xref: /openbmc/linux/drivers/mmc/host/omap_hsmmc.c (revision eb3fcf00)
1 /*
2  * drivers/mmc/host/omap_hsmmc.c
3  *
4  * Driver for OMAP2430/3430 MMC controller.
5  *
6  * Copyright (C) 2007 Texas Instruments.
7  *
8  * Authors:
9  *	Syed Mohammed Khasim	<x0khasim@ti.com>
10  *	Madhusudhan		<madhu.cr@ti.com>
11  *	Mohit Jalori		<mjalori@ti.com>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/sizes.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/timer.h>
30 #include <linux/clk.h>
31 #include <linux/of.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_device.h>
35 #include <linux/omap-dmaengine.h>
36 #include <linux/mmc/host.h>
37 #include <linux/mmc/core.h>
38 #include <linux/mmc/mmc.h>
39 #include <linux/mmc/slot-gpio.h>
40 #include <linux/io.h>
41 #include <linux/irq.h>
42 #include <linux/gpio.h>
43 #include <linux/regulator/consumer.h>
44 #include <linux/pinctrl/consumer.h>
45 #include <linux/pm_runtime.h>
46 #include <linux/pm_wakeirq.h>
47 #include <linux/platform_data/hsmmc-omap.h>
48 
49 /* OMAP HSMMC Host Controller Registers */
50 #define OMAP_HSMMC_SYSSTATUS	0x0014
51 #define OMAP_HSMMC_CON		0x002C
52 #define OMAP_HSMMC_SDMASA	0x0100
53 #define OMAP_HSMMC_BLK		0x0104
54 #define OMAP_HSMMC_ARG		0x0108
55 #define OMAP_HSMMC_CMD		0x010C
56 #define OMAP_HSMMC_RSP10	0x0110
57 #define OMAP_HSMMC_RSP32	0x0114
58 #define OMAP_HSMMC_RSP54	0x0118
59 #define OMAP_HSMMC_RSP76	0x011C
60 #define OMAP_HSMMC_DATA		0x0120
61 #define OMAP_HSMMC_PSTATE	0x0124
62 #define OMAP_HSMMC_HCTL		0x0128
63 #define OMAP_HSMMC_SYSCTL	0x012C
64 #define OMAP_HSMMC_STAT		0x0130
65 #define OMAP_HSMMC_IE		0x0134
66 #define OMAP_HSMMC_ISE		0x0138
67 #define OMAP_HSMMC_AC12		0x013C
68 #define OMAP_HSMMC_CAPA		0x0140
69 
70 #define VS18			(1 << 26)
71 #define VS30			(1 << 25)
72 #define HSS			(1 << 21)
73 #define SDVS18			(0x5 << 9)
74 #define SDVS30			(0x6 << 9)
75 #define SDVS33			(0x7 << 9)
76 #define SDVS_MASK		0x00000E00
77 #define SDVSCLR			0xFFFFF1FF
78 #define SDVSDET			0x00000400
79 #define AUTOIDLE		0x1
80 #define SDBP			(1 << 8)
81 #define DTO			0xe
82 #define ICE			0x1
83 #define ICS			0x2
84 #define CEN			(1 << 2)
85 #define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
86 #define CLKD_MASK		0x0000FFC0
87 #define CLKD_SHIFT		6
88 #define DTO_MASK		0x000F0000
89 #define DTO_SHIFT		16
90 #define INIT_STREAM		(1 << 1)
91 #define ACEN_ACMD23		(2 << 2)
92 #define DP_SELECT		(1 << 21)
93 #define DDIR			(1 << 4)
94 #define DMAE			0x1
95 #define MSBS			(1 << 5)
96 #define BCE			(1 << 1)
97 #define FOUR_BIT		(1 << 1)
98 #define HSPE			(1 << 2)
99 #define IWE			(1 << 24)
100 #define DDR			(1 << 19)
101 #define CLKEXTFREE		(1 << 16)
102 #define CTPL			(1 << 11)
103 #define DW8			(1 << 5)
104 #define OD			0x1
105 #define STAT_CLEAR		0xFFFFFFFF
106 #define INIT_STREAM_CMD		0x00000000
107 #define DUAL_VOLT_OCR_BIT	7
108 #define SRC			(1 << 25)
109 #define SRD			(1 << 26)
110 #define SOFTRESET		(1 << 1)
111 
112 /* PSTATE */
113 #define DLEV_DAT(x)		(1 << (20 + (x)))
114 
115 /* Interrupt masks for IE and ISE register */
116 #define CC_EN			(1 << 0)
117 #define TC_EN			(1 << 1)
118 #define BWR_EN			(1 << 4)
119 #define BRR_EN			(1 << 5)
120 #define CIRQ_EN			(1 << 8)
121 #define ERR_EN			(1 << 15)
122 #define CTO_EN			(1 << 16)
123 #define CCRC_EN			(1 << 17)
124 #define CEB_EN			(1 << 18)
125 #define CIE_EN			(1 << 19)
126 #define DTO_EN			(1 << 20)
127 #define DCRC_EN			(1 << 21)
128 #define DEB_EN			(1 << 22)
129 #define ACE_EN			(1 << 24)
130 #define CERR_EN			(1 << 28)
131 #define BADA_EN			(1 << 29)
132 
133 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
134 		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
135 		BRR_EN | BWR_EN | TC_EN | CC_EN)
136 
137 #define CNI	(1 << 7)
138 #define ACIE	(1 << 4)
139 #define ACEB	(1 << 3)
140 #define ACCE	(1 << 2)
141 #define ACTO	(1 << 1)
142 #define ACNE	(1 << 0)
143 
144 #define MMC_AUTOSUSPEND_DELAY	100
145 #define MMC_TIMEOUT_MS		20		/* 20 mSec */
146 #define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
147 #define OMAP_MMC_MIN_CLOCK	400000
148 #define OMAP_MMC_MAX_CLOCK	52000000
149 #define DRIVER_NAME		"omap_hsmmc"
150 
151 #define VDD_1V8			1800000		/* 180000 uV */
152 #define VDD_3V0			3000000		/* 300000 uV */
153 #define VDD_165_195		(ffs(MMC_VDD_165_195) - 1)
154 
155 /*
156  * One controller can have multiple slots, like on some omap boards using
157  * omap.c controller driver. Luckily this is not currently done on any known
158  * omap_hsmmc.c device.
159  */
160 #define mmc_pdata(host)		host->pdata
161 
162 /*
163  * MMC Host controller read/write API's
164  */
165 #define OMAP_HSMMC_READ(base, reg)	\
166 	__raw_readl((base) + OMAP_HSMMC_##reg)
167 
168 #define OMAP_HSMMC_WRITE(base, reg, val) \
169 	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
170 
171 struct omap_hsmmc_next {
172 	unsigned int	dma_len;
173 	s32		cookie;
174 };
175 
176 struct omap_hsmmc_host {
177 	struct	device		*dev;
178 	struct	mmc_host	*mmc;
179 	struct	mmc_request	*mrq;
180 	struct	mmc_command	*cmd;
181 	struct	mmc_data	*data;
182 	struct	clk		*fclk;
183 	struct	clk		*dbclk;
184 	struct	regulator	*pbias;
185 	void	__iomem		*base;
186 	int			vqmmc_enabled;
187 	resource_size_t		mapbase;
188 	spinlock_t		irq_lock; /* Prevent races with irq handler */
189 	unsigned int		dma_len;
190 	unsigned int		dma_sg_idx;
191 	unsigned char		bus_mode;
192 	unsigned char		power_mode;
193 	int			suspended;
194 	u32			con;
195 	u32			hctl;
196 	u32			sysctl;
197 	u32			capa;
198 	int			irq;
199 	int			wake_irq;
200 	int			use_dma, dma_ch;
201 	struct dma_chan		*tx_chan;
202 	struct dma_chan		*rx_chan;
203 	int			response_busy;
204 	int			context_loss;
205 	int			protect_card;
206 	int			reqs_blocked;
207 	int			req_in_progress;
208 	unsigned long		clk_rate;
209 	unsigned int		flags;
210 #define AUTO_CMD23		(1 << 0)        /* Auto CMD23 support */
211 #define HSMMC_SDIO_IRQ_ENABLED	(1 << 1)        /* SDIO irq enabled */
212 	struct omap_hsmmc_next	next_data;
213 	struct	omap_hsmmc_platform_data	*pdata;
214 
215 	/* return MMC cover switch state, can be NULL if not supported.
216 	 *
217 	 * possible return values:
218 	 *   0 - closed
219 	 *   1 - open
220 	 */
221 	int (*get_cover_state)(struct device *dev);
222 
223 	int (*card_detect)(struct device *dev);
224 };
225 
226 struct omap_mmc_of_data {
227 	u32 reg_offset;
228 	u8 controller_flags;
229 };
230 
231 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
232 
233 static int omap_hsmmc_card_detect(struct device *dev)
234 {
235 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
236 
237 	return mmc_gpio_get_cd(host->mmc);
238 }
239 
240 static int omap_hsmmc_get_cover_state(struct device *dev)
241 {
242 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
243 
244 	return mmc_gpio_get_cd(host->mmc);
245 }
246 
247 static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
248 {
249 	int ret;
250 	struct omap_hsmmc_host *host = mmc_priv(mmc);
251 	struct mmc_ios *ios = &mmc->ios;
252 
253 	if (mmc->supply.vmmc) {
254 		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
255 		if (ret)
256 			return ret;
257 	}
258 
259 	/* Enable interface voltage rail, if needed */
260 	if (mmc->supply.vqmmc && !host->vqmmc_enabled) {
261 		ret = regulator_enable(mmc->supply.vqmmc);
262 		if (ret) {
263 			dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
264 			goto err_vqmmc;
265 		}
266 		host->vqmmc_enabled = 1;
267 	}
268 
269 	return 0;
270 
271 err_vqmmc:
272 	if (mmc->supply.vmmc)
273 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
274 
275 	return ret;
276 }
277 
278 static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
279 {
280 	int ret;
281 	int status;
282 	struct omap_hsmmc_host *host = mmc_priv(mmc);
283 
284 	if (mmc->supply.vqmmc && host->vqmmc_enabled) {
285 		ret = regulator_disable(mmc->supply.vqmmc);
286 		if (ret) {
287 			dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
288 			return ret;
289 		}
290 		host->vqmmc_enabled = 0;
291 	}
292 
293 	if (mmc->supply.vmmc) {
294 		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
295 		if (ret)
296 			goto err_set_ocr;
297 	}
298 
299 	return 0;
300 
301 err_set_ocr:
302 	if (mmc->supply.vqmmc) {
303 		status = regulator_enable(mmc->supply.vqmmc);
304 		if (status)
305 			dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
306 	}
307 
308 	return ret;
309 }
310 
311 static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on,
312 				int vdd)
313 {
314 	int ret;
315 
316 	if (!host->pbias)
317 		return 0;
318 
319 	if (power_on) {
320 		if (vdd <= VDD_165_195)
321 			ret = regulator_set_voltage(host->pbias, VDD_1V8,
322 						    VDD_1V8);
323 		else
324 			ret = regulator_set_voltage(host->pbias, VDD_3V0,
325 						    VDD_3V0);
326 		if (ret < 0) {
327 			dev_err(host->dev, "pbias set voltage fail\n");
328 			return ret;
329 		}
330 
331 		if (!regulator_is_enabled(host->pbias)) {
332 			ret = regulator_enable(host->pbias);
333 			if (ret) {
334 				dev_err(host->dev, "pbias reg enable fail\n");
335 				return ret;
336 			}
337 		}
338 	} else {
339 		if (regulator_is_enabled(host->pbias)) {
340 			ret = regulator_disable(host->pbias);
341 			if (ret) {
342 				dev_err(host->dev, "pbias reg disable fail\n");
343 				return ret;
344 			}
345 		}
346 	}
347 
348 	return 0;
349 }
350 
351 static int omap_hsmmc_set_power(struct device *dev, int power_on, int vdd)
352 {
353 	struct omap_hsmmc_host *host =
354 		platform_get_drvdata(to_platform_device(dev));
355 	struct mmc_host *mmc = host->mmc;
356 	int ret = 0;
357 
358 	if (mmc_pdata(host)->set_power)
359 		return mmc_pdata(host)->set_power(dev, power_on, vdd);
360 
361 	/*
362 	 * If we don't see a Vcc regulator, assume it's a fixed
363 	 * voltage always-on regulator.
364 	 */
365 	if (!mmc->supply.vmmc)
366 		return 0;
367 
368 	if (mmc_pdata(host)->before_set_reg)
369 		mmc_pdata(host)->before_set_reg(dev, power_on, vdd);
370 
371 	ret = omap_hsmmc_set_pbias(host, false, 0);
372 	if (ret)
373 		return ret;
374 
375 	/*
376 	 * Assume Vcc regulator is used only to power the card ... OMAP
377 	 * VDDS is used to power the pins, optionally with a transceiver to
378 	 * support cards using voltages other than VDDS (1.8V nominal).  When a
379 	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
380 	 *
381 	 * In some cases this regulator won't support enable/disable;
382 	 * e.g. it's a fixed rail for a WLAN chip.
383 	 *
384 	 * In other cases vcc_aux switches interface power.  Example, for
385 	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
386 	 * chips/cards need an interface voltage rail too.
387 	 */
388 	if (power_on) {
389 		ret = omap_hsmmc_enable_supply(mmc);
390 		if (ret)
391 			return ret;
392 
393 		ret = omap_hsmmc_set_pbias(host, true, vdd);
394 		if (ret)
395 			goto err_set_voltage;
396 	} else {
397 		ret = omap_hsmmc_disable_supply(mmc);
398 		if (ret)
399 			return ret;
400 	}
401 
402 	if (mmc_pdata(host)->after_set_reg)
403 		mmc_pdata(host)->after_set_reg(dev, power_on, vdd);
404 
405 	return 0;
406 
407 err_set_voltage:
408 	omap_hsmmc_disable_supply(mmc);
409 
410 	return ret;
411 }
412 
413 static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
414 {
415 	int ret;
416 
417 	if (!reg)
418 		return 0;
419 
420 	if (regulator_is_enabled(reg)) {
421 		ret = regulator_enable(reg);
422 		if (ret)
423 			return ret;
424 
425 		ret = regulator_disable(reg);
426 		if (ret)
427 			return ret;
428 	}
429 
430 	return 0;
431 }
432 
433 static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
434 {
435 	struct mmc_host *mmc = host->mmc;
436 	int ret;
437 
438 	/*
439 	 * disable regulators enabled during boot and get the usecount
440 	 * right so that regulators can be enabled/disabled by checking
441 	 * the return value of regulator_is_enabled
442 	 */
443 	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
444 	if (ret) {
445 		dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
446 		return ret;
447 	}
448 
449 	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
450 	if (ret) {
451 		dev_err(host->dev,
452 			"fail to disable boot enabled vmmc_aux reg\n");
453 		return ret;
454 	}
455 
456 	ret = omap_hsmmc_disable_boot_regulator(host->pbias);
457 	if (ret) {
458 		dev_err(host->dev,
459 			"failed to disable boot enabled pbias reg\n");
460 		return ret;
461 	}
462 
463 	return 0;
464 }
465 
466 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
467 {
468 	int ocr_value = 0;
469 	int ret;
470 	struct mmc_host *mmc = host->mmc;
471 
472 	if (mmc_pdata(host)->set_power)
473 		return 0;
474 
475 	mmc->supply.vmmc = devm_regulator_get_optional(host->dev, "vmmc");
476 	if (IS_ERR(mmc->supply.vmmc)) {
477 		ret = PTR_ERR(mmc->supply.vmmc);
478 		if (ret != -ENODEV)
479 			return ret;
480 		dev_dbg(host->dev, "unable to get vmmc regulator %ld\n",
481 			PTR_ERR(mmc->supply.vmmc));
482 		mmc->supply.vmmc = NULL;
483 	} else {
484 		ocr_value = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
485 		if (ocr_value > 0)
486 			mmc_pdata(host)->ocr_mask = ocr_value;
487 	}
488 
489 	/* Allow an aux regulator */
490 	mmc->supply.vqmmc = devm_regulator_get_optional(host->dev, "vmmc_aux");
491 	if (IS_ERR(mmc->supply.vqmmc)) {
492 		ret = PTR_ERR(mmc->supply.vqmmc);
493 		if (ret != -ENODEV)
494 			return ret;
495 		dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
496 			PTR_ERR(mmc->supply.vqmmc));
497 		mmc->supply.vqmmc = NULL;
498 	}
499 
500 	host->pbias = devm_regulator_get_optional(host->dev, "pbias");
501 	if (IS_ERR(host->pbias)) {
502 		ret = PTR_ERR(host->pbias);
503 		if (ret != -ENODEV)
504 			return ret;
505 		dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
506 			PTR_ERR(host->pbias));
507 		host->pbias = NULL;
508 	}
509 
510 	/* For eMMC do not power off when not in sleep state */
511 	if (mmc_pdata(host)->no_regulator_off_init)
512 		return 0;
513 
514 	ret = omap_hsmmc_disable_boot_regulators(host);
515 	if (ret)
516 		return ret;
517 
518 	return 0;
519 }
520 
521 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id);
522 
523 static int omap_hsmmc_gpio_init(struct mmc_host *mmc,
524 				struct omap_hsmmc_host *host,
525 				struct omap_hsmmc_platform_data *pdata)
526 {
527 	int ret;
528 
529 	if (gpio_is_valid(pdata->gpio_cod)) {
530 		ret = mmc_gpio_request_cd(mmc, pdata->gpio_cod, 0);
531 		if (ret)
532 			return ret;
533 
534 		host->get_cover_state = omap_hsmmc_get_cover_state;
535 		mmc_gpio_set_cd_isr(mmc, omap_hsmmc_cover_irq);
536 	} else if (gpio_is_valid(pdata->gpio_cd)) {
537 		ret = mmc_gpio_request_cd(mmc, pdata->gpio_cd, 0);
538 		if (ret)
539 			return ret;
540 
541 		host->card_detect = omap_hsmmc_card_detect;
542 	}
543 
544 	if (gpio_is_valid(pdata->gpio_wp)) {
545 		ret = mmc_gpio_request_ro(mmc, pdata->gpio_wp);
546 		if (ret)
547 			return ret;
548 	}
549 
550 	return 0;
551 }
552 
553 /*
554  * Start clock to the card
555  */
556 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
557 {
558 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
559 		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
560 }
561 
562 /*
563  * Stop clock to the card
564  */
565 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
566 {
567 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
568 		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
569 	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
570 		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
571 }
572 
573 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
574 				  struct mmc_command *cmd)
575 {
576 	u32 irq_mask = INT_EN_MASK;
577 	unsigned long flags;
578 
579 	if (host->use_dma)
580 		irq_mask &= ~(BRR_EN | BWR_EN);
581 
582 	/* Disable timeout for erases */
583 	if (cmd->opcode == MMC_ERASE)
584 		irq_mask &= ~DTO_EN;
585 
586 	spin_lock_irqsave(&host->irq_lock, flags);
587 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
588 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
589 
590 	/* latch pending CIRQ, but don't signal MMC core */
591 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
592 		irq_mask |= CIRQ_EN;
593 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
594 	spin_unlock_irqrestore(&host->irq_lock, flags);
595 }
596 
597 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
598 {
599 	u32 irq_mask = 0;
600 	unsigned long flags;
601 
602 	spin_lock_irqsave(&host->irq_lock, flags);
603 	/* no transfer running but need to keep cirq if enabled */
604 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
605 		irq_mask |= CIRQ_EN;
606 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
607 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
608 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
609 	spin_unlock_irqrestore(&host->irq_lock, flags);
610 }
611 
612 /* Calculate divisor for the given clock frequency */
613 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
614 {
615 	u16 dsor = 0;
616 
617 	if (ios->clock) {
618 		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
619 		if (dsor > CLKD_MAX)
620 			dsor = CLKD_MAX;
621 	}
622 
623 	return dsor;
624 }
625 
626 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
627 {
628 	struct mmc_ios *ios = &host->mmc->ios;
629 	unsigned long regval;
630 	unsigned long timeout;
631 	unsigned long clkdiv;
632 
633 	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
634 
635 	omap_hsmmc_stop_clock(host);
636 
637 	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
638 	regval = regval & ~(CLKD_MASK | DTO_MASK);
639 	clkdiv = calc_divisor(host, ios);
640 	regval = regval | (clkdiv << 6) | (DTO << 16);
641 	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
642 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
643 		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
644 
645 	/* Wait till the ICS bit is set */
646 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
647 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
648 		&& time_before(jiffies, timeout))
649 		cpu_relax();
650 
651 	/*
652 	 * Enable High-Speed Support
653 	 * Pre-Requisites
654 	 *	- Controller should support High-Speed-Enable Bit
655 	 *	- Controller should not be using DDR Mode
656 	 *	- Controller should advertise that it supports High Speed
657 	 *	  in capabilities register
658 	 *	- MMC/SD clock coming out of controller > 25MHz
659 	 */
660 	if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
661 	    (ios->timing != MMC_TIMING_MMC_DDR52) &&
662 	    (ios->timing != MMC_TIMING_UHS_DDR50) &&
663 	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
664 		regval = OMAP_HSMMC_READ(host->base, HCTL);
665 		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
666 			regval |= HSPE;
667 		else
668 			regval &= ~HSPE;
669 
670 		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
671 	}
672 
673 	omap_hsmmc_start_clock(host);
674 }
675 
676 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
677 {
678 	struct mmc_ios *ios = &host->mmc->ios;
679 	u32 con;
680 
681 	con = OMAP_HSMMC_READ(host->base, CON);
682 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
683 	    ios->timing == MMC_TIMING_UHS_DDR50)
684 		con |= DDR;	/* configure in DDR mode */
685 	else
686 		con &= ~DDR;
687 	switch (ios->bus_width) {
688 	case MMC_BUS_WIDTH_8:
689 		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
690 		break;
691 	case MMC_BUS_WIDTH_4:
692 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
693 		OMAP_HSMMC_WRITE(host->base, HCTL,
694 			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
695 		break;
696 	case MMC_BUS_WIDTH_1:
697 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
698 		OMAP_HSMMC_WRITE(host->base, HCTL,
699 			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
700 		break;
701 	}
702 }
703 
704 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
705 {
706 	struct mmc_ios *ios = &host->mmc->ios;
707 	u32 con;
708 
709 	con = OMAP_HSMMC_READ(host->base, CON);
710 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
711 		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
712 	else
713 		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
714 }
715 
716 #ifdef CONFIG_PM
717 
718 /*
719  * Restore the MMC host context, if it was lost as result of a
720  * power state change.
721  */
722 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
723 {
724 	struct mmc_ios *ios = &host->mmc->ios;
725 	u32 hctl, capa;
726 	unsigned long timeout;
727 
728 	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
729 	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
730 	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
731 	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
732 		return 0;
733 
734 	host->context_loss++;
735 
736 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
737 		if (host->power_mode != MMC_POWER_OFF &&
738 		    (1 << ios->vdd) <= MMC_VDD_23_24)
739 			hctl = SDVS18;
740 		else
741 			hctl = SDVS30;
742 		capa = VS30 | VS18;
743 	} else {
744 		hctl = SDVS18;
745 		capa = VS18;
746 	}
747 
748 	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
749 		hctl |= IWE;
750 
751 	OMAP_HSMMC_WRITE(host->base, HCTL,
752 			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
753 
754 	OMAP_HSMMC_WRITE(host->base, CAPA,
755 			OMAP_HSMMC_READ(host->base, CAPA) | capa);
756 
757 	OMAP_HSMMC_WRITE(host->base, HCTL,
758 			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
759 
760 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
761 	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
762 		&& time_before(jiffies, timeout))
763 		;
764 
765 	OMAP_HSMMC_WRITE(host->base, ISE, 0);
766 	OMAP_HSMMC_WRITE(host->base, IE, 0);
767 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
768 
769 	/* Do not initialize card-specific things if the power is off */
770 	if (host->power_mode == MMC_POWER_OFF)
771 		goto out;
772 
773 	omap_hsmmc_set_bus_width(host);
774 
775 	omap_hsmmc_set_clock(host);
776 
777 	omap_hsmmc_set_bus_mode(host);
778 
779 out:
780 	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
781 		host->context_loss);
782 	return 0;
783 }
784 
785 /*
786  * Save the MMC host context (store the number of power state changes so far).
787  */
788 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
789 {
790 	host->con =  OMAP_HSMMC_READ(host->base, CON);
791 	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
792 	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
793 	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
794 }
795 
796 #else
797 
798 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
799 {
800 	return 0;
801 }
802 
803 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
804 {
805 }
806 
807 #endif
808 
809 /*
810  * Send init stream sequence to card
811  * before sending IDLE command
812  */
813 static void send_init_stream(struct omap_hsmmc_host *host)
814 {
815 	int reg = 0;
816 	unsigned long timeout;
817 
818 	if (host->protect_card)
819 		return;
820 
821 	disable_irq(host->irq);
822 
823 	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
824 	OMAP_HSMMC_WRITE(host->base, CON,
825 		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
826 	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
827 
828 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
829 	while ((reg != CC_EN) && time_before(jiffies, timeout))
830 		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
831 
832 	OMAP_HSMMC_WRITE(host->base, CON,
833 		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
834 
835 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
836 	OMAP_HSMMC_READ(host->base, STAT);
837 
838 	enable_irq(host->irq);
839 }
840 
841 static inline
842 int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
843 {
844 	int r = 1;
845 
846 	if (host->get_cover_state)
847 		r = host->get_cover_state(host->dev);
848 	return r;
849 }
850 
851 static ssize_t
852 omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
853 			   char *buf)
854 {
855 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
856 	struct omap_hsmmc_host *host = mmc_priv(mmc);
857 
858 	return sprintf(buf, "%s\n",
859 			omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
860 }
861 
862 static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
863 
864 static ssize_t
865 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
866 			char *buf)
867 {
868 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
869 	struct omap_hsmmc_host *host = mmc_priv(mmc);
870 
871 	return sprintf(buf, "%s\n", mmc_pdata(host)->name);
872 }
873 
874 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
875 
876 /*
877  * Configure the response type and send the cmd.
878  */
879 static void
880 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
881 	struct mmc_data *data)
882 {
883 	int cmdreg = 0, resptype = 0, cmdtype = 0;
884 
885 	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
886 		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
887 	host->cmd = cmd;
888 
889 	omap_hsmmc_enable_irq(host, cmd);
890 
891 	host->response_busy = 0;
892 	if (cmd->flags & MMC_RSP_PRESENT) {
893 		if (cmd->flags & MMC_RSP_136)
894 			resptype = 1;
895 		else if (cmd->flags & MMC_RSP_BUSY) {
896 			resptype = 3;
897 			host->response_busy = 1;
898 		} else
899 			resptype = 2;
900 	}
901 
902 	/*
903 	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
904 	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
905 	 * a val of 0x3, rest 0x0.
906 	 */
907 	if (cmd == host->mrq->stop)
908 		cmdtype = 0x3;
909 
910 	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
911 
912 	if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
913 	    host->mrq->sbc) {
914 		cmdreg |= ACEN_ACMD23;
915 		OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
916 	}
917 	if (data) {
918 		cmdreg |= DP_SELECT | MSBS | BCE;
919 		if (data->flags & MMC_DATA_READ)
920 			cmdreg |= DDIR;
921 		else
922 			cmdreg &= ~(DDIR);
923 	}
924 
925 	if (host->use_dma)
926 		cmdreg |= DMAE;
927 
928 	host->req_in_progress = 1;
929 
930 	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
931 	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
932 }
933 
934 static int
935 omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
936 {
937 	if (data->flags & MMC_DATA_WRITE)
938 		return DMA_TO_DEVICE;
939 	else
940 		return DMA_FROM_DEVICE;
941 }
942 
943 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
944 	struct mmc_data *data)
945 {
946 	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
947 }
948 
949 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
950 {
951 	int dma_ch;
952 	unsigned long flags;
953 
954 	spin_lock_irqsave(&host->irq_lock, flags);
955 	host->req_in_progress = 0;
956 	dma_ch = host->dma_ch;
957 	spin_unlock_irqrestore(&host->irq_lock, flags);
958 
959 	omap_hsmmc_disable_irq(host);
960 	/* Do not complete the request if DMA is still in progress */
961 	if (mrq->data && host->use_dma && dma_ch != -1)
962 		return;
963 	host->mrq = NULL;
964 	mmc_request_done(host->mmc, mrq);
965 	pm_runtime_mark_last_busy(host->dev);
966 	pm_runtime_put_autosuspend(host->dev);
967 }
968 
969 /*
970  * Notify the transfer complete to MMC core
971  */
972 static void
973 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
974 {
975 	if (!data) {
976 		struct mmc_request *mrq = host->mrq;
977 
978 		/* TC before CC from CMD6 - don't know why, but it happens */
979 		if (host->cmd && host->cmd->opcode == 6 &&
980 		    host->response_busy) {
981 			host->response_busy = 0;
982 			return;
983 		}
984 
985 		omap_hsmmc_request_done(host, mrq);
986 		return;
987 	}
988 
989 	host->data = NULL;
990 
991 	if (!data->error)
992 		data->bytes_xfered += data->blocks * (data->blksz);
993 	else
994 		data->bytes_xfered = 0;
995 
996 	if (data->stop && (data->error || !host->mrq->sbc))
997 		omap_hsmmc_start_command(host, data->stop, NULL);
998 	else
999 		omap_hsmmc_request_done(host, data->mrq);
1000 }
1001 
1002 /*
1003  * Notify the core about command completion
1004  */
1005 static void
1006 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
1007 {
1008 	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
1009 	    !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
1010 		host->cmd = NULL;
1011 		omap_hsmmc_start_dma_transfer(host);
1012 		omap_hsmmc_start_command(host, host->mrq->cmd,
1013 						host->mrq->data);
1014 		return;
1015 	}
1016 
1017 	host->cmd = NULL;
1018 
1019 	if (cmd->flags & MMC_RSP_PRESENT) {
1020 		if (cmd->flags & MMC_RSP_136) {
1021 			/* response type 2 */
1022 			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
1023 			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
1024 			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
1025 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
1026 		} else {
1027 			/* response types 1, 1b, 3, 4, 5, 6 */
1028 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
1029 		}
1030 	}
1031 	if ((host->data == NULL && !host->response_busy) || cmd->error)
1032 		omap_hsmmc_request_done(host, host->mrq);
1033 }
1034 
1035 /*
1036  * DMA clean up for command errors
1037  */
1038 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
1039 {
1040 	int dma_ch;
1041 	unsigned long flags;
1042 
1043 	host->data->error = errno;
1044 
1045 	spin_lock_irqsave(&host->irq_lock, flags);
1046 	dma_ch = host->dma_ch;
1047 	host->dma_ch = -1;
1048 	spin_unlock_irqrestore(&host->irq_lock, flags);
1049 
1050 	if (host->use_dma && dma_ch != -1) {
1051 		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
1052 
1053 		dmaengine_terminate_all(chan);
1054 		dma_unmap_sg(chan->device->dev,
1055 			host->data->sg, host->data->sg_len,
1056 			omap_hsmmc_get_dma_dir(host, host->data));
1057 
1058 		host->data->host_cookie = 0;
1059 	}
1060 	host->data = NULL;
1061 }
1062 
1063 /*
1064  * Readable error output
1065  */
1066 #ifdef CONFIG_MMC_DEBUG
1067 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
1068 {
1069 	/* --- means reserved bit without definition at documentation */
1070 	static const char *omap_hsmmc_status_bits[] = {
1071 		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
1072 		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
1073 		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
1074 		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
1075 	};
1076 	char res[256];
1077 	char *buf = res;
1078 	int len, i;
1079 
1080 	len = sprintf(buf, "MMC IRQ 0x%x :", status);
1081 	buf += len;
1082 
1083 	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
1084 		if (status & (1 << i)) {
1085 			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
1086 			buf += len;
1087 		}
1088 
1089 	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
1090 }
1091 #else
1092 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
1093 					     u32 status)
1094 {
1095 }
1096 #endif  /* CONFIG_MMC_DEBUG */
1097 
1098 /*
1099  * MMC controller internal state machines reset
1100  *
1101  * Used to reset command or data internal state machines, using respectively
1102  *  SRC or SRD bit of SYSCTL register
1103  * Can be called from interrupt context
1104  */
1105 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
1106 						   unsigned long bit)
1107 {
1108 	unsigned long i = 0;
1109 	unsigned long limit = MMC_TIMEOUT_US;
1110 
1111 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
1112 			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
1113 
1114 	/*
1115 	 * OMAP4 ES2 and greater has an updated reset logic.
1116 	 * Monitor a 0->1 transition first
1117 	 */
1118 	if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
1119 		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
1120 					&& (i++ < limit))
1121 			udelay(1);
1122 	}
1123 	i = 0;
1124 
1125 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
1126 		(i++ < limit))
1127 		udelay(1);
1128 
1129 	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1130 		dev_err(mmc_dev(host->mmc),
1131 			"Timeout waiting on controller reset in %s\n",
1132 			__func__);
1133 }
1134 
1135 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1136 					int err, int end_cmd)
1137 {
1138 	if (end_cmd) {
1139 		omap_hsmmc_reset_controller_fsm(host, SRC);
1140 		if (host->cmd)
1141 			host->cmd->error = err;
1142 	}
1143 
1144 	if (host->data) {
1145 		omap_hsmmc_reset_controller_fsm(host, SRD);
1146 		omap_hsmmc_dma_cleanup(host, err);
1147 	} else if (host->mrq && host->mrq->cmd)
1148 		host->mrq->cmd->error = err;
1149 }
1150 
1151 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1152 {
1153 	struct mmc_data *data;
1154 	int end_cmd = 0, end_trans = 0;
1155 	int error = 0;
1156 
1157 	data = host->data;
1158 	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1159 
1160 	if (status & ERR_EN) {
1161 		omap_hsmmc_dbg_report_irq(host, status);
1162 
1163 		if (status & (CTO_EN | CCRC_EN))
1164 			end_cmd = 1;
1165 		if (host->data || host->response_busy) {
1166 			end_trans = !end_cmd;
1167 			host->response_busy = 0;
1168 		}
1169 		if (status & (CTO_EN | DTO_EN))
1170 			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1171 		else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1172 				   BADA_EN))
1173 			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1174 
1175 		if (status & ACE_EN) {
1176 			u32 ac12;
1177 			ac12 = OMAP_HSMMC_READ(host->base, AC12);
1178 			if (!(ac12 & ACNE) && host->mrq->sbc) {
1179 				end_cmd = 1;
1180 				if (ac12 & ACTO)
1181 					error =  -ETIMEDOUT;
1182 				else if (ac12 & (ACCE | ACEB | ACIE))
1183 					error = -EILSEQ;
1184 				host->mrq->sbc->error = error;
1185 				hsmmc_command_incomplete(host, error, end_cmd);
1186 			}
1187 			dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1188 		}
1189 	}
1190 
1191 	OMAP_HSMMC_WRITE(host->base, STAT, status);
1192 	if (end_cmd || ((status & CC_EN) && host->cmd))
1193 		omap_hsmmc_cmd_done(host, host->cmd);
1194 	if ((end_trans || (status & TC_EN)) && host->mrq)
1195 		omap_hsmmc_xfer_done(host, data);
1196 }
1197 
1198 /*
1199  * MMC controller IRQ handler
1200  */
1201 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1202 {
1203 	struct omap_hsmmc_host *host = dev_id;
1204 	int status;
1205 
1206 	status = OMAP_HSMMC_READ(host->base, STAT);
1207 	while (status & (INT_EN_MASK | CIRQ_EN)) {
1208 		if (host->req_in_progress)
1209 			omap_hsmmc_do_irq(host, status);
1210 
1211 		if (status & CIRQ_EN)
1212 			mmc_signal_sdio_irq(host->mmc);
1213 
1214 		/* Flush posted write */
1215 		status = OMAP_HSMMC_READ(host->base, STAT);
1216 	}
1217 
1218 	return IRQ_HANDLED;
1219 }
1220 
1221 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1222 {
1223 	unsigned long i;
1224 
1225 	OMAP_HSMMC_WRITE(host->base, HCTL,
1226 			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1227 	for (i = 0; i < loops_per_jiffy; i++) {
1228 		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1229 			break;
1230 		cpu_relax();
1231 	}
1232 }
1233 
1234 /*
1235  * Switch MMC interface voltage ... only relevant for MMC1.
1236  *
1237  * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1238  * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1239  * Some chips, like eMMC ones, use internal transceivers.
1240  */
1241 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1242 {
1243 	u32 reg_val = 0;
1244 	int ret;
1245 
1246 	/* Disable the clocks */
1247 	pm_runtime_put_sync(host->dev);
1248 	if (host->dbclk)
1249 		clk_disable_unprepare(host->dbclk);
1250 
1251 	/* Turn the power off */
1252 	ret = omap_hsmmc_set_power(host->dev, 0, 0);
1253 
1254 	/* Turn the power ON with given VDD 1.8 or 3.0v */
1255 	if (!ret)
1256 		ret = omap_hsmmc_set_power(host->dev, 1, vdd);
1257 	pm_runtime_get_sync(host->dev);
1258 	if (host->dbclk)
1259 		clk_prepare_enable(host->dbclk);
1260 
1261 	if (ret != 0)
1262 		goto err;
1263 
1264 	OMAP_HSMMC_WRITE(host->base, HCTL,
1265 		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1266 	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1267 
1268 	/*
1269 	 * If a MMC dual voltage card is detected, the set_ios fn calls
1270 	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1271 	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1272 	 *
1273 	 * Cope with a bit of slop in the range ... per data sheets:
1274 	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1275 	 *    but recommended values are 1.71V to 1.89V
1276 	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1277 	 *    but recommended values are 2.7V to 3.3V
1278 	 *
1279 	 * Board setup code shouldn't permit anything very out-of-range.
1280 	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1281 	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1282 	 */
1283 	if ((1 << vdd) <= MMC_VDD_23_24)
1284 		reg_val |= SDVS18;
1285 	else
1286 		reg_val |= SDVS30;
1287 
1288 	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1289 	set_sd_bus_power(host);
1290 
1291 	return 0;
1292 err:
1293 	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1294 	return ret;
1295 }
1296 
1297 /* Protect the card while the cover is open */
1298 static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1299 {
1300 	if (!host->get_cover_state)
1301 		return;
1302 
1303 	host->reqs_blocked = 0;
1304 	if (host->get_cover_state(host->dev)) {
1305 		if (host->protect_card) {
1306 			dev_info(host->dev, "%s: cover is closed, "
1307 					 "card is now accessible\n",
1308 					 mmc_hostname(host->mmc));
1309 			host->protect_card = 0;
1310 		}
1311 	} else {
1312 		if (!host->protect_card) {
1313 			dev_info(host->dev, "%s: cover is open, "
1314 					 "card is now inaccessible\n",
1315 					 mmc_hostname(host->mmc));
1316 			host->protect_card = 1;
1317 		}
1318 	}
1319 }
1320 
1321 /*
1322  * irq handler when (cell-phone) cover is mounted/removed
1323  */
1324 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id)
1325 {
1326 	struct omap_hsmmc_host *host = dev_id;
1327 
1328 	sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1329 
1330 	omap_hsmmc_protect_card(host);
1331 	mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1332 	return IRQ_HANDLED;
1333 }
1334 
1335 static void omap_hsmmc_dma_callback(void *param)
1336 {
1337 	struct omap_hsmmc_host *host = param;
1338 	struct dma_chan *chan;
1339 	struct mmc_data *data;
1340 	int req_in_progress;
1341 
1342 	spin_lock_irq(&host->irq_lock);
1343 	if (host->dma_ch < 0) {
1344 		spin_unlock_irq(&host->irq_lock);
1345 		return;
1346 	}
1347 
1348 	data = host->mrq->data;
1349 	chan = omap_hsmmc_get_dma_chan(host, data);
1350 	if (!data->host_cookie)
1351 		dma_unmap_sg(chan->device->dev,
1352 			     data->sg, data->sg_len,
1353 			     omap_hsmmc_get_dma_dir(host, data));
1354 
1355 	req_in_progress = host->req_in_progress;
1356 	host->dma_ch = -1;
1357 	spin_unlock_irq(&host->irq_lock);
1358 
1359 	/* If DMA has finished after TC, complete the request */
1360 	if (!req_in_progress) {
1361 		struct mmc_request *mrq = host->mrq;
1362 
1363 		host->mrq = NULL;
1364 		mmc_request_done(host->mmc, mrq);
1365 		pm_runtime_mark_last_busy(host->dev);
1366 		pm_runtime_put_autosuspend(host->dev);
1367 	}
1368 }
1369 
1370 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1371 				       struct mmc_data *data,
1372 				       struct omap_hsmmc_next *next,
1373 				       struct dma_chan *chan)
1374 {
1375 	int dma_len;
1376 
1377 	if (!next && data->host_cookie &&
1378 	    data->host_cookie != host->next_data.cookie) {
1379 		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1380 		       " host->next_data.cookie %d\n",
1381 		       __func__, data->host_cookie, host->next_data.cookie);
1382 		data->host_cookie = 0;
1383 	}
1384 
1385 	/* Check if next job is already prepared */
1386 	if (next || data->host_cookie != host->next_data.cookie) {
1387 		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1388 				     omap_hsmmc_get_dma_dir(host, data));
1389 
1390 	} else {
1391 		dma_len = host->next_data.dma_len;
1392 		host->next_data.dma_len = 0;
1393 	}
1394 
1395 
1396 	if (dma_len == 0)
1397 		return -EINVAL;
1398 
1399 	if (next) {
1400 		next->dma_len = dma_len;
1401 		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1402 	} else
1403 		host->dma_len = dma_len;
1404 
1405 	return 0;
1406 }
1407 
1408 /*
1409  * Routine to configure and start DMA for the MMC card
1410  */
1411 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1412 					struct mmc_request *req)
1413 {
1414 	struct dma_slave_config cfg;
1415 	struct dma_async_tx_descriptor *tx;
1416 	int ret = 0, i;
1417 	struct mmc_data *data = req->data;
1418 	struct dma_chan *chan;
1419 
1420 	/* Sanity check: all the SG entries must be aligned by block size. */
1421 	for (i = 0; i < data->sg_len; i++) {
1422 		struct scatterlist *sgl;
1423 
1424 		sgl = data->sg + i;
1425 		if (sgl->length % data->blksz)
1426 			return -EINVAL;
1427 	}
1428 	if ((data->blksz % 4) != 0)
1429 		/* REVISIT: The MMC buffer increments only when MSB is written.
1430 		 * Return error for blksz which is non multiple of four.
1431 		 */
1432 		return -EINVAL;
1433 
1434 	BUG_ON(host->dma_ch != -1);
1435 
1436 	chan = omap_hsmmc_get_dma_chan(host, data);
1437 
1438 	cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA;
1439 	cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA;
1440 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1441 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1442 	cfg.src_maxburst = data->blksz / 4;
1443 	cfg.dst_maxburst = data->blksz / 4;
1444 
1445 	ret = dmaengine_slave_config(chan, &cfg);
1446 	if (ret)
1447 		return ret;
1448 
1449 	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1450 	if (ret)
1451 		return ret;
1452 
1453 	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1454 		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1455 		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1456 	if (!tx) {
1457 		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1458 		/* FIXME: cleanup */
1459 		return -1;
1460 	}
1461 
1462 	tx->callback = omap_hsmmc_dma_callback;
1463 	tx->callback_param = host;
1464 
1465 	/* Does not fail */
1466 	dmaengine_submit(tx);
1467 
1468 	host->dma_ch = 1;
1469 
1470 	return 0;
1471 }
1472 
1473 static void set_data_timeout(struct omap_hsmmc_host *host,
1474 			     unsigned int timeout_ns,
1475 			     unsigned int timeout_clks)
1476 {
1477 	unsigned int timeout, cycle_ns;
1478 	uint32_t reg, clkd, dto = 0;
1479 
1480 	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1481 	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1482 	if (clkd == 0)
1483 		clkd = 1;
1484 
1485 	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1486 	timeout = timeout_ns / cycle_ns;
1487 	timeout += timeout_clks;
1488 	if (timeout) {
1489 		while ((timeout & 0x80000000) == 0) {
1490 			dto += 1;
1491 			timeout <<= 1;
1492 		}
1493 		dto = 31 - dto;
1494 		timeout <<= 1;
1495 		if (timeout && dto)
1496 			dto += 1;
1497 		if (dto >= 13)
1498 			dto -= 13;
1499 		else
1500 			dto = 0;
1501 		if (dto > 14)
1502 			dto = 14;
1503 	}
1504 
1505 	reg &= ~DTO_MASK;
1506 	reg |= dto << DTO_SHIFT;
1507 	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1508 }
1509 
1510 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1511 {
1512 	struct mmc_request *req = host->mrq;
1513 	struct dma_chan *chan;
1514 
1515 	if (!req->data)
1516 		return;
1517 	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1518 				| (req->data->blocks << 16));
1519 	set_data_timeout(host, req->data->timeout_ns,
1520 				req->data->timeout_clks);
1521 	chan = omap_hsmmc_get_dma_chan(host, req->data);
1522 	dma_async_issue_pending(chan);
1523 }
1524 
1525 /*
1526  * Configure block length for MMC/SD cards and initiate the transfer.
1527  */
1528 static int
1529 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1530 {
1531 	int ret;
1532 	host->data = req->data;
1533 
1534 	if (req->data == NULL) {
1535 		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1536 		/*
1537 		 * Set an arbitrary 100ms data timeout for commands with
1538 		 * busy signal.
1539 		 */
1540 		if (req->cmd->flags & MMC_RSP_BUSY)
1541 			set_data_timeout(host, 100000000U, 0);
1542 		return 0;
1543 	}
1544 
1545 	if (host->use_dma) {
1546 		ret = omap_hsmmc_setup_dma_transfer(host, req);
1547 		if (ret != 0) {
1548 			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1549 			return ret;
1550 		}
1551 	}
1552 	return 0;
1553 }
1554 
1555 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1556 				int err)
1557 {
1558 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1559 	struct mmc_data *data = mrq->data;
1560 
1561 	if (host->use_dma && data->host_cookie) {
1562 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1563 
1564 		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1565 			     omap_hsmmc_get_dma_dir(host, data));
1566 		data->host_cookie = 0;
1567 	}
1568 }
1569 
1570 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
1571 			       bool is_first_req)
1572 {
1573 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1574 
1575 	if (mrq->data->host_cookie) {
1576 		mrq->data->host_cookie = 0;
1577 		return ;
1578 	}
1579 
1580 	if (host->use_dma) {
1581 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1582 
1583 		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1584 						&host->next_data, c))
1585 			mrq->data->host_cookie = 0;
1586 	}
1587 }
1588 
1589 /*
1590  * Request function. for read/write operation
1591  */
1592 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1593 {
1594 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1595 	int err;
1596 
1597 	BUG_ON(host->req_in_progress);
1598 	BUG_ON(host->dma_ch != -1);
1599 	pm_runtime_get_sync(host->dev);
1600 	if (host->protect_card) {
1601 		if (host->reqs_blocked < 3) {
1602 			/*
1603 			 * Ensure the controller is left in a consistent
1604 			 * state by resetting the command and data state
1605 			 * machines.
1606 			 */
1607 			omap_hsmmc_reset_controller_fsm(host, SRD);
1608 			omap_hsmmc_reset_controller_fsm(host, SRC);
1609 			host->reqs_blocked += 1;
1610 		}
1611 		req->cmd->error = -EBADF;
1612 		if (req->data)
1613 			req->data->error = -EBADF;
1614 		req->cmd->retries = 0;
1615 		mmc_request_done(mmc, req);
1616 		pm_runtime_mark_last_busy(host->dev);
1617 		pm_runtime_put_autosuspend(host->dev);
1618 		return;
1619 	} else if (host->reqs_blocked)
1620 		host->reqs_blocked = 0;
1621 	WARN_ON(host->mrq != NULL);
1622 	host->mrq = req;
1623 	host->clk_rate = clk_get_rate(host->fclk);
1624 	err = omap_hsmmc_prepare_data(host, req);
1625 	if (err) {
1626 		req->cmd->error = err;
1627 		if (req->data)
1628 			req->data->error = err;
1629 		host->mrq = NULL;
1630 		mmc_request_done(mmc, req);
1631 		pm_runtime_mark_last_busy(host->dev);
1632 		pm_runtime_put_autosuspend(host->dev);
1633 		return;
1634 	}
1635 	if (req->sbc && !(host->flags & AUTO_CMD23)) {
1636 		omap_hsmmc_start_command(host, req->sbc, NULL);
1637 		return;
1638 	}
1639 
1640 	omap_hsmmc_start_dma_transfer(host);
1641 	omap_hsmmc_start_command(host, req->cmd, req->data);
1642 }
1643 
1644 /* Routine to configure clock values. Exposed API to core */
1645 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1646 {
1647 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1648 	int do_send_init_stream = 0;
1649 
1650 	pm_runtime_get_sync(host->dev);
1651 
1652 	if (ios->power_mode != host->power_mode) {
1653 		switch (ios->power_mode) {
1654 		case MMC_POWER_OFF:
1655 			omap_hsmmc_set_power(host->dev, 0, 0);
1656 			break;
1657 		case MMC_POWER_UP:
1658 			omap_hsmmc_set_power(host->dev, 1, ios->vdd);
1659 			break;
1660 		case MMC_POWER_ON:
1661 			do_send_init_stream = 1;
1662 			break;
1663 		}
1664 		host->power_mode = ios->power_mode;
1665 	}
1666 
1667 	/* FIXME: set registers based only on changes to ios */
1668 
1669 	omap_hsmmc_set_bus_width(host);
1670 
1671 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1672 		/* Only MMC1 can interface at 3V without some flavor
1673 		 * of external transceiver; but they all handle 1.8V.
1674 		 */
1675 		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1676 			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1677 				/*
1678 				 * The mmc_select_voltage fn of the core does
1679 				 * not seem to set the power_mode to
1680 				 * MMC_POWER_UP upon recalculating the voltage.
1681 				 * vdd 1.8v.
1682 				 */
1683 			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1684 				dev_dbg(mmc_dev(host->mmc),
1685 						"Switch operation failed\n");
1686 		}
1687 	}
1688 
1689 	omap_hsmmc_set_clock(host);
1690 
1691 	if (do_send_init_stream)
1692 		send_init_stream(host);
1693 
1694 	omap_hsmmc_set_bus_mode(host);
1695 
1696 	pm_runtime_put_autosuspend(host->dev);
1697 }
1698 
1699 static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1700 {
1701 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1702 
1703 	if (!host->card_detect)
1704 		return -ENOSYS;
1705 	return host->card_detect(host->dev);
1706 }
1707 
1708 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1709 {
1710 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1711 
1712 	if (mmc_pdata(host)->init_card)
1713 		mmc_pdata(host)->init_card(card);
1714 }
1715 
1716 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1717 {
1718 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1719 	u32 irq_mask, con;
1720 	unsigned long flags;
1721 
1722 	spin_lock_irqsave(&host->irq_lock, flags);
1723 
1724 	con = OMAP_HSMMC_READ(host->base, CON);
1725 	irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1726 	if (enable) {
1727 		host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1728 		irq_mask |= CIRQ_EN;
1729 		con |= CTPL | CLKEXTFREE;
1730 	} else {
1731 		host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1732 		irq_mask &= ~CIRQ_EN;
1733 		con &= ~(CTPL | CLKEXTFREE);
1734 	}
1735 	OMAP_HSMMC_WRITE(host->base, CON, con);
1736 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1737 
1738 	/*
1739 	 * if enable, piggy back detection on current request
1740 	 * but always disable immediately
1741 	 */
1742 	if (!host->req_in_progress || !enable)
1743 		OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1744 
1745 	/* flush posted write */
1746 	OMAP_HSMMC_READ(host->base, IE);
1747 
1748 	spin_unlock_irqrestore(&host->irq_lock, flags);
1749 }
1750 
1751 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1752 {
1753 	int ret;
1754 
1755 	/*
1756 	 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1757 	 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1758 	 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1759 	 * with functional clock disabled.
1760 	 */
1761 	if (!host->dev->of_node || !host->wake_irq)
1762 		return -ENODEV;
1763 
1764 	ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1765 	if (ret) {
1766 		dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1767 		goto err;
1768 	}
1769 
1770 	/*
1771 	 * Some omaps don't have wake-up path from deeper idle states
1772 	 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1773 	 */
1774 	if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1775 		struct pinctrl *p = devm_pinctrl_get(host->dev);
1776 		if (!p) {
1777 			ret = -ENODEV;
1778 			goto err_free_irq;
1779 		}
1780 		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
1781 			dev_info(host->dev, "missing default pinctrl state\n");
1782 			devm_pinctrl_put(p);
1783 			ret = -EINVAL;
1784 			goto err_free_irq;
1785 		}
1786 
1787 		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1788 			dev_info(host->dev, "missing idle pinctrl state\n");
1789 			devm_pinctrl_put(p);
1790 			ret = -EINVAL;
1791 			goto err_free_irq;
1792 		}
1793 		devm_pinctrl_put(p);
1794 	}
1795 
1796 	OMAP_HSMMC_WRITE(host->base, HCTL,
1797 			 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1798 	return 0;
1799 
1800 err_free_irq:
1801 	dev_pm_clear_wake_irq(host->dev);
1802 err:
1803 	dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1804 	host->wake_irq = 0;
1805 	return ret;
1806 }
1807 
1808 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1809 {
1810 	u32 hctl, capa, value;
1811 
1812 	/* Only MMC1 supports 3.0V */
1813 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1814 		hctl = SDVS30;
1815 		capa = VS30 | VS18;
1816 	} else {
1817 		hctl = SDVS18;
1818 		capa = VS18;
1819 	}
1820 
1821 	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1822 	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1823 
1824 	value = OMAP_HSMMC_READ(host->base, CAPA);
1825 	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1826 
1827 	/* Set SD bus power bit */
1828 	set_sd_bus_power(host);
1829 }
1830 
1831 static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1832 				     unsigned int direction, int blk_size)
1833 {
1834 	/* This controller can't do multiblock reads due to hw bugs */
1835 	if (direction == MMC_DATA_READ)
1836 		return 1;
1837 
1838 	return blk_size;
1839 }
1840 
1841 static struct mmc_host_ops omap_hsmmc_ops = {
1842 	.post_req = omap_hsmmc_post_req,
1843 	.pre_req = omap_hsmmc_pre_req,
1844 	.request = omap_hsmmc_request,
1845 	.set_ios = omap_hsmmc_set_ios,
1846 	.get_cd = omap_hsmmc_get_cd,
1847 	.get_ro = mmc_gpio_get_ro,
1848 	.init_card = omap_hsmmc_init_card,
1849 	.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1850 };
1851 
1852 #ifdef CONFIG_DEBUG_FS
1853 
1854 static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1855 {
1856 	struct mmc_host *mmc = s->private;
1857 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1858 
1859 	seq_printf(s, "mmc%d:\n", mmc->index);
1860 	seq_printf(s, "sdio irq mode\t%s\n",
1861 		   (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1862 
1863 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1864 		seq_printf(s, "sdio irq \t%s\n",
1865 			   (host->flags & HSMMC_SDIO_IRQ_ENABLED) ?  "enabled"
1866 			   : "disabled");
1867 	}
1868 	seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1869 
1870 	pm_runtime_get_sync(host->dev);
1871 	seq_puts(s, "\nregs:\n");
1872 	seq_printf(s, "CON:\t\t0x%08x\n",
1873 			OMAP_HSMMC_READ(host->base, CON));
1874 	seq_printf(s, "PSTATE:\t\t0x%08x\n",
1875 		   OMAP_HSMMC_READ(host->base, PSTATE));
1876 	seq_printf(s, "HCTL:\t\t0x%08x\n",
1877 			OMAP_HSMMC_READ(host->base, HCTL));
1878 	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1879 			OMAP_HSMMC_READ(host->base, SYSCTL));
1880 	seq_printf(s, "IE:\t\t0x%08x\n",
1881 			OMAP_HSMMC_READ(host->base, IE));
1882 	seq_printf(s, "ISE:\t\t0x%08x\n",
1883 			OMAP_HSMMC_READ(host->base, ISE));
1884 	seq_printf(s, "CAPA:\t\t0x%08x\n",
1885 			OMAP_HSMMC_READ(host->base, CAPA));
1886 
1887 	pm_runtime_mark_last_busy(host->dev);
1888 	pm_runtime_put_autosuspend(host->dev);
1889 
1890 	return 0;
1891 }
1892 
1893 static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1894 {
1895 	return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1896 }
1897 
1898 static const struct file_operations mmc_regs_fops = {
1899 	.open           = omap_hsmmc_regs_open,
1900 	.read           = seq_read,
1901 	.llseek         = seq_lseek,
1902 	.release        = single_release,
1903 };
1904 
1905 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1906 {
1907 	if (mmc->debugfs_root)
1908 		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1909 			mmc, &mmc_regs_fops);
1910 }
1911 
1912 #else
1913 
1914 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1915 {
1916 }
1917 
1918 #endif
1919 
1920 #ifdef CONFIG_OF
1921 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1922 	/* See 35xx errata 2.1.1.128 in SPRZ278F */
1923 	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1924 };
1925 
1926 static const struct omap_mmc_of_data omap4_mmc_of_data = {
1927 	.reg_offset = 0x100,
1928 };
1929 static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1930 	.reg_offset = 0x100,
1931 	.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1932 };
1933 
1934 static const struct of_device_id omap_mmc_of_match[] = {
1935 	{
1936 		.compatible = "ti,omap2-hsmmc",
1937 	},
1938 	{
1939 		.compatible = "ti,omap3-pre-es3-hsmmc",
1940 		.data = &omap3_pre_es3_mmc_of_data,
1941 	},
1942 	{
1943 		.compatible = "ti,omap3-hsmmc",
1944 	},
1945 	{
1946 		.compatible = "ti,omap4-hsmmc",
1947 		.data = &omap4_mmc_of_data,
1948 	},
1949 	{
1950 		.compatible = "ti,am33xx-hsmmc",
1951 		.data = &am33xx_mmc_of_data,
1952 	},
1953 	{},
1954 };
1955 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1956 
1957 static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1958 {
1959 	struct omap_hsmmc_platform_data *pdata;
1960 	struct device_node *np = dev->of_node;
1961 
1962 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1963 	if (!pdata)
1964 		return ERR_PTR(-ENOMEM); /* out of memory */
1965 
1966 	if (of_find_property(np, "ti,dual-volt", NULL))
1967 		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1968 
1969 	pdata->gpio_cd = -EINVAL;
1970 	pdata->gpio_cod = -EINVAL;
1971 	pdata->gpio_wp = -EINVAL;
1972 
1973 	if (of_find_property(np, "ti,non-removable", NULL)) {
1974 		pdata->nonremovable = true;
1975 		pdata->no_regulator_off_init = true;
1976 	}
1977 
1978 	if (of_find_property(np, "ti,needs-special-reset", NULL))
1979 		pdata->features |= HSMMC_HAS_UPDATED_RESET;
1980 
1981 	if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1982 		pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1983 
1984 	return pdata;
1985 }
1986 #else
1987 static inline struct omap_hsmmc_platform_data
1988 			*of_get_hsmmc_pdata(struct device *dev)
1989 {
1990 	return ERR_PTR(-EINVAL);
1991 }
1992 #endif
1993 
1994 static int omap_hsmmc_probe(struct platform_device *pdev)
1995 {
1996 	struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1997 	struct mmc_host *mmc;
1998 	struct omap_hsmmc_host *host = NULL;
1999 	struct resource *res;
2000 	int ret, irq;
2001 	const struct of_device_id *match;
2002 	dma_cap_mask_t mask;
2003 	unsigned tx_req, rx_req;
2004 	const struct omap_mmc_of_data *data;
2005 	void __iomem *base;
2006 
2007 	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
2008 	if (match) {
2009 		pdata = of_get_hsmmc_pdata(&pdev->dev);
2010 
2011 		if (IS_ERR(pdata))
2012 			return PTR_ERR(pdata);
2013 
2014 		if (match->data) {
2015 			data = match->data;
2016 			pdata->reg_offset = data->reg_offset;
2017 			pdata->controller_flags |= data->controller_flags;
2018 		}
2019 	}
2020 
2021 	if (pdata == NULL) {
2022 		dev_err(&pdev->dev, "Platform Data is missing\n");
2023 		return -ENXIO;
2024 	}
2025 
2026 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2027 	irq = platform_get_irq(pdev, 0);
2028 	if (res == NULL || irq < 0)
2029 		return -ENXIO;
2030 
2031 	base = devm_ioremap_resource(&pdev->dev, res);
2032 	if (IS_ERR(base))
2033 		return PTR_ERR(base);
2034 
2035 	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
2036 	if (!mmc) {
2037 		ret = -ENOMEM;
2038 		goto err;
2039 	}
2040 
2041 	ret = mmc_of_parse(mmc);
2042 	if (ret)
2043 		goto err1;
2044 
2045 	host		= mmc_priv(mmc);
2046 	host->mmc	= mmc;
2047 	host->pdata	= pdata;
2048 	host->dev	= &pdev->dev;
2049 	host->use_dma	= 1;
2050 	host->dma_ch	= -1;
2051 	host->irq	= irq;
2052 	host->mapbase	= res->start + pdata->reg_offset;
2053 	host->base	= base + pdata->reg_offset;
2054 	host->power_mode = MMC_POWER_OFF;
2055 	host->next_data.cookie = 1;
2056 	host->vqmmc_enabled = 0;
2057 
2058 	ret = omap_hsmmc_gpio_init(mmc, host, pdata);
2059 	if (ret)
2060 		goto err_gpio;
2061 
2062 	platform_set_drvdata(pdev, host);
2063 
2064 	if (pdev->dev.of_node)
2065 		host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
2066 
2067 	mmc->ops	= &omap_hsmmc_ops;
2068 
2069 	mmc->f_min = OMAP_MMC_MIN_CLOCK;
2070 
2071 	if (pdata->max_freq > 0)
2072 		mmc->f_max = pdata->max_freq;
2073 	else if (mmc->f_max == 0)
2074 		mmc->f_max = OMAP_MMC_MAX_CLOCK;
2075 
2076 	spin_lock_init(&host->irq_lock);
2077 
2078 	host->fclk = devm_clk_get(&pdev->dev, "fck");
2079 	if (IS_ERR(host->fclk)) {
2080 		ret = PTR_ERR(host->fclk);
2081 		host->fclk = NULL;
2082 		goto err1;
2083 	}
2084 
2085 	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
2086 		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
2087 		omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
2088 	}
2089 
2090 	device_init_wakeup(&pdev->dev, true);
2091 	pm_runtime_enable(host->dev);
2092 	pm_runtime_get_sync(host->dev);
2093 	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
2094 	pm_runtime_use_autosuspend(host->dev);
2095 
2096 	omap_hsmmc_context_save(host);
2097 
2098 	host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
2099 	/*
2100 	 * MMC can still work without debounce clock.
2101 	 */
2102 	if (IS_ERR(host->dbclk)) {
2103 		host->dbclk = NULL;
2104 	} else if (clk_prepare_enable(host->dbclk) != 0) {
2105 		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
2106 		host->dbclk = NULL;
2107 	}
2108 
2109 	/* Since we do only SG emulation, we can have as many segs
2110 	 * as we want. */
2111 	mmc->max_segs = 1024;
2112 
2113 	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
2114 	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
2115 	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
2116 	mmc->max_seg_size = mmc->max_req_size;
2117 
2118 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
2119 		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
2120 
2121 	mmc->caps |= mmc_pdata(host)->caps;
2122 	if (mmc->caps & MMC_CAP_8_BIT_DATA)
2123 		mmc->caps |= MMC_CAP_4_BIT_DATA;
2124 
2125 	if (mmc_pdata(host)->nonremovable)
2126 		mmc->caps |= MMC_CAP_NONREMOVABLE;
2127 
2128 	mmc->pm_caps |= mmc_pdata(host)->pm_caps;
2129 
2130 	omap_hsmmc_conf_bus_power(host);
2131 
2132 	if (!pdev->dev.of_node) {
2133 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
2134 		if (!res) {
2135 			dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n");
2136 			ret = -ENXIO;
2137 			goto err_irq;
2138 		}
2139 		tx_req = res->start;
2140 
2141 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
2142 		if (!res) {
2143 			dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n");
2144 			ret = -ENXIO;
2145 			goto err_irq;
2146 		}
2147 		rx_req = res->start;
2148 	}
2149 
2150 	dma_cap_zero(mask);
2151 	dma_cap_set(DMA_SLAVE, mask);
2152 
2153 	host->rx_chan =
2154 		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2155 						 &rx_req, &pdev->dev, "rx");
2156 
2157 	if (!host->rx_chan) {
2158 		dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel %u\n", rx_req);
2159 		ret = -ENXIO;
2160 		goto err_irq;
2161 	}
2162 
2163 	host->tx_chan =
2164 		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2165 						 &tx_req, &pdev->dev, "tx");
2166 
2167 	if (!host->tx_chan) {
2168 		dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel %u\n", tx_req);
2169 		ret = -ENXIO;
2170 		goto err_irq;
2171 	}
2172 
2173 	/* Request IRQ for MMC operations */
2174 	ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
2175 			mmc_hostname(mmc), host);
2176 	if (ret) {
2177 		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
2178 		goto err_irq;
2179 	}
2180 
2181 	ret = omap_hsmmc_reg_get(host);
2182 	if (ret)
2183 		goto err_irq;
2184 
2185 	mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
2186 
2187 	omap_hsmmc_disable_irq(host);
2188 
2189 	/*
2190 	 * For now, only support SDIO interrupt if we have a separate
2191 	 * wake-up interrupt configured from device tree. This is because
2192 	 * the wake-up interrupt is needed for idle state and some
2193 	 * platforms need special quirks. And we don't want to add new
2194 	 * legacy mux platform init code callbacks any longer as we
2195 	 * are moving to DT based booting anyways.
2196 	 */
2197 	ret = omap_hsmmc_configure_wake_irq(host);
2198 	if (!ret)
2199 		mmc->caps |= MMC_CAP_SDIO_IRQ;
2200 
2201 	omap_hsmmc_protect_card(host);
2202 
2203 	mmc_add_host(mmc);
2204 
2205 	if (mmc_pdata(host)->name != NULL) {
2206 		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
2207 		if (ret < 0)
2208 			goto err_slot_name;
2209 	}
2210 	if (host->get_cover_state) {
2211 		ret = device_create_file(&mmc->class_dev,
2212 					 &dev_attr_cover_switch);
2213 		if (ret < 0)
2214 			goto err_slot_name;
2215 	}
2216 
2217 	omap_hsmmc_debugfs(mmc);
2218 	pm_runtime_mark_last_busy(host->dev);
2219 	pm_runtime_put_autosuspend(host->dev);
2220 
2221 	return 0;
2222 
2223 err_slot_name:
2224 	mmc_remove_host(mmc);
2225 err_irq:
2226 	device_init_wakeup(&pdev->dev, false);
2227 	if (host->tx_chan)
2228 		dma_release_channel(host->tx_chan);
2229 	if (host->rx_chan)
2230 		dma_release_channel(host->rx_chan);
2231 	pm_runtime_put_sync(host->dev);
2232 	pm_runtime_disable(host->dev);
2233 	if (host->dbclk)
2234 		clk_disable_unprepare(host->dbclk);
2235 err1:
2236 err_gpio:
2237 	mmc_free_host(mmc);
2238 err:
2239 	return ret;
2240 }
2241 
2242 static int omap_hsmmc_remove(struct platform_device *pdev)
2243 {
2244 	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2245 
2246 	pm_runtime_get_sync(host->dev);
2247 	mmc_remove_host(host->mmc);
2248 
2249 	if (host->tx_chan)
2250 		dma_release_channel(host->tx_chan);
2251 	if (host->rx_chan)
2252 		dma_release_channel(host->rx_chan);
2253 
2254 	pm_runtime_put_sync(host->dev);
2255 	pm_runtime_disable(host->dev);
2256 	device_init_wakeup(&pdev->dev, false);
2257 	if (host->dbclk)
2258 		clk_disable_unprepare(host->dbclk);
2259 
2260 	mmc_free_host(host->mmc);
2261 
2262 	return 0;
2263 }
2264 
2265 #ifdef CONFIG_PM_SLEEP
2266 static int omap_hsmmc_suspend(struct device *dev)
2267 {
2268 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2269 
2270 	if (!host)
2271 		return 0;
2272 
2273 	pm_runtime_get_sync(host->dev);
2274 
2275 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2276 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2277 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2278 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2279 		OMAP_HSMMC_WRITE(host->base, HCTL,
2280 				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2281 	}
2282 
2283 	if (host->dbclk)
2284 		clk_disable_unprepare(host->dbclk);
2285 
2286 	pm_runtime_put_sync(host->dev);
2287 	return 0;
2288 }
2289 
2290 /* Routine to resume the MMC device */
2291 static int omap_hsmmc_resume(struct device *dev)
2292 {
2293 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2294 
2295 	if (!host)
2296 		return 0;
2297 
2298 	pm_runtime_get_sync(host->dev);
2299 
2300 	if (host->dbclk)
2301 		clk_prepare_enable(host->dbclk);
2302 
2303 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2304 		omap_hsmmc_conf_bus_power(host);
2305 
2306 	omap_hsmmc_protect_card(host);
2307 	pm_runtime_mark_last_busy(host->dev);
2308 	pm_runtime_put_autosuspend(host->dev);
2309 	return 0;
2310 }
2311 #endif
2312 
2313 static int omap_hsmmc_runtime_suspend(struct device *dev)
2314 {
2315 	struct omap_hsmmc_host *host;
2316 	unsigned long flags;
2317 	int ret = 0;
2318 
2319 	host = platform_get_drvdata(to_platform_device(dev));
2320 	omap_hsmmc_context_save(host);
2321 	dev_dbg(dev, "disabled\n");
2322 
2323 	spin_lock_irqsave(&host->irq_lock, flags);
2324 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2325 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2326 		/* disable sdio irq handling to prevent race */
2327 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2328 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2329 
2330 		if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2331 			/*
2332 			 * dat1 line low, pending sdio irq
2333 			 * race condition: possible irq handler running on
2334 			 * multi-core, abort
2335 			 */
2336 			dev_dbg(dev, "pending sdio irq, abort suspend\n");
2337 			OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2338 			OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2339 			OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2340 			pm_runtime_mark_last_busy(dev);
2341 			ret = -EBUSY;
2342 			goto abort;
2343 		}
2344 
2345 		pinctrl_pm_select_idle_state(dev);
2346 	} else {
2347 		pinctrl_pm_select_idle_state(dev);
2348 	}
2349 
2350 abort:
2351 	spin_unlock_irqrestore(&host->irq_lock, flags);
2352 	return ret;
2353 }
2354 
2355 static int omap_hsmmc_runtime_resume(struct device *dev)
2356 {
2357 	struct omap_hsmmc_host *host;
2358 	unsigned long flags;
2359 
2360 	host = platform_get_drvdata(to_platform_device(dev));
2361 	omap_hsmmc_context_restore(host);
2362 	dev_dbg(dev, "enabled\n");
2363 
2364 	spin_lock_irqsave(&host->irq_lock, flags);
2365 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2366 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2367 
2368 		pinctrl_pm_select_default_state(host->dev);
2369 
2370 		/* irq lost, if pinmux incorrect */
2371 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2372 		OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2373 		OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2374 	} else {
2375 		pinctrl_pm_select_default_state(host->dev);
2376 	}
2377 	spin_unlock_irqrestore(&host->irq_lock, flags);
2378 	return 0;
2379 }
2380 
2381 static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2382 	SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2383 	.runtime_suspend = omap_hsmmc_runtime_suspend,
2384 	.runtime_resume = omap_hsmmc_runtime_resume,
2385 };
2386 
2387 static struct platform_driver omap_hsmmc_driver = {
2388 	.probe		= omap_hsmmc_probe,
2389 	.remove		= omap_hsmmc_remove,
2390 	.driver		= {
2391 		.name = DRIVER_NAME,
2392 		.pm = &omap_hsmmc_dev_pm_ops,
2393 		.of_match_table = of_match_ptr(omap_mmc_of_match),
2394 	},
2395 };
2396 
2397 module_platform_driver(omap_hsmmc_driver);
2398 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2399 MODULE_LICENSE("GPL");
2400 MODULE_ALIAS("platform:" DRIVER_NAME);
2401 MODULE_AUTHOR("Texas Instruments Inc");
2402