xref: /openbmc/linux/drivers/mmc/host/omap_hsmmc.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 /*
2  * drivers/mmc/host/omap_hsmmc.c
3  *
4  * Driver for OMAP2430/3430 MMC controller.
5  *
6  * Copyright (C) 2007 Texas Instruments.
7  *
8  * Authors:
9  *	Syed Mohammed Khasim	<x0khasim@ti.com>
10  *	Madhusudhan		<madhu.cr@ti.com>
11  *	Mohit Jalori		<mjalori@ti.com>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/sizes.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/timer.h>
30 #include <linux/clk.h>
31 #include <linux/of.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_device.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/core.h>
36 #include <linux/mmc/mmc.h>
37 #include <linux/mmc/slot-gpio.h>
38 #include <linux/io.h>
39 #include <linux/irq.h>
40 #include <linux/regulator/consumer.h>
41 #include <linux/pinctrl/consumer.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/pm_wakeirq.h>
44 #include <linux/platform_data/hsmmc-omap.h>
45 
46 /* OMAP HSMMC Host Controller Registers */
47 #define OMAP_HSMMC_SYSSTATUS	0x0014
48 #define OMAP_HSMMC_CON		0x002C
49 #define OMAP_HSMMC_SDMASA	0x0100
50 #define OMAP_HSMMC_BLK		0x0104
51 #define OMAP_HSMMC_ARG		0x0108
52 #define OMAP_HSMMC_CMD		0x010C
53 #define OMAP_HSMMC_RSP10	0x0110
54 #define OMAP_HSMMC_RSP32	0x0114
55 #define OMAP_HSMMC_RSP54	0x0118
56 #define OMAP_HSMMC_RSP76	0x011C
57 #define OMAP_HSMMC_DATA		0x0120
58 #define OMAP_HSMMC_PSTATE	0x0124
59 #define OMAP_HSMMC_HCTL		0x0128
60 #define OMAP_HSMMC_SYSCTL	0x012C
61 #define OMAP_HSMMC_STAT		0x0130
62 #define OMAP_HSMMC_IE		0x0134
63 #define OMAP_HSMMC_ISE		0x0138
64 #define OMAP_HSMMC_AC12		0x013C
65 #define OMAP_HSMMC_CAPA		0x0140
66 
67 #define VS18			(1 << 26)
68 #define VS30			(1 << 25)
69 #define HSS			(1 << 21)
70 #define SDVS18			(0x5 << 9)
71 #define SDVS30			(0x6 << 9)
72 #define SDVS33			(0x7 << 9)
73 #define SDVS_MASK		0x00000E00
74 #define SDVSCLR			0xFFFFF1FF
75 #define SDVSDET			0x00000400
76 #define AUTOIDLE		0x1
77 #define SDBP			(1 << 8)
78 #define DTO			0xe
79 #define ICE			0x1
80 #define ICS			0x2
81 #define CEN			(1 << 2)
82 #define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
83 #define CLKD_MASK		0x0000FFC0
84 #define CLKD_SHIFT		6
85 #define DTO_MASK		0x000F0000
86 #define DTO_SHIFT		16
87 #define INIT_STREAM		(1 << 1)
88 #define ACEN_ACMD23		(2 << 2)
89 #define DP_SELECT		(1 << 21)
90 #define DDIR			(1 << 4)
91 #define DMAE			0x1
92 #define MSBS			(1 << 5)
93 #define BCE			(1 << 1)
94 #define FOUR_BIT		(1 << 1)
95 #define HSPE			(1 << 2)
96 #define IWE			(1 << 24)
97 #define DDR			(1 << 19)
98 #define CLKEXTFREE		(1 << 16)
99 #define CTPL			(1 << 11)
100 #define DW8			(1 << 5)
101 #define OD			0x1
102 #define STAT_CLEAR		0xFFFFFFFF
103 #define INIT_STREAM_CMD		0x00000000
104 #define DUAL_VOLT_OCR_BIT	7
105 #define SRC			(1 << 25)
106 #define SRD			(1 << 26)
107 #define SOFTRESET		(1 << 1)
108 
109 /* PSTATE */
110 #define DLEV_DAT(x)		(1 << (20 + (x)))
111 
112 /* Interrupt masks for IE and ISE register */
113 #define CC_EN			(1 << 0)
114 #define TC_EN			(1 << 1)
115 #define BWR_EN			(1 << 4)
116 #define BRR_EN			(1 << 5)
117 #define CIRQ_EN			(1 << 8)
118 #define ERR_EN			(1 << 15)
119 #define CTO_EN			(1 << 16)
120 #define CCRC_EN			(1 << 17)
121 #define CEB_EN			(1 << 18)
122 #define CIE_EN			(1 << 19)
123 #define DTO_EN			(1 << 20)
124 #define DCRC_EN			(1 << 21)
125 #define DEB_EN			(1 << 22)
126 #define ACE_EN			(1 << 24)
127 #define CERR_EN			(1 << 28)
128 #define BADA_EN			(1 << 29)
129 
130 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
131 		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
132 		BRR_EN | BWR_EN | TC_EN | CC_EN)
133 
134 #define CNI	(1 << 7)
135 #define ACIE	(1 << 4)
136 #define ACEB	(1 << 3)
137 #define ACCE	(1 << 2)
138 #define ACTO	(1 << 1)
139 #define ACNE	(1 << 0)
140 
141 #define MMC_AUTOSUSPEND_DELAY	100
142 #define MMC_TIMEOUT_MS		20		/* 20 mSec */
143 #define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
144 #define OMAP_MMC_MIN_CLOCK	400000
145 #define OMAP_MMC_MAX_CLOCK	52000000
146 #define DRIVER_NAME		"omap_hsmmc"
147 
148 /*
149  * One controller can have multiple slots, like on some omap boards using
150  * omap.c controller driver. Luckily this is not currently done on any known
151  * omap_hsmmc.c device.
152  */
153 #define mmc_pdata(host)		host->pdata
154 
155 /*
156  * MMC Host controller read/write API's
157  */
158 #define OMAP_HSMMC_READ(base, reg)	\
159 	__raw_readl((base) + OMAP_HSMMC_##reg)
160 
161 #define OMAP_HSMMC_WRITE(base, reg, val) \
162 	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
163 
164 struct omap_hsmmc_next {
165 	unsigned int	dma_len;
166 	s32		cookie;
167 };
168 
169 struct omap_hsmmc_host {
170 	struct	device		*dev;
171 	struct	mmc_host	*mmc;
172 	struct	mmc_request	*mrq;
173 	struct	mmc_command	*cmd;
174 	struct	mmc_data	*data;
175 	struct	clk		*fclk;
176 	struct	clk		*dbclk;
177 	struct	regulator	*pbias;
178 	bool			pbias_enabled;
179 	void	__iomem		*base;
180 	int			vqmmc_enabled;
181 	resource_size_t		mapbase;
182 	spinlock_t		irq_lock; /* Prevent races with irq handler */
183 	unsigned int		dma_len;
184 	unsigned int		dma_sg_idx;
185 	unsigned char		bus_mode;
186 	unsigned char		power_mode;
187 	int			suspended;
188 	u32			con;
189 	u32			hctl;
190 	u32			sysctl;
191 	u32			capa;
192 	int			irq;
193 	int			wake_irq;
194 	int			use_dma, dma_ch;
195 	struct dma_chan		*tx_chan;
196 	struct dma_chan		*rx_chan;
197 	int			response_busy;
198 	int			context_loss;
199 	int			reqs_blocked;
200 	int			req_in_progress;
201 	unsigned long		clk_rate;
202 	unsigned int		flags;
203 #define AUTO_CMD23		(1 << 0)        /* Auto CMD23 support */
204 #define HSMMC_SDIO_IRQ_ENABLED	(1 << 1)        /* SDIO irq enabled */
205 	struct omap_hsmmc_next	next_data;
206 	struct	omap_hsmmc_platform_data	*pdata;
207 };
208 
209 struct omap_mmc_of_data {
210 	u32 reg_offset;
211 	u8 controller_flags;
212 };
213 
214 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
215 
216 static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
217 {
218 	int ret;
219 	struct omap_hsmmc_host *host = mmc_priv(mmc);
220 	struct mmc_ios *ios = &mmc->ios;
221 
222 	if (!IS_ERR(mmc->supply.vmmc)) {
223 		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
224 		if (ret)
225 			return ret;
226 	}
227 
228 	/* Enable interface voltage rail, if needed */
229 	if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
230 		ret = regulator_enable(mmc->supply.vqmmc);
231 		if (ret) {
232 			dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
233 			goto err_vqmmc;
234 		}
235 		host->vqmmc_enabled = 1;
236 	}
237 
238 	return 0;
239 
240 err_vqmmc:
241 	if (!IS_ERR(mmc->supply.vmmc))
242 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
243 
244 	return ret;
245 }
246 
247 static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
248 {
249 	int ret;
250 	int status;
251 	struct omap_hsmmc_host *host = mmc_priv(mmc);
252 
253 	if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
254 		ret = regulator_disable(mmc->supply.vqmmc);
255 		if (ret) {
256 			dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
257 			return ret;
258 		}
259 		host->vqmmc_enabled = 0;
260 	}
261 
262 	if (!IS_ERR(mmc->supply.vmmc)) {
263 		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
264 		if (ret)
265 			goto err_set_ocr;
266 	}
267 
268 	return 0;
269 
270 err_set_ocr:
271 	if (!IS_ERR(mmc->supply.vqmmc)) {
272 		status = regulator_enable(mmc->supply.vqmmc);
273 		if (status)
274 			dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
275 	}
276 
277 	return ret;
278 }
279 
280 static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on)
281 {
282 	int ret;
283 
284 	if (IS_ERR(host->pbias))
285 		return 0;
286 
287 	if (power_on) {
288 		if (host->pbias_enabled == 0) {
289 			ret = regulator_enable(host->pbias);
290 			if (ret) {
291 				dev_err(host->dev, "pbias reg enable fail\n");
292 				return ret;
293 			}
294 			host->pbias_enabled = 1;
295 		}
296 	} else {
297 		if (host->pbias_enabled == 1) {
298 			ret = regulator_disable(host->pbias);
299 			if (ret) {
300 				dev_err(host->dev, "pbias reg disable fail\n");
301 				return ret;
302 			}
303 			host->pbias_enabled = 0;
304 		}
305 	}
306 
307 	return 0;
308 }
309 
310 static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on)
311 {
312 	struct mmc_host *mmc = host->mmc;
313 	int ret = 0;
314 
315 	/*
316 	 * If we don't see a Vcc regulator, assume it's a fixed
317 	 * voltage always-on regulator.
318 	 */
319 	if (IS_ERR(mmc->supply.vmmc))
320 		return 0;
321 
322 	ret = omap_hsmmc_set_pbias(host, false);
323 	if (ret)
324 		return ret;
325 
326 	/*
327 	 * Assume Vcc regulator is used only to power the card ... OMAP
328 	 * VDDS is used to power the pins, optionally with a transceiver to
329 	 * support cards using voltages other than VDDS (1.8V nominal).  When a
330 	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
331 	 *
332 	 * In some cases this regulator won't support enable/disable;
333 	 * e.g. it's a fixed rail for a WLAN chip.
334 	 *
335 	 * In other cases vcc_aux switches interface power.  Example, for
336 	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
337 	 * chips/cards need an interface voltage rail too.
338 	 */
339 	if (power_on) {
340 		ret = omap_hsmmc_enable_supply(mmc);
341 		if (ret)
342 			return ret;
343 
344 		ret = omap_hsmmc_set_pbias(host, true);
345 		if (ret)
346 			goto err_set_voltage;
347 	} else {
348 		ret = omap_hsmmc_disable_supply(mmc);
349 		if (ret)
350 			return ret;
351 	}
352 
353 	return 0;
354 
355 err_set_voltage:
356 	omap_hsmmc_disable_supply(mmc);
357 
358 	return ret;
359 }
360 
361 static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
362 {
363 	int ret;
364 
365 	if (IS_ERR(reg))
366 		return 0;
367 
368 	if (regulator_is_enabled(reg)) {
369 		ret = regulator_enable(reg);
370 		if (ret)
371 			return ret;
372 
373 		ret = regulator_disable(reg);
374 		if (ret)
375 			return ret;
376 	}
377 
378 	return 0;
379 }
380 
381 static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
382 {
383 	struct mmc_host *mmc = host->mmc;
384 	int ret;
385 
386 	/*
387 	 * disable regulators enabled during boot and get the usecount
388 	 * right so that regulators can be enabled/disabled by checking
389 	 * the return value of regulator_is_enabled
390 	 */
391 	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
392 	if (ret) {
393 		dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
394 		return ret;
395 	}
396 
397 	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
398 	if (ret) {
399 		dev_err(host->dev,
400 			"fail to disable boot enabled vmmc_aux reg\n");
401 		return ret;
402 	}
403 
404 	ret = omap_hsmmc_disable_boot_regulator(host->pbias);
405 	if (ret) {
406 		dev_err(host->dev,
407 			"failed to disable boot enabled pbias reg\n");
408 		return ret;
409 	}
410 
411 	return 0;
412 }
413 
414 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
415 {
416 	int ret;
417 	struct mmc_host *mmc = host->mmc;
418 
419 
420 	ret = mmc_regulator_get_supply(mmc);
421 	if (ret)
422 		return ret;
423 
424 	/* Allow an aux regulator */
425 	if (IS_ERR(mmc->supply.vqmmc)) {
426 		mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
427 								"vmmc_aux");
428 		if (IS_ERR(mmc->supply.vqmmc)) {
429 			ret = PTR_ERR(mmc->supply.vqmmc);
430 			if ((ret != -ENODEV) && host->dev->of_node)
431 				return ret;
432 			dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
433 				PTR_ERR(mmc->supply.vqmmc));
434 		}
435 	}
436 
437 	host->pbias = devm_regulator_get_optional(host->dev, "pbias");
438 	if (IS_ERR(host->pbias)) {
439 		ret = PTR_ERR(host->pbias);
440 		if ((ret != -ENODEV) && host->dev->of_node) {
441 			dev_err(host->dev,
442 			"SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
443 			return ret;
444 		}
445 		dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
446 			PTR_ERR(host->pbias));
447 	}
448 
449 	/* For eMMC do not power off when not in sleep state */
450 	if (mmc_pdata(host)->no_regulator_off_init)
451 		return 0;
452 
453 	ret = omap_hsmmc_disable_boot_regulators(host);
454 	if (ret)
455 		return ret;
456 
457 	return 0;
458 }
459 
460 /*
461  * Start clock to the card
462  */
463 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
464 {
465 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
466 		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
467 }
468 
469 /*
470  * Stop clock to the card
471  */
472 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
473 {
474 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
475 		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
476 	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
477 		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
478 }
479 
480 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
481 				  struct mmc_command *cmd)
482 {
483 	u32 irq_mask = INT_EN_MASK;
484 	unsigned long flags;
485 
486 	if (host->use_dma)
487 		irq_mask &= ~(BRR_EN | BWR_EN);
488 
489 	/* Disable timeout for erases */
490 	if (cmd->opcode == MMC_ERASE)
491 		irq_mask &= ~DTO_EN;
492 
493 	spin_lock_irqsave(&host->irq_lock, flags);
494 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
495 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
496 
497 	/* latch pending CIRQ, but don't signal MMC core */
498 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
499 		irq_mask |= CIRQ_EN;
500 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
501 	spin_unlock_irqrestore(&host->irq_lock, flags);
502 }
503 
504 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
505 {
506 	u32 irq_mask = 0;
507 	unsigned long flags;
508 
509 	spin_lock_irqsave(&host->irq_lock, flags);
510 	/* no transfer running but need to keep cirq if enabled */
511 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
512 		irq_mask |= CIRQ_EN;
513 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
514 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
515 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
516 	spin_unlock_irqrestore(&host->irq_lock, flags);
517 }
518 
519 /* Calculate divisor for the given clock frequency */
520 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
521 {
522 	u16 dsor = 0;
523 
524 	if (ios->clock) {
525 		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
526 		if (dsor > CLKD_MAX)
527 			dsor = CLKD_MAX;
528 	}
529 
530 	return dsor;
531 }
532 
533 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
534 {
535 	struct mmc_ios *ios = &host->mmc->ios;
536 	unsigned long regval;
537 	unsigned long timeout;
538 	unsigned long clkdiv;
539 
540 	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
541 
542 	omap_hsmmc_stop_clock(host);
543 
544 	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
545 	regval = regval & ~(CLKD_MASK | DTO_MASK);
546 	clkdiv = calc_divisor(host, ios);
547 	regval = regval | (clkdiv << 6) | (DTO << 16);
548 	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
549 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
550 		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
551 
552 	/* Wait till the ICS bit is set */
553 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
554 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
555 		&& time_before(jiffies, timeout))
556 		cpu_relax();
557 
558 	/*
559 	 * Enable High-Speed Support
560 	 * Pre-Requisites
561 	 *	- Controller should support High-Speed-Enable Bit
562 	 *	- Controller should not be using DDR Mode
563 	 *	- Controller should advertise that it supports High Speed
564 	 *	  in capabilities register
565 	 *	- MMC/SD clock coming out of controller > 25MHz
566 	 */
567 	if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
568 	    (ios->timing != MMC_TIMING_MMC_DDR52) &&
569 	    (ios->timing != MMC_TIMING_UHS_DDR50) &&
570 	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
571 		regval = OMAP_HSMMC_READ(host->base, HCTL);
572 		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
573 			regval |= HSPE;
574 		else
575 			regval &= ~HSPE;
576 
577 		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
578 	}
579 
580 	omap_hsmmc_start_clock(host);
581 }
582 
583 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
584 {
585 	struct mmc_ios *ios = &host->mmc->ios;
586 	u32 con;
587 
588 	con = OMAP_HSMMC_READ(host->base, CON);
589 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
590 	    ios->timing == MMC_TIMING_UHS_DDR50)
591 		con |= DDR;	/* configure in DDR mode */
592 	else
593 		con &= ~DDR;
594 	switch (ios->bus_width) {
595 	case MMC_BUS_WIDTH_8:
596 		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
597 		break;
598 	case MMC_BUS_WIDTH_4:
599 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
600 		OMAP_HSMMC_WRITE(host->base, HCTL,
601 			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
602 		break;
603 	case MMC_BUS_WIDTH_1:
604 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
605 		OMAP_HSMMC_WRITE(host->base, HCTL,
606 			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
607 		break;
608 	}
609 }
610 
611 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
612 {
613 	struct mmc_ios *ios = &host->mmc->ios;
614 	u32 con;
615 
616 	con = OMAP_HSMMC_READ(host->base, CON);
617 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
618 		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
619 	else
620 		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
621 }
622 
623 #ifdef CONFIG_PM
624 
625 /*
626  * Restore the MMC host context, if it was lost as result of a
627  * power state change.
628  */
629 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
630 {
631 	struct mmc_ios *ios = &host->mmc->ios;
632 	u32 hctl, capa;
633 	unsigned long timeout;
634 
635 	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
636 	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
637 	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
638 	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
639 		return 0;
640 
641 	host->context_loss++;
642 
643 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
644 		if (host->power_mode != MMC_POWER_OFF &&
645 		    (1 << ios->vdd) <= MMC_VDD_23_24)
646 			hctl = SDVS18;
647 		else
648 			hctl = SDVS30;
649 		capa = VS30 | VS18;
650 	} else {
651 		hctl = SDVS18;
652 		capa = VS18;
653 	}
654 
655 	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
656 		hctl |= IWE;
657 
658 	OMAP_HSMMC_WRITE(host->base, HCTL,
659 			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
660 
661 	OMAP_HSMMC_WRITE(host->base, CAPA,
662 			OMAP_HSMMC_READ(host->base, CAPA) | capa);
663 
664 	OMAP_HSMMC_WRITE(host->base, HCTL,
665 			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
666 
667 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
668 	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
669 		&& time_before(jiffies, timeout))
670 		;
671 
672 	OMAP_HSMMC_WRITE(host->base, ISE, 0);
673 	OMAP_HSMMC_WRITE(host->base, IE, 0);
674 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
675 
676 	/* Do not initialize card-specific things if the power is off */
677 	if (host->power_mode == MMC_POWER_OFF)
678 		goto out;
679 
680 	omap_hsmmc_set_bus_width(host);
681 
682 	omap_hsmmc_set_clock(host);
683 
684 	omap_hsmmc_set_bus_mode(host);
685 
686 out:
687 	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
688 		host->context_loss);
689 	return 0;
690 }
691 
692 /*
693  * Save the MMC host context (store the number of power state changes so far).
694  */
695 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
696 {
697 	host->con =  OMAP_HSMMC_READ(host->base, CON);
698 	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
699 	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
700 	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
701 }
702 
703 #else
704 
705 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
706 {
707 	return 0;
708 }
709 
710 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
711 {
712 }
713 
714 #endif
715 
716 /*
717  * Send init stream sequence to card
718  * before sending IDLE command
719  */
720 static void send_init_stream(struct omap_hsmmc_host *host)
721 {
722 	int reg = 0;
723 	unsigned long timeout;
724 
725 	disable_irq(host->irq);
726 
727 	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
728 	OMAP_HSMMC_WRITE(host->base, CON,
729 		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
730 	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
731 
732 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
733 	while ((reg != CC_EN) && time_before(jiffies, timeout))
734 		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
735 
736 	OMAP_HSMMC_WRITE(host->base, CON,
737 		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
738 
739 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
740 	OMAP_HSMMC_READ(host->base, STAT);
741 
742 	enable_irq(host->irq);
743 }
744 
745 static ssize_t
746 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
747 			char *buf)
748 {
749 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
750 	struct omap_hsmmc_host *host = mmc_priv(mmc);
751 
752 	return sprintf(buf, "%s\n", mmc_pdata(host)->name);
753 }
754 
755 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
756 
757 /*
758  * Configure the response type and send the cmd.
759  */
760 static void
761 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
762 	struct mmc_data *data)
763 {
764 	int cmdreg = 0, resptype = 0, cmdtype = 0;
765 
766 	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
767 		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
768 	host->cmd = cmd;
769 
770 	omap_hsmmc_enable_irq(host, cmd);
771 
772 	host->response_busy = 0;
773 	if (cmd->flags & MMC_RSP_PRESENT) {
774 		if (cmd->flags & MMC_RSP_136)
775 			resptype = 1;
776 		else if (cmd->flags & MMC_RSP_BUSY) {
777 			resptype = 3;
778 			host->response_busy = 1;
779 		} else
780 			resptype = 2;
781 	}
782 
783 	/*
784 	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
785 	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
786 	 * a val of 0x3, rest 0x0.
787 	 */
788 	if (cmd == host->mrq->stop)
789 		cmdtype = 0x3;
790 
791 	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
792 
793 	if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
794 	    host->mrq->sbc) {
795 		cmdreg |= ACEN_ACMD23;
796 		OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
797 	}
798 	if (data) {
799 		cmdreg |= DP_SELECT | MSBS | BCE;
800 		if (data->flags & MMC_DATA_READ)
801 			cmdreg |= DDIR;
802 		else
803 			cmdreg &= ~(DDIR);
804 	}
805 
806 	if (host->use_dma)
807 		cmdreg |= DMAE;
808 
809 	host->req_in_progress = 1;
810 
811 	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
812 	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
813 }
814 
815 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
816 	struct mmc_data *data)
817 {
818 	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
819 }
820 
821 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
822 {
823 	int dma_ch;
824 	unsigned long flags;
825 
826 	spin_lock_irqsave(&host->irq_lock, flags);
827 	host->req_in_progress = 0;
828 	dma_ch = host->dma_ch;
829 	spin_unlock_irqrestore(&host->irq_lock, flags);
830 
831 	omap_hsmmc_disable_irq(host);
832 	/* Do not complete the request if DMA is still in progress */
833 	if (mrq->data && host->use_dma && dma_ch != -1)
834 		return;
835 	host->mrq = NULL;
836 	mmc_request_done(host->mmc, mrq);
837 }
838 
839 /*
840  * Notify the transfer complete to MMC core
841  */
842 static void
843 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
844 {
845 	if (!data) {
846 		struct mmc_request *mrq = host->mrq;
847 
848 		/* TC before CC from CMD6 - don't know why, but it happens */
849 		if (host->cmd && host->cmd->opcode == 6 &&
850 		    host->response_busy) {
851 			host->response_busy = 0;
852 			return;
853 		}
854 
855 		omap_hsmmc_request_done(host, mrq);
856 		return;
857 	}
858 
859 	host->data = NULL;
860 
861 	if (!data->error)
862 		data->bytes_xfered += data->blocks * (data->blksz);
863 	else
864 		data->bytes_xfered = 0;
865 
866 	if (data->stop && (data->error || !host->mrq->sbc))
867 		omap_hsmmc_start_command(host, data->stop, NULL);
868 	else
869 		omap_hsmmc_request_done(host, data->mrq);
870 }
871 
872 /*
873  * Notify the core about command completion
874  */
875 static void
876 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
877 {
878 	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
879 	    !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
880 		host->cmd = NULL;
881 		omap_hsmmc_start_dma_transfer(host);
882 		omap_hsmmc_start_command(host, host->mrq->cmd,
883 						host->mrq->data);
884 		return;
885 	}
886 
887 	host->cmd = NULL;
888 
889 	if (cmd->flags & MMC_RSP_PRESENT) {
890 		if (cmd->flags & MMC_RSP_136) {
891 			/* response type 2 */
892 			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
893 			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
894 			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
895 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
896 		} else {
897 			/* response types 1, 1b, 3, 4, 5, 6 */
898 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
899 		}
900 	}
901 	if ((host->data == NULL && !host->response_busy) || cmd->error)
902 		omap_hsmmc_request_done(host, host->mrq);
903 }
904 
905 /*
906  * DMA clean up for command errors
907  */
908 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
909 {
910 	int dma_ch;
911 	unsigned long flags;
912 
913 	host->data->error = errno;
914 
915 	spin_lock_irqsave(&host->irq_lock, flags);
916 	dma_ch = host->dma_ch;
917 	host->dma_ch = -1;
918 	spin_unlock_irqrestore(&host->irq_lock, flags);
919 
920 	if (host->use_dma && dma_ch != -1) {
921 		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
922 
923 		dmaengine_terminate_all(chan);
924 		dma_unmap_sg(chan->device->dev,
925 			host->data->sg, host->data->sg_len,
926 			mmc_get_dma_dir(host->data));
927 
928 		host->data->host_cookie = 0;
929 	}
930 	host->data = NULL;
931 }
932 
933 /*
934  * Readable error output
935  */
936 #ifdef CONFIG_MMC_DEBUG
937 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
938 {
939 	/* --- means reserved bit without definition at documentation */
940 	static const char *omap_hsmmc_status_bits[] = {
941 		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
942 		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
943 		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
944 		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
945 	};
946 	char res[256];
947 	char *buf = res;
948 	int len, i;
949 
950 	len = sprintf(buf, "MMC IRQ 0x%x :", status);
951 	buf += len;
952 
953 	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
954 		if (status & (1 << i)) {
955 			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
956 			buf += len;
957 		}
958 
959 	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
960 }
961 #else
962 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
963 					     u32 status)
964 {
965 }
966 #endif  /* CONFIG_MMC_DEBUG */
967 
968 /*
969  * MMC controller internal state machines reset
970  *
971  * Used to reset command or data internal state machines, using respectively
972  *  SRC or SRD bit of SYSCTL register
973  * Can be called from interrupt context
974  */
975 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
976 						   unsigned long bit)
977 {
978 	unsigned long i = 0;
979 	unsigned long limit = MMC_TIMEOUT_US;
980 
981 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
982 			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
983 
984 	/*
985 	 * OMAP4 ES2 and greater has an updated reset logic.
986 	 * Monitor a 0->1 transition first
987 	 */
988 	if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
989 		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
990 					&& (i++ < limit))
991 			udelay(1);
992 	}
993 	i = 0;
994 
995 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
996 		(i++ < limit))
997 		udelay(1);
998 
999 	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1000 		dev_err(mmc_dev(host->mmc),
1001 			"Timeout waiting on controller reset in %s\n",
1002 			__func__);
1003 }
1004 
1005 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1006 					int err, int end_cmd)
1007 {
1008 	if (end_cmd) {
1009 		omap_hsmmc_reset_controller_fsm(host, SRC);
1010 		if (host->cmd)
1011 			host->cmd->error = err;
1012 	}
1013 
1014 	if (host->data) {
1015 		omap_hsmmc_reset_controller_fsm(host, SRD);
1016 		omap_hsmmc_dma_cleanup(host, err);
1017 	} else if (host->mrq && host->mrq->cmd)
1018 		host->mrq->cmd->error = err;
1019 }
1020 
1021 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1022 {
1023 	struct mmc_data *data;
1024 	int end_cmd = 0, end_trans = 0;
1025 	int error = 0;
1026 
1027 	data = host->data;
1028 	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1029 
1030 	if (status & ERR_EN) {
1031 		omap_hsmmc_dbg_report_irq(host, status);
1032 
1033 		if (status & (CTO_EN | CCRC_EN | CEB_EN))
1034 			end_cmd = 1;
1035 		if (host->data || host->response_busy) {
1036 			end_trans = !end_cmd;
1037 			host->response_busy = 0;
1038 		}
1039 		if (status & (CTO_EN | DTO_EN))
1040 			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1041 		else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1042 				   BADA_EN))
1043 			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1044 
1045 		if (status & ACE_EN) {
1046 			u32 ac12;
1047 			ac12 = OMAP_HSMMC_READ(host->base, AC12);
1048 			if (!(ac12 & ACNE) && host->mrq->sbc) {
1049 				end_cmd = 1;
1050 				if (ac12 & ACTO)
1051 					error =  -ETIMEDOUT;
1052 				else if (ac12 & (ACCE | ACEB | ACIE))
1053 					error = -EILSEQ;
1054 				host->mrq->sbc->error = error;
1055 				hsmmc_command_incomplete(host, error, end_cmd);
1056 			}
1057 			dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1058 		}
1059 	}
1060 
1061 	OMAP_HSMMC_WRITE(host->base, STAT, status);
1062 	if (end_cmd || ((status & CC_EN) && host->cmd))
1063 		omap_hsmmc_cmd_done(host, host->cmd);
1064 	if ((end_trans || (status & TC_EN)) && host->mrq)
1065 		omap_hsmmc_xfer_done(host, data);
1066 }
1067 
1068 /*
1069  * MMC controller IRQ handler
1070  */
1071 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1072 {
1073 	struct omap_hsmmc_host *host = dev_id;
1074 	int status;
1075 
1076 	status = OMAP_HSMMC_READ(host->base, STAT);
1077 	while (status & (INT_EN_MASK | CIRQ_EN)) {
1078 		if (host->req_in_progress)
1079 			omap_hsmmc_do_irq(host, status);
1080 
1081 		if (status & CIRQ_EN)
1082 			mmc_signal_sdio_irq(host->mmc);
1083 
1084 		/* Flush posted write */
1085 		status = OMAP_HSMMC_READ(host->base, STAT);
1086 	}
1087 
1088 	return IRQ_HANDLED;
1089 }
1090 
1091 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1092 {
1093 	unsigned long i;
1094 
1095 	OMAP_HSMMC_WRITE(host->base, HCTL,
1096 			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1097 	for (i = 0; i < loops_per_jiffy; i++) {
1098 		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1099 			break;
1100 		cpu_relax();
1101 	}
1102 }
1103 
1104 /*
1105  * Switch MMC interface voltage ... only relevant for MMC1.
1106  *
1107  * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1108  * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1109  * Some chips, like eMMC ones, use internal transceivers.
1110  */
1111 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1112 {
1113 	u32 reg_val = 0;
1114 	int ret;
1115 
1116 	/* Disable the clocks */
1117 	if (host->dbclk)
1118 		clk_disable_unprepare(host->dbclk);
1119 
1120 	/* Turn the power off */
1121 	ret = omap_hsmmc_set_power(host, 0);
1122 
1123 	/* Turn the power ON with given VDD 1.8 or 3.0v */
1124 	if (!ret)
1125 		ret = omap_hsmmc_set_power(host, 1);
1126 	if (host->dbclk)
1127 		clk_prepare_enable(host->dbclk);
1128 
1129 	if (ret != 0)
1130 		goto err;
1131 
1132 	OMAP_HSMMC_WRITE(host->base, HCTL,
1133 		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1134 	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1135 
1136 	/*
1137 	 * If a MMC dual voltage card is detected, the set_ios fn calls
1138 	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1139 	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1140 	 *
1141 	 * Cope with a bit of slop in the range ... per data sheets:
1142 	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1143 	 *    but recommended values are 1.71V to 1.89V
1144 	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1145 	 *    but recommended values are 2.7V to 3.3V
1146 	 *
1147 	 * Board setup code shouldn't permit anything very out-of-range.
1148 	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1149 	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1150 	 */
1151 	if ((1 << vdd) <= MMC_VDD_23_24)
1152 		reg_val |= SDVS18;
1153 	else
1154 		reg_val |= SDVS30;
1155 
1156 	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1157 	set_sd_bus_power(host);
1158 
1159 	return 0;
1160 err:
1161 	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1162 	return ret;
1163 }
1164 
1165 static void omap_hsmmc_dma_callback(void *param)
1166 {
1167 	struct omap_hsmmc_host *host = param;
1168 	struct dma_chan *chan;
1169 	struct mmc_data *data;
1170 	int req_in_progress;
1171 
1172 	spin_lock_irq(&host->irq_lock);
1173 	if (host->dma_ch < 0) {
1174 		spin_unlock_irq(&host->irq_lock);
1175 		return;
1176 	}
1177 
1178 	data = host->mrq->data;
1179 	chan = omap_hsmmc_get_dma_chan(host, data);
1180 	if (!data->host_cookie)
1181 		dma_unmap_sg(chan->device->dev,
1182 			     data->sg, data->sg_len,
1183 			     mmc_get_dma_dir(data));
1184 
1185 	req_in_progress = host->req_in_progress;
1186 	host->dma_ch = -1;
1187 	spin_unlock_irq(&host->irq_lock);
1188 
1189 	/* If DMA has finished after TC, complete the request */
1190 	if (!req_in_progress) {
1191 		struct mmc_request *mrq = host->mrq;
1192 
1193 		host->mrq = NULL;
1194 		mmc_request_done(host->mmc, mrq);
1195 	}
1196 }
1197 
1198 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1199 				       struct mmc_data *data,
1200 				       struct omap_hsmmc_next *next,
1201 				       struct dma_chan *chan)
1202 {
1203 	int dma_len;
1204 
1205 	if (!next && data->host_cookie &&
1206 	    data->host_cookie != host->next_data.cookie) {
1207 		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1208 		       " host->next_data.cookie %d\n",
1209 		       __func__, data->host_cookie, host->next_data.cookie);
1210 		data->host_cookie = 0;
1211 	}
1212 
1213 	/* Check if next job is already prepared */
1214 	if (next || data->host_cookie != host->next_data.cookie) {
1215 		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1216 				     mmc_get_dma_dir(data));
1217 
1218 	} else {
1219 		dma_len = host->next_data.dma_len;
1220 		host->next_data.dma_len = 0;
1221 	}
1222 
1223 
1224 	if (dma_len == 0)
1225 		return -EINVAL;
1226 
1227 	if (next) {
1228 		next->dma_len = dma_len;
1229 		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1230 	} else
1231 		host->dma_len = dma_len;
1232 
1233 	return 0;
1234 }
1235 
1236 /*
1237  * Routine to configure and start DMA for the MMC card
1238  */
1239 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1240 					struct mmc_request *req)
1241 {
1242 	struct dma_async_tx_descriptor *tx;
1243 	int ret = 0, i;
1244 	struct mmc_data *data = req->data;
1245 	struct dma_chan *chan;
1246 	struct dma_slave_config cfg = {
1247 		.src_addr = host->mapbase + OMAP_HSMMC_DATA,
1248 		.dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1249 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1250 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1251 		.src_maxburst = data->blksz / 4,
1252 		.dst_maxburst = data->blksz / 4,
1253 	};
1254 
1255 	/* Sanity check: all the SG entries must be aligned by block size. */
1256 	for (i = 0; i < data->sg_len; i++) {
1257 		struct scatterlist *sgl;
1258 
1259 		sgl = data->sg + i;
1260 		if (sgl->length % data->blksz)
1261 			return -EINVAL;
1262 	}
1263 	if ((data->blksz % 4) != 0)
1264 		/* REVISIT: The MMC buffer increments only when MSB is written.
1265 		 * Return error for blksz which is non multiple of four.
1266 		 */
1267 		return -EINVAL;
1268 
1269 	BUG_ON(host->dma_ch != -1);
1270 
1271 	chan = omap_hsmmc_get_dma_chan(host, data);
1272 
1273 	ret = dmaengine_slave_config(chan, &cfg);
1274 	if (ret)
1275 		return ret;
1276 
1277 	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1278 	if (ret)
1279 		return ret;
1280 
1281 	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1282 		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1283 		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1284 	if (!tx) {
1285 		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1286 		/* FIXME: cleanup */
1287 		return -1;
1288 	}
1289 
1290 	tx->callback = omap_hsmmc_dma_callback;
1291 	tx->callback_param = host;
1292 
1293 	/* Does not fail */
1294 	dmaengine_submit(tx);
1295 
1296 	host->dma_ch = 1;
1297 
1298 	return 0;
1299 }
1300 
1301 static void set_data_timeout(struct omap_hsmmc_host *host,
1302 			     unsigned long long timeout_ns,
1303 			     unsigned int timeout_clks)
1304 {
1305 	unsigned long long timeout = timeout_ns;
1306 	unsigned int cycle_ns;
1307 	uint32_t reg, clkd, dto = 0;
1308 
1309 	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1310 	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1311 	if (clkd == 0)
1312 		clkd = 1;
1313 
1314 	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1315 	do_div(timeout, cycle_ns);
1316 	timeout += timeout_clks;
1317 	if (timeout) {
1318 		while ((timeout & 0x80000000) == 0) {
1319 			dto += 1;
1320 			timeout <<= 1;
1321 		}
1322 		dto = 31 - dto;
1323 		timeout <<= 1;
1324 		if (timeout && dto)
1325 			dto += 1;
1326 		if (dto >= 13)
1327 			dto -= 13;
1328 		else
1329 			dto = 0;
1330 		if (dto > 14)
1331 			dto = 14;
1332 	}
1333 
1334 	reg &= ~DTO_MASK;
1335 	reg |= dto << DTO_SHIFT;
1336 	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1337 }
1338 
1339 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1340 {
1341 	struct mmc_request *req = host->mrq;
1342 	struct dma_chan *chan;
1343 
1344 	if (!req->data)
1345 		return;
1346 	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1347 				| (req->data->blocks << 16));
1348 	set_data_timeout(host, req->data->timeout_ns,
1349 				req->data->timeout_clks);
1350 	chan = omap_hsmmc_get_dma_chan(host, req->data);
1351 	dma_async_issue_pending(chan);
1352 }
1353 
1354 /*
1355  * Configure block length for MMC/SD cards and initiate the transfer.
1356  */
1357 static int
1358 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1359 {
1360 	int ret;
1361 	unsigned long long timeout;
1362 
1363 	host->data = req->data;
1364 
1365 	if (req->data == NULL) {
1366 		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1367 		if (req->cmd->flags & MMC_RSP_BUSY) {
1368 			timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1369 
1370 			/*
1371 			 * Set an arbitrary 100ms data timeout for commands with
1372 			 * busy signal and no indication of busy_timeout.
1373 			 */
1374 			if (!timeout)
1375 				timeout = 100000000U;
1376 
1377 			set_data_timeout(host, timeout, 0);
1378 		}
1379 		return 0;
1380 	}
1381 
1382 	if (host->use_dma) {
1383 		ret = omap_hsmmc_setup_dma_transfer(host, req);
1384 		if (ret != 0) {
1385 			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1386 			return ret;
1387 		}
1388 	}
1389 	return 0;
1390 }
1391 
1392 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1393 				int err)
1394 {
1395 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1396 	struct mmc_data *data = mrq->data;
1397 
1398 	if (host->use_dma && data->host_cookie) {
1399 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1400 
1401 		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1402 			     mmc_get_dma_dir(data));
1403 		data->host_cookie = 0;
1404 	}
1405 }
1406 
1407 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
1408 {
1409 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1410 
1411 	if (mrq->data->host_cookie) {
1412 		mrq->data->host_cookie = 0;
1413 		return ;
1414 	}
1415 
1416 	if (host->use_dma) {
1417 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1418 
1419 		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1420 						&host->next_data, c))
1421 			mrq->data->host_cookie = 0;
1422 	}
1423 }
1424 
1425 /*
1426  * Request function. for read/write operation
1427  */
1428 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1429 {
1430 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1431 	int err;
1432 
1433 	BUG_ON(host->req_in_progress);
1434 	BUG_ON(host->dma_ch != -1);
1435 	if (host->reqs_blocked)
1436 		host->reqs_blocked = 0;
1437 	WARN_ON(host->mrq != NULL);
1438 	host->mrq = req;
1439 	host->clk_rate = clk_get_rate(host->fclk);
1440 	err = omap_hsmmc_prepare_data(host, req);
1441 	if (err) {
1442 		req->cmd->error = err;
1443 		if (req->data)
1444 			req->data->error = err;
1445 		host->mrq = NULL;
1446 		mmc_request_done(mmc, req);
1447 		return;
1448 	}
1449 	if (req->sbc && !(host->flags & AUTO_CMD23)) {
1450 		omap_hsmmc_start_command(host, req->sbc, NULL);
1451 		return;
1452 	}
1453 
1454 	omap_hsmmc_start_dma_transfer(host);
1455 	omap_hsmmc_start_command(host, req->cmd, req->data);
1456 }
1457 
1458 /* Routine to configure clock values. Exposed API to core */
1459 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1460 {
1461 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1462 	int do_send_init_stream = 0;
1463 
1464 	if (ios->power_mode != host->power_mode) {
1465 		switch (ios->power_mode) {
1466 		case MMC_POWER_OFF:
1467 			omap_hsmmc_set_power(host, 0);
1468 			break;
1469 		case MMC_POWER_UP:
1470 			omap_hsmmc_set_power(host, 1);
1471 			break;
1472 		case MMC_POWER_ON:
1473 			do_send_init_stream = 1;
1474 			break;
1475 		}
1476 		host->power_mode = ios->power_mode;
1477 	}
1478 
1479 	/* FIXME: set registers based only on changes to ios */
1480 
1481 	omap_hsmmc_set_bus_width(host);
1482 
1483 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1484 		/* Only MMC1 can interface at 3V without some flavor
1485 		 * of external transceiver; but they all handle 1.8V.
1486 		 */
1487 		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1488 			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1489 				/*
1490 				 * The mmc_select_voltage fn of the core does
1491 				 * not seem to set the power_mode to
1492 				 * MMC_POWER_UP upon recalculating the voltage.
1493 				 * vdd 1.8v.
1494 				 */
1495 			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1496 				dev_dbg(mmc_dev(host->mmc),
1497 						"Switch operation failed\n");
1498 		}
1499 	}
1500 
1501 	omap_hsmmc_set_clock(host);
1502 
1503 	if (do_send_init_stream)
1504 		send_init_stream(host);
1505 
1506 	omap_hsmmc_set_bus_mode(host);
1507 }
1508 
1509 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1510 {
1511 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1512 
1513 	if (mmc_pdata(host)->init_card)
1514 		mmc_pdata(host)->init_card(card);
1515 }
1516 
1517 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1518 {
1519 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1520 	u32 irq_mask, con;
1521 	unsigned long flags;
1522 
1523 	spin_lock_irqsave(&host->irq_lock, flags);
1524 
1525 	con = OMAP_HSMMC_READ(host->base, CON);
1526 	irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1527 	if (enable) {
1528 		host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1529 		irq_mask |= CIRQ_EN;
1530 		con |= CTPL | CLKEXTFREE;
1531 	} else {
1532 		host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1533 		irq_mask &= ~CIRQ_EN;
1534 		con &= ~(CTPL | CLKEXTFREE);
1535 	}
1536 	OMAP_HSMMC_WRITE(host->base, CON, con);
1537 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1538 
1539 	/*
1540 	 * if enable, piggy back detection on current request
1541 	 * but always disable immediately
1542 	 */
1543 	if (!host->req_in_progress || !enable)
1544 		OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1545 
1546 	/* flush posted write */
1547 	OMAP_HSMMC_READ(host->base, IE);
1548 
1549 	spin_unlock_irqrestore(&host->irq_lock, flags);
1550 }
1551 
1552 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1553 {
1554 	int ret;
1555 
1556 	/*
1557 	 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1558 	 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1559 	 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1560 	 * with functional clock disabled.
1561 	 */
1562 	if (!host->dev->of_node || !host->wake_irq)
1563 		return -ENODEV;
1564 
1565 	ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1566 	if (ret) {
1567 		dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1568 		goto err;
1569 	}
1570 
1571 	/*
1572 	 * Some omaps don't have wake-up path from deeper idle states
1573 	 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1574 	 */
1575 	if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1576 		struct pinctrl *p = devm_pinctrl_get(host->dev);
1577 		if (IS_ERR(p)) {
1578 			ret = PTR_ERR(p);
1579 			goto err_free_irq;
1580 		}
1581 		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
1582 			dev_info(host->dev, "missing default pinctrl state\n");
1583 			devm_pinctrl_put(p);
1584 			ret = -EINVAL;
1585 			goto err_free_irq;
1586 		}
1587 
1588 		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1589 			dev_info(host->dev, "missing idle pinctrl state\n");
1590 			devm_pinctrl_put(p);
1591 			ret = -EINVAL;
1592 			goto err_free_irq;
1593 		}
1594 		devm_pinctrl_put(p);
1595 	}
1596 
1597 	OMAP_HSMMC_WRITE(host->base, HCTL,
1598 			 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1599 	return 0;
1600 
1601 err_free_irq:
1602 	dev_pm_clear_wake_irq(host->dev);
1603 err:
1604 	dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1605 	host->wake_irq = 0;
1606 	return ret;
1607 }
1608 
1609 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1610 {
1611 	u32 hctl, capa, value;
1612 
1613 	/* Only MMC1 supports 3.0V */
1614 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1615 		hctl = SDVS30;
1616 		capa = VS30 | VS18;
1617 	} else {
1618 		hctl = SDVS18;
1619 		capa = VS18;
1620 	}
1621 
1622 	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1623 	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1624 
1625 	value = OMAP_HSMMC_READ(host->base, CAPA);
1626 	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1627 
1628 	/* Set SD bus power bit */
1629 	set_sd_bus_power(host);
1630 }
1631 
1632 static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1633 				     unsigned int direction, int blk_size)
1634 {
1635 	/* This controller can't do multiblock reads due to hw bugs */
1636 	if (direction == MMC_DATA_READ)
1637 		return 1;
1638 
1639 	return blk_size;
1640 }
1641 
1642 static struct mmc_host_ops omap_hsmmc_ops = {
1643 	.post_req = omap_hsmmc_post_req,
1644 	.pre_req = omap_hsmmc_pre_req,
1645 	.request = omap_hsmmc_request,
1646 	.set_ios = omap_hsmmc_set_ios,
1647 	.get_cd = mmc_gpio_get_cd,
1648 	.get_ro = mmc_gpio_get_ro,
1649 	.init_card = omap_hsmmc_init_card,
1650 	.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1651 };
1652 
1653 #ifdef CONFIG_DEBUG_FS
1654 
1655 static int mmc_regs_show(struct seq_file *s, void *data)
1656 {
1657 	struct mmc_host *mmc = s->private;
1658 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1659 
1660 	seq_printf(s, "mmc%d:\n", mmc->index);
1661 	seq_printf(s, "sdio irq mode\t%s\n",
1662 		   (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1663 
1664 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1665 		seq_printf(s, "sdio irq \t%s\n",
1666 			   (host->flags & HSMMC_SDIO_IRQ_ENABLED) ?  "enabled"
1667 			   : "disabled");
1668 	}
1669 	seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1670 
1671 	pm_runtime_get_sync(host->dev);
1672 	seq_puts(s, "\nregs:\n");
1673 	seq_printf(s, "CON:\t\t0x%08x\n",
1674 			OMAP_HSMMC_READ(host->base, CON));
1675 	seq_printf(s, "PSTATE:\t\t0x%08x\n",
1676 		   OMAP_HSMMC_READ(host->base, PSTATE));
1677 	seq_printf(s, "HCTL:\t\t0x%08x\n",
1678 			OMAP_HSMMC_READ(host->base, HCTL));
1679 	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1680 			OMAP_HSMMC_READ(host->base, SYSCTL));
1681 	seq_printf(s, "IE:\t\t0x%08x\n",
1682 			OMAP_HSMMC_READ(host->base, IE));
1683 	seq_printf(s, "ISE:\t\t0x%08x\n",
1684 			OMAP_HSMMC_READ(host->base, ISE));
1685 	seq_printf(s, "CAPA:\t\t0x%08x\n",
1686 			OMAP_HSMMC_READ(host->base, CAPA));
1687 
1688 	pm_runtime_mark_last_busy(host->dev);
1689 	pm_runtime_put_autosuspend(host->dev);
1690 
1691 	return 0;
1692 }
1693 
1694 DEFINE_SHOW_ATTRIBUTE(mmc_regs);
1695 
1696 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1697 {
1698 	if (mmc->debugfs_root)
1699 		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1700 			mmc, &mmc_regs_fops);
1701 }
1702 
1703 #else
1704 
1705 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1706 {
1707 }
1708 
1709 #endif
1710 
1711 #ifdef CONFIG_OF
1712 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1713 	/* See 35xx errata 2.1.1.128 in SPRZ278F */
1714 	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1715 };
1716 
1717 static const struct omap_mmc_of_data omap4_mmc_of_data = {
1718 	.reg_offset = 0x100,
1719 };
1720 static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1721 	.reg_offset = 0x100,
1722 	.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1723 };
1724 
1725 static const struct of_device_id omap_mmc_of_match[] = {
1726 	{
1727 		.compatible = "ti,omap2-hsmmc",
1728 	},
1729 	{
1730 		.compatible = "ti,omap3-pre-es3-hsmmc",
1731 		.data = &omap3_pre_es3_mmc_of_data,
1732 	},
1733 	{
1734 		.compatible = "ti,omap3-hsmmc",
1735 	},
1736 	{
1737 		.compatible = "ti,omap4-hsmmc",
1738 		.data = &omap4_mmc_of_data,
1739 	},
1740 	{
1741 		.compatible = "ti,am33xx-hsmmc",
1742 		.data = &am33xx_mmc_of_data,
1743 	},
1744 	{},
1745 };
1746 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1747 
1748 static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1749 {
1750 	struct omap_hsmmc_platform_data *pdata, *legacy;
1751 	struct device_node *np = dev->of_node;
1752 
1753 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1754 	if (!pdata)
1755 		return ERR_PTR(-ENOMEM); /* out of memory */
1756 
1757 	legacy = dev_get_platdata(dev);
1758 	if (legacy && legacy->name)
1759 		pdata->name = legacy->name;
1760 
1761 	if (of_find_property(np, "ti,dual-volt", NULL))
1762 		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1763 
1764 	if (of_find_property(np, "ti,non-removable", NULL)) {
1765 		pdata->nonremovable = true;
1766 		pdata->no_regulator_off_init = true;
1767 	}
1768 
1769 	if (of_find_property(np, "ti,needs-special-reset", NULL))
1770 		pdata->features |= HSMMC_HAS_UPDATED_RESET;
1771 
1772 	if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1773 		pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1774 
1775 	return pdata;
1776 }
1777 #else
1778 static inline struct omap_hsmmc_platform_data
1779 			*of_get_hsmmc_pdata(struct device *dev)
1780 {
1781 	return ERR_PTR(-EINVAL);
1782 }
1783 #endif
1784 
1785 static int omap_hsmmc_probe(struct platform_device *pdev)
1786 {
1787 	struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1788 	struct mmc_host *mmc;
1789 	struct omap_hsmmc_host *host = NULL;
1790 	struct resource *res;
1791 	int ret, irq;
1792 	const struct of_device_id *match;
1793 	const struct omap_mmc_of_data *data;
1794 	void __iomem *base;
1795 
1796 	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1797 	if (match) {
1798 		pdata = of_get_hsmmc_pdata(&pdev->dev);
1799 
1800 		if (IS_ERR(pdata))
1801 			return PTR_ERR(pdata);
1802 
1803 		if (match->data) {
1804 			data = match->data;
1805 			pdata->reg_offset = data->reg_offset;
1806 			pdata->controller_flags |= data->controller_flags;
1807 		}
1808 	}
1809 
1810 	if (pdata == NULL) {
1811 		dev_err(&pdev->dev, "Platform Data is missing\n");
1812 		return -ENXIO;
1813 	}
1814 
1815 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1816 	irq = platform_get_irq(pdev, 0);
1817 	if (res == NULL || irq < 0)
1818 		return -ENXIO;
1819 
1820 	base = devm_ioremap_resource(&pdev->dev, res);
1821 	if (IS_ERR(base))
1822 		return PTR_ERR(base);
1823 
1824 	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1825 	if (!mmc) {
1826 		ret = -ENOMEM;
1827 		goto err;
1828 	}
1829 
1830 	ret = mmc_of_parse(mmc);
1831 	if (ret)
1832 		goto err1;
1833 
1834 	host		= mmc_priv(mmc);
1835 	host->mmc	= mmc;
1836 	host->pdata	= pdata;
1837 	host->dev	= &pdev->dev;
1838 	host->use_dma	= 1;
1839 	host->dma_ch	= -1;
1840 	host->irq	= irq;
1841 	host->mapbase	= res->start + pdata->reg_offset;
1842 	host->base	= base + pdata->reg_offset;
1843 	host->power_mode = MMC_POWER_OFF;
1844 	host->next_data.cookie = 1;
1845 	host->pbias_enabled = 0;
1846 	host->vqmmc_enabled = 0;
1847 
1848 	platform_set_drvdata(pdev, host);
1849 
1850 	if (pdev->dev.of_node)
1851 		host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
1852 
1853 	mmc->ops	= &omap_hsmmc_ops;
1854 
1855 	mmc->f_min = OMAP_MMC_MIN_CLOCK;
1856 
1857 	if (pdata->max_freq > 0)
1858 		mmc->f_max = pdata->max_freq;
1859 	else if (mmc->f_max == 0)
1860 		mmc->f_max = OMAP_MMC_MAX_CLOCK;
1861 
1862 	spin_lock_init(&host->irq_lock);
1863 
1864 	host->fclk = devm_clk_get(&pdev->dev, "fck");
1865 	if (IS_ERR(host->fclk)) {
1866 		ret = PTR_ERR(host->fclk);
1867 		host->fclk = NULL;
1868 		goto err1;
1869 	}
1870 
1871 	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1872 		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1873 		omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
1874 	}
1875 
1876 	device_init_wakeup(&pdev->dev, true);
1877 	pm_runtime_enable(host->dev);
1878 	pm_runtime_get_sync(host->dev);
1879 	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1880 	pm_runtime_use_autosuspend(host->dev);
1881 
1882 	omap_hsmmc_context_save(host);
1883 
1884 	host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
1885 	/*
1886 	 * MMC can still work without debounce clock.
1887 	 */
1888 	if (IS_ERR(host->dbclk)) {
1889 		host->dbclk = NULL;
1890 	} else if (clk_prepare_enable(host->dbclk) != 0) {
1891 		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1892 		host->dbclk = NULL;
1893 	}
1894 
1895 	/* Set this to a value that allows allocating an entire descriptor
1896 	 * list within a page (zero order allocation). */
1897 	mmc->max_segs = 64;
1898 
1899 	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
1900 	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
1901 	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1902 
1903 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1904 		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE | MMC_CAP_CMD23;
1905 
1906 	mmc->caps |= mmc_pdata(host)->caps;
1907 	if (mmc->caps & MMC_CAP_8_BIT_DATA)
1908 		mmc->caps |= MMC_CAP_4_BIT_DATA;
1909 
1910 	if (mmc_pdata(host)->nonremovable)
1911 		mmc->caps |= MMC_CAP_NONREMOVABLE;
1912 
1913 	mmc->pm_caps |= mmc_pdata(host)->pm_caps;
1914 
1915 	omap_hsmmc_conf_bus_power(host);
1916 
1917 	host->rx_chan = dma_request_chan(&pdev->dev, "rx");
1918 	if (IS_ERR(host->rx_chan)) {
1919 		dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
1920 		ret = PTR_ERR(host->rx_chan);
1921 		goto err_irq;
1922 	}
1923 
1924 	host->tx_chan = dma_request_chan(&pdev->dev, "tx");
1925 	if (IS_ERR(host->tx_chan)) {
1926 		dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
1927 		ret = PTR_ERR(host->tx_chan);
1928 		goto err_irq;
1929 	}
1930 
1931 	/*
1932 	 * Limit the maximum segment size to the lower of the request size
1933 	 * and the DMA engine device segment size limits.  In reality, with
1934 	 * 32-bit transfers, the DMA engine can do longer segments than this
1935 	 * but there is no way to represent that in the DMA model - if we
1936 	 * increase this figure here, we get warnings from the DMA API debug.
1937 	 */
1938 	mmc->max_seg_size = min3(mmc->max_req_size,
1939 			dma_get_max_seg_size(host->rx_chan->device->dev),
1940 			dma_get_max_seg_size(host->tx_chan->device->dev));
1941 
1942 	/* Request IRQ for MMC operations */
1943 	ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
1944 			mmc_hostname(mmc), host);
1945 	if (ret) {
1946 		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1947 		goto err_irq;
1948 	}
1949 
1950 	ret = omap_hsmmc_reg_get(host);
1951 	if (ret)
1952 		goto err_irq;
1953 
1954 	if (!mmc->ocr_avail)
1955 		mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
1956 
1957 	omap_hsmmc_disable_irq(host);
1958 
1959 	/*
1960 	 * For now, only support SDIO interrupt if we have a separate
1961 	 * wake-up interrupt configured from device tree. This is because
1962 	 * the wake-up interrupt is needed for idle state and some
1963 	 * platforms need special quirks. And we don't want to add new
1964 	 * legacy mux platform init code callbacks any longer as we
1965 	 * are moving to DT based booting anyways.
1966 	 */
1967 	ret = omap_hsmmc_configure_wake_irq(host);
1968 	if (!ret)
1969 		mmc->caps |= MMC_CAP_SDIO_IRQ;
1970 
1971 	mmc_add_host(mmc);
1972 
1973 	if (mmc_pdata(host)->name != NULL) {
1974 		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
1975 		if (ret < 0)
1976 			goto err_slot_name;
1977 	}
1978 
1979 	omap_hsmmc_debugfs(mmc);
1980 	pm_runtime_mark_last_busy(host->dev);
1981 	pm_runtime_put_autosuspend(host->dev);
1982 
1983 	return 0;
1984 
1985 err_slot_name:
1986 	mmc_remove_host(mmc);
1987 err_irq:
1988 	device_init_wakeup(&pdev->dev, false);
1989 	if (!IS_ERR_OR_NULL(host->tx_chan))
1990 		dma_release_channel(host->tx_chan);
1991 	if (!IS_ERR_OR_NULL(host->rx_chan))
1992 		dma_release_channel(host->rx_chan);
1993 	pm_runtime_dont_use_autosuspend(host->dev);
1994 	pm_runtime_put_sync(host->dev);
1995 	pm_runtime_disable(host->dev);
1996 	if (host->dbclk)
1997 		clk_disable_unprepare(host->dbclk);
1998 err1:
1999 	mmc_free_host(mmc);
2000 err:
2001 	return ret;
2002 }
2003 
2004 static int omap_hsmmc_remove(struct platform_device *pdev)
2005 {
2006 	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2007 
2008 	pm_runtime_get_sync(host->dev);
2009 	mmc_remove_host(host->mmc);
2010 
2011 	dma_release_channel(host->tx_chan);
2012 	dma_release_channel(host->rx_chan);
2013 
2014 	dev_pm_clear_wake_irq(host->dev);
2015 	pm_runtime_dont_use_autosuspend(host->dev);
2016 	pm_runtime_put_sync(host->dev);
2017 	pm_runtime_disable(host->dev);
2018 	device_init_wakeup(&pdev->dev, false);
2019 	if (host->dbclk)
2020 		clk_disable_unprepare(host->dbclk);
2021 
2022 	mmc_free_host(host->mmc);
2023 
2024 	return 0;
2025 }
2026 
2027 #ifdef CONFIG_PM_SLEEP
2028 static int omap_hsmmc_suspend(struct device *dev)
2029 {
2030 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2031 
2032 	if (!host)
2033 		return 0;
2034 
2035 	pm_runtime_get_sync(host->dev);
2036 
2037 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2038 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2039 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2040 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2041 		OMAP_HSMMC_WRITE(host->base, HCTL,
2042 				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2043 	}
2044 
2045 	if (host->dbclk)
2046 		clk_disable_unprepare(host->dbclk);
2047 
2048 	pm_runtime_put_sync(host->dev);
2049 	return 0;
2050 }
2051 
2052 /* Routine to resume the MMC device */
2053 static int omap_hsmmc_resume(struct device *dev)
2054 {
2055 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2056 
2057 	if (!host)
2058 		return 0;
2059 
2060 	pm_runtime_get_sync(host->dev);
2061 
2062 	if (host->dbclk)
2063 		clk_prepare_enable(host->dbclk);
2064 
2065 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2066 		omap_hsmmc_conf_bus_power(host);
2067 
2068 	pm_runtime_mark_last_busy(host->dev);
2069 	pm_runtime_put_autosuspend(host->dev);
2070 	return 0;
2071 }
2072 #endif
2073 
2074 static int omap_hsmmc_runtime_suspend(struct device *dev)
2075 {
2076 	struct omap_hsmmc_host *host;
2077 	unsigned long flags;
2078 	int ret = 0;
2079 
2080 	host = dev_get_drvdata(dev);
2081 	omap_hsmmc_context_save(host);
2082 	dev_dbg(dev, "disabled\n");
2083 
2084 	spin_lock_irqsave(&host->irq_lock, flags);
2085 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2086 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2087 		/* disable sdio irq handling to prevent race */
2088 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2089 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2090 
2091 		if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2092 			/*
2093 			 * dat1 line low, pending sdio irq
2094 			 * race condition: possible irq handler running on
2095 			 * multi-core, abort
2096 			 */
2097 			dev_dbg(dev, "pending sdio irq, abort suspend\n");
2098 			OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2099 			OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2100 			OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2101 			pm_runtime_mark_last_busy(dev);
2102 			ret = -EBUSY;
2103 			goto abort;
2104 		}
2105 
2106 		pinctrl_pm_select_idle_state(dev);
2107 	} else {
2108 		pinctrl_pm_select_idle_state(dev);
2109 	}
2110 
2111 abort:
2112 	spin_unlock_irqrestore(&host->irq_lock, flags);
2113 	return ret;
2114 }
2115 
2116 static int omap_hsmmc_runtime_resume(struct device *dev)
2117 {
2118 	struct omap_hsmmc_host *host;
2119 	unsigned long flags;
2120 
2121 	host = dev_get_drvdata(dev);
2122 	omap_hsmmc_context_restore(host);
2123 	dev_dbg(dev, "enabled\n");
2124 
2125 	spin_lock_irqsave(&host->irq_lock, flags);
2126 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2127 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2128 
2129 		pinctrl_pm_select_default_state(host->dev);
2130 
2131 		/* irq lost, if pinmux incorrect */
2132 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2133 		OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2134 		OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2135 	} else {
2136 		pinctrl_pm_select_default_state(host->dev);
2137 	}
2138 	spin_unlock_irqrestore(&host->irq_lock, flags);
2139 	return 0;
2140 }
2141 
2142 static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2143 	SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2144 	.runtime_suspend = omap_hsmmc_runtime_suspend,
2145 	.runtime_resume = omap_hsmmc_runtime_resume,
2146 };
2147 
2148 static struct platform_driver omap_hsmmc_driver = {
2149 	.probe		= omap_hsmmc_probe,
2150 	.remove		= omap_hsmmc_remove,
2151 	.driver		= {
2152 		.name = DRIVER_NAME,
2153 		.pm = &omap_hsmmc_dev_pm_ops,
2154 		.of_match_table = of_match_ptr(omap_mmc_of_match),
2155 	},
2156 };
2157 
2158 module_platform_driver(omap_hsmmc_driver);
2159 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2160 MODULE_LICENSE("GPL");
2161 MODULE_ALIAS("platform:" DRIVER_NAME);
2162 MODULE_AUTHOR("Texas Instruments Inc");
2163