hsmmc_start_command(host, req->sbc, NULL);
1638 		return;
1639 	}
1640 
1641 	omap_hsmmc_start_dma_transfer(host);
1642 	omap_hsmmc_start_command(host, req->cmd, req->data);
1643 }
1644 
1645 /* Routine to configure clock values. Exposed API to core */
1646 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1647 {
1648 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1649 	int do_send_init_stream = 0;
1650 
1651 	if (ios->power_mode != host->power_mode) {
1652 		switch (ios->power_mode) {
1653 		case MMC_POWER_OFF:
1654 			omap_hsmmc_set_power(host, 0, 0);
1655 			break;
1656 		case MMC_POWER_UP:
1657 			omap_hsmmc_set_power(host, 1, ios->vdd);
1658 			break;
1659 		case MMC_POWER_ON:
1660 			do_send_init_stream = 1;
1661 			break;
1662 		}
1663 		host->power_mode = ios->power_mode;
1664 	}
1665 
1666 	/* FIXME: set registers based only on changes to ios */
1667 
1668 	omap_hsmmc_set_bus_width(host);
1669 
1670 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1671 		/* Only MMC1 can interface at 3V without some flavor
1672 		 * of external transceiver; but they all handle 1.8V.
1673 		 */
1674 		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1675 			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1676 				/*
1677 				 * The mmc_select_voltage fn of the core does
1678 				 * not seem to set the power_mode to
1679 				 * MMC_POWER_UP upon recalculating the voltage.
1680 				 * vdd 1.8v.
1681 				 */
1682 			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1683 				dev_dbg(mmc_dev(host->mmc),
1684 						"Switch operation failed\n");
1685 		}
1686 	}
1687 
1688 	omap_hsmmc_set_clock(host);
1689 
1690 	if (do_send_init_stream)
1691 		send_init_stream(host);
1692 
1693 	omap_hsmmc_set_bus_mode(host);
1694 }
1695 
1696 static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1697 {
1698 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1699 
1700 	if (!host->card_detect)
1701 		return -ENOSYS;
1702 	return host->card_detect(host->dev);
1703 }
1704 
1705 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1706 {
1707 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1708 
1709 	if (mmc_pdata(host)->init_card)
1710 		mmc_pdata(host)->init_card(card);
1711 }
1712 
1713 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1714 {
1715 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1716 	u32 irq_mask, con;
1717 	unsigned long flags;
1718 
1719 	spin_lock_irqsave(&host->irq_lock, flags);
1720 
1721 	con = OMAP_HSMMC_READ(host->base, CON);
1722 	irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1723 	if (enable) {
1724 		host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1725 		irq_mask |= CIRQ_EN;
1726 		con |= CTPL | CLKEXTFREE;
1727 	} else {
1728 		host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1729 		irq_mask &= ~CIRQ_EN;
1730 		con &= ~(CTPL | CLKEXTFREE);
1731 	}
1732 	OMAP_HSMMC_WRITE(host->base, CON, con);
1733 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1734 
1735 	/*
1736 	 * if enable, piggy back detection on current request
1737 	 * but always disable immediately
1738 	 */
1739 	if (!host->req_in_progress || !enable)
1740 		OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1741 
1742 	/* flush posted write */
1743 	OMAP_HSMMC_READ(host->base, IE);
1744 
1745 	spin_unlock_irqrestore(&host->irq_lock, flags);
1746 }
1747 
1748 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1749 {
1750 	int ret;
1751 
1752 	/*
1753 	 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1754 	 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1755 	 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1756 	 * with functional clock disabled.
1757 	 */
1758 	if (!host->dev->of_node || !host->wake_irq)
1759 		return -ENODEV;
1760 
1761 	ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1762 	if (ret) {
1763 		dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1764 		goto err;
1765 	}
1766 
1767 	/*
1768 	 * Some omaps don't have wake-up path from deeper idle states
1769 	 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1770 	 */
1771 	if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1772 		struct pinctrl *p = devm_pinctrl_get(host->dev);
1773 		if (!p) {
1774 			ret = -ENODEV;
1775 			goto err_free_irq;
1776 		}
1777 		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
1778 			dev_info(host->dev, "missing default pinctrl state\n");
1779 			devm_pinctrl_put(p);
1780 			ret = -EINVAL;
1781 			goto err_free_irq;
1782 		}
1783 
1784 		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1785 			dev_info(host->dev, "missing idle pinctrl state\n");
1786 			devm_pinctrl_put(p);
1787 			ret = -EINVAL;
1788 			goto err_free_irq;
1789 		}
1790 		devm_pinctrl_put(p);
1791 	}
1792 
1793 	OMAP_HSMMC_WRITE(host->base, HCTL,
1794 			 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1795 	return 0;
1796 
1797 err_free_irq:
1798 	dev_pm_clear_wake_irq(host->dev);
1799 err:
1800 	dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1801 	host->wake_irq = 0;
1802 	return ret;
1803 }
1804 
1805 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1806 {
1807 	u32 hctl, capa, value;
1808 
1809 	/* Only MMC1 supports 3.0V */
1810 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1811 		hctl = SDVS30;
1812 		capa = VS30 | VS18;
1813 	} else {
1814 		hctl = SDVS18;
1815 		capa = VS18;
1816 	}
1817 
1818 	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1819 	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1820 
1821 	value = OMAP_HSMMC_READ(host->base, CAPA);
1822 	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1823 
1824 	/* Set SD bus power bit */
1825 	set_sd_bus_power(host);
1826 }
1827 
1828 static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1829 				     unsigned int direction, int blk_size)
1830 {
1831 	/* This controller can't do multiblock reads due to hw bugs */
1832 	if (direction == MMC_DATA_READ)
1833 		return 1;
1834 
1835 	return blk_size;
1836 }
1837 
1838 static struct mmc_host_ops omap_hsmmc_ops = {
1839 	.post_req = omap_hsmmc_post_req,
1840 	.pre_req = omap_hsmmc_pre_req,
1841 	.request = omap_hsmmc_request,
1842 	.set_ios = omap_hsmmc_set_ios,
1843 	.get_cd = omap_hsmmc_get_cd,
1844 	.get_ro = mmc_gpio_get_ro,
1845 	.init_card = omap_hsmmc_init_card,
1846 	.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1847 };
1848 
1849 #ifdef CONFIG_DEBUG_FS
1850 
1851 static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1852 {
1853 	struct mmc_host *mmc = s->private;
1854 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1855 
1856 	seq_printf(s, "mmc%d:\n", mmc->index);
1857 	seq_printf(s, "sdio irq mode\t%s\n",
1858 		   (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1859 
1860 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1861 		seq_printf(s, "sdio irq \t%s\n",
1862 			   (host->flags & HSMMC_SDIO_IRQ_ENABLED) ?  "enabled"
1863 			   : "disabled");
1864 	}
1865 	seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1866 
1867 	pm_runtime_get_sync(host->dev);
1868 	seq_puts(s, "\nregs:\n");
1869 	seq_printf(s, "CON:\t\t0x%08x\n",
1870 			OMAP_HSMMC_READ(host->base, CON));
1871 	seq_printf(s, "PSTATE:\t\t0x%08x\n",
1872 		   OMAP_HSMMC_READ(host->base, PSTATE));
1873 	seq_printf(s, "HCTL:\t\t0x%08x\n",
1874 			OMAP_HSMMC_READ(host->base, HCTL));
1875 	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1876 			OMAP_HSMMC_READ(host->base, SYSCTL));
1877 	seq_printf(s, "IE:\t\t0x%08x\n",
1878 			OMAP_HSMMC_READ(host->base, IE));
1879 	seq_printf(s, "ISE:\t\t0x%08x\n",
1880 			OMAP_HSMMC_READ(host->base, ISE));
1881 	seq_printf(s, "CAPA:\t\t0x%08x\n",
1882 			OMAP_HSMMC_READ(host->base, CAPA));
1883 
1884 	pm_runtime_mark_last_busy(host->dev);
1885 	pm_runtime_put_autosuspend(host->dev);
1886 
1887 	return 0;
1888 }
1889 
1890 static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1891 {
1892 	return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1893 }
1894 
1895 static const struct file_operations mmc_regs_fops = {
1896 	.open           = omap_hsmmc_regs_open,
1897 	.read           = seq_read,
1898 	.llseek         = seq_lseek,
1899 	.release        = single_release,
1900 };
1901 
1902 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1903 {
1904 	if (mmc->debugfs_root)
1905 		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1906 			mmc, &mmc_regs_fops);
1907 }
1908 
1909 #else
1910 
1911 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1912 {
1913 }
1914 
1915 #endif
1916 
1917 #ifdef CONFIG_OF
1918 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1919 	/* See 35xx errata 2.1.1.128 in SPRZ278F */
1920 	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1921 };
1922 
1923 static const struct omap_mmc_of_data omap4_mmc_of_data = {
1924 	.reg_offset = 0x100,
1925 };
1926 static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1927 	.reg_offset = 0x100,
1928 	.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1929 };
1930 
1931 static const struct of_device_id omap_mmc_of_match[] = {
1932 	{
1933 		.compatible = "ti,omap2-hsmmc",
1934 	},
1935 	{
1936 		.compatible = "ti,omap3-pre-es3-hsmmc",
1937 		.data = &omap3_pre_es3_mmc_of_data,
1938 	},
1939 	{
1940 		.compatible = "ti,omap3-hsmmc",
1941 	},
1942 	{
1943 		.compatible = "ti,omap4-hsmmc",
1944 		.data = &omap4_mmc_of_data,
1945 	},
1946 	{
1947 		.compatible = "ti,am33xx-hsmmc",
1948 		.data = &am33xx_mmc_of_data,
1949 	},
1950 	{},
1951 };
1952 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1953 
1954 static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1955 {
1956 	struct omap_hsmmc_platform_data *pdata, *legacy;
1957 	struct device_node *np = dev->of_node;
1958 
1959 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1960 	if (!pdata)
1961 		return ERR_PTR(-ENOMEM); /* out of memory */
1962 
1963 	legacy = dev_get_platdata(dev);
1964 	if (legacy && legacy->name)
1965 		pdata->name = legacy->name;
1966 
1967 	if (of_find_property(np, "ti,dual-volt", NULL))
1968 		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1969 
1970 	pdata->gpio_cd = -EINVAL;
1971 	pdata->gpio_cod = -EINVAL;
1972 	pdata->gpio_wp = -EINVAL;
1973 
1974 	if (of_find_property(np, "ti,non-removable", NULL)) {
1975 		pdata->nonremovable = true;
1976 		pdata->no_regulator_off_init = true;
1977 	}
1978 
1979 	if (of_find_property(np, "ti,needs-special-reset", NULL))
1980 		pdata->features |= HSMMC_HAS_UPDATED_RESET;
1981 
1982 	if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1983 		pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1984 
1985 	return pdata;
1986 }
1987 #else
1988 static inline struct omap_hsmmc_platform_data
1989 			*of_get_hsmmc_pdata(struct device *dev)
1990 {
1991 	return ERR_PTR(-EINVAL);
1992 }
1993 #endif
1994 
1995 static int omap_hsmmc_probe(struct platform_device *pdev)
1996 {
1997 	struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1998 	struct mmc_host *mmc;
1999 	struct omap_hsmmc_host *host = NULL;
2000 	struct resource *res;
2001 	int ret, irq;
2002 	const struct of_device_id *match;
2003 	const struct omap_mmc_of_data *data;
2004 	void __iomem *base;
2005 
2006 	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
2007 	if (match) {
2008 		pdata = of_get_hsmmc_pdata(&pdev->dev);
2009 
2010 		if (IS_ERR(pdata))
2011 			return PTR_ERR(pdata);
2012 
2013 		if (match->data) {
2014 			data = match->data;
2015 			pdata->reg_offset = data->reg_offset;
2016 			pdata->controller_flags |= data->controller_flags;
2017 		}
2018 	}
2019 
2020 	if (pdata == NULL) {
2021 		dev_err(&pdev->dev, "Platform Data is missing\n");
2022 		return -ENXIO;
2023 	}
2024 
2025 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2026 	irq = platform_get_irq(pdev, 0);
2027 	if (res == NULL || irq < 0)
2028 		return -ENXIO;
2029 
2030 	base = devm_ioremap_resource(&pdev->dev, res);
2031 	if (IS_ERR(base))
2032 		return PTR_ERR(base);
2033 
2034 	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
2035 	if (!mmc) {
2036 		ret = -ENOMEM;
2037 		goto err;
2038 	}
2039 
2040 	ret = mmc_of_parse(mmc);
2041 	if (ret)
2042 		goto err1;
2043 
2044 	host		= mmc_priv(mmc);
2045 	host->mmc	= mmc;
2046 	host->pdata	= pdata;
2047 	host->dev	= &pdev->dev;
2048 	host->use_dma	= 1;
2049 	host->dma_ch	= -1;
2050 	host->irq	= irq;
2051 	host->mapbase	= res->start + pdata->reg_offset;
2052 	host->base	= base + pdata->reg_offset;
2053 	host->power_mode = MMC_POWER_OFF;
2054 	host->next_data.cookie = 1;
2055 	host->pbias_enabled = 0;
2056 	host->vqmmc_enabled = 0;
2057 
2058 	ret = omap_hsmmc_gpio_init(mmc, host, pdata);
2059 	if (ret)
2060 		goto err_gpio;
2061 
2062 	platform_set_drvdata(pdev, host);
2063 
2064 	if (pdev->dev.of_node)
2065 		host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
2066 
2067 	mmc->ops	= &omap_hsmmc_ops;
2068 
2069 	mmc->f_min = OMAP_MMC_MIN_CLOCK;
2070 
2071 	if (pdata->max_freq > 0)
2072 		mmc->f_max = pdata->max_freq;
2073 	else if (mmc->f_max == 0)
2074 		mmc->f_max = OMAP_MMC_MAX_CLOCK;
2075 
2076 	spin_lock_init(&host->irq_lock);
2077 
2078 	host->fclk = devm_clk_get(&pdev->dev, "fck");
2079 	if (IS_ERR(host->fclk)) {
2080 		ret = PTR_ERR(host->fclk);
2081 		host->fclk = NULL;
2082 		goto err1;
2083 	}
2084 
2085 	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
2086 		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
2087 		omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
2088 	}
2089 
2090 	device_init_wakeup(&pdev->dev, true);
2091 	pm_runtime_enable(host->dev);
2092 	pm_runtime_get_sync(host->dev);
2093 	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
2094 	pm_runtime_use_autosuspend(host->dev);
2095 
2096 	omap_hsmmc_context_save(host);
2097 
2098 	host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
2099 	/*
2100 	 * MMC can still work without debounce clock.
2101 	 */
2102 	if (IS_ERR(host->dbclk)) {
2103 		host->dbclk = NULL;
2104 	} else if (clk_prepare_enable(host->dbclk) != 0) {
2105 		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
2106 		host->dbclk = NULL;
2107 	}
2108 
2109 	/* Since we do only SG emulation, we can have as many segs
2110 	 * as we want. */
2111 	mmc->max_segs = 1024;
2112 
2113 	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
2114 	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
2115 	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
2116 	mmc->max_seg_size = mmc->max_req_size;
2117 
2118 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
2119 		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
2120 
2121 	mmc->caps |= mmc_pdata(host)->caps;
2122 	if (mmc->caps & MMC_CAP_8_BIT_DATA)
2123 		mmc->caps |= MMC_CAP_4_BIT_DATA;
2124 
2125 	if (mmc_pdata(host)->nonremovable)
2126 		mmc->caps |= MMC_CAP_NONREMOVABLE;
2127 
2128 	mmc->pm_caps |= mmc_pdata(host)->pm_caps;
2129 
2130 	omap_hsmmc_conf_bus_power(host);
2131 
2132 	host->rx_chan = dma_request_chan(&pdev->dev, "rx");
2133 	if (IS_ERR(host->rx_chan)) {
2134 		dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
2135 		ret = PTR_ERR(host->rx_chan);
2136 		goto err_irq;
2137 	}
2138 
2139 	host->tx_chan = dma_request_chan(&pdev->dev, "tx");
2140 	if (IS_ERR(host->tx_chan)) {
2141 		dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
2142 		ret = PTR_ERR(host->tx_chan);
2143 		goto err_irq;
2144 	}
2145 
2146 	/* Request IRQ for MMC operations */
2147 	ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
2148 			mmc_hostname(mmc), host);
2149 	if (ret) {
2150 		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
2151 		goto err_irq;
2152 	}
2153 
2154 	ret = omap_hsmmc_reg_get(host);
2155 	if (ret)
2156 		goto err_irq;
2157 
2158 	mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
2159 
2160 	omap_hsmmc_disable_irq(host);
2161 
2162 	/*
2163 	 * For now, only support SDIO interrupt if we have a separate
2164 	 * wake-up interrupt configured from device tree. This is because
2165 	 * the wake-up interrupt is needed for idle state and some
2166 	 * platforms need special quirks. And we don't want to add new
2167 	 * legacy mux platform init code callbacks any longer as we
2168 	 * are moving to DT based booting anyways.
2169 	 */
2170 	ret = omap_hsmmc_configure_wake_irq(host);
2171 	if (!ret)
2172 		mmc->caps |= MMC_CAP_SDIO_IRQ;
2173 
2174 	omap_hsmmc_protect_card(host);
2175 
2176 	mmc_add_host(mmc);
2177 
2178 	if (mmc_pdata(host)->name != NULL) {
2179 		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
2180 		if (ret < 0)
2181 			goto err_slot_name;
2182 	}
2183 	if (host->get_cover_state) {
2184 		ret = device_create_file(&mmc->class_dev,
2185 					 &dev_attr_cover_switch);
2186 		if (ret < 0)
2187 			goto err_slot_name;
2188 	}
2189 
2190 	omap_hsmmc_debugfs(mmc);
2191 	pm_runtime_mark_last_busy(host->dev);
2192 	pm_runtime_put_autosuspend(host->dev);
2193 
2194 	return 0;
2195 
2196 err_slot_name:
2197 	mmc_remove_host(mmc);
2198 err_irq:
2199 	device_init_wakeup(&pdev->dev, false);
2200 	if (!IS_ERR_OR_NULL(host->tx_chan))
2201 		dma_release_channel(host->tx_chan);
2202 	if (!IS_ERR_OR_NULL(host->rx_chan))
2203 		dma_release_channel(host->rx_chan);
2204 	pm_runtime_dont_use_autosuspend(host->dev);
2205 	pm_runtime_put_sync(host->dev);
2206 	pm_runtime_disable(host->dev);
2207 	if (host->dbclk)
2208 		clk_disable_unprepare(host->dbclk);
2209 err1:
2210 err_gpio:
2211 	mmc_free_host(mmc);
2212 err:
2213 	return ret;
2214 }
2215 
2216 static int omap_hsmmc_remove(struct platform_device *pdev)
2217 {
2218 	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2219 
2220 	pm_runtime_get_sync(host->dev);
2221 	mmc_remove_host(host->mmc);
2222 
2223 	dma_release_channel(host->tx_chan);
2224 	dma_release_channel(host->rx_chan);
2225 
2226 	pm_runtime_dont_use_autosuspend(host->dev);
2227 	pm_runtime_put_sync(host->dev);
2228 	pm_runtime_disable(host->dev);
2229 	device_init_wakeup(&pdev->dev, false);
2230 	if (host->dbclk)
2231 		clk_disable_unprepare(host->dbclk);
2232 
2233 	mmc_free_host(host->mmc);
2234 
2235 	return 0;
2236 }
2237 
2238 #ifdef CONFIG_PM_SLEEP
2239 static int omap_hsmmc_suspend(struct device *dev)
2240 {
2241 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2242 
2243 	if (!host)
2244 		return 0;
2245 
2246 	pm_runtime_get_sync(host->dev);
2247 
2248 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2249 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2250 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2251 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2252 		OMAP_HSMMC_WRITE(host->base, HCTL,
2253 				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2254 	}
2255 
2256 	if (host->dbclk)
2257 		clk_disable_unprepare(host->dbclk);
2258 
2259 	pm_runtime_put_sync(host->dev);
2260 	return 0;
2261 }
2262 
2263 /* Routine to resume the MMC device */
2264 static int omap_hsmmc_resume(struct device *dev)
2265 {
2266 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2267 
2268 	if (!host)
2269 		return 0;
2270 
2271 	pm_runtime_get_sync(host->dev);
2272 
2273 	if (host->dbclk)
2274 		clk_prepare_enable(host->dbclk);
2275 
2276 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2277 		omap_hsmmc_conf_bus_power(host);
2278 
2279 	omap_hsmmc_protect_card(host);
2280 	pm_runtime_mark_last_busy(host->dev);
2281 	pm_runtime_put_autosuspend(host->dev);
2282 	return 0;
2283 }
2284 #endif
2285 
2286 static int omap_hsmmc_runtime_suspend(struct device *dev)
2287 {
2288 	struct omap_hsmmc_host *host;
2289 	unsigned long flags;
2290 	int ret = 0;
2291 
2292 	host = platform_get_drvdata(to_platform_device(dev));
2293 	omap_hsmmc_context_save(host);
2294 	dev_dbg(dev, "disabled\n");
2295 
2296 	spin_lock_irqsave(&host->irq_lock, flags);
2297 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2298 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2299 		/* disable sdio irq handling to prevent race */
2300 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2301 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2302 
2303 		if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2304 			/*
2305 			 * dat1 line low, pending sdio irq
2306 			 * race condition: possible irq handler running on
2307 			 * multi-core, abort
2308 			 */
2309 			dev_dbg(dev, "pending sdio irq, abort suspend\n");
2310 			OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2311 			OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2312 			OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2313 			pm_runtime_mark_last_busy(dev);
2314 			ret = -EBUSY;
2315 			goto abort;
2316 		}
2317 
2318 		pinctrl_pm_select_idle_state(dev);
2319 	} else {
2320 		pinctrl_pm_select_idle_state(dev);
2321 	}
2322 
2323 abort:
2324 	spin_unlock_irqrestore(&host->irq_lock, flags);
2325 	return ret;
2326 }
2327 
2328 static int omap_hsmmc_runtime_resume(struct device *dev)
2329 {
2330 	struct omap_hsmmc_host *host;
2331 	unsigned long flags;
2332 
2333 	host = platform_get_drvdata(to_platform_device(dev));
2334 	omap_hsmmc_context_restore(host);
2335 	dev_dbg(dev, "enabled\n");
2336 
2337 	spin_lock_irqsave(&host->irq_lock, flags);
2338 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2339 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2340 
2341 		pinctrl_pm_select_default_state(host->dev);
2342 
2343 		/* irq lost, if pinmux incorrect */
2344 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2345 		OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2346 		OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2347 	} else {
2348 		pinctrl_pm_select_default_state(host->dev);
2349 	}
2350 	spin_unlock_irqrestore(&host->irq_lock, flags);
2351 	return 0;
2352 }
2353 
2354 static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2355 	SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2356 	.runtime_suspend = omap_hsmmc_runtime_suspend,
2357 	.runtime_resume = omap_hsmmc_runtime_resume,
2358 };
2359 
2360 static struct platform_driver omap_hsmmc_driver = {
2361 	.probe		= omap_hsmmc_probe,
2362 	.remove		= omap_hsmmc_remove,
2363 	.driver		= {
2364 		.name = DRIVER_NAME,
2365 		.pm = &omap_hsmmc_dev_pm_ops,
2366 		.of_match_table = of_match_ptr(omap_mmc_of_match),
2367 	},
2368 };
2369 
2370 module_platform_driver(omap_hsmmc_driver);
2371 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2372 MODULE_LICENSE("GPL");
2373 MODULE_ALIAS("platform:" DRIVER_NAME);
2374 MODULE_AUTHOR("Texas Instruments Inc");
2375