xref: /openbmc/linux/drivers/mmc/host/omap_hsmmc.c (revision af958a38)
1 /*
2  * drivers/mmc/host/omap_hsmmc.c
3  *
4  * Driver for OMAP2430/3430 MMC controller.
5  *
6  * Copyright (C) 2007 Texas Instruments.
7  *
8  * Authors:
9  *	Syed Mohammed Khasim	<x0khasim@ti.com>
10  *	Madhusudhan		<madhu.cr@ti.com>
11  *	Mohit Jalori		<mjalori@ti.com>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/sizes.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/timer.h>
30 #include <linux/clk.h>
31 #include <linux/of.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_device.h>
35 #include <linux/omap-dmaengine.h>
36 #include <linux/mmc/host.h>
37 #include <linux/mmc/core.h>
38 #include <linux/mmc/mmc.h>
39 #include <linux/io.h>
40 #include <linux/irq.h>
41 #include <linux/gpio.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/pinctrl/consumer.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/platform_data/mmc-omap.h>
46 
47 /* OMAP HSMMC Host Controller Registers */
48 #define OMAP_HSMMC_SYSSTATUS	0x0014
49 #define OMAP_HSMMC_CON		0x002C
50 #define OMAP_HSMMC_SDMASA	0x0100
51 #define OMAP_HSMMC_BLK		0x0104
52 #define OMAP_HSMMC_ARG		0x0108
53 #define OMAP_HSMMC_CMD		0x010C
54 #define OMAP_HSMMC_RSP10	0x0110
55 #define OMAP_HSMMC_RSP32	0x0114
56 #define OMAP_HSMMC_RSP54	0x0118
57 #define OMAP_HSMMC_RSP76	0x011C
58 #define OMAP_HSMMC_DATA		0x0120
59 #define OMAP_HSMMC_PSTATE	0x0124
60 #define OMAP_HSMMC_HCTL		0x0128
61 #define OMAP_HSMMC_SYSCTL	0x012C
62 #define OMAP_HSMMC_STAT		0x0130
63 #define OMAP_HSMMC_IE		0x0134
64 #define OMAP_HSMMC_ISE		0x0138
65 #define OMAP_HSMMC_AC12		0x013C
66 #define OMAP_HSMMC_CAPA		0x0140
67 
68 #define VS18			(1 << 26)
69 #define VS30			(1 << 25)
70 #define HSS			(1 << 21)
71 #define SDVS18			(0x5 << 9)
72 #define SDVS30			(0x6 << 9)
73 #define SDVS33			(0x7 << 9)
74 #define SDVS_MASK		0x00000E00
75 #define SDVSCLR			0xFFFFF1FF
76 #define SDVSDET			0x00000400
77 #define AUTOIDLE		0x1
78 #define SDBP			(1 << 8)
79 #define DTO			0xe
80 #define ICE			0x1
81 #define ICS			0x2
82 #define CEN			(1 << 2)
83 #define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
84 #define CLKD_MASK		0x0000FFC0
85 #define CLKD_SHIFT		6
86 #define DTO_MASK		0x000F0000
87 #define DTO_SHIFT		16
88 #define INIT_STREAM		(1 << 1)
89 #define ACEN_ACMD23		(2 << 2)
90 #define DP_SELECT		(1 << 21)
91 #define DDIR			(1 << 4)
92 #define DMAE			0x1
93 #define MSBS			(1 << 5)
94 #define BCE			(1 << 1)
95 #define FOUR_BIT		(1 << 1)
96 #define HSPE			(1 << 2)
97 #define IWE			(1 << 24)
98 #define DDR			(1 << 19)
99 #define CLKEXTFREE		(1 << 16)
100 #define CTPL			(1 << 11)
101 #define DW8			(1 << 5)
102 #define OD			0x1
103 #define STAT_CLEAR		0xFFFFFFFF
104 #define INIT_STREAM_CMD		0x00000000
105 #define DUAL_VOLT_OCR_BIT	7
106 #define SRC			(1 << 25)
107 #define SRD			(1 << 26)
108 #define SOFTRESET		(1 << 1)
109 
110 /* PSTATE */
111 #define DLEV_DAT(x)		(1 << (20 + (x)))
112 
113 /* Interrupt masks for IE and ISE register */
114 #define CC_EN			(1 << 0)
115 #define TC_EN			(1 << 1)
116 #define BWR_EN			(1 << 4)
117 #define BRR_EN			(1 << 5)
118 #define CIRQ_EN			(1 << 8)
119 #define ERR_EN			(1 << 15)
120 #define CTO_EN			(1 << 16)
121 #define CCRC_EN			(1 << 17)
122 #define CEB_EN			(1 << 18)
123 #define CIE_EN			(1 << 19)
124 #define DTO_EN			(1 << 20)
125 #define DCRC_EN			(1 << 21)
126 #define DEB_EN			(1 << 22)
127 #define ACE_EN			(1 << 24)
128 #define CERR_EN			(1 << 28)
129 #define BADA_EN			(1 << 29)
130 
131 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
132 		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
133 		BRR_EN | BWR_EN | TC_EN | CC_EN)
134 
135 #define CNI	(1 << 7)
136 #define ACIE	(1 << 4)
137 #define ACEB	(1 << 3)
138 #define ACCE	(1 << 2)
139 #define ACTO	(1 << 1)
140 #define ACNE	(1 << 0)
141 
142 #define MMC_AUTOSUSPEND_DELAY	100
143 #define MMC_TIMEOUT_MS		20		/* 20 mSec */
144 #define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
145 #define OMAP_MMC_MIN_CLOCK	400000
146 #define OMAP_MMC_MAX_CLOCK	52000000
147 #define DRIVER_NAME		"omap_hsmmc"
148 
149 #define VDD_1V8			1800000		/* 180000 uV */
150 #define VDD_3V0			3000000		/* 300000 uV */
151 #define VDD_165_195		(ffs(MMC_VDD_165_195) - 1)
152 
153 /*
154  * One controller can have multiple slots, like on some omap boards using
155  * omap.c controller driver. Luckily this is not currently done on any known
156  * omap_hsmmc.c device.
157  */
158 #define mmc_slot(host)		(host->pdata->slots[host->slot_id])
159 
160 /*
161  * MMC Host controller read/write API's
162  */
163 #define OMAP_HSMMC_READ(base, reg)	\
164 	__raw_readl((base) + OMAP_HSMMC_##reg)
165 
166 #define OMAP_HSMMC_WRITE(base, reg, val) \
167 	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
168 
169 struct omap_hsmmc_next {
170 	unsigned int	dma_len;
171 	s32		cookie;
172 };
173 
174 struct omap_hsmmc_host {
175 	struct	device		*dev;
176 	struct	mmc_host	*mmc;
177 	struct	mmc_request	*mrq;
178 	struct	mmc_command	*cmd;
179 	struct	mmc_data	*data;
180 	struct	clk		*fclk;
181 	struct	clk		*dbclk;
182 	/*
183 	 * vcc == configured supply
184 	 * vcc_aux == optional
185 	 *   -	MMC1, supply for DAT4..DAT7
186 	 *   -	MMC2/MMC2, external level shifter voltage supply, for
187 	 *	chip (SDIO, eMMC, etc) or transceiver (MMC2 only)
188 	 */
189 	struct	regulator	*vcc;
190 	struct	regulator	*vcc_aux;
191 	struct	regulator	*pbias;
192 	bool			pbias_enabled;
193 	void	__iomem		*base;
194 	resource_size_t		mapbase;
195 	spinlock_t		irq_lock; /* Prevent races with irq handler */
196 	unsigned int		dma_len;
197 	unsigned int		dma_sg_idx;
198 	unsigned char		bus_mode;
199 	unsigned char		power_mode;
200 	int			suspended;
201 	u32			con;
202 	u32			hctl;
203 	u32			sysctl;
204 	u32			capa;
205 	int			irq;
206 	int			wake_irq;
207 	int			use_dma, dma_ch;
208 	struct dma_chan		*tx_chan;
209 	struct dma_chan		*rx_chan;
210 	int			slot_id;
211 	int			response_busy;
212 	int			context_loss;
213 	int			protect_card;
214 	int			reqs_blocked;
215 	int			use_reg;
216 	int			req_in_progress;
217 	unsigned long		clk_rate;
218 	unsigned int		flags;
219 #define AUTO_CMD23		(1 << 0)        /* Auto CMD23 support */
220 #define HSMMC_SDIO_IRQ_ENABLED	(1 << 1)        /* SDIO irq enabled */
221 #define HSMMC_WAKE_IRQ_ENABLED	(1 << 2)
222 	struct omap_hsmmc_next	next_data;
223 	struct	omap_mmc_platform_data	*pdata;
224 };
225 
226 struct omap_mmc_of_data {
227 	u32 reg_offset;
228 	u8 controller_flags;
229 };
230 
231 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
232 
233 static int omap_hsmmc_card_detect(struct device *dev, int slot)
234 {
235 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
236 	struct omap_mmc_platform_data *mmc = host->pdata;
237 
238 	/* NOTE: assumes card detect signal is active-low */
239 	return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
240 }
241 
242 static int omap_hsmmc_get_wp(struct device *dev, int slot)
243 {
244 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
245 	struct omap_mmc_platform_data *mmc = host->pdata;
246 
247 	/* NOTE: assumes write protect signal is active-high */
248 	return gpio_get_value_cansleep(mmc->slots[0].gpio_wp);
249 }
250 
251 static int omap_hsmmc_get_cover_state(struct device *dev, int slot)
252 {
253 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
254 	struct omap_mmc_platform_data *mmc = host->pdata;
255 
256 	/* NOTE: assumes card detect signal is active-low */
257 	return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
258 }
259 
260 #ifdef CONFIG_PM
261 
262 static int omap_hsmmc_suspend_cdirq(struct device *dev, int slot)
263 {
264 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
265 	struct omap_mmc_platform_data *mmc = host->pdata;
266 
267 	disable_irq(mmc->slots[0].card_detect_irq);
268 	return 0;
269 }
270 
271 static int omap_hsmmc_resume_cdirq(struct device *dev, int slot)
272 {
273 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
274 	struct omap_mmc_platform_data *mmc = host->pdata;
275 
276 	enable_irq(mmc->slots[0].card_detect_irq);
277 	return 0;
278 }
279 
280 #else
281 
282 #define omap_hsmmc_suspend_cdirq	NULL
283 #define omap_hsmmc_resume_cdirq		NULL
284 
285 #endif
286 
287 #ifdef CONFIG_REGULATOR
288 
289 static int omap_hsmmc_set_power(struct device *dev, int slot, int power_on,
290 				   int vdd)
291 {
292 	struct omap_hsmmc_host *host =
293 		platform_get_drvdata(to_platform_device(dev));
294 	int ret = 0;
295 
296 	/*
297 	 * If we don't see a Vcc regulator, assume it's a fixed
298 	 * voltage always-on regulator.
299 	 */
300 	if (!host->vcc)
301 		return 0;
302 
303 	if (mmc_slot(host).before_set_reg)
304 		mmc_slot(host).before_set_reg(dev, slot, power_on, vdd);
305 
306 	if (host->pbias) {
307 		if (host->pbias_enabled == 1) {
308 			ret = regulator_disable(host->pbias);
309 			if (!ret)
310 				host->pbias_enabled = 0;
311 		}
312 		regulator_set_voltage(host->pbias, VDD_3V0, VDD_3V0);
313 	}
314 
315 	/*
316 	 * Assume Vcc regulator is used only to power the card ... OMAP
317 	 * VDDS is used to power the pins, optionally with a transceiver to
318 	 * support cards using voltages other than VDDS (1.8V nominal).  When a
319 	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
320 	 *
321 	 * In some cases this regulator won't support enable/disable;
322 	 * e.g. it's a fixed rail for a WLAN chip.
323 	 *
324 	 * In other cases vcc_aux switches interface power.  Example, for
325 	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
326 	 * chips/cards need an interface voltage rail too.
327 	 */
328 	if (power_on) {
329 		if (host->vcc)
330 			ret = mmc_regulator_set_ocr(host->mmc, host->vcc, vdd);
331 		/* Enable interface voltage rail, if needed */
332 		if (ret == 0 && host->vcc_aux) {
333 			ret = regulator_enable(host->vcc_aux);
334 			if (ret < 0 && host->vcc)
335 				ret = mmc_regulator_set_ocr(host->mmc,
336 							host->vcc, 0);
337 		}
338 	} else {
339 		/* Shut down the rail */
340 		if (host->vcc_aux)
341 			ret = regulator_disable(host->vcc_aux);
342 		if (host->vcc) {
343 			/* Then proceed to shut down the local regulator */
344 			ret = mmc_regulator_set_ocr(host->mmc,
345 						host->vcc, 0);
346 		}
347 	}
348 
349 	if (host->pbias) {
350 		if (vdd <= VDD_165_195)
351 			ret = regulator_set_voltage(host->pbias, VDD_1V8,
352 								VDD_1V8);
353 		else
354 			ret = regulator_set_voltage(host->pbias, VDD_3V0,
355 								VDD_3V0);
356 		if (ret < 0)
357 			goto error_set_power;
358 
359 		if (host->pbias_enabled == 0) {
360 			ret = regulator_enable(host->pbias);
361 			if (!ret)
362 				host->pbias_enabled = 1;
363 		}
364 	}
365 
366 	if (mmc_slot(host).after_set_reg)
367 		mmc_slot(host).after_set_reg(dev, slot, power_on, vdd);
368 
369 error_set_power:
370 	return ret;
371 }
372 
373 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
374 {
375 	struct regulator *reg;
376 	int ocr_value = 0;
377 
378 	reg = devm_regulator_get(host->dev, "vmmc");
379 	if (IS_ERR(reg)) {
380 		dev_err(host->dev, "unable to get vmmc regulator %ld\n",
381 			PTR_ERR(reg));
382 		return PTR_ERR(reg);
383 	} else {
384 		host->vcc = reg;
385 		ocr_value = mmc_regulator_get_ocrmask(reg);
386 		if (!mmc_slot(host).ocr_mask) {
387 			mmc_slot(host).ocr_mask = ocr_value;
388 		} else {
389 			if (!(mmc_slot(host).ocr_mask & ocr_value)) {
390 				dev_err(host->dev, "ocrmask %x is not supported\n",
391 					mmc_slot(host).ocr_mask);
392 				mmc_slot(host).ocr_mask = 0;
393 				return -EINVAL;
394 			}
395 		}
396 	}
397 	mmc_slot(host).set_power = omap_hsmmc_set_power;
398 
399 	/* Allow an aux regulator */
400 	reg = devm_regulator_get_optional(host->dev, "vmmc_aux");
401 	host->vcc_aux = IS_ERR(reg) ? NULL : reg;
402 
403 	reg = devm_regulator_get_optional(host->dev, "pbias");
404 	host->pbias = IS_ERR(reg) ? NULL : reg;
405 
406 	/* For eMMC do not power off when not in sleep state */
407 	if (mmc_slot(host).no_regulator_off_init)
408 		return 0;
409 	/*
410 	 * To disable boot_on regulator, enable regulator
411 	 * to increase usecount and then disable it.
412 	 */
413 	if ((host->vcc && regulator_is_enabled(host->vcc) > 0) ||
414 	    (host->vcc_aux && regulator_is_enabled(host->vcc_aux))) {
415 		int vdd = ffs(mmc_slot(host).ocr_mask) - 1;
416 
417 		mmc_slot(host).set_power(host->dev, host->slot_id, 1, vdd);
418 		mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
419 	}
420 
421 	return 0;
422 }
423 
424 static void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
425 {
426 	mmc_slot(host).set_power = NULL;
427 }
428 
429 static inline int omap_hsmmc_have_reg(void)
430 {
431 	return 1;
432 }
433 
434 #else
435 
436 static inline int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
437 {
438 	return -EINVAL;
439 }
440 
441 static inline void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
442 {
443 }
444 
445 static inline int omap_hsmmc_have_reg(void)
446 {
447 	return 0;
448 }
449 
450 #endif
451 
452 static int omap_hsmmc_gpio_init(struct omap_mmc_platform_data *pdata)
453 {
454 	int ret;
455 
456 	if (gpio_is_valid(pdata->slots[0].switch_pin)) {
457 		if (pdata->slots[0].cover)
458 			pdata->slots[0].get_cover_state =
459 					omap_hsmmc_get_cover_state;
460 		else
461 			pdata->slots[0].card_detect = omap_hsmmc_card_detect;
462 		pdata->slots[0].card_detect_irq =
463 				gpio_to_irq(pdata->slots[0].switch_pin);
464 		ret = gpio_request(pdata->slots[0].switch_pin, "mmc_cd");
465 		if (ret)
466 			return ret;
467 		ret = gpio_direction_input(pdata->slots[0].switch_pin);
468 		if (ret)
469 			goto err_free_sp;
470 	} else
471 		pdata->slots[0].switch_pin = -EINVAL;
472 
473 	if (gpio_is_valid(pdata->slots[0].gpio_wp)) {
474 		pdata->slots[0].get_ro = omap_hsmmc_get_wp;
475 		ret = gpio_request(pdata->slots[0].gpio_wp, "mmc_wp");
476 		if (ret)
477 			goto err_free_cd;
478 		ret = gpio_direction_input(pdata->slots[0].gpio_wp);
479 		if (ret)
480 			goto err_free_wp;
481 	} else
482 		pdata->slots[0].gpio_wp = -EINVAL;
483 
484 	return 0;
485 
486 err_free_wp:
487 	gpio_free(pdata->slots[0].gpio_wp);
488 err_free_cd:
489 	if (gpio_is_valid(pdata->slots[0].switch_pin))
490 err_free_sp:
491 		gpio_free(pdata->slots[0].switch_pin);
492 	return ret;
493 }
494 
495 static void omap_hsmmc_gpio_free(struct omap_mmc_platform_data *pdata)
496 {
497 	if (gpio_is_valid(pdata->slots[0].gpio_wp))
498 		gpio_free(pdata->slots[0].gpio_wp);
499 	if (gpio_is_valid(pdata->slots[0].switch_pin))
500 		gpio_free(pdata->slots[0].switch_pin);
501 }
502 
503 /*
504  * Start clock to the card
505  */
506 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
507 {
508 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
509 		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
510 }
511 
512 /*
513  * Stop clock to the card
514  */
515 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
516 {
517 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
518 		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
519 	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
520 		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
521 }
522 
523 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
524 				  struct mmc_command *cmd)
525 {
526 	u32 irq_mask = INT_EN_MASK;
527 	unsigned long flags;
528 
529 	if (host->use_dma)
530 		irq_mask &= ~(BRR_EN | BWR_EN);
531 
532 	/* Disable timeout for erases */
533 	if (cmd->opcode == MMC_ERASE)
534 		irq_mask &= ~DTO_EN;
535 
536 	spin_lock_irqsave(&host->irq_lock, flags);
537 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
538 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
539 
540 	/* latch pending CIRQ, but don't signal MMC core */
541 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
542 		irq_mask |= CIRQ_EN;
543 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
544 	spin_unlock_irqrestore(&host->irq_lock, flags);
545 }
546 
547 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
548 {
549 	u32 irq_mask = 0;
550 	unsigned long flags;
551 
552 	spin_lock_irqsave(&host->irq_lock, flags);
553 	/* no transfer running but need to keep cirq if enabled */
554 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
555 		irq_mask |= CIRQ_EN;
556 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
557 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
558 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
559 	spin_unlock_irqrestore(&host->irq_lock, flags);
560 }
561 
562 /* Calculate divisor for the given clock frequency */
563 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
564 {
565 	u16 dsor = 0;
566 
567 	if (ios->clock) {
568 		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
569 		if (dsor > CLKD_MAX)
570 			dsor = CLKD_MAX;
571 	}
572 
573 	return dsor;
574 }
575 
576 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
577 {
578 	struct mmc_ios *ios = &host->mmc->ios;
579 	unsigned long regval;
580 	unsigned long timeout;
581 	unsigned long clkdiv;
582 
583 	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
584 
585 	omap_hsmmc_stop_clock(host);
586 
587 	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
588 	regval = regval & ~(CLKD_MASK | DTO_MASK);
589 	clkdiv = calc_divisor(host, ios);
590 	regval = regval | (clkdiv << 6) | (DTO << 16);
591 	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
592 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
593 		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
594 
595 	/* Wait till the ICS bit is set */
596 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
597 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
598 		&& time_before(jiffies, timeout))
599 		cpu_relax();
600 
601 	/*
602 	 * Enable High-Speed Support
603 	 * Pre-Requisites
604 	 *	- Controller should support High-Speed-Enable Bit
605 	 *	- Controller should not be using DDR Mode
606 	 *	- Controller should advertise that it supports High Speed
607 	 *	  in capabilities register
608 	 *	- MMC/SD clock coming out of controller > 25MHz
609 	 */
610 	if ((mmc_slot(host).features & HSMMC_HAS_HSPE_SUPPORT) &&
611 	    (ios->timing != MMC_TIMING_MMC_DDR52) &&
612 	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
613 		regval = OMAP_HSMMC_READ(host->base, HCTL);
614 		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
615 			regval |= HSPE;
616 		else
617 			regval &= ~HSPE;
618 
619 		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
620 	}
621 
622 	omap_hsmmc_start_clock(host);
623 }
624 
625 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
626 {
627 	struct mmc_ios *ios = &host->mmc->ios;
628 	u32 con;
629 
630 	con = OMAP_HSMMC_READ(host->base, CON);
631 	if (ios->timing == MMC_TIMING_MMC_DDR52)
632 		con |= DDR;	/* configure in DDR mode */
633 	else
634 		con &= ~DDR;
635 	switch (ios->bus_width) {
636 	case MMC_BUS_WIDTH_8:
637 		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
638 		break;
639 	case MMC_BUS_WIDTH_4:
640 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
641 		OMAP_HSMMC_WRITE(host->base, HCTL,
642 			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
643 		break;
644 	case MMC_BUS_WIDTH_1:
645 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
646 		OMAP_HSMMC_WRITE(host->base, HCTL,
647 			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
648 		break;
649 	}
650 }
651 
652 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
653 {
654 	struct mmc_ios *ios = &host->mmc->ios;
655 	u32 con;
656 
657 	con = OMAP_HSMMC_READ(host->base, CON);
658 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
659 		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
660 	else
661 		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
662 }
663 
664 #ifdef CONFIG_PM
665 
666 /*
667  * Restore the MMC host context, if it was lost as result of a
668  * power state change.
669  */
670 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
671 {
672 	struct mmc_ios *ios = &host->mmc->ios;
673 	u32 hctl, capa;
674 	unsigned long timeout;
675 
676 	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
677 	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
678 	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
679 	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
680 		return 0;
681 
682 	host->context_loss++;
683 
684 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
685 		if (host->power_mode != MMC_POWER_OFF &&
686 		    (1 << ios->vdd) <= MMC_VDD_23_24)
687 			hctl = SDVS18;
688 		else
689 			hctl = SDVS30;
690 		capa = VS30 | VS18;
691 	} else {
692 		hctl = SDVS18;
693 		capa = VS18;
694 	}
695 
696 	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
697 		hctl |= IWE;
698 
699 	OMAP_HSMMC_WRITE(host->base, HCTL,
700 			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
701 
702 	OMAP_HSMMC_WRITE(host->base, CAPA,
703 			OMAP_HSMMC_READ(host->base, CAPA) | capa);
704 
705 	OMAP_HSMMC_WRITE(host->base, HCTL,
706 			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
707 
708 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
709 	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
710 		&& time_before(jiffies, timeout))
711 		;
712 
713 	OMAP_HSMMC_WRITE(host->base, ISE, 0);
714 	OMAP_HSMMC_WRITE(host->base, IE, 0);
715 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
716 
717 	/* Do not initialize card-specific things if the power is off */
718 	if (host->power_mode == MMC_POWER_OFF)
719 		goto out;
720 
721 	omap_hsmmc_set_bus_width(host);
722 
723 	omap_hsmmc_set_clock(host);
724 
725 	omap_hsmmc_set_bus_mode(host);
726 
727 out:
728 	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
729 		host->context_loss);
730 	return 0;
731 }
732 
733 /*
734  * Save the MMC host context (store the number of power state changes so far).
735  */
736 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
737 {
738 	host->con =  OMAP_HSMMC_READ(host->base, CON);
739 	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
740 	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
741 	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
742 }
743 
744 #else
745 
746 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
747 {
748 	return 0;
749 }
750 
751 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
752 {
753 }
754 
755 #endif
756 
757 /*
758  * Send init stream sequence to card
759  * before sending IDLE command
760  */
761 static void send_init_stream(struct omap_hsmmc_host *host)
762 {
763 	int reg = 0;
764 	unsigned long timeout;
765 
766 	if (host->protect_card)
767 		return;
768 
769 	disable_irq(host->irq);
770 
771 	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
772 	OMAP_HSMMC_WRITE(host->base, CON,
773 		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
774 	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
775 
776 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
777 	while ((reg != CC_EN) && time_before(jiffies, timeout))
778 		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
779 
780 	OMAP_HSMMC_WRITE(host->base, CON,
781 		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
782 
783 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
784 	OMAP_HSMMC_READ(host->base, STAT);
785 
786 	enable_irq(host->irq);
787 }
788 
789 static inline
790 int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
791 {
792 	int r = 1;
793 
794 	if (mmc_slot(host).get_cover_state)
795 		r = mmc_slot(host).get_cover_state(host->dev, host->slot_id);
796 	return r;
797 }
798 
799 static ssize_t
800 omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
801 			   char *buf)
802 {
803 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
804 	struct omap_hsmmc_host *host = mmc_priv(mmc);
805 
806 	return sprintf(buf, "%s\n",
807 			omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
808 }
809 
810 static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
811 
812 static ssize_t
813 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
814 			char *buf)
815 {
816 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
817 	struct omap_hsmmc_host *host = mmc_priv(mmc);
818 
819 	return sprintf(buf, "%s\n", mmc_slot(host).name);
820 }
821 
822 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
823 
824 /*
825  * Configure the response type and send the cmd.
826  */
827 static void
828 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
829 	struct mmc_data *data)
830 {
831 	int cmdreg = 0, resptype = 0, cmdtype = 0;
832 
833 	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
834 		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
835 	host->cmd = cmd;
836 
837 	omap_hsmmc_enable_irq(host, cmd);
838 
839 	host->response_busy = 0;
840 	if (cmd->flags & MMC_RSP_PRESENT) {
841 		if (cmd->flags & MMC_RSP_136)
842 			resptype = 1;
843 		else if (cmd->flags & MMC_RSP_BUSY) {
844 			resptype = 3;
845 			host->response_busy = 1;
846 		} else
847 			resptype = 2;
848 	}
849 
850 	/*
851 	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
852 	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
853 	 * a val of 0x3, rest 0x0.
854 	 */
855 	if (cmd == host->mrq->stop)
856 		cmdtype = 0x3;
857 
858 	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
859 
860 	if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
861 	    host->mrq->sbc) {
862 		cmdreg |= ACEN_ACMD23;
863 		OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
864 	}
865 	if (data) {
866 		cmdreg |= DP_SELECT | MSBS | BCE;
867 		if (data->flags & MMC_DATA_READ)
868 			cmdreg |= DDIR;
869 		else
870 			cmdreg &= ~(DDIR);
871 	}
872 
873 	if (host->use_dma)
874 		cmdreg |= DMAE;
875 
876 	host->req_in_progress = 1;
877 
878 	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
879 	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
880 }
881 
882 static int
883 omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
884 {
885 	if (data->flags & MMC_DATA_WRITE)
886 		return DMA_TO_DEVICE;
887 	else
888 		return DMA_FROM_DEVICE;
889 }
890 
891 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
892 	struct mmc_data *data)
893 {
894 	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
895 }
896 
897 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
898 {
899 	int dma_ch;
900 	unsigned long flags;
901 
902 	spin_lock_irqsave(&host->irq_lock, flags);
903 	host->req_in_progress = 0;
904 	dma_ch = host->dma_ch;
905 	spin_unlock_irqrestore(&host->irq_lock, flags);
906 
907 	omap_hsmmc_disable_irq(host);
908 	/* Do not complete the request if DMA is still in progress */
909 	if (mrq->data && host->use_dma && dma_ch != -1)
910 		return;
911 	host->mrq = NULL;
912 	mmc_request_done(host->mmc, mrq);
913 }
914 
915 /*
916  * Notify the transfer complete to MMC core
917  */
918 static void
919 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
920 {
921 	if (!data) {
922 		struct mmc_request *mrq = host->mrq;
923 
924 		/* TC before CC from CMD6 - don't know why, but it happens */
925 		if (host->cmd && host->cmd->opcode == 6 &&
926 		    host->response_busy) {
927 			host->response_busy = 0;
928 			return;
929 		}
930 
931 		omap_hsmmc_request_done(host, mrq);
932 		return;
933 	}
934 
935 	host->data = NULL;
936 
937 	if (!data->error)
938 		data->bytes_xfered += data->blocks * (data->blksz);
939 	else
940 		data->bytes_xfered = 0;
941 
942 	if (data->stop && (data->error || !host->mrq->sbc))
943 		omap_hsmmc_start_command(host, data->stop, NULL);
944 	else
945 		omap_hsmmc_request_done(host, data->mrq);
946 }
947 
948 /*
949  * Notify the core about command completion
950  */
951 static void
952 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
953 {
954 	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
955 	    !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
956 		host->cmd = NULL;
957 		omap_hsmmc_start_dma_transfer(host);
958 		omap_hsmmc_start_command(host, host->mrq->cmd,
959 						host->mrq->data);
960 		return;
961 	}
962 
963 	host->cmd = NULL;
964 
965 	if (cmd->flags & MMC_RSP_PRESENT) {
966 		if (cmd->flags & MMC_RSP_136) {
967 			/* response type 2 */
968 			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
969 			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
970 			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
971 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
972 		} else {
973 			/* response types 1, 1b, 3, 4, 5, 6 */
974 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
975 		}
976 	}
977 	if ((host->data == NULL && !host->response_busy) || cmd->error)
978 		omap_hsmmc_request_done(host, host->mrq);
979 }
980 
981 /*
982  * DMA clean up for command errors
983  */
984 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
985 {
986 	int dma_ch;
987 	unsigned long flags;
988 
989 	host->data->error = errno;
990 
991 	spin_lock_irqsave(&host->irq_lock, flags);
992 	dma_ch = host->dma_ch;
993 	host->dma_ch = -1;
994 	spin_unlock_irqrestore(&host->irq_lock, flags);
995 
996 	if (host->use_dma && dma_ch != -1) {
997 		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
998 
999 		dmaengine_terminate_all(chan);
1000 		dma_unmap_sg(chan->device->dev,
1001 			host->data->sg, host->data->sg_len,
1002 			omap_hsmmc_get_dma_dir(host, host->data));
1003 
1004 		host->data->host_cookie = 0;
1005 	}
1006 	host->data = NULL;
1007 }
1008 
1009 /*
1010  * Readable error output
1011  */
1012 #ifdef CONFIG_MMC_DEBUG
1013 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
1014 {
1015 	/* --- means reserved bit without definition at documentation */
1016 	static const char *omap_hsmmc_status_bits[] = {
1017 		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
1018 		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
1019 		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
1020 		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
1021 	};
1022 	char res[256];
1023 	char *buf = res;
1024 	int len, i;
1025 
1026 	len = sprintf(buf, "MMC IRQ 0x%x :", status);
1027 	buf += len;
1028 
1029 	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
1030 		if (status & (1 << i)) {
1031 			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
1032 			buf += len;
1033 		}
1034 
1035 	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
1036 }
1037 #else
1038 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
1039 					     u32 status)
1040 {
1041 }
1042 #endif  /* CONFIG_MMC_DEBUG */
1043 
1044 /*
1045  * MMC controller internal state machines reset
1046  *
1047  * Used to reset command or data internal state machines, using respectively
1048  *  SRC or SRD bit of SYSCTL register
1049  * Can be called from interrupt context
1050  */
1051 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
1052 						   unsigned long bit)
1053 {
1054 	unsigned long i = 0;
1055 	unsigned long limit = MMC_TIMEOUT_US;
1056 
1057 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
1058 			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
1059 
1060 	/*
1061 	 * OMAP4 ES2 and greater has an updated reset logic.
1062 	 * Monitor a 0->1 transition first
1063 	 */
1064 	if (mmc_slot(host).features & HSMMC_HAS_UPDATED_RESET) {
1065 		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
1066 					&& (i++ < limit))
1067 			udelay(1);
1068 	}
1069 	i = 0;
1070 
1071 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
1072 		(i++ < limit))
1073 		udelay(1);
1074 
1075 	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1076 		dev_err(mmc_dev(host->mmc),
1077 			"Timeout waiting on controller reset in %s\n",
1078 			__func__);
1079 }
1080 
1081 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1082 					int err, int end_cmd)
1083 {
1084 	if (end_cmd) {
1085 		omap_hsmmc_reset_controller_fsm(host, SRC);
1086 		if (host->cmd)
1087 			host->cmd->error = err;
1088 	}
1089 
1090 	if (host->data) {
1091 		omap_hsmmc_reset_controller_fsm(host, SRD);
1092 		omap_hsmmc_dma_cleanup(host, err);
1093 	} else if (host->mrq && host->mrq->cmd)
1094 		host->mrq->cmd->error = err;
1095 }
1096 
1097 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1098 {
1099 	struct mmc_data *data;
1100 	int end_cmd = 0, end_trans = 0;
1101 	int error = 0;
1102 
1103 	data = host->data;
1104 	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1105 
1106 	if (status & ERR_EN) {
1107 		omap_hsmmc_dbg_report_irq(host, status);
1108 
1109 		if (status & (CTO_EN | CCRC_EN))
1110 			end_cmd = 1;
1111 		if (status & (CTO_EN | DTO_EN))
1112 			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1113 		else if (status & (CCRC_EN | DCRC_EN))
1114 			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1115 
1116 		if (status & ACE_EN) {
1117 			u32 ac12;
1118 			ac12 = OMAP_HSMMC_READ(host->base, AC12);
1119 			if (!(ac12 & ACNE) && host->mrq->sbc) {
1120 				end_cmd = 1;
1121 				if (ac12 & ACTO)
1122 					error =  -ETIMEDOUT;
1123 				else if (ac12 & (ACCE | ACEB | ACIE))
1124 					error = -EILSEQ;
1125 				host->mrq->sbc->error = error;
1126 				hsmmc_command_incomplete(host, error, end_cmd);
1127 			}
1128 			dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1129 		}
1130 		if (host->data || host->response_busy) {
1131 			end_trans = !end_cmd;
1132 			host->response_busy = 0;
1133 		}
1134 	}
1135 
1136 	OMAP_HSMMC_WRITE(host->base, STAT, status);
1137 	if (end_cmd || ((status & CC_EN) && host->cmd))
1138 		omap_hsmmc_cmd_done(host, host->cmd);
1139 	if ((end_trans || (status & TC_EN)) && host->mrq)
1140 		omap_hsmmc_xfer_done(host, data);
1141 }
1142 
1143 /*
1144  * MMC controller IRQ handler
1145  */
1146 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1147 {
1148 	struct omap_hsmmc_host *host = dev_id;
1149 	int status;
1150 
1151 	status = OMAP_HSMMC_READ(host->base, STAT);
1152 	while (status & (INT_EN_MASK | CIRQ_EN)) {
1153 		if (host->req_in_progress)
1154 			omap_hsmmc_do_irq(host, status);
1155 
1156 		if (status & CIRQ_EN)
1157 			mmc_signal_sdio_irq(host->mmc);
1158 
1159 		/* Flush posted write */
1160 		status = OMAP_HSMMC_READ(host->base, STAT);
1161 	}
1162 
1163 	return IRQ_HANDLED;
1164 }
1165 
1166 static irqreturn_t omap_hsmmc_wake_irq(int irq, void *dev_id)
1167 {
1168 	struct omap_hsmmc_host *host = dev_id;
1169 
1170 	/* cirq is level triggered, disable to avoid infinite loop */
1171 	spin_lock(&host->irq_lock);
1172 	if (host->flags & HSMMC_WAKE_IRQ_ENABLED) {
1173 		disable_irq_nosync(host->wake_irq);
1174 		host->flags &= ~HSMMC_WAKE_IRQ_ENABLED;
1175 	}
1176 	spin_unlock(&host->irq_lock);
1177 	pm_request_resume(host->dev); /* no use counter */
1178 
1179 	return IRQ_HANDLED;
1180 }
1181 
1182 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1183 {
1184 	unsigned long i;
1185 
1186 	OMAP_HSMMC_WRITE(host->base, HCTL,
1187 			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1188 	for (i = 0; i < loops_per_jiffy; i++) {
1189 		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1190 			break;
1191 		cpu_relax();
1192 	}
1193 }
1194 
1195 /*
1196  * Switch MMC interface voltage ... only relevant for MMC1.
1197  *
1198  * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1199  * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1200  * Some chips, like eMMC ones, use internal transceivers.
1201  */
1202 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1203 {
1204 	u32 reg_val = 0;
1205 	int ret;
1206 
1207 	/* Disable the clocks */
1208 	pm_runtime_put_sync(host->dev);
1209 	if (host->dbclk)
1210 		clk_disable_unprepare(host->dbclk);
1211 
1212 	/* Turn the power off */
1213 	ret = mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
1214 
1215 	/* Turn the power ON with given VDD 1.8 or 3.0v */
1216 	if (!ret)
1217 		ret = mmc_slot(host).set_power(host->dev, host->slot_id, 1,
1218 					       vdd);
1219 	pm_runtime_get_sync(host->dev);
1220 	if (host->dbclk)
1221 		clk_prepare_enable(host->dbclk);
1222 
1223 	if (ret != 0)
1224 		goto err;
1225 
1226 	OMAP_HSMMC_WRITE(host->base, HCTL,
1227 		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1228 	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1229 
1230 	/*
1231 	 * If a MMC dual voltage card is detected, the set_ios fn calls
1232 	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1233 	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1234 	 *
1235 	 * Cope with a bit of slop in the range ... per data sheets:
1236 	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1237 	 *    but recommended values are 1.71V to 1.89V
1238 	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1239 	 *    but recommended values are 2.7V to 3.3V
1240 	 *
1241 	 * Board setup code shouldn't permit anything very out-of-range.
1242 	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1243 	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1244 	 */
1245 	if ((1 << vdd) <= MMC_VDD_23_24)
1246 		reg_val |= SDVS18;
1247 	else
1248 		reg_val |= SDVS30;
1249 
1250 	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1251 	set_sd_bus_power(host);
1252 
1253 	return 0;
1254 err:
1255 	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1256 	return ret;
1257 }
1258 
1259 /* Protect the card while the cover is open */
1260 static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1261 {
1262 	if (!mmc_slot(host).get_cover_state)
1263 		return;
1264 
1265 	host->reqs_blocked = 0;
1266 	if (mmc_slot(host).get_cover_state(host->dev, host->slot_id)) {
1267 		if (host->protect_card) {
1268 			dev_info(host->dev, "%s: cover is closed, "
1269 					 "card is now accessible\n",
1270 					 mmc_hostname(host->mmc));
1271 			host->protect_card = 0;
1272 		}
1273 	} else {
1274 		if (!host->protect_card) {
1275 			dev_info(host->dev, "%s: cover is open, "
1276 					 "card is now inaccessible\n",
1277 					 mmc_hostname(host->mmc));
1278 			host->protect_card = 1;
1279 		}
1280 	}
1281 }
1282 
1283 /*
1284  * irq handler to notify the core about card insertion/removal
1285  */
1286 static irqreturn_t omap_hsmmc_detect(int irq, void *dev_id)
1287 {
1288 	struct omap_hsmmc_host *host = dev_id;
1289 	struct omap_mmc_slot_data *slot = &mmc_slot(host);
1290 	int carddetect;
1291 
1292 	sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1293 
1294 	if (slot->card_detect)
1295 		carddetect = slot->card_detect(host->dev, host->slot_id);
1296 	else {
1297 		omap_hsmmc_protect_card(host);
1298 		carddetect = -ENOSYS;
1299 	}
1300 
1301 	if (carddetect)
1302 		mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1303 	else
1304 		mmc_detect_change(host->mmc, (HZ * 50) / 1000);
1305 	return IRQ_HANDLED;
1306 }
1307 
1308 static void omap_hsmmc_dma_callback(void *param)
1309 {
1310 	struct omap_hsmmc_host *host = param;
1311 	struct dma_chan *chan;
1312 	struct mmc_data *data;
1313 	int req_in_progress;
1314 
1315 	spin_lock_irq(&host->irq_lock);
1316 	if (host->dma_ch < 0) {
1317 		spin_unlock_irq(&host->irq_lock);
1318 		return;
1319 	}
1320 
1321 	data = host->mrq->data;
1322 	chan = omap_hsmmc_get_dma_chan(host, data);
1323 	if (!data->host_cookie)
1324 		dma_unmap_sg(chan->device->dev,
1325 			     data->sg, data->sg_len,
1326 			     omap_hsmmc_get_dma_dir(host, data));
1327 
1328 	req_in_progress = host->req_in_progress;
1329 	host->dma_ch = -1;
1330 	spin_unlock_irq(&host->irq_lock);
1331 
1332 	/* If DMA has finished after TC, complete the request */
1333 	if (!req_in_progress) {
1334 		struct mmc_request *mrq = host->mrq;
1335 
1336 		host->mrq = NULL;
1337 		mmc_request_done(host->mmc, mrq);
1338 	}
1339 }
1340 
1341 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1342 				       struct mmc_data *data,
1343 				       struct omap_hsmmc_next *next,
1344 				       struct dma_chan *chan)
1345 {
1346 	int dma_len;
1347 
1348 	if (!next && data->host_cookie &&
1349 	    data->host_cookie != host->next_data.cookie) {
1350 		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1351 		       " host->next_data.cookie %d\n",
1352 		       __func__, data->host_cookie, host->next_data.cookie);
1353 		data->host_cookie = 0;
1354 	}
1355 
1356 	/* Check if next job is already prepared */
1357 	if (next || data->host_cookie != host->next_data.cookie) {
1358 		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1359 				     omap_hsmmc_get_dma_dir(host, data));
1360 
1361 	} else {
1362 		dma_len = host->next_data.dma_len;
1363 		host->next_data.dma_len = 0;
1364 	}
1365 
1366 
1367 	if (dma_len == 0)
1368 		return -EINVAL;
1369 
1370 	if (next) {
1371 		next->dma_len = dma_len;
1372 		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1373 	} else
1374 		host->dma_len = dma_len;
1375 
1376 	return 0;
1377 }
1378 
1379 /*
1380  * Routine to configure and start DMA for the MMC card
1381  */
1382 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1383 					struct mmc_request *req)
1384 {
1385 	struct dma_slave_config cfg;
1386 	struct dma_async_tx_descriptor *tx;
1387 	int ret = 0, i;
1388 	struct mmc_data *data = req->data;
1389 	struct dma_chan *chan;
1390 
1391 	/* Sanity check: all the SG entries must be aligned by block size. */
1392 	for (i = 0; i < data->sg_len; i++) {
1393 		struct scatterlist *sgl;
1394 
1395 		sgl = data->sg + i;
1396 		if (sgl->length % data->blksz)
1397 			return -EINVAL;
1398 	}
1399 	if ((data->blksz % 4) != 0)
1400 		/* REVISIT: The MMC buffer increments only when MSB is written.
1401 		 * Return error for blksz which is non multiple of four.
1402 		 */
1403 		return -EINVAL;
1404 
1405 	BUG_ON(host->dma_ch != -1);
1406 
1407 	chan = omap_hsmmc_get_dma_chan(host, data);
1408 
1409 	cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA;
1410 	cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA;
1411 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1412 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1413 	cfg.src_maxburst = data->blksz / 4;
1414 	cfg.dst_maxburst = data->blksz / 4;
1415 
1416 	ret = dmaengine_slave_config(chan, &cfg);
1417 	if (ret)
1418 		return ret;
1419 
1420 	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1421 	if (ret)
1422 		return ret;
1423 
1424 	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1425 		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1426 		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1427 	if (!tx) {
1428 		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1429 		/* FIXME: cleanup */
1430 		return -1;
1431 	}
1432 
1433 	tx->callback = omap_hsmmc_dma_callback;
1434 	tx->callback_param = host;
1435 
1436 	/* Does not fail */
1437 	dmaengine_submit(tx);
1438 
1439 	host->dma_ch = 1;
1440 
1441 	return 0;
1442 }
1443 
1444 static void set_data_timeout(struct omap_hsmmc_host *host,
1445 			     unsigned int timeout_ns,
1446 			     unsigned int timeout_clks)
1447 {
1448 	unsigned int timeout, cycle_ns;
1449 	uint32_t reg, clkd, dto = 0;
1450 
1451 	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1452 	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1453 	if (clkd == 0)
1454 		clkd = 1;
1455 
1456 	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1457 	timeout = timeout_ns / cycle_ns;
1458 	timeout += timeout_clks;
1459 	if (timeout) {
1460 		while ((timeout & 0x80000000) == 0) {
1461 			dto += 1;
1462 			timeout <<= 1;
1463 		}
1464 		dto = 31 - dto;
1465 		timeout <<= 1;
1466 		if (timeout && dto)
1467 			dto += 1;
1468 		if (dto >= 13)
1469 			dto -= 13;
1470 		else
1471 			dto = 0;
1472 		if (dto > 14)
1473 			dto = 14;
1474 	}
1475 
1476 	reg &= ~DTO_MASK;
1477 	reg |= dto << DTO_SHIFT;
1478 	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1479 }
1480 
1481 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1482 {
1483 	struct mmc_request *req = host->mrq;
1484 	struct dma_chan *chan;
1485 
1486 	if (!req->data)
1487 		return;
1488 	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1489 				| (req->data->blocks << 16));
1490 	set_data_timeout(host, req->data->timeout_ns,
1491 				req->data->timeout_clks);
1492 	chan = omap_hsmmc_get_dma_chan(host, req->data);
1493 	dma_async_issue_pending(chan);
1494 }
1495 
1496 /*
1497  * Configure block length for MMC/SD cards and initiate the transfer.
1498  */
1499 static int
1500 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1501 {
1502 	int ret;
1503 	host->data = req->data;
1504 
1505 	if (req->data == NULL) {
1506 		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1507 		/*
1508 		 * Set an arbitrary 100ms data timeout for commands with
1509 		 * busy signal.
1510 		 */
1511 		if (req->cmd->flags & MMC_RSP_BUSY)
1512 			set_data_timeout(host, 100000000U, 0);
1513 		return 0;
1514 	}
1515 
1516 	if (host->use_dma) {
1517 		ret = omap_hsmmc_setup_dma_transfer(host, req);
1518 		if (ret != 0) {
1519 			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1520 			return ret;
1521 		}
1522 	}
1523 	return 0;
1524 }
1525 
1526 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1527 				int err)
1528 {
1529 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1530 	struct mmc_data *data = mrq->data;
1531 
1532 	if (host->use_dma && data->host_cookie) {
1533 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1534 
1535 		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1536 			     omap_hsmmc_get_dma_dir(host, data));
1537 		data->host_cookie = 0;
1538 	}
1539 }
1540 
1541 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
1542 			       bool is_first_req)
1543 {
1544 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1545 
1546 	if (mrq->data->host_cookie) {
1547 		mrq->data->host_cookie = 0;
1548 		return ;
1549 	}
1550 
1551 	if (host->use_dma) {
1552 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1553 
1554 		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1555 						&host->next_data, c))
1556 			mrq->data->host_cookie = 0;
1557 	}
1558 }
1559 
1560 /*
1561  * Request function. for read/write operation
1562  */
1563 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1564 {
1565 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1566 	int err;
1567 
1568 	BUG_ON(host->req_in_progress);
1569 	BUG_ON(host->dma_ch != -1);
1570 	if (host->protect_card) {
1571 		if (host->reqs_blocked < 3) {
1572 			/*
1573 			 * Ensure the controller is left in a consistent
1574 			 * state by resetting the command and data state
1575 			 * machines.
1576 			 */
1577 			omap_hsmmc_reset_controller_fsm(host, SRD);
1578 			omap_hsmmc_reset_controller_fsm(host, SRC);
1579 			host->reqs_blocked += 1;
1580 		}
1581 		req->cmd->error = -EBADF;
1582 		if (req->data)
1583 			req->data->error = -EBADF;
1584 		req->cmd->retries = 0;
1585 		mmc_request_done(mmc, req);
1586 		return;
1587 	} else if (host->reqs_blocked)
1588 		host->reqs_blocked = 0;
1589 	WARN_ON(host->mrq != NULL);
1590 	host->mrq = req;
1591 	host->clk_rate = clk_get_rate(host->fclk);
1592 	err = omap_hsmmc_prepare_data(host, req);
1593 	if (err) {
1594 		req->cmd->error = err;
1595 		if (req->data)
1596 			req->data->error = err;
1597 		host->mrq = NULL;
1598 		mmc_request_done(mmc, req);
1599 		return;
1600 	}
1601 	if (req->sbc && !(host->flags & AUTO_CMD23)) {
1602 		omap_hsmmc_start_command(host, req->sbc, NULL);
1603 		return;
1604 	}
1605 
1606 	omap_hsmmc_start_dma_transfer(host);
1607 	omap_hsmmc_start_command(host, req->cmd, req->data);
1608 }
1609 
1610 /* Routine to configure clock values. Exposed API to core */
1611 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1612 {
1613 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1614 	int do_send_init_stream = 0;
1615 
1616 	pm_runtime_get_sync(host->dev);
1617 
1618 	if (ios->power_mode != host->power_mode) {
1619 		switch (ios->power_mode) {
1620 		case MMC_POWER_OFF:
1621 			mmc_slot(host).set_power(host->dev, host->slot_id,
1622 						 0, 0);
1623 			break;
1624 		case MMC_POWER_UP:
1625 			mmc_slot(host).set_power(host->dev, host->slot_id,
1626 						 1, ios->vdd);
1627 			break;
1628 		case MMC_POWER_ON:
1629 			do_send_init_stream = 1;
1630 			break;
1631 		}
1632 		host->power_mode = ios->power_mode;
1633 	}
1634 
1635 	/* FIXME: set registers based only on changes to ios */
1636 
1637 	omap_hsmmc_set_bus_width(host);
1638 
1639 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1640 		/* Only MMC1 can interface at 3V without some flavor
1641 		 * of external transceiver; but they all handle 1.8V.
1642 		 */
1643 		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1644 			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1645 				/*
1646 				 * The mmc_select_voltage fn of the core does
1647 				 * not seem to set the power_mode to
1648 				 * MMC_POWER_UP upon recalculating the voltage.
1649 				 * vdd 1.8v.
1650 				 */
1651 			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1652 				dev_dbg(mmc_dev(host->mmc),
1653 						"Switch operation failed\n");
1654 		}
1655 	}
1656 
1657 	omap_hsmmc_set_clock(host);
1658 
1659 	if (do_send_init_stream)
1660 		send_init_stream(host);
1661 
1662 	omap_hsmmc_set_bus_mode(host);
1663 
1664 	pm_runtime_put_autosuspend(host->dev);
1665 }
1666 
1667 static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1668 {
1669 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1670 
1671 	if (!mmc_slot(host).card_detect)
1672 		return -ENOSYS;
1673 	return mmc_slot(host).card_detect(host->dev, host->slot_id);
1674 }
1675 
1676 static int omap_hsmmc_get_ro(struct mmc_host *mmc)
1677 {
1678 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1679 
1680 	if (!mmc_slot(host).get_ro)
1681 		return -ENOSYS;
1682 	return mmc_slot(host).get_ro(host->dev, 0);
1683 }
1684 
1685 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1686 {
1687 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1688 
1689 	if (mmc_slot(host).init_card)
1690 		mmc_slot(host).init_card(card);
1691 }
1692 
1693 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1694 {
1695 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1696 	u32 irq_mask, con;
1697 	unsigned long flags;
1698 
1699 	spin_lock_irqsave(&host->irq_lock, flags);
1700 
1701 	con = OMAP_HSMMC_READ(host->base, CON);
1702 	irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1703 	if (enable) {
1704 		host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1705 		irq_mask |= CIRQ_EN;
1706 		con |= CTPL | CLKEXTFREE;
1707 	} else {
1708 		host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1709 		irq_mask &= ~CIRQ_EN;
1710 		con &= ~(CTPL | CLKEXTFREE);
1711 	}
1712 	OMAP_HSMMC_WRITE(host->base, CON, con);
1713 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1714 
1715 	/*
1716 	 * if enable, piggy back detection on current request
1717 	 * but always disable immediately
1718 	 */
1719 	if (!host->req_in_progress || !enable)
1720 		OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1721 
1722 	/* flush posted write */
1723 	OMAP_HSMMC_READ(host->base, IE);
1724 
1725 	spin_unlock_irqrestore(&host->irq_lock, flags);
1726 }
1727 
1728 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1729 {
1730 	struct mmc_host *mmc = host->mmc;
1731 	int ret;
1732 
1733 	/*
1734 	 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1735 	 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1736 	 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1737 	 * with functional clock disabled.
1738 	 */
1739 	if (!host->dev->of_node || !host->wake_irq)
1740 		return -ENODEV;
1741 
1742 	/* Prevent auto-enabling of IRQ */
1743 	irq_set_status_flags(host->wake_irq, IRQ_NOAUTOEN);
1744 	ret = devm_request_irq(host->dev, host->wake_irq, omap_hsmmc_wake_irq,
1745 			       IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1746 			       mmc_hostname(mmc), host);
1747 	if (ret) {
1748 		dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1749 		goto err;
1750 	}
1751 
1752 	/*
1753 	 * Some omaps don't have wake-up path from deeper idle states
1754 	 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1755 	 */
1756 	if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1757 		struct pinctrl *p = devm_pinctrl_get(host->dev);
1758 		if (!p) {
1759 			ret = -ENODEV;
1760 			goto err_free_irq;
1761 		}
1762 		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
1763 			dev_info(host->dev, "missing default pinctrl state\n");
1764 			devm_pinctrl_put(p);
1765 			ret = -EINVAL;
1766 			goto err_free_irq;
1767 		}
1768 
1769 		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1770 			dev_info(host->dev, "missing idle pinctrl state\n");
1771 			devm_pinctrl_put(p);
1772 			ret = -EINVAL;
1773 			goto err_free_irq;
1774 		}
1775 		devm_pinctrl_put(p);
1776 	}
1777 
1778 	OMAP_HSMMC_WRITE(host->base, HCTL,
1779 			 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1780 	return 0;
1781 
1782 err_free_irq:
1783 	devm_free_irq(host->dev, host->wake_irq, host);
1784 err:
1785 	dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1786 	host->wake_irq = 0;
1787 	return ret;
1788 }
1789 
1790 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1791 {
1792 	u32 hctl, capa, value;
1793 
1794 	/* Only MMC1 supports 3.0V */
1795 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1796 		hctl = SDVS30;
1797 		capa = VS30 | VS18;
1798 	} else {
1799 		hctl = SDVS18;
1800 		capa = VS18;
1801 	}
1802 
1803 	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1804 	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1805 
1806 	value = OMAP_HSMMC_READ(host->base, CAPA);
1807 	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1808 
1809 	/* Set SD bus power bit */
1810 	set_sd_bus_power(host);
1811 }
1812 
1813 static int omap_hsmmc_enable_fclk(struct mmc_host *mmc)
1814 {
1815 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1816 
1817 	pm_runtime_get_sync(host->dev);
1818 
1819 	return 0;
1820 }
1821 
1822 static int omap_hsmmc_disable_fclk(struct mmc_host *mmc)
1823 {
1824 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1825 
1826 	pm_runtime_mark_last_busy(host->dev);
1827 	pm_runtime_put_autosuspend(host->dev);
1828 
1829 	return 0;
1830 }
1831 
1832 static const struct mmc_host_ops omap_hsmmc_ops = {
1833 	.enable = omap_hsmmc_enable_fclk,
1834 	.disable = omap_hsmmc_disable_fclk,
1835 	.post_req = omap_hsmmc_post_req,
1836 	.pre_req = omap_hsmmc_pre_req,
1837 	.request = omap_hsmmc_request,
1838 	.set_ios = omap_hsmmc_set_ios,
1839 	.get_cd = omap_hsmmc_get_cd,
1840 	.get_ro = omap_hsmmc_get_ro,
1841 	.init_card = omap_hsmmc_init_card,
1842 	.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1843 };
1844 
1845 #ifdef CONFIG_DEBUG_FS
1846 
1847 static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1848 {
1849 	struct mmc_host *mmc = s->private;
1850 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1851 
1852 	seq_printf(s, "mmc%d:\n", mmc->index);
1853 	seq_printf(s, "sdio irq mode\t%s\n",
1854 		   (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1855 
1856 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1857 		seq_printf(s, "sdio irq \t%s\n",
1858 			   (host->flags & HSMMC_SDIO_IRQ_ENABLED) ?  "enabled"
1859 			   : "disabled");
1860 	}
1861 	seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1862 
1863 	pm_runtime_get_sync(host->dev);
1864 	seq_puts(s, "\nregs:\n");
1865 	seq_printf(s, "CON:\t\t0x%08x\n",
1866 			OMAP_HSMMC_READ(host->base, CON));
1867 	seq_printf(s, "PSTATE:\t\t0x%08x\n",
1868 		   OMAP_HSMMC_READ(host->base, PSTATE));
1869 	seq_printf(s, "HCTL:\t\t0x%08x\n",
1870 			OMAP_HSMMC_READ(host->base, HCTL));
1871 	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1872 			OMAP_HSMMC_READ(host->base, SYSCTL));
1873 	seq_printf(s, "IE:\t\t0x%08x\n",
1874 			OMAP_HSMMC_READ(host->base, IE));
1875 	seq_printf(s, "ISE:\t\t0x%08x\n",
1876 			OMAP_HSMMC_READ(host->base, ISE));
1877 	seq_printf(s, "CAPA:\t\t0x%08x\n",
1878 			OMAP_HSMMC_READ(host->base, CAPA));
1879 
1880 	pm_runtime_mark_last_busy(host->dev);
1881 	pm_runtime_put_autosuspend(host->dev);
1882 
1883 	return 0;
1884 }
1885 
1886 static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1887 {
1888 	return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1889 }
1890 
1891 static const struct file_operations mmc_regs_fops = {
1892 	.open           = omap_hsmmc_regs_open,
1893 	.read           = seq_read,
1894 	.llseek         = seq_lseek,
1895 	.release        = single_release,
1896 };
1897 
1898 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1899 {
1900 	if (mmc->debugfs_root)
1901 		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1902 			mmc, &mmc_regs_fops);
1903 }
1904 
1905 #else
1906 
1907 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1908 {
1909 }
1910 
1911 #endif
1912 
1913 #ifdef CONFIG_OF
1914 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1915 	/* See 35xx errata 2.1.1.128 in SPRZ278F */
1916 	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1917 };
1918 
1919 static const struct omap_mmc_of_data omap4_mmc_of_data = {
1920 	.reg_offset = 0x100,
1921 };
1922 static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1923 	.reg_offset = 0x100,
1924 	.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1925 };
1926 
1927 static const struct of_device_id omap_mmc_of_match[] = {
1928 	{
1929 		.compatible = "ti,omap2-hsmmc",
1930 	},
1931 	{
1932 		.compatible = "ti,omap3-pre-es3-hsmmc",
1933 		.data = &omap3_pre_es3_mmc_of_data,
1934 	},
1935 	{
1936 		.compatible = "ti,omap3-hsmmc",
1937 	},
1938 	{
1939 		.compatible = "ti,omap4-hsmmc",
1940 		.data = &omap4_mmc_of_data,
1941 	},
1942 	{
1943 		.compatible = "ti,am33xx-hsmmc",
1944 		.data = &am33xx_mmc_of_data,
1945 	},
1946 	{},
1947 };
1948 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1949 
1950 static struct omap_mmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1951 {
1952 	struct omap_mmc_platform_data *pdata;
1953 	struct device_node *np = dev->of_node;
1954 	u32 bus_width, max_freq;
1955 	int cd_gpio, wp_gpio;
1956 
1957 	cd_gpio = of_get_named_gpio(np, "cd-gpios", 0);
1958 	wp_gpio = of_get_named_gpio(np, "wp-gpios", 0);
1959 	if (cd_gpio == -EPROBE_DEFER || wp_gpio == -EPROBE_DEFER)
1960 		return ERR_PTR(-EPROBE_DEFER);
1961 
1962 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1963 	if (!pdata)
1964 		return ERR_PTR(-ENOMEM); /* out of memory */
1965 
1966 	if (of_find_property(np, "ti,dual-volt", NULL))
1967 		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1968 
1969 	/* This driver only supports 1 slot */
1970 	pdata->nr_slots = 1;
1971 	pdata->slots[0].switch_pin = cd_gpio;
1972 	pdata->slots[0].gpio_wp = wp_gpio;
1973 
1974 	if (of_find_property(np, "ti,non-removable", NULL)) {
1975 		pdata->slots[0].nonremovable = true;
1976 		pdata->slots[0].no_regulator_off_init = true;
1977 	}
1978 	of_property_read_u32(np, "bus-width", &bus_width);
1979 	if (bus_width == 4)
1980 		pdata->slots[0].caps |= MMC_CAP_4_BIT_DATA;
1981 	else if (bus_width == 8)
1982 		pdata->slots[0].caps |= MMC_CAP_8_BIT_DATA;
1983 
1984 	if (of_find_property(np, "ti,needs-special-reset", NULL))
1985 		pdata->slots[0].features |= HSMMC_HAS_UPDATED_RESET;
1986 
1987 	if (!of_property_read_u32(np, "max-frequency", &max_freq))
1988 		pdata->max_freq = max_freq;
1989 
1990 	if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1991 		pdata->slots[0].features |= HSMMC_HAS_HSPE_SUPPORT;
1992 
1993 	if (of_find_property(np, "keep-power-in-suspend", NULL))
1994 		pdata->slots[0].pm_caps |= MMC_PM_KEEP_POWER;
1995 
1996 	if (of_find_property(np, "enable-sdio-wakeup", NULL))
1997 		pdata->slots[0].pm_caps |= MMC_PM_WAKE_SDIO_IRQ;
1998 
1999 	return pdata;
2000 }
2001 #else
2002 static inline struct omap_mmc_platform_data
2003 			*of_get_hsmmc_pdata(struct device *dev)
2004 {
2005 	return ERR_PTR(-EINVAL);
2006 }
2007 #endif
2008 
2009 static int omap_hsmmc_probe(struct platform_device *pdev)
2010 {
2011 	struct omap_mmc_platform_data *pdata = pdev->dev.platform_data;
2012 	struct mmc_host *mmc;
2013 	struct omap_hsmmc_host *host = NULL;
2014 	struct resource *res;
2015 	int ret, irq;
2016 	const struct of_device_id *match;
2017 	dma_cap_mask_t mask;
2018 	unsigned tx_req, rx_req;
2019 	const struct omap_mmc_of_data *data;
2020 	void __iomem *base;
2021 
2022 	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
2023 	if (match) {
2024 		pdata = of_get_hsmmc_pdata(&pdev->dev);
2025 
2026 		if (IS_ERR(pdata))
2027 			return PTR_ERR(pdata);
2028 
2029 		if (match->data) {
2030 			data = match->data;
2031 			pdata->reg_offset = data->reg_offset;
2032 			pdata->controller_flags |= data->controller_flags;
2033 		}
2034 	}
2035 
2036 	if (pdata == NULL) {
2037 		dev_err(&pdev->dev, "Platform Data is missing\n");
2038 		return -ENXIO;
2039 	}
2040 
2041 	if (pdata->nr_slots == 0) {
2042 		dev_err(&pdev->dev, "No Slots\n");
2043 		return -ENXIO;
2044 	}
2045 
2046 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2047 	irq = platform_get_irq(pdev, 0);
2048 	if (res == NULL || irq < 0)
2049 		return -ENXIO;
2050 
2051 	base = devm_ioremap_resource(&pdev->dev, res);
2052 	if (IS_ERR(base))
2053 		return PTR_ERR(base);
2054 
2055 	ret = omap_hsmmc_gpio_init(pdata);
2056 	if (ret)
2057 		goto err;
2058 
2059 	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
2060 	if (!mmc) {
2061 		ret = -ENOMEM;
2062 		goto err_alloc;
2063 	}
2064 
2065 	host		= mmc_priv(mmc);
2066 	host->mmc	= mmc;
2067 	host->pdata	= pdata;
2068 	host->dev	= &pdev->dev;
2069 	host->use_dma	= 1;
2070 	host->dma_ch	= -1;
2071 	host->irq	= irq;
2072 	host->slot_id	= 0;
2073 	host->mapbase	= res->start + pdata->reg_offset;
2074 	host->base	= base + pdata->reg_offset;
2075 	host->power_mode = MMC_POWER_OFF;
2076 	host->next_data.cookie = 1;
2077 	host->pbias_enabled = 0;
2078 
2079 	platform_set_drvdata(pdev, host);
2080 
2081 	if (pdev->dev.of_node)
2082 		host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
2083 
2084 	mmc->ops	= &omap_hsmmc_ops;
2085 
2086 	mmc->f_min = OMAP_MMC_MIN_CLOCK;
2087 
2088 	if (pdata->max_freq > 0)
2089 		mmc->f_max = pdata->max_freq;
2090 	else
2091 		mmc->f_max = OMAP_MMC_MAX_CLOCK;
2092 
2093 	spin_lock_init(&host->irq_lock);
2094 
2095 	host->fclk = devm_clk_get(&pdev->dev, "fck");
2096 	if (IS_ERR(host->fclk)) {
2097 		ret = PTR_ERR(host->fclk);
2098 		host->fclk = NULL;
2099 		goto err1;
2100 	}
2101 
2102 	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
2103 		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
2104 		mmc->caps2 |= MMC_CAP2_NO_MULTI_READ;
2105 	}
2106 
2107 	pm_runtime_enable(host->dev);
2108 	pm_runtime_get_sync(host->dev);
2109 	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
2110 	pm_runtime_use_autosuspend(host->dev);
2111 
2112 	omap_hsmmc_context_save(host);
2113 
2114 	host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
2115 	/*
2116 	 * MMC can still work without debounce clock.
2117 	 */
2118 	if (IS_ERR(host->dbclk)) {
2119 		host->dbclk = NULL;
2120 	} else if (clk_prepare_enable(host->dbclk) != 0) {
2121 		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
2122 		host->dbclk = NULL;
2123 	}
2124 
2125 	/* Since we do only SG emulation, we can have as many segs
2126 	 * as we want. */
2127 	mmc->max_segs = 1024;
2128 
2129 	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
2130 	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
2131 	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
2132 	mmc->max_seg_size = mmc->max_req_size;
2133 
2134 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
2135 		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
2136 
2137 	mmc->caps |= mmc_slot(host).caps;
2138 	if (mmc->caps & MMC_CAP_8_BIT_DATA)
2139 		mmc->caps |= MMC_CAP_4_BIT_DATA;
2140 
2141 	if (mmc_slot(host).nonremovable)
2142 		mmc->caps |= MMC_CAP_NONREMOVABLE;
2143 
2144 	mmc->pm_caps = mmc_slot(host).pm_caps;
2145 
2146 	omap_hsmmc_conf_bus_power(host);
2147 
2148 	if (!pdev->dev.of_node) {
2149 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
2150 		if (!res) {
2151 			dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n");
2152 			ret = -ENXIO;
2153 			goto err_irq;
2154 		}
2155 		tx_req = res->start;
2156 
2157 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
2158 		if (!res) {
2159 			dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n");
2160 			ret = -ENXIO;
2161 			goto err_irq;
2162 		}
2163 		rx_req = res->start;
2164 	}
2165 
2166 	dma_cap_zero(mask);
2167 	dma_cap_set(DMA_SLAVE, mask);
2168 
2169 	host->rx_chan =
2170 		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2171 						 &rx_req, &pdev->dev, "rx");
2172 
2173 	if (!host->rx_chan) {
2174 		dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel %u\n", rx_req);
2175 		ret = -ENXIO;
2176 		goto err_irq;
2177 	}
2178 
2179 	host->tx_chan =
2180 		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2181 						 &tx_req, &pdev->dev, "tx");
2182 
2183 	if (!host->tx_chan) {
2184 		dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel %u\n", tx_req);
2185 		ret = -ENXIO;
2186 		goto err_irq;
2187 	}
2188 
2189 	/* Request IRQ for MMC operations */
2190 	ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
2191 			mmc_hostname(mmc), host);
2192 	if (ret) {
2193 		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
2194 		goto err_irq;
2195 	}
2196 
2197 	if (pdata->init != NULL) {
2198 		if (pdata->init(&pdev->dev) != 0) {
2199 			dev_err(mmc_dev(host->mmc),
2200 				"Unable to configure MMC IRQs\n");
2201 			goto err_irq;
2202 		}
2203 	}
2204 
2205 	if (omap_hsmmc_have_reg() && !mmc_slot(host).set_power) {
2206 		ret = omap_hsmmc_reg_get(host);
2207 		if (ret)
2208 			goto err_reg;
2209 		host->use_reg = 1;
2210 	}
2211 
2212 	mmc->ocr_avail = mmc_slot(host).ocr_mask;
2213 
2214 	/* Request IRQ for card detect */
2215 	if ((mmc_slot(host).card_detect_irq)) {
2216 		ret = devm_request_threaded_irq(&pdev->dev,
2217 						mmc_slot(host).card_detect_irq,
2218 						NULL, omap_hsmmc_detect,
2219 					   IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
2220 					   mmc_hostname(mmc), host);
2221 		if (ret) {
2222 			dev_err(mmc_dev(host->mmc),
2223 				"Unable to grab MMC CD IRQ\n");
2224 			goto err_irq_cd;
2225 		}
2226 		pdata->suspend = omap_hsmmc_suspend_cdirq;
2227 		pdata->resume = omap_hsmmc_resume_cdirq;
2228 	}
2229 
2230 	omap_hsmmc_disable_irq(host);
2231 
2232 	/*
2233 	 * For now, only support SDIO interrupt if we have a separate
2234 	 * wake-up interrupt configured from device tree. This is because
2235 	 * the wake-up interrupt is needed for idle state and some
2236 	 * platforms need special quirks. And we don't want to add new
2237 	 * legacy mux platform init code callbacks any longer as we
2238 	 * are moving to DT based booting anyways.
2239 	 */
2240 	ret = omap_hsmmc_configure_wake_irq(host);
2241 	if (!ret)
2242 		mmc->caps |= MMC_CAP_SDIO_IRQ;
2243 
2244 	omap_hsmmc_protect_card(host);
2245 
2246 	mmc_add_host(mmc);
2247 
2248 	if (mmc_slot(host).name != NULL) {
2249 		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
2250 		if (ret < 0)
2251 			goto err_slot_name;
2252 	}
2253 	if (mmc_slot(host).card_detect_irq && mmc_slot(host).get_cover_state) {
2254 		ret = device_create_file(&mmc->class_dev,
2255 					&dev_attr_cover_switch);
2256 		if (ret < 0)
2257 			goto err_slot_name;
2258 	}
2259 
2260 	omap_hsmmc_debugfs(mmc);
2261 	pm_runtime_mark_last_busy(host->dev);
2262 	pm_runtime_put_autosuspend(host->dev);
2263 
2264 	return 0;
2265 
2266 err_slot_name:
2267 	mmc_remove_host(mmc);
2268 err_irq_cd:
2269 	if (host->use_reg)
2270 		omap_hsmmc_reg_put(host);
2271 err_reg:
2272 	if (host->pdata->cleanup)
2273 		host->pdata->cleanup(&pdev->dev);
2274 err_irq:
2275 	if (host->tx_chan)
2276 		dma_release_channel(host->tx_chan);
2277 	if (host->rx_chan)
2278 		dma_release_channel(host->rx_chan);
2279 	pm_runtime_put_sync(host->dev);
2280 	pm_runtime_disable(host->dev);
2281 	if (host->dbclk)
2282 		clk_disable_unprepare(host->dbclk);
2283 err1:
2284 	mmc_free_host(mmc);
2285 err_alloc:
2286 	omap_hsmmc_gpio_free(pdata);
2287 err:
2288 	return ret;
2289 }
2290 
2291 static int omap_hsmmc_remove(struct platform_device *pdev)
2292 {
2293 	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2294 
2295 	pm_runtime_get_sync(host->dev);
2296 	mmc_remove_host(host->mmc);
2297 	if (host->use_reg)
2298 		omap_hsmmc_reg_put(host);
2299 	if (host->pdata->cleanup)
2300 		host->pdata->cleanup(&pdev->dev);
2301 
2302 	if (host->tx_chan)
2303 		dma_release_channel(host->tx_chan);
2304 	if (host->rx_chan)
2305 		dma_release_channel(host->rx_chan);
2306 
2307 	pm_runtime_put_sync(host->dev);
2308 	pm_runtime_disable(host->dev);
2309 	if (host->dbclk)
2310 		clk_disable_unprepare(host->dbclk);
2311 
2312 	omap_hsmmc_gpio_free(host->pdata);
2313 	mmc_free_host(host->mmc);
2314 
2315 	return 0;
2316 }
2317 
2318 #ifdef CONFIG_PM
2319 static int omap_hsmmc_prepare(struct device *dev)
2320 {
2321 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2322 
2323 	if (host->pdata->suspend)
2324 		return host->pdata->suspend(dev, host->slot_id);
2325 
2326 	return 0;
2327 }
2328 
2329 static void omap_hsmmc_complete(struct device *dev)
2330 {
2331 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2332 
2333 	if (host->pdata->resume)
2334 		host->pdata->resume(dev, host->slot_id);
2335 
2336 }
2337 
2338 static int omap_hsmmc_suspend(struct device *dev)
2339 {
2340 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2341 
2342 	if (!host)
2343 		return 0;
2344 
2345 	pm_runtime_get_sync(host->dev);
2346 
2347 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2348 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2349 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2350 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2351 		OMAP_HSMMC_WRITE(host->base, HCTL,
2352 				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2353 	}
2354 
2355 	/* do not wake up due to sdio irq */
2356 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2357 	    !(host->mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ))
2358 		disable_irq(host->wake_irq);
2359 
2360 	if (host->dbclk)
2361 		clk_disable_unprepare(host->dbclk);
2362 
2363 	pm_runtime_put_sync(host->dev);
2364 	return 0;
2365 }
2366 
2367 /* Routine to resume the MMC device */
2368 static int omap_hsmmc_resume(struct device *dev)
2369 {
2370 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2371 
2372 	if (!host)
2373 		return 0;
2374 
2375 	pm_runtime_get_sync(host->dev);
2376 
2377 	if (host->dbclk)
2378 		clk_prepare_enable(host->dbclk);
2379 
2380 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2381 		omap_hsmmc_conf_bus_power(host);
2382 
2383 	omap_hsmmc_protect_card(host);
2384 
2385 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2386 	    !(host->mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ))
2387 		enable_irq(host->wake_irq);
2388 
2389 	pm_runtime_mark_last_busy(host->dev);
2390 	pm_runtime_put_autosuspend(host->dev);
2391 	return 0;
2392 }
2393 
2394 #else
2395 #define omap_hsmmc_prepare	NULL
2396 #define omap_hsmmc_complete	NULL
2397 #define omap_hsmmc_suspend	NULL
2398 #define omap_hsmmc_resume	NULL
2399 #endif
2400 
2401 static int omap_hsmmc_runtime_suspend(struct device *dev)
2402 {
2403 	struct omap_hsmmc_host *host;
2404 	unsigned long flags;
2405 	int ret = 0;
2406 
2407 	host = platform_get_drvdata(to_platform_device(dev));
2408 	omap_hsmmc_context_save(host);
2409 	dev_dbg(dev, "disabled\n");
2410 
2411 	spin_lock_irqsave(&host->irq_lock, flags);
2412 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2413 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2414 		/* disable sdio irq handling to prevent race */
2415 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2416 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2417 
2418 		if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2419 			/*
2420 			 * dat1 line low, pending sdio irq
2421 			 * race condition: possible irq handler running on
2422 			 * multi-core, abort
2423 			 */
2424 			dev_dbg(dev, "pending sdio irq, abort suspend\n");
2425 			OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2426 			OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2427 			OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2428 			pm_runtime_mark_last_busy(dev);
2429 			ret = -EBUSY;
2430 			goto abort;
2431 		}
2432 
2433 		pinctrl_pm_select_idle_state(dev);
2434 
2435 		WARN_ON(host->flags & HSMMC_WAKE_IRQ_ENABLED);
2436 		enable_irq(host->wake_irq);
2437 		host->flags |= HSMMC_WAKE_IRQ_ENABLED;
2438 	} else {
2439 		pinctrl_pm_select_idle_state(dev);
2440 	}
2441 
2442 abort:
2443 	spin_unlock_irqrestore(&host->irq_lock, flags);
2444 	return ret;
2445 }
2446 
2447 static int omap_hsmmc_runtime_resume(struct device *dev)
2448 {
2449 	struct omap_hsmmc_host *host;
2450 	unsigned long flags;
2451 
2452 	host = platform_get_drvdata(to_platform_device(dev));
2453 	omap_hsmmc_context_restore(host);
2454 	dev_dbg(dev, "enabled\n");
2455 
2456 	spin_lock_irqsave(&host->irq_lock, flags);
2457 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2458 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2459 		/* sdio irq flag can't change while in runtime suspend */
2460 		if (host->flags & HSMMC_WAKE_IRQ_ENABLED) {
2461 			disable_irq_nosync(host->wake_irq);
2462 			host->flags &= ~HSMMC_WAKE_IRQ_ENABLED;
2463 		}
2464 
2465 		pinctrl_pm_select_default_state(host->dev);
2466 
2467 		/* irq lost, if pinmux incorrect */
2468 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2469 		OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2470 		OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2471 	} else {
2472 		pinctrl_pm_select_default_state(host->dev);
2473 	}
2474 	spin_unlock_irqrestore(&host->irq_lock, flags);
2475 	return 0;
2476 }
2477 
2478 static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2479 	.suspend	= omap_hsmmc_suspend,
2480 	.resume		= omap_hsmmc_resume,
2481 	.prepare	= omap_hsmmc_prepare,
2482 	.complete	= omap_hsmmc_complete,
2483 	.runtime_suspend = omap_hsmmc_runtime_suspend,
2484 	.runtime_resume = omap_hsmmc_runtime_resume,
2485 };
2486 
2487 static struct platform_driver omap_hsmmc_driver = {
2488 	.probe		= omap_hsmmc_probe,
2489 	.remove		= omap_hsmmc_remove,
2490 	.driver		= {
2491 		.name = DRIVER_NAME,
2492 		.owner = THIS_MODULE,
2493 		.pm = &omap_hsmmc_dev_pm_ops,
2494 		.of_match_table = of_match_ptr(omap_mmc_of_match),
2495 	},
2496 };
2497 
2498 module_platform_driver(omap_hsmmc_driver);
2499 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2500 MODULE_LICENSE("GPL");
2501 MODULE_ALIAS("platform:" DRIVER_NAME);
2502 MODULE_AUTHOR("Texas Instruments Inc");
2503