xref: /openbmc/linux/drivers/mmc/host/omap_hsmmc.c (revision c4ee0af3)
1 /*
2  * drivers/mmc/host/omap_hsmmc.c
3  *
4  * Driver for OMAP2430/3430 MMC controller.
5  *
6  * Copyright (C) 2007 Texas Instruments.
7  *
8  * Authors:
9  *	Syed Mohammed Khasim	<x0khasim@ti.com>
10  *	Madhusudhan		<madhu.cr@ti.com>
11  *	Mohit Jalori		<mjalori@ti.com>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/sizes.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/timer.h>
30 #include <linux/clk.h>
31 #include <linux/of.h>
32 #include <linux/of_gpio.h>
33 #include <linux/of_device.h>
34 #include <linux/omap-dma.h>
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/core.h>
37 #include <linux/mmc/mmc.h>
38 #include <linux/io.h>
39 #include <linux/gpio.h>
40 #include <linux/regulator/consumer.h>
41 #include <linux/pinctrl/consumer.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/platform_data/mmc-omap.h>
44 
45 /* OMAP HSMMC Host Controller Registers */
46 #define OMAP_HSMMC_SYSSTATUS	0x0014
47 #define OMAP_HSMMC_CON		0x002C
48 #define OMAP_HSMMC_BLK		0x0104
49 #define OMAP_HSMMC_ARG		0x0108
50 #define OMAP_HSMMC_CMD		0x010C
51 #define OMAP_HSMMC_RSP10	0x0110
52 #define OMAP_HSMMC_RSP32	0x0114
53 #define OMAP_HSMMC_RSP54	0x0118
54 #define OMAP_HSMMC_RSP76	0x011C
55 #define OMAP_HSMMC_DATA		0x0120
56 #define OMAP_HSMMC_HCTL		0x0128
57 #define OMAP_HSMMC_SYSCTL	0x012C
58 #define OMAP_HSMMC_STAT		0x0130
59 #define OMAP_HSMMC_IE		0x0134
60 #define OMAP_HSMMC_ISE		0x0138
61 #define OMAP_HSMMC_CAPA		0x0140
62 
63 #define VS18			(1 << 26)
64 #define VS30			(1 << 25)
65 #define HSS			(1 << 21)
66 #define SDVS18			(0x5 << 9)
67 #define SDVS30			(0x6 << 9)
68 #define SDVS33			(0x7 << 9)
69 #define SDVS_MASK		0x00000E00
70 #define SDVSCLR			0xFFFFF1FF
71 #define SDVSDET			0x00000400
72 #define AUTOIDLE		0x1
73 #define SDBP			(1 << 8)
74 #define DTO			0xe
75 #define ICE			0x1
76 #define ICS			0x2
77 #define CEN			(1 << 2)
78 #define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
79 #define CLKD_MASK		0x0000FFC0
80 #define CLKD_SHIFT		6
81 #define DTO_MASK		0x000F0000
82 #define DTO_SHIFT		16
83 #define INIT_STREAM		(1 << 1)
84 #define DP_SELECT		(1 << 21)
85 #define DDIR			(1 << 4)
86 #define DMAE			0x1
87 #define MSBS			(1 << 5)
88 #define BCE			(1 << 1)
89 #define FOUR_BIT		(1 << 1)
90 #define HSPE			(1 << 2)
91 #define DDR			(1 << 19)
92 #define DW8			(1 << 5)
93 #define OD			0x1
94 #define STAT_CLEAR		0xFFFFFFFF
95 #define INIT_STREAM_CMD		0x00000000
96 #define DUAL_VOLT_OCR_BIT	7
97 #define SRC			(1 << 25)
98 #define SRD			(1 << 26)
99 #define SOFTRESET		(1 << 1)
100 #define RESETDONE		(1 << 0)
101 
102 /* Interrupt masks for IE and ISE register */
103 #define CC_EN			(1 << 0)
104 #define TC_EN			(1 << 1)
105 #define BWR_EN			(1 << 4)
106 #define BRR_EN			(1 << 5)
107 #define ERR_EN			(1 << 15)
108 #define CTO_EN			(1 << 16)
109 #define CCRC_EN			(1 << 17)
110 #define CEB_EN			(1 << 18)
111 #define CIE_EN			(1 << 19)
112 #define DTO_EN			(1 << 20)
113 #define DCRC_EN			(1 << 21)
114 #define DEB_EN			(1 << 22)
115 #define CERR_EN			(1 << 28)
116 #define BADA_EN			(1 << 29)
117 
118 #define INT_EN_MASK		(BADA_EN | CERR_EN | DEB_EN | DCRC_EN |\
119 		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
120 		BRR_EN | BWR_EN | TC_EN | CC_EN)
121 
122 #define MMC_AUTOSUSPEND_DELAY	100
123 #define MMC_TIMEOUT_MS		20		/* 20 mSec */
124 #define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
125 #define OMAP_MMC_MIN_CLOCK	400000
126 #define OMAP_MMC_MAX_CLOCK	52000000
127 #define DRIVER_NAME		"omap_hsmmc"
128 
129 /*
130  * One controller can have multiple slots, like on some omap boards using
131  * omap.c controller driver. Luckily this is not currently done on any known
132  * omap_hsmmc.c device.
133  */
134 #define mmc_slot(host)		(host->pdata->slots[host->slot_id])
135 
136 /*
137  * MMC Host controller read/write API's
138  */
139 #define OMAP_HSMMC_READ(base, reg)	\
140 	__raw_readl((base) + OMAP_HSMMC_##reg)
141 
142 #define OMAP_HSMMC_WRITE(base, reg, val) \
143 	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
144 
145 struct omap_hsmmc_next {
146 	unsigned int	dma_len;
147 	s32		cookie;
148 };
149 
150 struct omap_hsmmc_host {
151 	struct	device		*dev;
152 	struct	mmc_host	*mmc;
153 	struct	mmc_request	*mrq;
154 	struct	mmc_command	*cmd;
155 	struct	mmc_data	*data;
156 	struct	clk		*fclk;
157 	struct	clk		*dbclk;
158 	/*
159 	 * vcc == configured supply
160 	 * vcc_aux == optional
161 	 *   -	MMC1, supply for DAT4..DAT7
162 	 *   -	MMC2/MMC2, external level shifter voltage supply, for
163 	 *	chip (SDIO, eMMC, etc) or transceiver (MMC2 only)
164 	 */
165 	struct	regulator	*vcc;
166 	struct	regulator	*vcc_aux;
167 	int			pbias_disable;
168 	void	__iomem		*base;
169 	resource_size_t		mapbase;
170 	spinlock_t		irq_lock; /* Prevent races with irq handler */
171 	unsigned int		dma_len;
172 	unsigned int		dma_sg_idx;
173 	unsigned char		bus_mode;
174 	unsigned char		power_mode;
175 	int			suspended;
176 	u32			con;
177 	u32			hctl;
178 	u32			sysctl;
179 	u32			capa;
180 	int			irq;
181 	int			use_dma, dma_ch;
182 	struct dma_chan		*tx_chan;
183 	struct dma_chan		*rx_chan;
184 	int			slot_id;
185 	int			response_busy;
186 	int			context_loss;
187 	int			protect_card;
188 	int			reqs_blocked;
189 	int			use_reg;
190 	int			req_in_progress;
191 	struct omap_hsmmc_next	next_data;
192 	struct	omap_mmc_platform_data	*pdata;
193 };
194 
195 static int omap_hsmmc_card_detect(struct device *dev, int slot)
196 {
197 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
198 	struct omap_mmc_platform_data *mmc = host->pdata;
199 
200 	/* NOTE: assumes card detect signal is active-low */
201 	return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
202 }
203 
204 static int omap_hsmmc_get_wp(struct device *dev, int slot)
205 {
206 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
207 	struct omap_mmc_platform_data *mmc = host->pdata;
208 
209 	/* NOTE: assumes write protect signal is active-high */
210 	return gpio_get_value_cansleep(mmc->slots[0].gpio_wp);
211 }
212 
213 static int omap_hsmmc_get_cover_state(struct device *dev, int slot)
214 {
215 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
216 	struct omap_mmc_platform_data *mmc = host->pdata;
217 
218 	/* NOTE: assumes card detect signal is active-low */
219 	return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
220 }
221 
222 #ifdef CONFIG_PM
223 
224 static int omap_hsmmc_suspend_cdirq(struct device *dev, int slot)
225 {
226 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
227 	struct omap_mmc_platform_data *mmc = host->pdata;
228 
229 	disable_irq(mmc->slots[0].card_detect_irq);
230 	return 0;
231 }
232 
233 static int omap_hsmmc_resume_cdirq(struct device *dev, int slot)
234 {
235 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
236 	struct omap_mmc_platform_data *mmc = host->pdata;
237 
238 	enable_irq(mmc->slots[0].card_detect_irq);
239 	return 0;
240 }
241 
242 #else
243 
244 #define omap_hsmmc_suspend_cdirq	NULL
245 #define omap_hsmmc_resume_cdirq		NULL
246 
247 #endif
248 
249 #ifdef CONFIG_REGULATOR
250 
251 static int omap_hsmmc_set_power(struct device *dev, int slot, int power_on,
252 				   int vdd)
253 {
254 	struct omap_hsmmc_host *host =
255 		platform_get_drvdata(to_platform_device(dev));
256 	int ret = 0;
257 
258 	/*
259 	 * If we don't see a Vcc regulator, assume it's a fixed
260 	 * voltage always-on regulator.
261 	 */
262 	if (!host->vcc)
263 		return 0;
264 	/*
265 	 * With DT, never turn OFF the regulator for MMC1. This is because
266 	 * the pbias cell programming support is still missing when
267 	 * booting with Device tree
268 	 */
269 	if (host->pbias_disable && !vdd)
270 		return 0;
271 
272 	if (mmc_slot(host).before_set_reg)
273 		mmc_slot(host).before_set_reg(dev, slot, power_on, vdd);
274 
275 	/*
276 	 * Assume Vcc regulator is used only to power the card ... OMAP
277 	 * VDDS is used to power the pins, optionally with a transceiver to
278 	 * support cards using voltages other than VDDS (1.8V nominal).  When a
279 	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
280 	 *
281 	 * In some cases this regulator won't support enable/disable;
282 	 * e.g. it's a fixed rail for a WLAN chip.
283 	 *
284 	 * In other cases vcc_aux switches interface power.  Example, for
285 	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
286 	 * chips/cards need an interface voltage rail too.
287 	 */
288 	if (power_on) {
289 		ret = mmc_regulator_set_ocr(host->mmc, host->vcc, vdd);
290 		/* Enable interface voltage rail, if needed */
291 		if (ret == 0 && host->vcc_aux) {
292 			ret = regulator_enable(host->vcc_aux);
293 			if (ret < 0)
294 				ret = mmc_regulator_set_ocr(host->mmc,
295 							host->vcc, 0);
296 		}
297 	} else {
298 		/* Shut down the rail */
299 		if (host->vcc_aux)
300 			ret = regulator_disable(host->vcc_aux);
301 		if (!ret) {
302 			/* Then proceed to shut down the local regulator */
303 			ret = mmc_regulator_set_ocr(host->mmc,
304 						host->vcc, 0);
305 		}
306 	}
307 
308 	if (mmc_slot(host).after_set_reg)
309 		mmc_slot(host).after_set_reg(dev, slot, power_on, vdd);
310 
311 	return ret;
312 }
313 
314 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
315 {
316 	struct regulator *reg;
317 	int ocr_value = 0;
318 
319 	reg = regulator_get(host->dev, "vmmc");
320 	if (IS_ERR(reg)) {
321 		dev_err(host->dev, "vmmc regulator missing\n");
322 		return PTR_ERR(reg);
323 	} else {
324 		mmc_slot(host).set_power = omap_hsmmc_set_power;
325 		host->vcc = reg;
326 		ocr_value = mmc_regulator_get_ocrmask(reg);
327 		if (!mmc_slot(host).ocr_mask) {
328 			mmc_slot(host).ocr_mask = ocr_value;
329 		} else {
330 			if (!(mmc_slot(host).ocr_mask & ocr_value)) {
331 				dev_err(host->dev, "ocrmask %x is not supported\n",
332 					mmc_slot(host).ocr_mask);
333 				mmc_slot(host).ocr_mask = 0;
334 				return -EINVAL;
335 			}
336 		}
337 
338 		/* Allow an aux regulator */
339 		reg = regulator_get(host->dev, "vmmc_aux");
340 		host->vcc_aux = IS_ERR(reg) ? NULL : reg;
341 
342 		/* For eMMC do not power off when not in sleep state */
343 		if (mmc_slot(host).no_regulator_off_init)
344 			return 0;
345 		/*
346 		* UGLY HACK:  workaround regulator framework bugs.
347 		* When the bootloader leaves a supply active, it's
348 		* initialized with zero usecount ... and we can't
349 		* disable it without first enabling it.  Until the
350 		* framework is fixed, we need a workaround like this
351 		* (which is safe for MMC, but not in general).
352 		*/
353 		if (regulator_is_enabled(host->vcc) > 0 ||
354 		    (host->vcc_aux && regulator_is_enabled(host->vcc_aux))) {
355 			int vdd = ffs(mmc_slot(host).ocr_mask) - 1;
356 
357 			mmc_slot(host).set_power(host->dev, host->slot_id,
358 						 1, vdd);
359 			mmc_slot(host).set_power(host->dev, host->slot_id,
360 						 0, 0);
361 		}
362 	}
363 
364 	return 0;
365 }
366 
367 static void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
368 {
369 	regulator_put(host->vcc);
370 	regulator_put(host->vcc_aux);
371 	mmc_slot(host).set_power = NULL;
372 }
373 
374 static inline int omap_hsmmc_have_reg(void)
375 {
376 	return 1;
377 }
378 
379 #else
380 
381 static inline int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
382 {
383 	return -EINVAL;
384 }
385 
386 static inline void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
387 {
388 }
389 
390 static inline int omap_hsmmc_have_reg(void)
391 {
392 	return 0;
393 }
394 
395 #endif
396 
397 static int omap_hsmmc_gpio_init(struct omap_mmc_platform_data *pdata)
398 {
399 	int ret;
400 
401 	if (gpio_is_valid(pdata->slots[0].switch_pin)) {
402 		if (pdata->slots[0].cover)
403 			pdata->slots[0].get_cover_state =
404 					omap_hsmmc_get_cover_state;
405 		else
406 			pdata->slots[0].card_detect = omap_hsmmc_card_detect;
407 		pdata->slots[0].card_detect_irq =
408 				gpio_to_irq(pdata->slots[0].switch_pin);
409 		ret = gpio_request(pdata->slots[0].switch_pin, "mmc_cd");
410 		if (ret)
411 			return ret;
412 		ret = gpio_direction_input(pdata->slots[0].switch_pin);
413 		if (ret)
414 			goto err_free_sp;
415 	} else
416 		pdata->slots[0].switch_pin = -EINVAL;
417 
418 	if (gpio_is_valid(pdata->slots[0].gpio_wp)) {
419 		pdata->slots[0].get_ro = omap_hsmmc_get_wp;
420 		ret = gpio_request(pdata->slots[0].gpio_wp, "mmc_wp");
421 		if (ret)
422 			goto err_free_cd;
423 		ret = gpio_direction_input(pdata->slots[0].gpio_wp);
424 		if (ret)
425 			goto err_free_wp;
426 	} else
427 		pdata->slots[0].gpio_wp = -EINVAL;
428 
429 	return 0;
430 
431 err_free_wp:
432 	gpio_free(pdata->slots[0].gpio_wp);
433 err_free_cd:
434 	if (gpio_is_valid(pdata->slots[0].switch_pin))
435 err_free_sp:
436 		gpio_free(pdata->slots[0].switch_pin);
437 	return ret;
438 }
439 
440 static void omap_hsmmc_gpio_free(struct omap_mmc_platform_data *pdata)
441 {
442 	if (gpio_is_valid(pdata->slots[0].gpio_wp))
443 		gpio_free(pdata->slots[0].gpio_wp);
444 	if (gpio_is_valid(pdata->slots[0].switch_pin))
445 		gpio_free(pdata->slots[0].switch_pin);
446 }
447 
448 /*
449  * Start clock to the card
450  */
451 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
452 {
453 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
454 		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
455 }
456 
457 /*
458  * Stop clock to the card
459  */
460 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
461 {
462 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
463 		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
464 	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
465 		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
466 }
467 
468 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
469 				  struct mmc_command *cmd)
470 {
471 	unsigned int irq_mask;
472 
473 	if (host->use_dma)
474 		irq_mask = INT_EN_MASK & ~(BRR_EN | BWR_EN);
475 	else
476 		irq_mask = INT_EN_MASK;
477 
478 	/* Disable timeout for erases */
479 	if (cmd->opcode == MMC_ERASE)
480 		irq_mask &= ~DTO_EN;
481 
482 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
483 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
484 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
485 }
486 
487 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
488 {
489 	OMAP_HSMMC_WRITE(host->base, ISE, 0);
490 	OMAP_HSMMC_WRITE(host->base, IE, 0);
491 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
492 }
493 
494 /* Calculate divisor for the given clock frequency */
495 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
496 {
497 	u16 dsor = 0;
498 
499 	if (ios->clock) {
500 		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
501 		if (dsor > CLKD_MAX)
502 			dsor = CLKD_MAX;
503 	}
504 
505 	return dsor;
506 }
507 
508 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
509 {
510 	struct mmc_ios *ios = &host->mmc->ios;
511 	unsigned long regval;
512 	unsigned long timeout;
513 	unsigned long clkdiv;
514 
515 	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
516 
517 	omap_hsmmc_stop_clock(host);
518 
519 	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
520 	regval = regval & ~(CLKD_MASK | DTO_MASK);
521 	clkdiv = calc_divisor(host, ios);
522 	regval = regval | (clkdiv << 6) | (DTO << 16);
523 	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
524 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
525 		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
526 
527 	/* Wait till the ICS bit is set */
528 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
529 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
530 		&& time_before(jiffies, timeout))
531 		cpu_relax();
532 
533 	/*
534 	 * Enable High-Speed Support
535 	 * Pre-Requisites
536 	 *	- Controller should support High-Speed-Enable Bit
537 	 *	- Controller should not be using DDR Mode
538 	 *	- Controller should advertise that it supports High Speed
539 	 *	  in capabilities register
540 	 *	- MMC/SD clock coming out of controller > 25MHz
541 	 */
542 	if ((mmc_slot(host).features & HSMMC_HAS_HSPE_SUPPORT) &&
543 	    (ios->timing != MMC_TIMING_UHS_DDR50) &&
544 	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
545 		regval = OMAP_HSMMC_READ(host->base, HCTL);
546 		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
547 			regval |= HSPE;
548 		else
549 			regval &= ~HSPE;
550 
551 		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
552 	}
553 
554 	omap_hsmmc_start_clock(host);
555 }
556 
557 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
558 {
559 	struct mmc_ios *ios = &host->mmc->ios;
560 	u32 con;
561 
562 	con = OMAP_HSMMC_READ(host->base, CON);
563 	if (ios->timing == MMC_TIMING_UHS_DDR50)
564 		con |= DDR;	/* configure in DDR mode */
565 	else
566 		con &= ~DDR;
567 	switch (ios->bus_width) {
568 	case MMC_BUS_WIDTH_8:
569 		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
570 		break;
571 	case MMC_BUS_WIDTH_4:
572 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
573 		OMAP_HSMMC_WRITE(host->base, HCTL,
574 			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
575 		break;
576 	case MMC_BUS_WIDTH_1:
577 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
578 		OMAP_HSMMC_WRITE(host->base, HCTL,
579 			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
580 		break;
581 	}
582 }
583 
584 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
585 {
586 	struct mmc_ios *ios = &host->mmc->ios;
587 	u32 con;
588 
589 	con = OMAP_HSMMC_READ(host->base, CON);
590 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
591 		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
592 	else
593 		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
594 }
595 
596 #ifdef CONFIG_PM
597 
598 /*
599  * Restore the MMC host context, if it was lost as result of a
600  * power state change.
601  */
602 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
603 {
604 	struct mmc_ios *ios = &host->mmc->ios;
605 	u32 hctl, capa;
606 	unsigned long timeout;
607 
608 	if (!OMAP_HSMMC_READ(host->base, SYSSTATUS) & RESETDONE)
609 		return 1;
610 
611 	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
612 	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
613 	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
614 	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
615 		return 0;
616 
617 	host->context_loss++;
618 
619 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
620 		if (host->power_mode != MMC_POWER_OFF &&
621 		    (1 << ios->vdd) <= MMC_VDD_23_24)
622 			hctl = SDVS18;
623 		else
624 			hctl = SDVS30;
625 		capa = VS30 | VS18;
626 	} else {
627 		hctl = SDVS18;
628 		capa = VS18;
629 	}
630 
631 	OMAP_HSMMC_WRITE(host->base, HCTL,
632 			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
633 
634 	OMAP_HSMMC_WRITE(host->base, CAPA,
635 			OMAP_HSMMC_READ(host->base, CAPA) | capa);
636 
637 	OMAP_HSMMC_WRITE(host->base, HCTL,
638 			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
639 
640 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
641 	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
642 		&& time_before(jiffies, timeout))
643 		;
644 
645 	omap_hsmmc_disable_irq(host);
646 
647 	/* Do not initialize card-specific things if the power is off */
648 	if (host->power_mode == MMC_POWER_OFF)
649 		goto out;
650 
651 	omap_hsmmc_set_bus_width(host);
652 
653 	omap_hsmmc_set_clock(host);
654 
655 	omap_hsmmc_set_bus_mode(host);
656 
657 out:
658 	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
659 		host->context_loss);
660 	return 0;
661 }
662 
663 /*
664  * Save the MMC host context (store the number of power state changes so far).
665  */
666 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
667 {
668 	host->con =  OMAP_HSMMC_READ(host->base, CON);
669 	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
670 	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
671 	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
672 }
673 
674 #else
675 
676 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
677 {
678 	return 0;
679 }
680 
681 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
682 {
683 }
684 
685 #endif
686 
687 /*
688  * Send init stream sequence to card
689  * before sending IDLE command
690  */
691 static void send_init_stream(struct omap_hsmmc_host *host)
692 {
693 	int reg = 0;
694 	unsigned long timeout;
695 
696 	if (host->protect_card)
697 		return;
698 
699 	disable_irq(host->irq);
700 
701 	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
702 	OMAP_HSMMC_WRITE(host->base, CON,
703 		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
704 	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
705 
706 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
707 	while ((reg != CC_EN) && time_before(jiffies, timeout))
708 		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
709 
710 	OMAP_HSMMC_WRITE(host->base, CON,
711 		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
712 
713 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
714 	OMAP_HSMMC_READ(host->base, STAT);
715 
716 	enable_irq(host->irq);
717 }
718 
719 static inline
720 int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
721 {
722 	int r = 1;
723 
724 	if (mmc_slot(host).get_cover_state)
725 		r = mmc_slot(host).get_cover_state(host->dev, host->slot_id);
726 	return r;
727 }
728 
729 static ssize_t
730 omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
731 			   char *buf)
732 {
733 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
734 	struct omap_hsmmc_host *host = mmc_priv(mmc);
735 
736 	return sprintf(buf, "%s\n",
737 			omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
738 }
739 
740 static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
741 
742 static ssize_t
743 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
744 			char *buf)
745 {
746 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
747 	struct omap_hsmmc_host *host = mmc_priv(mmc);
748 
749 	return sprintf(buf, "%s\n", mmc_slot(host).name);
750 }
751 
752 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
753 
754 /*
755  * Configure the response type and send the cmd.
756  */
757 static void
758 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
759 	struct mmc_data *data)
760 {
761 	int cmdreg = 0, resptype = 0, cmdtype = 0;
762 
763 	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
764 		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
765 	host->cmd = cmd;
766 
767 	omap_hsmmc_enable_irq(host, cmd);
768 
769 	host->response_busy = 0;
770 	if (cmd->flags & MMC_RSP_PRESENT) {
771 		if (cmd->flags & MMC_RSP_136)
772 			resptype = 1;
773 		else if (cmd->flags & MMC_RSP_BUSY) {
774 			resptype = 3;
775 			host->response_busy = 1;
776 		} else
777 			resptype = 2;
778 	}
779 
780 	/*
781 	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
782 	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
783 	 * a val of 0x3, rest 0x0.
784 	 */
785 	if (cmd == host->mrq->stop)
786 		cmdtype = 0x3;
787 
788 	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
789 
790 	if (data) {
791 		cmdreg |= DP_SELECT | MSBS | BCE;
792 		if (data->flags & MMC_DATA_READ)
793 			cmdreg |= DDIR;
794 		else
795 			cmdreg &= ~(DDIR);
796 	}
797 
798 	if (host->use_dma)
799 		cmdreg |= DMAE;
800 
801 	host->req_in_progress = 1;
802 
803 	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
804 	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
805 }
806 
807 static int
808 omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
809 {
810 	if (data->flags & MMC_DATA_WRITE)
811 		return DMA_TO_DEVICE;
812 	else
813 		return DMA_FROM_DEVICE;
814 }
815 
816 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
817 	struct mmc_data *data)
818 {
819 	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
820 }
821 
822 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
823 {
824 	int dma_ch;
825 	unsigned long flags;
826 
827 	spin_lock_irqsave(&host->irq_lock, flags);
828 	host->req_in_progress = 0;
829 	dma_ch = host->dma_ch;
830 	spin_unlock_irqrestore(&host->irq_lock, flags);
831 
832 	omap_hsmmc_disable_irq(host);
833 	/* Do not complete the request if DMA is still in progress */
834 	if (mrq->data && host->use_dma && dma_ch != -1)
835 		return;
836 	host->mrq = NULL;
837 	mmc_request_done(host->mmc, mrq);
838 }
839 
840 /*
841  * Notify the transfer complete to MMC core
842  */
843 static void
844 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
845 {
846 	if (!data) {
847 		struct mmc_request *mrq = host->mrq;
848 
849 		/* TC before CC from CMD6 - don't know why, but it happens */
850 		if (host->cmd && host->cmd->opcode == 6 &&
851 		    host->response_busy) {
852 			host->response_busy = 0;
853 			return;
854 		}
855 
856 		omap_hsmmc_request_done(host, mrq);
857 		return;
858 	}
859 
860 	host->data = NULL;
861 
862 	if (!data->error)
863 		data->bytes_xfered += data->blocks * (data->blksz);
864 	else
865 		data->bytes_xfered = 0;
866 
867 	if (!data->stop) {
868 		omap_hsmmc_request_done(host, data->mrq);
869 		return;
870 	}
871 	omap_hsmmc_start_command(host, data->stop, NULL);
872 }
873 
874 /*
875  * Notify the core about command completion
876  */
877 static void
878 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
879 {
880 	host->cmd = NULL;
881 
882 	if (cmd->flags & MMC_RSP_PRESENT) {
883 		if (cmd->flags & MMC_RSP_136) {
884 			/* response type 2 */
885 			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
886 			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
887 			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
888 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
889 		} else {
890 			/* response types 1, 1b, 3, 4, 5, 6 */
891 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
892 		}
893 	}
894 	if ((host->data == NULL && !host->response_busy) || cmd->error)
895 		omap_hsmmc_request_done(host, cmd->mrq);
896 }
897 
898 /*
899  * DMA clean up for command errors
900  */
901 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
902 {
903 	int dma_ch;
904 	unsigned long flags;
905 
906 	host->data->error = errno;
907 
908 	spin_lock_irqsave(&host->irq_lock, flags);
909 	dma_ch = host->dma_ch;
910 	host->dma_ch = -1;
911 	spin_unlock_irqrestore(&host->irq_lock, flags);
912 
913 	if (host->use_dma && dma_ch != -1) {
914 		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
915 
916 		dmaengine_terminate_all(chan);
917 		dma_unmap_sg(chan->device->dev,
918 			host->data->sg, host->data->sg_len,
919 			omap_hsmmc_get_dma_dir(host, host->data));
920 
921 		host->data->host_cookie = 0;
922 	}
923 	host->data = NULL;
924 }
925 
926 /*
927  * Readable error output
928  */
929 #ifdef CONFIG_MMC_DEBUG
930 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
931 {
932 	/* --- means reserved bit without definition at documentation */
933 	static const char *omap_hsmmc_status_bits[] = {
934 		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
935 		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
936 		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
937 		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
938 	};
939 	char res[256];
940 	char *buf = res;
941 	int len, i;
942 
943 	len = sprintf(buf, "MMC IRQ 0x%x :", status);
944 	buf += len;
945 
946 	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
947 		if (status & (1 << i)) {
948 			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
949 			buf += len;
950 		}
951 
952 	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
953 }
954 #else
955 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
956 					     u32 status)
957 {
958 }
959 #endif  /* CONFIG_MMC_DEBUG */
960 
961 /*
962  * MMC controller internal state machines reset
963  *
964  * Used to reset command or data internal state machines, using respectively
965  *  SRC or SRD bit of SYSCTL register
966  * Can be called from interrupt context
967  */
968 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
969 						   unsigned long bit)
970 {
971 	unsigned long i = 0;
972 	unsigned long limit = MMC_TIMEOUT_US;
973 
974 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
975 			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
976 
977 	/*
978 	 * OMAP4 ES2 and greater has an updated reset logic.
979 	 * Monitor a 0->1 transition first
980 	 */
981 	if (mmc_slot(host).features & HSMMC_HAS_UPDATED_RESET) {
982 		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
983 					&& (i++ < limit))
984 			udelay(1);
985 	}
986 	i = 0;
987 
988 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
989 		(i++ < limit))
990 		udelay(1);
991 
992 	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
993 		dev_err(mmc_dev(host->mmc),
994 			"Timeout waiting on controller reset in %s\n",
995 			__func__);
996 }
997 
998 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
999 					int err, int end_cmd)
1000 {
1001 	if (end_cmd) {
1002 		omap_hsmmc_reset_controller_fsm(host, SRC);
1003 		if (host->cmd)
1004 			host->cmd->error = err;
1005 	}
1006 
1007 	if (host->data) {
1008 		omap_hsmmc_reset_controller_fsm(host, SRD);
1009 		omap_hsmmc_dma_cleanup(host, err);
1010 	} else if (host->mrq && host->mrq->cmd)
1011 		host->mrq->cmd->error = err;
1012 }
1013 
1014 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1015 {
1016 	struct mmc_data *data;
1017 	int end_cmd = 0, end_trans = 0;
1018 
1019 	data = host->data;
1020 	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1021 
1022 	if (status & ERR_EN) {
1023 		omap_hsmmc_dbg_report_irq(host, status);
1024 
1025 		if (status & (CTO_EN | CCRC_EN))
1026 			end_cmd = 1;
1027 		if (status & (CTO_EN | DTO_EN))
1028 			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1029 		else if (status & (CCRC_EN | DCRC_EN))
1030 			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1031 
1032 		if (host->data || host->response_busy) {
1033 			end_trans = !end_cmd;
1034 			host->response_busy = 0;
1035 		}
1036 	}
1037 
1038 	OMAP_HSMMC_WRITE(host->base, STAT, status);
1039 	if (end_cmd || ((status & CC_EN) && host->cmd))
1040 		omap_hsmmc_cmd_done(host, host->cmd);
1041 	if ((end_trans || (status & TC_EN)) && host->mrq)
1042 		omap_hsmmc_xfer_done(host, data);
1043 }
1044 
1045 /*
1046  * MMC controller IRQ handler
1047  */
1048 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1049 {
1050 	struct omap_hsmmc_host *host = dev_id;
1051 	int status;
1052 
1053 	status = OMAP_HSMMC_READ(host->base, STAT);
1054 	while (status & INT_EN_MASK && host->req_in_progress) {
1055 		omap_hsmmc_do_irq(host, status);
1056 
1057 		/* Flush posted write */
1058 		status = OMAP_HSMMC_READ(host->base, STAT);
1059 	}
1060 
1061 	return IRQ_HANDLED;
1062 }
1063 
1064 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1065 {
1066 	unsigned long i;
1067 
1068 	OMAP_HSMMC_WRITE(host->base, HCTL,
1069 			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1070 	for (i = 0; i < loops_per_jiffy; i++) {
1071 		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1072 			break;
1073 		cpu_relax();
1074 	}
1075 }
1076 
1077 /*
1078  * Switch MMC interface voltage ... only relevant for MMC1.
1079  *
1080  * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1081  * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1082  * Some chips, like eMMC ones, use internal transceivers.
1083  */
1084 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1085 {
1086 	u32 reg_val = 0;
1087 	int ret;
1088 
1089 	/* Disable the clocks */
1090 	pm_runtime_put_sync(host->dev);
1091 	if (host->dbclk)
1092 		clk_disable_unprepare(host->dbclk);
1093 
1094 	/* Turn the power off */
1095 	ret = mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
1096 
1097 	/* Turn the power ON with given VDD 1.8 or 3.0v */
1098 	if (!ret)
1099 		ret = mmc_slot(host).set_power(host->dev, host->slot_id, 1,
1100 					       vdd);
1101 	pm_runtime_get_sync(host->dev);
1102 	if (host->dbclk)
1103 		clk_prepare_enable(host->dbclk);
1104 
1105 	if (ret != 0)
1106 		goto err;
1107 
1108 	OMAP_HSMMC_WRITE(host->base, HCTL,
1109 		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1110 	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1111 
1112 	/*
1113 	 * If a MMC dual voltage card is detected, the set_ios fn calls
1114 	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1115 	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1116 	 *
1117 	 * Cope with a bit of slop in the range ... per data sheets:
1118 	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1119 	 *    but recommended values are 1.71V to 1.89V
1120 	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1121 	 *    but recommended values are 2.7V to 3.3V
1122 	 *
1123 	 * Board setup code shouldn't permit anything very out-of-range.
1124 	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1125 	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1126 	 */
1127 	if ((1 << vdd) <= MMC_VDD_23_24)
1128 		reg_val |= SDVS18;
1129 	else
1130 		reg_val |= SDVS30;
1131 
1132 	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1133 	set_sd_bus_power(host);
1134 
1135 	return 0;
1136 err:
1137 	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1138 	return ret;
1139 }
1140 
1141 /* Protect the card while the cover is open */
1142 static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1143 {
1144 	if (!mmc_slot(host).get_cover_state)
1145 		return;
1146 
1147 	host->reqs_blocked = 0;
1148 	if (mmc_slot(host).get_cover_state(host->dev, host->slot_id)) {
1149 		if (host->protect_card) {
1150 			dev_info(host->dev, "%s: cover is closed, "
1151 					 "card is now accessible\n",
1152 					 mmc_hostname(host->mmc));
1153 			host->protect_card = 0;
1154 		}
1155 	} else {
1156 		if (!host->protect_card) {
1157 			dev_info(host->dev, "%s: cover is open, "
1158 					 "card is now inaccessible\n",
1159 					 mmc_hostname(host->mmc));
1160 			host->protect_card = 1;
1161 		}
1162 	}
1163 }
1164 
1165 /*
1166  * irq handler to notify the core about card insertion/removal
1167  */
1168 static irqreturn_t omap_hsmmc_detect(int irq, void *dev_id)
1169 {
1170 	struct omap_hsmmc_host *host = dev_id;
1171 	struct omap_mmc_slot_data *slot = &mmc_slot(host);
1172 	int carddetect;
1173 
1174 	sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1175 
1176 	if (slot->card_detect)
1177 		carddetect = slot->card_detect(host->dev, host->slot_id);
1178 	else {
1179 		omap_hsmmc_protect_card(host);
1180 		carddetect = -ENOSYS;
1181 	}
1182 
1183 	if (carddetect)
1184 		mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1185 	else
1186 		mmc_detect_change(host->mmc, (HZ * 50) / 1000);
1187 	return IRQ_HANDLED;
1188 }
1189 
1190 static void omap_hsmmc_dma_callback(void *param)
1191 {
1192 	struct omap_hsmmc_host *host = param;
1193 	struct dma_chan *chan;
1194 	struct mmc_data *data;
1195 	int req_in_progress;
1196 
1197 	spin_lock_irq(&host->irq_lock);
1198 	if (host->dma_ch < 0) {
1199 		spin_unlock_irq(&host->irq_lock);
1200 		return;
1201 	}
1202 
1203 	data = host->mrq->data;
1204 	chan = omap_hsmmc_get_dma_chan(host, data);
1205 	if (!data->host_cookie)
1206 		dma_unmap_sg(chan->device->dev,
1207 			     data->sg, data->sg_len,
1208 			     omap_hsmmc_get_dma_dir(host, data));
1209 
1210 	req_in_progress = host->req_in_progress;
1211 	host->dma_ch = -1;
1212 	spin_unlock_irq(&host->irq_lock);
1213 
1214 	/* If DMA has finished after TC, complete the request */
1215 	if (!req_in_progress) {
1216 		struct mmc_request *mrq = host->mrq;
1217 
1218 		host->mrq = NULL;
1219 		mmc_request_done(host->mmc, mrq);
1220 	}
1221 }
1222 
1223 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1224 				       struct mmc_data *data,
1225 				       struct omap_hsmmc_next *next,
1226 				       struct dma_chan *chan)
1227 {
1228 	int dma_len;
1229 
1230 	if (!next && data->host_cookie &&
1231 	    data->host_cookie != host->next_data.cookie) {
1232 		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1233 		       " host->next_data.cookie %d\n",
1234 		       __func__, data->host_cookie, host->next_data.cookie);
1235 		data->host_cookie = 0;
1236 	}
1237 
1238 	/* Check if next job is already prepared */
1239 	if (next ||
1240 	    (!next && data->host_cookie != host->next_data.cookie)) {
1241 		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1242 				     omap_hsmmc_get_dma_dir(host, data));
1243 
1244 	} else {
1245 		dma_len = host->next_data.dma_len;
1246 		host->next_data.dma_len = 0;
1247 	}
1248 
1249 
1250 	if (dma_len == 0)
1251 		return -EINVAL;
1252 
1253 	if (next) {
1254 		next->dma_len = dma_len;
1255 		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1256 	} else
1257 		host->dma_len = dma_len;
1258 
1259 	return 0;
1260 }
1261 
1262 /*
1263  * Routine to configure and start DMA for the MMC card
1264  */
1265 static int omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host,
1266 					struct mmc_request *req)
1267 {
1268 	struct dma_slave_config cfg;
1269 	struct dma_async_tx_descriptor *tx;
1270 	int ret = 0, i;
1271 	struct mmc_data *data = req->data;
1272 	struct dma_chan *chan;
1273 
1274 	/* Sanity check: all the SG entries must be aligned by block size. */
1275 	for (i = 0; i < data->sg_len; i++) {
1276 		struct scatterlist *sgl;
1277 
1278 		sgl = data->sg + i;
1279 		if (sgl->length % data->blksz)
1280 			return -EINVAL;
1281 	}
1282 	if ((data->blksz % 4) != 0)
1283 		/* REVISIT: The MMC buffer increments only when MSB is written.
1284 		 * Return error for blksz which is non multiple of four.
1285 		 */
1286 		return -EINVAL;
1287 
1288 	BUG_ON(host->dma_ch != -1);
1289 
1290 	chan = omap_hsmmc_get_dma_chan(host, data);
1291 
1292 	cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA;
1293 	cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA;
1294 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1295 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1296 	cfg.src_maxburst = data->blksz / 4;
1297 	cfg.dst_maxburst = data->blksz / 4;
1298 
1299 	ret = dmaengine_slave_config(chan, &cfg);
1300 	if (ret)
1301 		return ret;
1302 
1303 	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1304 	if (ret)
1305 		return ret;
1306 
1307 	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1308 		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1309 		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1310 	if (!tx) {
1311 		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1312 		/* FIXME: cleanup */
1313 		return -1;
1314 	}
1315 
1316 	tx->callback = omap_hsmmc_dma_callback;
1317 	tx->callback_param = host;
1318 
1319 	/* Does not fail */
1320 	dmaengine_submit(tx);
1321 
1322 	host->dma_ch = 1;
1323 
1324 	dma_async_issue_pending(chan);
1325 
1326 	return 0;
1327 }
1328 
1329 static void set_data_timeout(struct omap_hsmmc_host *host,
1330 			     unsigned int timeout_ns,
1331 			     unsigned int timeout_clks)
1332 {
1333 	unsigned int timeout, cycle_ns;
1334 	uint32_t reg, clkd, dto = 0;
1335 
1336 	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1337 	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1338 	if (clkd == 0)
1339 		clkd = 1;
1340 
1341 	cycle_ns = 1000000000 / (clk_get_rate(host->fclk) / clkd);
1342 	timeout = timeout_ns / cycle_ns;
1343 	timeout += timeout_clks;
1344 	if (timeout) {
1345 		while ((timeout & 0x80000000) == 0) {
1346 			dto += 1;
1347 			timeout <<= 1;
1348 		}
1349 		dto = 31 - dto;
1350 		timeout <<= 1;
1351 		if (timeout && dto)
1352 			dto += 1;
1353 		if (dto >= 13)
1354 			dto -= 13;
1355 		else
1356 			dto = 0;
1357 		if (dto > 14)
1358 			dto = 14;
1359 	}
1360 
1361 	reg &= ~DTO_MASK;
1362 	reg |= dto << DTO_SHIFT;
1363 	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1364 }
1365 
1366 /*
1367  * Configure block length for MMC/SD cards and initiate the transfer.
1368  */
1369 static int
1370 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1371 {
1372 	int ret;
1373 	host->data = req->data;
1374 
1375 	if (req->data == NULL) {
1376 		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1377 		/*
1378 		 * Set an arbitrary 100ms data timeout for commands with
1379 		 * busy signal.
1380 		 */
1381 		if (req->cmd->flags & MMC_RSP_BUSY)
1382 			set_data_timeout(host, 100000000U, 0);
1383 		return 0;
1384 	}
1385 
1386 	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1387 					| (req->data->blocks << 16));
1388 	set_data_timeout(host, req->data->timeout_ns, req->data->timeout_clks);
1389 
1390 	if (host->use_dma) {
1391 		ret = omap_hsmmc_start_dma_transfer(host, req);
1392 		if (ret != 0) {
1393 			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1394 			return ret;
1395 		}
1396 	}
1397 	return 0;
1398 }
1399 
1400 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1401 				int err)
1402 {
1403 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1404 	struct mmc_data *data = mrq->data;
1405 
1406 	if (host->use_dma && data->host_cookie) {
1407 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1408 
1409 		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1410 			     omap_hsmmc_get_dma_dir(host, data));
1411 		data->host_cookie = 0;
1412 	}
1413 }
1414 
1415 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
1416 			       bool is_first_req)
1417 {
1418 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1419 
1420 	if (mrq->data->host_cookie) {
1421 		mrq->data->host_cookie = 0;
1422 		return ;
1423 	}
1424 
1425 	if (host->use_dma) {
1426 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1427 
1428 		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1429 						&host->next_data, c))
1430 			mrq->data->host_cookie = 0;
1431 	}
1432 }
1433 
1434 /*
1435  * Request function. for read/write operation
1436  */
1437 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1438 {
1439 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1440 	int err;
1441 
1442 	BUG_ON(host->req_in_progress);
1443 	BUG_ON(host->dma_ch != -1);
1444 	if (host->protect_card) {
1445 		if (host->reqs_blocked < 3) {
1446 			/*
1447 			 * Ensure the controller is left in a consistent
1448 			 * state by resetting the command and data state
1449 			 * machines.
1450 			 */
1451 			omap_hsmmc_reset_controller_fsm(host, SRD);
1452 			omap_hsmmc_reset_controller_fsm(host, SRC);
1453 			host->reqs_blocked += 1;
1454 		}
1455 		req->cmd->error = -EBADF;
1456 		if (req->data)
1457 			req->data->error = -EBADF;
1458 		req->cmd->retries = 0;
1459 		mmc_request_done(mmc, req);
1460 		return;
1461 	} else if (host->reqs_blocked)
1462 		host->reqs_blocked = 0;
1463 	WARN_ON(host->mrq != NULL);
1464 	host->mrq = req;
1465 	err = omap_hsmmc_prepare_data(host, req);
1466 	if (err) {
1467 		req->cmd->error = err;
1468 		if (req->data)
1469 			req->data->error = err;
1470 		host->mrq = NULL;
1471 		mmc_request_done(mmc, req);
1472 		return;
1473 	}
1474 
1475 	omap_hsmmc_start_command(host, req->cmd, req->data);
1476 }
1477 
1478 /* Routine to configure clock values. Exposed API to core */
1479 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1480 {
1481 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1482 	int do_send_init_stream = 0;
1483 
1484 	pm_runtime_get_sync(host->dev);
1485 
1486 	if (ios->power_mode != host->power_mode) {
1487 		switch (ios->power_mode) {
1488 		case MMC_POWER_OFF:
1489 			mmc_slot(host).set_power(host->dev, host->slot_id,
1490 						 0, 0);
1491 			break;
1492 		case MMC_POWER_UP:
1493 			mmc_slot(host).set_power(host->dev, host->slot_id,
1494 						 1, ios->vdd);
1495 			break;
1496 		case MMC_POWER_ON:
1497 			do_send_init_stream = 1;
1498 			break;
1499 		}
1500 		host->power_mode = ios->power_mode;
1501 	}
1502 
1503 	/* FIXME: set registers based only on changes to ios */
1504 
1505 	omap_hsmmc_set_bus_width(host);
1506 
1507 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1508 		/* Only MMC1 can interface at 3V without some flavor
1509 		 * of external transceiver; but they all handle 1.8V.
1510 		 */
1511 		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1512 			(ios->vdd == DUAL_VOLT_OCR_BIT) &&
1513 			/*
1514 			 * With pbias cell programming missing, this
1515 			 * can't be allowed on MMC1 when booting with device
1516 			 * tree.
1517 			 */
1518 			!host->pbias_disable) {
1519 				/*
1520 				 * The mmc_select_voltage fn of the core does
1521 				 * not seem to set the power_mode to
1522 				 * MMC_POWER_UP upon recalculating the voltage.
1523 				 * vdd 1.8v.
1524 				 */
1525 			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1526 				dev_dbg(mmc_dev(host->mmc),
1527 						"Switch operation failed\n");
1528 		}
1529 	}
1530 
1531 	omap_hsmmc_set_clock(host);
1532 
1533 	if (do_send_init_stream)
1534 		send_init_stream(host);
1535 
1536 	omap_hsmmc_set_bus_mode(host);
1537 
1538 	pm_runtime_put_autosuspend(host->dev);
1539 }
1540 
1541 static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1542 {
1543 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1544 
1545 	if (!mmc_slot(host).card_detect)
1546 		return -ENOSYS;
1547 	return mmc_slot(host).card_detect(host->dev, host->slot_id);
1548 }
1549 
1550 static int omap_hsmmc_get_ro(struct mmc_host *mmc)
1551 {
1552 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1553 
1554 	if (!mmc_slot(host).get_ro)
1555 		return -ENOSYS;
1556 	return mmc_slot(host).get_ro(host->dev, 0);
1557 }
1558 
1559 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1560 {
1561 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1562 
1563 	if (mmc_slot(host).init_card)
1564 		mmc_slot(host).init_card(card);
1565 }
1566 
1567 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1568 {
1569 	u32 hctl, capa, value;
1570 
1571 	/* Only MMC1 supports 3.0V */
1572 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1573 		hctl = SDVS30;
1574 		capa = VS30 | VS18;
1575 	} else {
1576 		hctl = SDVS18;
1577 		capa = VS18;
1578 	}
1579 
1580 	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1581 	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1582 
1583 	value = OMAP_HSMMC_READ(host->base, CAPA);
1584 	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1585 
1586 	/* Set SD bus power bit */
1587 	set_sd_bus_power(host);
1588 }
1589 
1590 static int omap_hsmmc_enable_fclk(struct mmc_host *mmc)
1591 {
1592 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1593 
1594 	pm_runtime_get_sync(host->dev);
1595 
1596 	return 0;
1597 }
1598 
1599 static int omap_hsmmc_disable_fclk(struct mmc_host *mmc)
1600 {
1601 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1602 
1603 	pm_runtime_mark_last_busy(host->dev);
1604 	pm_runtime_put_autosuspend(host->dev);
1605 
1606 	return 0;
1607 }
1608 
1609 static const struct mmc_host_ops omap_hsmmc_ops = {
1610 	.enable = omap_hsmmc_enable_fclk,
1611 	.disable = omap_hsmmc_disable_fclk,
1612 	.post_req = omap_hsmmc_post_req,
1613 	.pre_req = omap_hsmmc_pre_req,
1614 	.request = omap_hsmmc_request,
1615 	.set_ios = omap_hsmmc_set_ios,
1616 	.get_cd = omap_hsmmc_get_cd,
1617 	.get_ro = omap_hsmmc_get_ro,
1618 	.init_card = omap_hsmmc_init_card,
1619 	/* NYET -- enable_sdio_irq */
1620 };
1621 
1622 #ifdef CONFIG_DEBUG_FS
1623 
1624 static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1625 {
1626 	struct mmc_host *mmc = s->private;
1627 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1628 
1629 	seq_printf(s, "mmc%d:\n ctx_loss:\t%d\n\nregs:\n",
1630 			mmc->index, host->context_loss);
1631 
1632 	pm_runtime_get_sync(host->dev);
1633 
1634 	seq_printf(s, "CON:\t\t0x%08x\n",
1635 			OMAP_HSMMC_READ(host->base, CON));
1636 	seq_printf(s, "HCTL:\t\t0x%08x\n",
1637 			OMAP_HSMMC_READ(host->base, HCTL));
1638 	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1639 			OMAP_HSMMC_READ(host->base, SYSCTL));
1640 	seq_printf(s, "IE:\t\t0x%08x\n",
1641 			OMAP_HSMMC_READ(host->base, IE));
1642 	seq_printf(s, "ISE:\t\t0x%08x\n",
1643 			OMAP_HSMMC_READ(host->base, ISE));
1644 	seq_printf(s, "CAPA:\t\t0x%08x\n",
1645 			OMAP_HSMMC_READ(host->base, CAPA));
1646 
1647 	pm_runtime_mark_last_busy(host->dev);
1648 	pm_runtime_put_autosuspend(host->dev);
1649 
1650 	return 0;
1651 }
1652 
1653 static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1654 {
1655 	return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1656 }
1657 
1658 static const struct file_operations mmc_regs_fops = {
1659 	.open           = omap_hsmmc_regs_open,
1660 	.read           = seq_read,
1661 	.llseek         = seq_lseek,
1662 	.release        = single_release,
1663 };
1664 
1665 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1666 {
1667 	if (mmc->debugfs_root)
1668 		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1669 			mmc, &mmc_regs_fops);
1670 }
1671 
1672 #else
1673 
1674 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1675 {
1676 }
1677 
1678 #endif
1679 
1680 #ifdef CONFIG_OF
1681 static u16 omap4_reg_offset = 0x100;
1682 
1683 static const struct of_device_id omap_mmc_of_match[] = {
1684 	{
1685 		.compatible = "ti,omap2-hsmmc",
1686 	},
1687 	{
1688 		.compatible = "ti,omap3-hsmmc",
1689 	},
1690 	{
1691 		.compatible = "ti,omap4-hsmmc",
1692 		.data = &omap4_reg_offset,
1693 	},
1694 	{},
1695 };
1696 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1697 
1698 static struct omap_mmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1699 {
1700 	struct omap_mmc_platform_data *pdata;
1701 	struct device_node *np = dev->of_node;
1702 	u32 bus_width, max_freq;
1703 	int cd_gpio, wp_gpio;
1704 
1705 	cd_gpio = of_get_named_gpio(np, "cd-gpios", 0);
1706 	wp_gpio = of_get_named_gpio(np, "wp-gpios", 0);
1707 	if (cd_gpio == -EPROBE_DEFER || wp_gpio == -EPROBE_DEFER)
1708 		return ERR_PTR(-EPROBE_DEFER);
1709 
1710 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1711 	if (!pdata)
1712 		return NULL; /* out of memory */
1713 
1714 	if (of_find_property(np, "ti,dual-volt", NULL))
1715 		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1716 
1717 	/* This driver only supports 1 slot */
1718 	pdata->nr_slots = 1;
1719 	pdata->slots[0].switch_pin = cd_gpio;
1720 	pdata->slots[0].gpio_wp = wp_gpio;
1721 
1722 	if (of_find_property(np, "ti,non-removable", NULL)) {
1723 		pdata->slots[0].nonremovable = true;
1724 		pdata->slots[0].no_regulator_off_init = true;
1725 	}
1726 	of_property_read_u32(np, "bus-width", &bus_width);
1727 	if (bus_width == 4)
1728 		pdata->slots[0].caps |= MMC_CAP_4_BIT_DATA;
1729 	else if (bus_width == 8)
1730 		pdata->slots[0].caps |= MMC_CAP_8_BIT_DATA;
1731 
1732 	if (of_find_property(np, "ti,needs-special-reset", NULL))
1733 		pdata->slots[0].features |= HSMMC_HAS_UPDATED_RESET;
1734 
1735 	if (!of_property_read_u32(np, "max-frequency", &max_freq))
1736 		pdata->max_freq = max_freq;
1737 
1738 	if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1739 		pdata->slots[0].features |= HSMMC_HAS_HSPE_SUPPORT;
1740 
1741 	return pdata;
1742 }
1743 #else
1744 static inline struct omap_mmc_platform_data
1745 			*of_get_hsmmc_pdata(struct device *dev)
1746 {
1747 	return NULL;
1748 }
1749 #endif
1750 
1751 static int omap_hsmmc_probe(struct platform_device *pdev)
1752 {
1753 	struct omap_mmc_platform_data *pdata = pdev->dev.platform_data;
1754 	struct mmc_host *mmc;
1755 	struct omap_hsmmc_host *host = NULL;
1756 	struct resource *res;
1757 	int ret, irq;
1758 	const struct of_device_id *match;
1759 	dma_cap_mask_t mask;
1760 	unsigned tx_req, rx_req;
1761 	struct pinctrl *pinctrl;
1762 
1763 	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1764 	if (match) {
1765 		pdata = of_get_hsmmc_pdata(&pdev->dev);
1766 
1767 		if (IS_ERR(pdata))
1768 			return PTR_ERR(pdata);
1769 
1770 		if (match->data) {
1771 			const u16 *offsetp = match->data;
1772 			pdata->reg_offset = *offsetp;
1773 		}
1774 	}
1775 
1776 	if (pdata == NULL) {
1777 		dev_err(&pdev->dev, "Platform Data is missing\n");
1778 		return -ENXIO;
1779 	}
1780 
1781 	if (pdata->nr_slots == 0) {
1782 		dev_err(&pdev->dev, "No Slots\n");
1783 		return -ENXIO;
1784 	}
1785 
1786 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1787 	irq = platform_get_irq(pdev, 0);
1788 	if (res == NULL || irq < 0)
1789 		return -ENXIO;
1790 
1791 	res = request_mem_region(res->start, resource_size(res), pdev->name);
1792 	if (res == NULL)
1793 		return -EBUSY;
1794 
1795 	ret = omap_hsmmc_gpio_init(pdata);
1796 	if (ret)
1797 		goto err;
1798 
1799 	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1800 	if (!mmc) {
1801 		ret = -ENOMEM;
1802 		goto err_alloc;
1803 	}
1804 
1805 	host		= mmc_priv(mmc);
1806 	host->mmc	= mmc;
1807 	host->pdata	= pdata;
1808 	host->dev	= &pdev->dev;
1809 	host->use_dma	= 1;
1810 	host->dma_ch	= -1;
1811 	host->irq	= irq;
1812 	host->slot_id	= 0;
1813 	host->mapbase	= res->start + pdata->reg_offset;
1814 	host->base	= ioremap(host->mapbase, SZ_4K);
1815 	host->power_mode = MMC_POWER_OFF;
1816 	host->next_data.cookie = 1;
1817 
1818 	platform_set_drvdata(pdev, host);
1819 
1820 	mmc->ops	= &omap_hsmmc_ops;
1821 
1822 	mmc->f_min = OMAP_MMC_MIN_CLOCK;
1823 
1824 	if (pdata->max_freq > 0)
1825 		mmc->f_max = pdata->max_freq;
1826 	else
1827 		mmc->f_max = OMAP_MMC_MAX_CLOCK;
1828 
1829 	spin_lock_init(&host->irq_lock);
1830 
1831 	host->fclk = clk_get(&pdev->dev, "fck");
1832 	if (IS_ERR(host->fclk)) {
1833 		ret = PTR_ERR(host->fclk);
1834 		host->fclk = NULL;
1835 		goto err1;
1836 	}
1837 
1838 	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1839 		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1840 		mmc->caps2 |= MMC_CAP2_NO_MULTI_READ;
1841 	}
1842 
1843 	pm_runtime_enable(host->dev);
1844 	pm_runtime_get_sync(host->dev);
1845 	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1846 	pm_runtime_use_autosuspend(host->dev);
1847 
1848 	omap_hsmmc_context_save(host);
1849 
1850 	/* This can be removed once we support PBIAS with DT */
1851 	if (host->dev->of_node && res->start == 0x4809c000)
1852 		host->pbias_disable = 1;
1853 
1854 	host->dbclk = clk_get(&pdev->dev, "mmchsdb_fck");
1855 	/*
1856 	 * MMC can still work without debounce clock.
1857 	 */
1858 	if (IS_ERR(host->dbclk)) {
1859 		host->dbclk = NULL;
1860 	} else if (clk_prepare_enable(host->dbclk) != 0) {
1861 		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1862 		clk_put(host->dbclk);
1863 		host->dbclk = NULL;
1864 	}
1865 
1866 	/* Since we do only SG emulation, we can have as many segs
1867 	 * as we want. */
1868 	mmc->max_segs = 1024;
1869 
1870 	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
1871 	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
1872 	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1873 	mmc->max_seg_size = mmc->max_req_size;
1874 
1875 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1876 		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
1877 
1878 	mmc->caps |= mmc_slot(host).caps;
1879 	if (mmc->caps & MMC_CAP_8_BIT_DATA)
1880 		mmc->caps |= MMC_CAP_4_BIT_DATA;
1881 
1882 	if (mmc_slot(host).nonremovable)
1883 		mmc->caps |= MMC_CAP_NONREMOVABLE;
1884 
1885 	mmc->pm_caps = mmc_slot(host).pm_caps;
1886 
1887 	omap_hsmmc_conf_bus_power(host);
1888 
1889 	if (!pdev->dev.of_node) {
1890 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
1891 		if (!res) {
1892 			dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n");
1893 			ret = -ENXIO;
1894 			goto err_irq;
1895 		}
1896 		tx_req = res->start;
1897 
1898 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
1899 		if (!res) {
1900 			dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n");
1901 			ret = -ENXIO;
1902 			goto err_irq;
1903 		}
1904 		rx_req = res->start;
1905 	}
1906 
1907 	dma_cap_zero(mask);
1908 	dma_cap_set(DMA_SLAVE, mask);
1909 
1910 	host->rx_chan =
1911 		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
1912 						 &rx_req, &pdev->dev, "rx");
1913 
1914 	if (!host->rx_chan) {
1915 		dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel %u\n", rx_req);
1916 		ret = -ENXIO;
1917 		goto err_irq;
1918 	}
1919 
1920 	host->tx_chan =
1921 		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
1922 						 &tx_req, &pdev->dev, "tx");
1923 
1924 	if (!host->tx_chan) {
1925 		dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel %u\n", tx_req);
1926 		ret = -ENXIO;
1927 		goto err_irq;
1928 	}
1929 
1930 	/* Request IRQ for MMC operations */
1931 	ret = request_irq(host->irq, omap_hsmmc_irq, 0,
1932 			mmc_hostname(mmc), host);
1933 	if (ret) {
1934 		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1935 		goto err_irq;
1936 	}
1937 
1938 	if (pdata->init != NULL) {
1939 		if (pdata->init(&pdev->dev) != 0) {
1940 			dev_err(mmc_dev(host->mmc),
1941 				"Unable to configure MMC IRQs\n");
1942 			goto err_irq_cd_init;
1943 		}
1944 	}
1945 
1946 	if (omap_hsmmc_have_reg() && !mmc_slot(host).set_power) {
1947 		ret = omap_hsmmc_reg_get(host);
1948 		if (ret)
1949 			goto err_reg;
1950 		host->use_reg = 1;
1951 	}
1952 
1953 	mmc->ocr_avail = mmc_slot(host).ocr_mask;
1954 
1955 	/* Request IRQ for card detect */
1956 	if ((mmc_slot(host).card_detect_irq)) {
1957 		ret = request_threaded_irq(mmc_slot(host).card_detect_irq,
1958 					   NULL,
1959 					   omap_hsmmc_detect,
1960 					   IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
1961 					   mmc_hostname(mmc), host);
1962 		if (ret) {
1963 			dev_err(mmc_dev(host->mmc),
1964 				"Unable to grab MMC CD IRQ\n");
1965 			goto err_irq_cd;
1966 		}
1967 		pdata->suspend = omap_hsmmc_suspend_cdirq;
1968 		pdata->resume = omap_hsmmc_resume_cdirq;
1969 	}
1970 
1971 	omap_hsmmc_disable_irq(host);
1972 
1973 	pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
1974 	if (IS_ERR(pinctrl))
1975 		dev_warn(&pdev->dev,
1976 			"pins are not configured from the driver\n");
1977 
1978 	omap_hsmmc_protect_card(host);
1979 
1980 	mmc_add_host(mmc);
1981 
1982 	if (mmc_slot(host).name != NULL) {
1983 		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
1984 		if (ret < 0)
1985 			goto err_slot_name;
1986 	}
1987 	if (mmc_slot(host).card_detect_irq && mmc_slot(host).get_cover_state) {
1988 		ret = device_create_file(&mmc->class_dev,
1989 					&dev_attr_cover_switch);
1990 		if (ret < 0)
1991 			goto err_slot_name;
1992 	}
1993 
1994 	omap_hsmmc_debugfs(mmc);
1995 	pm_runtime_mark_last_busy(host->dev);
1996 	pm_runtime_put_autosuspend(host->dev);
1997 
1998 	return 0;
1999 
2000 err_slot_name:
2001 	mmc_remove_host(mmc);
2002 	free_irq(mmc_slot(host).card_detect_irq, host);
2003 err_irq_cd:
2004 	if (host->use_reg)
2005 		omap_hsmmc_reg_put(host);
2006 err_reg:
2007 	if (host->pdata->cleanup)
2008 		host->pdata->cleanup(&pdev->dev);
2009 err_irq_cd_init:
2010 	free_irq(host->irq, host);
2011 err_irq:
2012 	if (host->tx_chan)
2013 		dma_release_channel(host->tx_chan);
2014 	if (host->rx_chan)
2015 		dma_release_channel(host->rx_chan);
2016 	pm_runtime_put_sync(host->dev);
2017 	pm_runtime_disable(host->dev);
2018 	clk_put(host->fclk);
2019 	if (host->dbclk) {
2020 		clk_disable_unprepare(host->dbclk);
2021 		clk_put(host->dbclk);
2022 	}
2023 err1:
2024 	iounmap(host->base);
2025 	mmc_free_host(mmc);
2026 err_alloc:
2027 	omap_hsmmc_gpio_free(pdata);
2028 err:
2029 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2030 	if (res)
2031 		release_mem_region(res->start, resource_size(res));
2032 	return ret;
2033 }
2034 
2035 static int omap_hsmmc_remove(struct platform_device *pdev)
2036 {
2037 	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2038 	struct resource *res;
2039 
2040 	pm_runtime_get_sync(host->dev);
2041 	mmc_remove_host(host->mmc);
2042 	if (host->use_reg)
2043 		omap_hsmmc_reg_put(host);
2044 	if (host->pdata->cleanup)
2045 		host->pdata->cleanup(&pdev->dev);
2046 	free_irq(host->irq, host);
2047 	if (mmc_slot(host).card_detect_irq)
2048 		free_irq(mmc_slot(host).card_detect_irq, host);
2049 
2050 	if (host->tx_chan)
2051 		dma_release_channel(host->tx_chan);
2052 	if (host->rx_chan)
2053 		dma_release_channel(host->rx_chan);
2054 
2055 	pm_runtime_put_sync(host->dev);
2056 	pm_runtime_disable(host->dev);
2057 	clk_put(host->fclk);
2058 	if (host->dbclk) {
2059 		clk_disable_unprepare(host->dbclk);
2060 		clk_put(host->dbclk);
2061 	}
2062 
2063 	omap_hsmmc_gpio_free(host->pdata);
2064 	iounmap(host->base);
2065 	mmc_free_host(host->mmc);
2066 
2067 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2068 	if (res)
2069 		release_mem_region(res->start, resource_size(res));
2070 
2071 	return 0;
2072 }
2073 
2074 #ifdef CONFIG_PM
2075 static int omap_hsmmc_prepare(struct device *dev)
2076 {
2077 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2078 
2079 	if (host->pdata->suspend)
2080 		return host->pdata->suspend(dev, host->slot_id);
2081 
2082 	return 0;
2083 }
2084 
2085 static void omap_hsmmc_complete(struct device *dev)
2086 {
2087 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2088 
2089 	if (host->pdata->resume)
2090 		host->pdata->resume(dev, host->slot_id);
2091 
2092 }
2093 
2094 static int omap_hsmmc_suspend(struct device *dev)
2095 {
2096 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2097 
2098 	if (!host)
2099 		return 0;
2100 
2101 	pm_runtime_get_sync(host->dev);
2102 
2103 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2104 		omap_hsmmc_disable_irq(host);
2105 		OMAP_HSMMC_WRITE(host->base, HCTL,
2106 				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2107 	}
2108 
2109 	if (host->dbclk)
2110 		clk_disable_unprepare(host->dbclk);
2111 
2112 	pm_runtime_put_sync(host->dev);
2113 	return 0;
2114 }
2115 
2116 /* Routine to resume the MMC device */
2117 static int omap_hsmmc_resume(struct device *dev)
2118 {
2119 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2120 
2121 	if (!host)
2122 		return 0;
2123 
2124 	pm_runtime_get_sync(host->dev);
2125 
2126 	if (host->dbclk)
2127 		clk_prepare_enable(host->dbclk);
2128 
2129 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2130 		omap_hsmmc_conf_bus_power(host);
2131 
2132 	omap_hsmmc_protect_card(host);
2133 
2134 	pm_runtime_mark_last_busy(host->dev);
2135 	pm_runtime_put_autosuspend(host->dev);
2136 	return 0;
2137 }
2138 
2139 #else
2140 #define omap_hsmmc_prepare	NULL
2141 #define omap_hsmmc_complete	NULL
2142 #define omap_hsmmc_suspend	NULL
2143 #define omap_hsmmc_resume	NULL
2144 #endif
2145 
2146 static int omap_hsmmc_runtime_suspend(struct device *dev)
2147 {
2148 	struct omap_hsmmc_host *host;
2149 
2150 	host = platform_get_drvdata(to_platform_device(dev));
2151 	omap_hsmmc_context_save(host);
2152 	dev_dbg(dev, "disabled\n");
2153 
2154 	return 0;
2155 }
2156 
2157 static int omap_hsmmc_runtime_resume(struct device *dev)
2158 {
2159 	struct omap_hsmmc_host *host;
2160 
2161 	host = platform_get_drvdata(to_platform_device(dev));
2162 	omap_hsmmc_context_restore(host);
2163 	dev_dbg(dev, "enabled\n");
2164 
2165 	return 0;
2166 }
2167 
2168 static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2169 	.suspend	= omap_hsmmc_suspend,
2170 	.resume		= omap_hsmmc_resume,
2171 	.prepare	= omap_hsmmc_prepare,
2172 	.complete	= omap_hsmmc_complete,
2173 	.runtime_suspend = omap_hsmmc_runtime_suspend,
2174 	.runtime_resume = omap_hsmmc_runtime_resume,
2175 };
2176 
2177 static struct platform_driver omap_hsmmc_driver = {
2178 	.probe		= omap_hsmmc_probe,
2179 	.remove		= omap_hsmmc_remove,
2180 	.driver		= {
2181 		.name = DRIVER_NAME,
2182 		.owner = THIS_MODULE,
2183 		.pm = &omap_hsmmc_dev_pm_ops,
2184 		.of_match_table = of_match_ptr(omap_mmc_of_match),
2185 	},
2186 };
2187 
2188 module_platform_driver(omap_hsmmc_driver);
2189 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2190 MODULE_LICENSE("GPL");
2191 MODULE_ALIAS("platform:" DRIVER_NAME);
2192 MODULE_AUTHOR("Texas Instruments Inc");
2193