xref: /openbmc/linux/drivers/mmc/host/omap_hsmmc.c (revision a59511d1)
1 /*
2  * drivers/mmc/host/omap_hsmmc.c
3  *
4  * Driver for OMAP2430/3430 MMC controller.
5  *
6  * Copyright (C) 2007 Texas Instruments.
7  *
8  * Authors:
9  *	Syed Mohammed Khasim	<x0khasim@ti.com>
10  *	Madhusudhan		<madhu.cr@ti.com>
11  *	Mohit Jalori		<mjalori@ti.com>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/sizes.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/timer.h>
30 #include <linux/clk.h>
31 #include <linux/of.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_device.h>
35 #include <linux/omap-dmaengine.h>
36 #include <linux/mmc/host.h>
37 #include <linux/mmc/core.h>
38 #include <linux/mmc/mmc.h>
39 #include <linux/mmc/slot-gpio.h>
40 #include <linux/io.h>
41 #include <linux/irq.h>
42 #include <linux/gpio.h>
43 #include <linux/regulator/consumer.h>
44 #include <linux/pinctrl/consumer.h>
45 #include <linux/pm_runtime.h>
46 #include <linux/pm_wakeirq.h>
47 #include <linux/platform_data/hsmmc-omap.h>
48 
49 /* OMAP HSMMC Host Controller Registers */
50 #define OMAP_HSMMC_SYSSTATUS	0x0014
51 #define OMAP_HSMMC_CON		0x002C
52 #define OMAP_HSMMC_SDMASA	0x0100
53 #define OMAP_HSMMC_BLK		0x0104
54 #define OMAP_HSMMC_ARG		0x0108
55 #define OMAP_HSMMC_CMD		0x010C
56 #define OMAP_HSMMC_RSP10	0x0110
57 #define OMAP_HSMMC_RSP32	0x0114
58 #define OMAP_HSMMC_RSP54	0x0118
59 #define OMAP_HSMMC_RSP76	0x011C
60 #define OMAP_HSMMC_DATA		0x0120
61 #define OMAP_HSMMC_PSTATE	0x0124
62 #define OMAP_HSMMC_HCTL		0x0128
63 #define OMAP_HSMMC_SYSCTL	0x012C
64 #define OMAP_HSMMC_STAT		0x0130
65 #define OMAP_HSMMC_IE		0x0134
66 #define OMAP_HSMMC_ISE		0x0138
67 #define OMAP_HSMMC_AC12		0x013C
68 #define OMAP_HSMMC_CAPA		0x0140
69 
70 #define VS18			(1 << 26)
71 #define VS30			(1 << 25)
72 #define HSS			(1 << 21)
73 #define SDVS18			(0x5 << 9)
74 #define SDVS30			(0x6 << 9)
75 #define SDVS33			(0x7 << 9)
76 #define SDVS_MASK		0x00000E00
77 #define SDVSCLR			0xFFFFF1FF
78 #define SDVSDET			0x00000400
79 #define AUTOIDLE		0x1
80 #define SDBP			(1 << 8)
81 #define DTO			0xe
82 #define ICE			0x1
83 #define ICS			0x2
84 #define CEN			(1 << 2)
85 #define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
86 #define CLKD_MASK		0x0000FFC0
87 #define CLKD_SHIFT		6
88 #define DTO_MASK		0x000F0000
89 #define DTO_SHIFT		16
90 #define INIT_STREAM		(1 << 1)
91 #define ACEN_ACMD23		(2 << 2)
92 #define DP_SELECT		(1 << 21)
93 #define DDIR			(1 << 4)
94 #define DMAE			0x1
95 #define MSBS			(1 << 5)
96 #define BCE			(1 << 1)
97 #define FOUR_BIT		(1 << 1)
98 #define HSPE			(1 << 2)
99 #define IWE			(1 << 24)
100 #define DDR			(1 << 19)
101 #define CLKEXTFREE		(1 << 16)
102 #define CTPL			(1 << 11)
103 #define DW8			(1 << 5)
104 #define OD			0x1
105 #define STAT_CLEAR		0xFFFFFFFF
106 #define INIT_STREAM_CMD		0x00000000
107 #define DUAL_VOLT_OCR_BIT	7
108 #define SRC			(1 << 25)
109 #define SRD			(1 << 26)
110 #define SOFTRESET		(1 << 1)
111 
112 /* PSTATE */
113 #define DLEV_DAT(x)		(1 << (20 + (x)))
114 
115 /* Interrupt masks for IE and ISE register */
116 #define CC_EN			(1 << 0)
117 #define TC_EN			(1 << 1)
118 #define BWR_EN			(1 << 4)
119 #define BRR_EN			(1 << 5)
120 #define CIRQ_EN			(1 << 8)
121 #define ERR_EN			(1 << 15)
122 #define CTO_EN			(1 << 16)
123 #define CCRC_EN			(1 << 17)
124 #define CEB_EN			(1 << 18)
125 #define CIE_EN			(1 << 19)
126 #define DTO_EN			(1 << 20)
127 #define DCRC_EN			(1 << 21)
128 #define DEB_EN			(1 << 22)
129 #define ACE_EN			(1 << 24)
130 #define CERR_EN			(1 << 28)
131 #define BADA_EN			(1 << 29)
132 
133 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
134 		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
135 		BRR_EN | BWR_EN | TC_EN | CC_EN)
136 
137 #define CNI	(1 << 7)
138 #define ACIE	(1 << 4)
139 #define ACEB	(1 << 3)
140 #define ACCE	(1 << 2)
141 #define ACTO	(1 << 1)
142 #define ACNE	(1 << 0)
143 
144 #define MMC_AUTOSUSPEND_DELAY	100
145 #define MMC_TIMEOUT_MS		20		/* 20 mSec */
146 #define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
147 #define OMAP_MMC_MIN_CLOCK	400000
148 #define OMAP_MMC_MAX_CLOCK	52000000
149 #define DRIVER_NAME		"omap_hsmmc"
150 
151 #define VDD_1V8			1800000		/* 180000 uV */
152 #define VDD_3V0			3000000		/* 300000 uV */
153 #define VDD_165_195		(ffs(MMC_VDD_165_195) - 1)
154 
155 /*
156  * One controller can have multiple slots, like on some omap boards using
157  * omap.c controller driver. Luckily this is not currently done on any known
158  * omap_hsmmc.c device.
159  */
160 #define mmc_pdata(host)		host->pdata
161 
162 /*
163  * MMC Host controller read/write API's
164  */
165 #define OMAP_HSMMC_READ(base, reg)	\
166 	__raw_readl((base) + OMAP_HSMMC_##reg)
167 
168 #define OMAP_HSMMC_WRITE(base, reg, val) \
169 	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
170 
171 struct omap_hsmmc_next {
172 	unsigned int	dma_len;
173 	s32		cookie;
174 };
175 
176 struct omap_hsmmc_host {
177 	struct	device		*dev;
178 	struct	mmc_host	*mmc;
179 	struct	mmc_request	*mrq;
180 	struct	mmc_command	*cmd;
181 	struct	mmc_data	*data;
182 	struct	clk		*fclk;
183 	struct	clk		*dbclk;
184 	struct	regulator	*pbias;
185 	bool			pbias_enabled;
186 	void	__iomem		*base;
187 	int			vqmmc_enabled;
188 	resource_size_t		mapbase;
189 	spinlock_t		irq_lock; /* Prevent races with irq handler */
190 	unsigned int		dma_len;
191 	unsigned int		dma_sg_idx;
192 	unsigned char		bus_mode;
193 	unsigned char		power_mode;
194 	int			suspended;
195 	u32			con;
196 	u32			hctl;
197 	u32			sysctl;
198 	u32			capa;
199 	int			irq;
200 	int			wake_irq;
201 	int			use_dma, dma_ch;
202 	struct dma_chan		*tx_chan;
203 	struct dma_chan		*rx_chan;
204 	int			response_busy;
205 	int			context_loss;
206 	int			protect_card;
207 	int			reqs_blocked;
208 	int			req_in_progress;
209 	unsigned long		clk_rate;
210 	unsigned int		flags;
211 #define AUTO_CMD23		(1 << 0)        /* Auto CMD23 support */
212 #define HSMMC_SDIO_IRQ_ENABLED	(1 << 1)        /* SDIO irq enabled */
213 	struct omap_hsmmc_next	next_data;
214 	struct	omap_hsmmc_platform_data	*pdata;
215 
216 	/* return MMC cover switch state, can be NULL if not supported.
217 	 *
218 	 * possible return values:
219 	 *   0 - closed
220 	 *   1 - open
221 	 */
222 	int (*get_cover_state)(struct device *dev);
223 
224 	int (*card_detect)(struct device *dev);
225 };
226 
227 struct omap_mmc_of_data {
228 	u32 reg_offset;
229 	u8 controller_flags;
230 };
231 
232 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
233 
234 static int omap_hsmmc_card_detect(struct device *dev)
235 {
236 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
237 
238 	return mmc_gpio_get_cd(host->mmc);
239 }
240 
241 static int omap_hsmmc_get_cover_state(struct device *dev)
242 {
243 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
244 
245 	return mmc_gpio_get_cd(host->mmc);
246 }
247 
248 static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
249 {
250 	int ret;
251 	struct omap_hsmmc_host *host = mmc_priv(mmc);
252 	struct mmc_ios *ios = &mmc->ios;
253 
254 	if (mmc->supply.vmmc) {
255 		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
256 		if (ret)
257 			return ret;
258 	}
259 
260 	/* Enable interface voltage rail, if needed */
261 	if (mmc->supply.vqmmc && !host->vqmmc_enabled) {
262 		ret = regulator_enable(mmc->supply.vqmmc);
263 		if (ret) {
264 			dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
265 			goto err_vqmmc;
266 		}
267 		host->vqmmc_enabled = 1;
268 	}
269 
270 	return 0;
271 
272 err_vqmmc:
273 	if (mmc->supply.vmmc)
274 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
275 
276 	return ret;
277 }
278 
279 static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
280 {
281 	int ret;
282 	int status;
283 	struct omap_hsmmc_host *host = mmc_priv(mmc);
284 
285 	if (mmc->supply.vqmmc && host->vqmmc_enabled) {
286 		ret = regulator_disable(mmc->supply.vqmmc);
287 		if (ret) {
288 			dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
289 			return ret;
290 		}
291 		host->vqmmc_enabled = 0;
292 	}
293 
294 	if (mmc->supply.vmmc) {
295 		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
296 		if (ret)
297 			goto err_set_ocr;
298 	}
299 
300 	return 0;
301 
302 err_set_ocr:
303 	if (mmc->supply.vqmmc) {
304 		status = regulator_enable(mmc->supply.vqmmc);
305 		if (status)
306 			dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
307 	}
308 
309 	return ret;
310 }
311 
312 static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on,
313 				int vdd)
314 {
315 	int ret;
316 
317 	if (!host->pbias)
318 		return 0;
319 
320 	if (power_on) {
321 		if (vdd <= VDD_165_195)
322 			ret = regulator_set_voltage(host->pbias, VDD_1V8,
323 						    VDD_1V8);
324 		else
325 			ret = regulator_set_voltage(host->pbias, VDD_3V0,
326 						    VDD_3V0);
327 		if (ret < 0) {
328 			dev_err(host->dev, "pbias set voltage fail\n");
329 			return ret;
330 		}
331 
332 		if (host->pbias_enabled == 0) {
333 			ret = regulator_enable(host->pbias);
334 			if (ret) {
335 				dev_err(host->dev, "pbias reg enable fail\n");
336 				return ret;
337 			}
338 			host->pbias_enabled = 1;
339 		}
340 	} else {
341 		if (host->pbias_enabled == 1) {
342 			ret = regulator_disable(host->pbias);
343 			if (ret) {
344 				dev_err(host->dev, "pbias reg disable fail\n");
345 				return ret;
346 			}
347 			host->pbias_enabled = 0;
348 		}
349 	}
350 
351 	return 0;
352 }
353 
354 static int omap_hsmmc_set_power(struct device *dev, int power_on, int vdd)
355 {
356 	struct omap_hsmmc_host *host =
357 		platform_get_drvdata(to_platform_device(dev));
358 	struct mmc_host *mmc = host->mmc;
359 	int ret = 0;
360 
361 	if (mmc_pdata(host)->set_power)
362 		return mmc_pdata(host)->set_power(dev, power_on, vdd);
363 
364 	/*
365 	 * If we don't see a Vcc regulator, assume it's a fixed
366 	 * voltage always-on regulator.
367 	 */
368 	if (!mmc->supply.vmmc)
369 		return 0;
370 
371 	if (mmc_pdata(host)->before_set_reg)
372 		mmc_pdata(host)->before_set_reg(dev, power_on, vdd);
373 
374 	ret = omap_hsmmc_set_pbias(host, false, 0);
375 	if (ret)
376 		return ret;
377 
378 	/*
379 	 * Assume Vcc regulator is used only to power the card ... OMAP
380 	 * VDDS is used to power the pins, optionally with a transceiver to
381 	 * support cards using voltages other than VDDS (1.8V nominal).  When a
382 	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
383 	 *
384 	 * In some cases this regulator won't support enable/disable;
385 	 * e.g. it's a fixed rail for a WLAN chip.
386 	 *
387 	 * In other cases vcc_aux switches interface power.  Example, for
388 	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
389 	 * chips/cards need an interface voltage rail too.
390 	 */
391 	if (power_on) {
392 		ret = omap_hsmmc_enable_supply(mmc);
393 		if (ret)
394 			return ret;
395 
396 		ret = omap_hsmmc_set_pbias(host, true, vdd);
397 		if (ret)
398 			goto err_set_voltage;
399 	} else {
400 		ret = omap_hsmmc_disable_supply(mmc);
401 		if (ret)
402 			return ret;
403 	}
404 
405 	if (mmc_pdata(host)->after_set_reg)
406 		mmc_pdata(host)->after_set_reg(dev, power_on, vdd);
407 
408 	return 0;
409 
410 err_set_voltage:
411 	omap_hsmmc_disable_supply(mmc);
412 
413 	return ret;
414 }
415 
416 static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
417 {
418 	int ret;
419 
420 	if (!reg)
421 		return 0;
422 
423 	if (regulator_is_enabled(reg)) {
424 		ret = regulator_enable(reg);
425 		if (ret)
426 			return ret;
427 
428 		ret = regulator_disable(reg);
429 		if (ret)
430 			return ret;
431 	}
432 
433 	return 0;
434 }
435 
436 static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
437 {
438 	struct mmc_host *mmc = host->mmc;
439 	int ret;
440 
441 	/*
442 	 * disable regulators enabled during boot and get the usecount
443 	 * right so that regulators can be enabled/disabled by checking
444 	 * the return value of regulator_is_enabled
445 	 */
446 	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
447 	if (ret) {
448 		dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
449 		return ret;
450 	}
451 
452 	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
453 	if (ret) {
454 		dev_err(host->dev,
455 			"fail to disable boot enabled vmmc_aux reg\n");
456 		return ret;
457 	}
458 
459 	ret = omap_hsmmc_disable_boot_regulator(host->pbias);
460 	if (ret) {
461 		dev_err(host->dev,
462 			"failed to disable boot enabled pbias reg\n");
463 		return ret;
464 	}
465 
466 	return 0;
467 }
468 
469 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
470 {
471 	int ocr_value = 0;
472 	int ret;
473 	struct mmc_host *mmc = host->mmc;
474 
475 	if (mmc_pdata(host)->set_power)
476 		return 0;
477 
478 	mmc->supply.vmmc = devm_regulator_get_optional(host->dev, "vmmc");
479 	if (IS_ERR(mmc->supply.vmmc)) {
480 		ret = PTR_ERR(mmc->supply.vmmc);
481 		if ((ret != -ENODEV) && host->dev->of_node)
482 			return ret;
483 		dev_dbg(host->dev, "unable to get vmmc regulator %ld\n",
484 			PTR_ERR(mmc->supply.vmmc));
485 		mmc->supply.vmmc = NULL;
486 	} else {
487 		ocr_value = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
488 		if (ocr_value > 0)
489 			mmc_pdata(host)->ocr_mask = ocr_value;
490 	}
491 
492 	/* Allow an aux regulator */
493 	mmc->supply.vqmmc = devm_regulator_get_optional(host->dev, "vmmc_aux");
494 	if (IS_ERR(mmc->supply.vqmmc)) {
495 		ret = PTR_ERR(mmc->supply.vqmmc);
496 		if ((ret != -ENODEV) && host->dev->of_node)
497 			return ret;
498 		dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
499 			PTR_ERR(mmc->supply.vqmmc));
500 		mmc->supply.vqmmc = NULL;
501 	}
502 
503 	host->pbias = devm_regulator_get_optional(host->dev, "pbias");
504 	if (IS_ERR(host->pbias)) {
505 		ret = PTR_ERR(host->pbias);
506 		if ((ret != -ENODEV) && host->dev->of_node) {
507 			dev_err(host->dev,
508 			"SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
509 			return ret;
510 		}
511 		dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
512 			PTR_ERR(host->pbias));
513 		host->pbias = NULL;
514 	}
515 
516 	/* For eMMC do not power off when not in sleep state */
517 	if (mmc_pdata(host)->no_regulator_off_init)
518 		return 0;
519 
520 	ret = omap_hsmmc_disable_boot_regulators(host);
521 	if (ret)
522 		return ret;
523 
524 	return 0;
525 }
526 
527 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id);
528 
529 static int omap_hsmmc_gpio_init(struct mmc_host *mmc,
530 				struct omap_hsmmc_host *host,
531 				struct omap_hsmmc_platform_data *pdata)
532 {
533 	int ret;
534 
535 	if (gpio_is_valid(pdata->gpio_cod)) {
536 		ret = mmc_gpio_request_cd(mmc, pdata->gpio_cod, 0);
537 		if (ret)
538 			return ret;
539 
540 		host->get_cover_state = omap_hsmmc_get_cover_state;
541 		mmc_gpio_set_cd_isr(mmc, omap_hsmmc_cover_irq);
542 	} else if (gpio_is_valid(pdata->gpio_cd)) {
543 		ret = mmc_gpio_request_cd(mmc, pdata->gpio_cd, 0);
544 		if (ret)
545 			return ret;
546 
547 		host->card_detect = omap_hsmmc_card_detect;
548 	}
549 
550 	if (gpio_is_valid(pdata->gpio_wp)) {
551 		ret = mmc_gpio_request_ro(mmc, pdata->gpio_wp);
552 		if (ret)
553 			return ret;
554 	}
555 
556 	return 0;
557 }
558 
559 /*
560  * Start clock to the card
561  */
562 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
563 {
564 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
565 		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
566 }
567 
568 /*
569  * Stop clock to the card
570  */
571 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
572 {
573 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
574 		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
575 	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
576 		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
577 }
578 
579 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
580 				  struct mmc_command *cmd)
581 {
582 	u32 irq_mask = INT_EN_MASK;
583 	unsigned long flags;
584 
585 	if (host->use_dma)
586 		irq_mask &= ~(BRR_EN | BWR_EN);
587 
588 	/* Disable timeout for erases */
589 	if (cmd->opcode == MMC_ERASE)
590 		irq_mask &= ~DTO_EN;
591 
592 	spin_lock_irqsave(&host->irq_lock, flags);
593 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
594 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
595 
596 	/* latch pending CIRQ, but don't signal MMC core */
597 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
598 		irq_mask |= CIRQ_EN;
599 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
600 	spin_unlock_irqrestore(&host->irq_lock, flags);
601 }
602 
603 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
604 {
605 	u32 irq_mask = 0;
606 	unsigned long flags;
607 
608 	spin_lock_irqsave(&host->irq_lock, flags);
609 	/* no transfer running but need to keep cirq if enabled */
610 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
611 		irq_mask |= CIRQ_EN;
612 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
613 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
614 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
615 	spin_unlock_irqrestore(&host->irq_lock, flags);
616 }
617 
618 /* Calculate divisor for the given clock frequency */
619 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
620 {
621 	u16 dsor = 0;
622 
623 	if (ios->clock) {
624 		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
625 		if (dsor > CLKD_MAX)
626 			dsor = CLKD_MAX;
627 	}
628 
629 	return dsor;
630 }
631 
632 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
633 {
634 	struct mmc_ios *ios = &host->mmc->ios;
635 	unsigned long regval;
636 	unsigned long timeout;
637 	unsigned long clkdiv;
638 
639 	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
640 
641 	omap_hsmmc_stop_clock(host);
642 
643 	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
644 	regval = regval & ~(CLKD_MASK | DTO_MASK);
645 	clkdiv = calc_divisor(host, ios);
646 	regval = regval | (clkdiv << 6) | (DTO << 16);
647 	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
648 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
649 		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
650 
651 	/* Wait till the ICS bit is set */
652 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
653 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
654 		&& time_before(jiffies, timeout))
655 		cpu_relax();
656 
657 	/*
658 	 * Enable High-Speed Support
659 	 * Pre-Requisites
660 	 *	- Controller should support High-Speed-Enable Bit
661 	 *	- Controller should not be using DDR Mode
662 	 *	- Controller should advertise that it supports High Speed
663 	 *	  in capabilities register
664 	 *	- MMC/SD clock coming out of controller > 25MHz
665 	 */
666 	if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
667 	    (ios->timing != MMC_TIMING_MMC_DDR52) &&
668 	    (ios->timing != MMC_TIMING_UHS_DDR50) &&
669 	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
670 		regval = OMAP_HSMMC_READ(host->base, HCTL);
671 		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
672 			regval |= HSPE;
673 		else
674 			regval &= ~HSPE;
675 
676 		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
677 	}
678 
679 	omap_hsmmc_start_clock(host);
680 }
681 
682 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
683 {
684 	struct mmc_ios *ios = &host->mmc->ios;
685 	u32 con;
686 
687 	con = OMAP_HSMMC_READ(host->base, CON);
688 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
689 	    ios->timing == MMC_TIMING_UHS_DDR50)
690 		con |= DDR;	/* configure in DDR mode */
691 	else
692 		con &= ~DDR;
693 	switch (ios->bus_width) {
694 	case MMC_BUS_WIDTH_8:
695 		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
696 		break;
697 	case MMC_BUS_WIDTH_4:
698 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
699 		OMAP_HSMMC_WRITE(host->base, HCTL,
700 			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
701 		break;
702 	case MMC_BUS_WIDTH_1:
703 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
704 		OMAP_HSMMC_WRITE(host->base, HCTL,
705 			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
706 		break;
707 	}
708 }
709 
710 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
711 {
712 	struct mmc_ios *ios = &host->mmc->ios;
713 	u32 con;
714 
715 	con = OMAP_HSMMC_READ(host->base, CON);
716 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
717 		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
718 	else
719 		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
720 }
721 
722 #ifdef CONFIG_PM
723 
724 /*
725  * Restore the MMC host context, if it was lost as result of a
726  * power state change.
727  */
728 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
729 {
730 	struct mmc_ios *ios = &host->mmc->ios;
731 	u32 hctl, capa;
732 	unsigned long timeout;
733 
734 	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
735 	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
736 	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
737 	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
738 		return 0;
739 
740 	host->context_loss++;
741 
742 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
743 		if (host->power_mode != MMC_POWER_OFF &&
744 		    (1 << ios->vdd) <= MMC_VDD_23_24)
745 			hctl = SDVS18;
746 		else
747 			hctl = SDVS30;
748 		capa = VS30 | VS18;
749 	} else {
750 		hctl = SDVS18;
751 		capa = VS18;
752 	}
753 
754 	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
755 		hctl |= IWE;
756 
757 	OMAP_HSMMC_WRITE(host->base, HCTL,
758 			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
759 
760 	OMAP_HSMMC_WRITE(host->base, CAPA,
761 			OMAP_HSMMC_READ(host->base, CAPA) | capa);
762 
763 	OMAP_HSMMC_WRITE(host->base, HCTL,
764 			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
765 
766 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
767 	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
768 		&& time_before(jiffies, timeout))
769 		;
770 
771 	OMAP_HSMMC_WRITE(host->base, ISE, 0);
772 	OMAP_HSMMC_WRITE(host->base, IE, 0);
773 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
774 
775 	/* Do not initialize card-specific things if the power is off */
776 	if (host->power_mode == MMC_POWER_OFF)
777 		goto out;
778 
779 	omap_hsmmc_set_bus_width(host);
780 
781 	omap_hsmmc_set_clock(host);
782 
783 	omap_hsmmc_set_bus_mode(host);
784 
785 out:
786 	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
787 		host->context_loss);
788 	return 0;
789 }
790 
791 /*
792  * Save the MMC host context (store the number of power state changes so far).
793  */
794 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
795 {
796 	host->con =  OMAP_HSMMC_READ(host->base, CON);
797 	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
798 	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
799 	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
800 }
801 
802 #else
803 
804 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
805 {
806 	return 0;
807 }
808 
809 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
810 {
811 }
812 
813 #endif
814 
815 /*
816  * Send init stream sequence to card
817  * before sending IDLE command
818  */
819 static void send_init_stream(struct omap_hsmmc_host *host)
820 {
821 	int reg = 0;
822 	unsigned long timeout;
823 
824 	if (host->protect_card)
825 		return;
826 
827 	disable_irq(host->irq);
828 
829 	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
830 	OMAP_HSMMC_WRITE(host->base, CON,
831 		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
832 	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
833 
834 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
835 	while ((reg != CC_EN) && time_before(jiffies, timeout))
836 		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
837 
838 	OMAP_HSMMC_WRITE(host->base, CON,
839 		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
840 
841 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
842 	OMAP_HSMMC_READ(host->base, STAT);
843 
844 	enable_irq(host->irq);
845 }
846 
847 static inline
848 int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
849 {
850 	int r = 1;
851 
852 	if (host->get_cover_state)
853 		r = host->get_cover_state(host->dev);
854 	return r;
855 }
856 
857 static ssize_t
858 omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
859 			   char *buf)
860 {
861 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
862 	struct omap_hsmmc_host *host = mmc_priv(mmc);
863 
864 	return sprintf(buf, "%s\n",
865 			omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
866 }
867 
868 static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
869 
870 static ssize_t
871 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
872 			char *buf)
873 {
874 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
875 	struct omap_hsmmc_host *host = mmc_priv(mmc);
876 
877 	return sprintf(buf, "%s\n", mmc_pdata(host)->name);
878 }
879 
880 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
881 
882 /*
883  * Configure the response type and send the cmd.
884  */
885 static void
886 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
887 	struct mmc_data *data)
888 {
889 	int cmdreg = 0, resptype = 0, cmdtype = 0;
890 
891 	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
892 		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
893 	host->cmd = cmd;
894 
895 	omap_hsmmc_enable_irq(host, cmd);
896 
897 	host->response_busy = 0;
898 	if (cmd->flags & MMC_RSP_PRESENT) {
899 		if (cmd->flags & MMC_RSP_136)
900 			resptype = 1;
901 		else if (cmd->flags & MMC_RSP_BUSY) {
902 			resptype = 3;
903 			host->response_busy = 1;
904 		} else
905 			resptype = 2;
906 	}
907 
908 	/*
909 	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
910 	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
911 	 * a val of 0x3, rest 0x0.
912 	 */
913 	if (cmd == host->mrq->stop)
914 		cmdtype = 0x3;
915 
916 	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
917 
918 	if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
919 	    host->mrq->sbc) {
920 		cmdreg |= ACEN_ACMD23;
921 		OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
922 	}
923 	if (data) {
924 		cmdreg |= DP_SELECT | MSBS | BCE;
925 		if (data->flags & MMC_DATA_READ)
926 			cmdreg |= DDIR;
927 		else
928 			cmdreg &= ~(DDIR);
929 	}
930 
931 	if (host->use_dma)
932 		cmdreg |= DMAE;
933 
934 	host->req_in_progress = 1;
935 
936 	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
937 	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
938 }
939 
940 static int
941 omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
942 {
943 	if (data->flags & MMC_DATA_WRITE)
944 		return DMA_TO_DEVICE;
945 	else
946 		return DMA_FROM_DEVICE;
947 }
948 
949 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
950 	struct mmc_data *data)
951 {
952 	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
953 }
954 
955 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
956 {
957 	int dma_ch;
958 	unsigned long flags;
959 
960 	spin_lock_irqsave(&host->irq_lock, flags);
961 	host->req_in_progress = 0;
962 	dma_ch = host->dma_ch;
963 	spin_unlock_irqrestore(&host->irq_lock, flags);
964 
965 	omap_hsmmc_disable_irq(host);
966 	/* Do not complete the request if DMA is still in progress */
967 	if (mrq->data && host->use_dma && dma_ch != -1)
968 		return;
969 	host->mrq = NULL;
970 	mmc_request_done(host->mmc, mrq);
971 	pm_runtime_mark_last_busy(host->dev);
972 	pm_runtime_put_autosuspend(host->dev);
973 }
974 
975 /*
976  * Notify the transfer complete to MMC core
977  */
978 static void
979 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
980 {
981 	if (!data) {
982 		struct mmc_request *mrq = host->mrq;
983 
984 		/* TC before CC from CMD6 - don't know why, but it happens */
985 		if (host->cmd && host->cmd->opcode == 6 &&
986 		    host->response_busy) {
987 			host->response_busy = 0;
988 			return;
989 		}
990 
991 		omap_hsmmc_request_done(host, mrq);
992 		return;
993 	}
994 
995 	host->data = NULL;
996 
997 	if (!data->error)
998 		data->bytes_xfered += data->blocks * (data->blksz);
999 	else
1000 		data->bytes_xfered = 0;
1001 
1002 	if (data->stop && (data->error || !host->mrq->sbc))
1003 		omap_hsmmc_start_command(host, data->stop, NULL);
1004 	else
1005 		omap_hsmmc_request_done(host, data->mrq);
1006 }
1007 
1008 /*
1009  * Notify the core about command completion
1010  */
1011 static void
1012 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
1013 {
1014 	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
1015 	    !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
1016 		host->cmd = NULL;
1017 		omap_hsmmc_start_dma_transfer(host);
1018 		omap_hsmmc_start_command(host, host->mrq->cmd,
1019 						host->mrq->data);
1020 		return;
1021 	}
1022 
1023 	host->cmd = NULL;
1024 
1025 	if (cmd->flags & MMC_RSP_PRESENT) {
1026 		if (cmd->flags & MMC_RSP_136) {
1027 			/* response type 2 */
1028 			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
1029 			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
1030 			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
1031 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
1032 		} else {
1033 			/* response types 1, 1b, 3, 4, 5, 6 */
1034 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
1035 		}
1036 	}
1037 	if ((host->data == NULL && !host->response_busy) || cmd->error)
1038 		omap_hsmmc_request_done(host, host->mrq);
1039 }
1040 
1041 /*
1042  * DMA clean up for command errors
1043  */
1044 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
1045 {
1046 	int dma_ch;
1047 	unsigned long flags;
1048 
1049 	host->data->error = errno;
1050 
1051 	spin_lock_irqsave(&host->irq_lock, flags);
1052 	dma_ch = host->dma_ch;
1053 	host->dma_ch = -1;
1054 	spin_unlock_irqrestore(&host->irq_lock, flags);
1055 
1056 	if (host->use_dma && dma_ch != -1) {
1057 		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
1058 
1059 		dmaengine_terminate_all(chan);
1060 		dma_unmap_sg(chan->device->dev,
1061 			host->data->sg, host->data->sg_len,
1062 			omap_hsmmc_get_dma_dir(host, host->data));
1063 
1064 		host->data->host_cookie = 0;
1065 	}
1066 	host->data = NULL;
1067 }
1068 
1069 /*
1070  * Readable error output
1071  */
1072 #ifdef CONFIG_MMC_DEBUG
1073 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
1074 {
1075 	/* --- means reserved bit without definition at documentation */
1076 	static const char *omap_hsmmc_status_bits[] = {
1077 		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
1078 		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
1079 		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
1080 		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
1081 	};
1082 	char res[256];
1083 	char *buf = res;
1084 	int len, i;
1085 
1086 	len = sprintf(buf, "MMC IRQ 0x%x :", status);
1087 	buf += len;
1088 
1089 	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
1090 		if (status & (1 << i)) {
1091 			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
1092 			buf += len;
1093 		}
1094 
1095 	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
1096 }
1097 #else
1098 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
1099 					     u32 status)
1100 {
1101 }
1102 #endif  /* CONFIG_MMC_DEBUG */
1103 
1104 /*
1105  * MMC controller internal state machines reset
1106  *
1107  * Used to reset command or data internal state machines, using respectively
1108  *  SRC or SRD bit of SYSCTL register
1109  * Can be called from interrupt context
1110  */
1111 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
1112 						   unsigned long bit)
1113 {
1114 	unsigned long i = 0;
1115 	unsigned long limit = MMC_TIMEOUT_US;
1116 
1117 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
1118 			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
1119 
1120 	/*
1121 	 * OMAP4 ES2 and greater has an updated reset logic.
1122 	 * Monitor a 0->1 transition first
1123 	 */
1124 	if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
1125 		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
1126 					&& (i++ < limit))
1127 			udelay(1);
1128 	}
1129 	i = 0;
1130 
1131 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
1132 		(i++ < limit))
1133 		udelay(1);
1134 
1135 	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1136 		dev_err(mmc_dev(host->mmc),
1137 			"Timeout waiting on controller reset in %s\n",
1138 			__func__);
1139 }
1140 
1141 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1142 					int err, int end_cmd)
1143 {
1144 	if (end_cmd) {
1145 		omap_hsmmc_reset_controller_fsm(host, SRC);
1146 		if (host->cmd)
1147 			host->cmd->error = err;
1148 	}
1149 
1150 	if (host->data) {
1151 		omap_hsmmc_reset_controller_fsm(host, SRD);
1152 		omap_hsmmc_dma_cleanup(host, err);
1153 	} else if (host->mrq && host->mrq->cmd)
1154 		host->mrq->cmd->error = err;
1155 }
1156 
1157 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1158 {
1159 	struct mmc_data *data;
1160 	int end_cmd = 0, end_trans = 0;
1161 	int error = 0;
1162 
1163 	data = host->data;
1164 	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1165 
1166 	if (status & ERR_EN) {
1167 		omap_hsmmc_dbg_report_irq(host, status);
1168 
1169 		if (status & (CTO_EN | CCRC_EN))
1170 			end_cmd = 1;
1171 		if (host->data || host->response_busy) {
1172 			end_trans = !end_cmd;
1173 			host->response_busy = 0;
1174 		}
1175 		if (status & (CTO_EN | DTO_EN))
1176 			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1177 		else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1178 				   BADA_EN))
1179 			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1180 
1181 		if (status & ACE_EN) {
1182 			u32 ac12;
1183 			ac12 = OMAP_HSMMC_READ(host->base, AC12);
1184 			if (!(ac12 & ACNE) && host->mrq->sbc) {
1185 				end_cmd = 1;
1186 				if (ac12 & ACTO)
1187 					error =  -ETIMEDOUT;
1188 				else if (ac12 & (ACCE | ACEB | ACIE))
1189 					error = -EILSEQ;
1190 				host->mrq->sbc->error = error;
1191 				hsmmc_command_incomplete(host, error, end_cmd);
1192 			}
1193 			dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1194 		}
1195 	}
1196 
1197 	OMAP_HSMMC_WRITE(host->base, STAT, status);
1198 	if (end_cmd || ((status & CC_EN) && host->cmd))
1199 		omap_hsmmc_cmd_done(host, host->cmd);
1200 	if ((end_trans || (status & TC_EN)) && host->mrq)
1201 		omap_hsmmc_xfer_done(host, data);
1202 }
1203 
1204 /*
1205  * MMC controller IRQ handler
1206  */
1207 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1208 {
1209 	struct omap_hsmmc_host *host = dev_id;
1210 	int status;
1211 
1212 	status = OMAP_HSMMC_READ(host->base, STAT);
1213 	while (status & (INT_EN_MASK | CIRQ_EN)) {
1214 		if (host->req_in_progress)
1215 			omap_hsmmc_do_irq(host, status);
1216 
1217 		if (status & CIRQ_EN)
1218 			mmc_signal_sdio_irq(host->mmc);
1219 
1220 		/* Flush posted write */
1221 		status = OMAP_HSMMC_READ(host->base, STAT);
1222 	}
1223 
1224 	return IRQ_HANDLED;
1225 }
1226 
1227 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1228 {
1229 	unsigned long i;
1230 
1231 	OMAP_HSMMC_WRITE(host->base, HCTL,
1232 			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1233 	for (i = 0; i < loops_per_jiffy; i++) {
1234 		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1235 			break;
1236 		cpu_relax();
1237 	}
1238 }
1239 
1240 /*
1241  * Switch MMC interface voltage ... only relevant for MMC1.
1242  *
1243  * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1244  * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1245  * Some chips, like eMMC ones, use internal transceivers.
1246  */
1247 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1248 {
1249 	u32 reg_val = 0;
1250 	int ret;
1251 
1252 	/* Disable the clocks */
1253 	pm_runtime_put_sync(host->dev);
1254 	if (host->dbclk)
1255 		clk_disable_unprepare(host->dbclk);
1256 
1257 	/* Turn the power off */
1258 	ret = omap_hsmmc_set_power(host->dev, 0, 0);
1259 
1260 	/* Turn the power ON with given VDD 1.8 or 3.0v */
1261 	if (!ret)
1262 		ret = omap_hsmmc_set_power(host->dev, 1, vdd);
1263 	pm_runtime_get_sync(host->dev);
1264 	if (host->dbclk)
1265 		clk_prepare_enable(host->dbclk);
1266 
1267 	if (ret != 0)
1268 		goto err;
1269 
1270 	OMAP_HSMMC_WRITE(host->base, HCTL,
1271 		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1272 	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1273 
1274 	/*
1275 	 * If a MMC dual voltage card is detected, the set_ios fn calls
1276 	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1277 	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1278 	 *
1279 	 * Cope with a bit of slop in the range ... per data sheets:
1280 	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1281 	 *    but recommended values are 1.71V to 1.89V
1282 	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1283 	 *    but recommended values are 2.7V to 3.3V
1284 	 *
1285 	 * Board setup code shouldn't permit anything very out-of-range.
1286 	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1287 	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1288 	 */
1289 	if ((1 << vdd) <= MMC_VDD_23_24)
1290 		reg_val |= SDVS18;
1291 	else
1292 		reg_val |= SDVS30;
1293 
1294 	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1295 	set_sd_bus_power(host);
1296 
1297 	return 0;
1298 err:
1299 	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1300 	return ret;
1301 }
1302 
1303 /* Protect the card while the cover is open */
1304 static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1305 {
1306 	if (!host->get_cover_state)
1307 		return;
1308 
1309 	host->reqs_blocked = 0;
1310 	if (host->get_cover_state(host->dev)) {
1311 		if (host->protect_card) {
1312 			dev_info(host->dev, "%s: cover is closed, "
1313 					 "card is now accessible\n",
1314 					 mmc_hostname(host->mmc));
1315 			host->protect_card = 0;
1316 		}
1317 	} else {
1318 		if (!host->protect_card) {
1319 			dev_info(host->dev, "%s: cover is open, "
1320 					 "card is now inaccessible\n",
1321 					 mmc_hostname(host->mmc));
1322 			host->protect_card = 1;
1323 		}
1324 	}
1325 }
1326 
1327 /*
1328  * irq handler when (cell-phone) cover is mounted/removed
1329  */
1330 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id)
1331 {
1332 	struct omap_hsmmc_host *host = dev_id;
1333 
1334 	sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1335 
1336 	omap_hsmmc_protect_card(host);
1337 	mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1338 	return IRQ_HANDLED;
1339 }
1340 
1341 static void omap_hsmmc_dma_callback(void *param)
1342 {
1343 	struct omap_hsmmc_host *host = param;
1344 	struct dma_chan *chan;
1345 	struct mmc_data *data;
1346 	int req_in_progress;
1347 
1348 	spin_lock_irq(&host->irq_lock);
1349 	if (host->dma_ch < 0) {
1350 		spin_unlock_irq(&host->irq_lock);
1351 		return;
1352 	}
1353 
1354 	data = host->mrq->data;
1355 	chan = omap_hsmmc_get_dma_chan(host, data);
1356 	if (!data->host_cookie)
1357 		dma_unmap_sg(chan->device->dev,
1358 			     data->sg, data->sg_len,
1359 			     omap_hsmmc_get_dma_dir(host, data));
1360 
1361 	req_in_progress = host->req_in_progress;
1362 	host->dma_ch = -1;
1363 	spin_unlock_irq(&host->irq_lock);
1364 
1365 	/* If DMA has finished after TC, complete the request */
1366 	if (!req_in_progress) {
1367 		struct mmc_request *mrq = host->mrq;
1368 
1369 		host->mrq = NULL;
1370 		mmc_request_done(host->mmc, mrq);
1371 		pm_runtime_mark_last_busy(host->dev);
1372 		pm_runtime_put_autosuspend(host->dev);
1373 	}
1374 }
1375 
1376 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1377 				       struct mmc_data *data,
1378 				       struct omap_hsmmc_next *next,
1379 				       struct dma_chan *chan)
1380 {
1381 	int dma_len;
1382 
1383 	if (!next && data->host_cookie &&
1384 	    data->host_cookie != host->next_data.cookie) {
1385 		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1386 		       " host->next_data.cookie %d\n",
1387 		       __func__, data->host_cookie, host->next_data.cookie);
1388 		data->host_cookie = 0;
1389 	}
1390 
1391 	/* Check if next job is already prepared */
1392 	if (next || data->host_cookie != host->next_data.cookie) {
1393 		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1394 				     omap_hsmmc_get_dma_dir(host, data));
1395 
1396 	} else {
1397 		dma_len = host->next_data.dma_len;
1398 		host->next_data.dma_len = 0;
1399 	}
1400 
1401 
1402 	if (dma_len == 0)
1403 		return -EINVAL;
1404 
1405 	if (next) {
1406 		next->dma_len = dma_len;
1407 		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1408 	} else
1409 		host->dma_len = dma_len;
1410 
1411 	return 0;
1412 }
1413 
1414 /*
1415  * Routine to configure and start DMA for the MMC card
1416  */
1417 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1418 					struct mmc_request *req)
1419 {
1420 	struct dma_slave_config cfg;
1421 	struct dma_async_tx_descriptor *tx;
1422 	int ret = 0, i;
1423 	struct mmc_data *data = req->data;
1424 	struct dma_chan *chan;
1425 
1426 	/* Sanity check: all the SG entries must be aligned by block size. */
1427 	for (i = 0; i < data->sg_len; i++) {
1428 		struct scatterlist *sgl;
1429 
1430 		sgl = data->sg + i;
1431 		if (sgl->length % data->blksz)
1432 			return -EINVAL;
1433 	}
1434 	if ((data->blksz % 4) != 0)
1435 		/* REVISIT: The MMC buffer increments only when MSB is written.
1436 		 * Return error for blksz which is non multiple of four.
1437 		 */
1438 		return -EINVAL;
1439 
1440 	BUG_ON(host->dma_ch != -1);
1441 
1442 	chan = omap_hsmmc_get_dma_chan(host, data);
1443 
1444 	cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA;
1445 	cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA;
1446 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1447 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1448 	cfg.src_maxburst = data->blksz / 4;
1449 	cfg.dst_maxburst = data->blksz / 4;
1450 
1451 	ret = dmaengine_slave_config(chan, &cfg);
1452 	if (ret)
1453 		return ret;
1454 
1455 	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1456 	if (ret)
1457 		return ret;
1458 
1459 	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1460 		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1461 		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1462 	if (!tx) {
1463 		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1464 		/* FIXME: cleanup */
1465 		return -1;
1466 	}
1467 
1468 	tx->callback = omap_hsmmc_dma_callback;
1469 	tx->callback_param = host;
1470 
1471 	/* Does not fail */
1472 	dmaengine_submit(tx);
1473 
1474 	host->dma_ch = 1;
1475 
1476 	return 0;
1477 }
1478 
1479 static void set_data_timeout(struct omap_hsmmc_host *host,
1480 			     unsigned int timeout_ns,
1481 			     unsigned int timeout_clks)
1482 {
1483 	unsigned int timeout, cycle_ns;
1484 	uint32_t reg, clkd, dto = 0;
1485 
1486 	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1487 	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1488 	if (clkd == 0)
1489 		clkd = 1;
1490 
1491 	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1492 	timeout = timeout_ns / cycle_ns;
1493 	timeout += timeout_clks;
1494 	if (timeout) {
1495 		while ((timeout & 0x80000000) == 0) {
1496 			dto += 1;
1497 			timeout <<= 1;
1498 		}
1499 		dto = 31 - dto;
1500 		timeout <<= 1;
1501 		if (timeout && dto)
1502 			dto += 1;
1503 		if (dto >= 13)
1504 			dto -= 13;
1505 		else
1506 			dto = 0;
1507 		if (dto > 14)
1508 			dto = 14;
1509 	}
1510 
1511 	reg &= ~DTO_MASK;
1512 	reg |= dto << DTO_SHIFT;
1513 	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1514 }
1515 
1516 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1517 {
1518 	struct mmc_request *req = host->mrq;
1519 	struct dma_chan *chan;
1520 
1521 	if (!req->data)
1522 		return;
1523 	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1524 				| (req->data->blocks << 16));
1525 	set_data_timeout(host, req->data->timeout_ns,
1526 				req->data->timeout_clks);
1527 	chan = omap_hsmmc_get_dma_chan(host, req->data);
1528 	dma_async_issue_pending(chan);
1529 }
1530 
1531 /*
1532  * Configure block length for MMC/SD cards and initiate the transfer.
1533  */
1534 static int
1535 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1536 {
1537 	int ret;
1538 	host->data = req->data;
1539 
1540 	if (req->data == NULL) {
1541 		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1542 		/*
1543 		 * Set an arbitrary 100ms data timeout for commands with
1544 		 * busy signal.
1545 		 */
1546 		if (req->cmd->flags & MMC_RSP_BUSY)
1547 			set_data_timeout(host, 100000000U, 0);
1548 		return 0;
1549 	}
1550 
1551 	if (host->use_dma) {
1552 		ret = omap_hsmmc_setup_dma_transfer(host, req);
1553 		if (ret != 0) {
1554 			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1555 			return ret;
1556 		}
1557 	}
1558 	return 0;
1559 }
1560 
1561 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1562 				int err)
1563 {
1564 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1565 	struct mmc_data *data = mrq->data;
1566 
1567 	if (host->use_dma && data->host_cookie) {
1568 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1569 
1570 		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1571 			     omap_hsmmc_get_dma_dir(host, data));
1572 		data->host_cookie = 0;
1573 	}
1574 }
1575 
1576 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
1577 			       bool is_first_req)
1578 {
1579 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1580 
1581 	if (mrq->data->host_cookie) {
1582 		mrq->data->host_cookie = 0;
1583 		return ;
1584 	}
1585 
1586 	if (host->use_dma) {
1587 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1588 
1589 		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1590 						&host->next_data, c))
1591 			mrq->data->host_cookie = 0;
1592 	}
1593 }
1594 
1595 /*
1596  * Request function. for read/write operation
1597  */
1598 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1599 {
1600 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1601 	int err;
1602 
1603 	BUG_ON(host->req_in_progress);
1604 	BUG_ON(host->dma_ch != -1);
1605 	pm_runtime_get_sync(host->dev);
1606 	if (host->protect_card) {
1607 		if (host->reqs_blocked < 3) {
1608 			/*
1609 			 * Ensure the controller is left in a consistent
1610 			 * state by resetting the command and data state
1611 			 * machines.
1612 			 */
1613 			omap_hsmmc_reset_controller_fsm(host, SRD);
1614 			omap_hsmmc_reset_controller_fsm(host, SRC);
1615 			host->reqs_blocked += 1;
1616 		}
1617 		req->cmd->error = -EBADF;
1618 		if (req->data)
1619 			req->data->error = -EBADF;
1620 		req->cmd->retries = 0;
1621 		mmc_request_done(mmc, req);
1622 		pm_runtime_mark_last_busy(host->dev);
1623 		pm_runtime_put_autosuspend(host->dev);
1624 		return;
1625 	} else if (host->reqs_blocked)
1626 		host->reqs_blocked = 0;
1627 	WARN_ON(host->mrq != NULL);
1628 	host->mrq = req;
1629 	host->clk_rate = clk_get_rate(host->fclk);
1630 	err = omap_hsmmc_prepare_data(host, req);
1631 	if (err) {
1632 		req->cmd->error = err;
1633 		if (req->data)
1634 			req->data->error = err;
1635 		host->mrq = NULL;
1636 		mmc_request_done(mmc, req);
1637 		pm_runtime_mark_last_busy(host->dev);
1638 		pm_runtime_put_autosuspend(host->dev);
1639 		return;
1640 	}
1641 	if (req->sbc && !(host->flags & AUTO_CMD23)) {
1642 		omap_hsmmc_start_command(host, req->sbc, NULL);
1643 		return;
1644 	}
1645 
1646 	omap_hsmmc_start_dma_transfer(host);
1647 	omap_hsmmc_start_command(host, req->cmd, req->data);
1648 }
1649 
1650 /* Routine to configure clock values. Exposed API to core */
1651 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1652 {
1653 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1654 	int do_send_init_stream = 0;
1655 
1656 	pm_runtime_get_sync(host->dev);
1657 
1658 	if (ios->power_mode != host->power_mode) {
1659 		switch (ios->power_mode) {
1660 		case MMC_POWER_OFF:
1661 			omap_hsmmc_set_power(host->dev, 0, 0);
1662 			break;
1663 		case MMC_POWER_UP:
1664 			omap_hsmmc_set_power(host->dev, 1, ios->vdd);
1665 			break;
1666 		case MMC_POWER_ON:
1667 			do_send_init_stream = 1;
1668 			break;
1669 		}
1670 		host->power_mode = ios->power_mode;
1671 	}
1672 
1673 	/* FIXME: set registers based only on changes to ios */
1674 
1675 	omap_hsmmc_set_bus_width(host);
1676 
1677 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1678 		/* Only MMC1 can interface at 3V without some flavor
1679 		 * of external transceiver; but they all handle 1.8V.
1680 		 */
1681 		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1682 			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1683 				/*
1684 				 * The mmc_select_voltage fn of the core does
1685 				 * not seem to set the power_mode to
1686 				 * MMC_POWER_UP upon recalculating the voltage.
1687 				 * vdd 1.8v.
1688 				 */
1689 			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1690 				dev_dbg(mmc_dev(host->mmc),
1691 						"Switch operation failed\n");
1692 		}
1693 	}
1694 
1695 	omap_hsmmc_set_clock(host);
1696 
1697 	if (do_send_init_stream)
1698 		send_init_stream(host);
1699 
1700 	omap_hsmmc_set_bus_mode(host);
1701 
1702 	pm_runtime_put_autosuspend(host->dev);
1703 }
1704 
1705 static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1706 {
1707 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1708 
1709 	if (!host->card_detect)
1710 		return -ENOSYS;
1711 	return host->card_detect(host->dev);
1712 }
1713 
1714 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1715 {
1716 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1717 
1718 	if (mmc_pdata(host)->init_card)
1719 		mmc_pdata(host)->init_card(card);
1720 }
1721 
1722 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1723 {
1724 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1725 	u32 irq_mask, con;
1726 	unsigned long flags;
1727 
1728 	spin_lock_irqsave(&host->irq_lock, flags);
1729 
1730 	con = OMAP_HSMMC_READ(host->base, CON);
1731 	irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1732 	if (enable) {
1733 		host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1734 		irq_mask |= CIRQ_EN;
1735 		con |= CTPL | CLKEXTFREE;
1736 	} else {
1737 		host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1738 		irq_mask &= ~CIRQ_EN;
1739 		con &= ~(CTPL | CLKEXTFREE);
1740 	}
1741 	OMAP_HSMMC_WRITE(host->base, CON, con);
1742 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1743 
1744 	/*
1745 	 * if enable, piggy back detection on current request
1746 	 * but always disable immediately
1747 	 */
1748 	if (!host->req_in_progress || !enable)
1749 		OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1750 
1751 	/* flush posted write */
1752 	OMAP_HSMMC_READ(host->base, IE);
1753 
1754 	spin_unlock_irqrestore(&host->irq_lock, flags);
1755 }
1756 
1757 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1758 {
1759 	int ret;
1760 
1761 	/*
1762 	 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1763 	 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1764 	 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1765 	 * with functional clock disabled.
1766 	 */
1767 	if (!host->dev->of_node || !host->wake_irq)
1768 		return -ENODEV;
1769 
1770 	ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1771 	if (ret) {
1772 		dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1773 		goto err;
1774 	}
1775 
1776 	/*
1777 	 * Some omaps don't have wake-up path from deeper idle states
1778 	 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1779 	 */
1780 	if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1781 		struct pinctrl *p = devm_pinctrl_get(host->dev);
1782 		if (!p) {
1783 			ret = -ENODEV;
1784 			goto err_free_irq;
1785 		}
1786 		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
1787 			dev_info(host->dev, "missing default pinctrl state\n");
1788 			devm_pinctrl_put(p);
1789 			ret = -EINVAL;
1790 			goto err_free_irq;
1791 		}
1792 
1793 		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1794 			dev_info(host->dev, "missing idle pinctrl state\n");
1795 			devm_pinctrl_put(p);
1796 			ret = -EINVAL;
1797 			goto err_free_irq;
1798 		}
1799 		devm_pinctrl_put(p);
1800 	}
1801 
1802 	OMAP_HSMMC_WRITE(host->base, HCTL,
1803 			 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1804 	return 0;
1805 
1806 err_free_irq:
1807 	dev_pm_clear_wake_irq(host->dev);
1808 err:
1809 	dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1810 	host->wake_irq = 0;
1811 	return ret;
1812 }
1813 
1814 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1815 {
1816 	u32 hctl, capa, value;
1817 
1818 	/* Only MMC1 supports 3.0V */
1819 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1820 		hctl = SDVS30;
1821 		capa = VS30 | VS18;
1822 	} else {
1823 		hctl = SDVS18;
1824 		capa = VS18;
1825 	}
1826 
1827 	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1828 	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1829 
1830 	value = OMAP_HSMMC_READ(host->base, CAPA);
1831 	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1832 
1833 	/* Set SD bus power bit */
1834 	set_sd_bus_power(host);
1835 }
1836 
1837 static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1838 				     unsigned int direction, int blk_size)
1839 {
1840 	/* This controller can't do multiblock reads due to hw bugs */
1841 	if (direction == MMC_DATA_READ)
1842 		return 1;
1843 
1844 	return blk_size;
1845 }
1846 
1847 static struct mmc_host_ops omap_hsmmc_ops = {
1848 	.post_req = omap_hsmmc_post_req,
1849 	.pre_req = omap_hsmmc_pre_req,
1850 	.request = omap_hsmmc_request,
1851 	.set_ios = omap_hsmmc_set_ios,
1852 	.get_cd = omap_hsmmc_get_cd,
1853 	.get_ro = mmc_gpio_get_ro,
1854 	.init_card = omap_hsmmc_init_card,
1855 	.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1856 };
1857 
1858 #ifdef CONFIG_DEBUG_FS
1859 
1860 static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1861 {
1862 	struct mmc_host *mmc = s->private;
1863 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1864 
1865 	seq_printf(s, "mmc%d:\n", mmc->index);
1866 	seq_printf(s, "sdio irq mode\t%s\n",
1867 		   (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1868 
1869 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1870 		seq_printf(s, "sdio irq \t%s\n",
1871 			   (host->flags & HSMMC_SDIO_IRQ_ENABLED) ?  "enabled"
1872 			   : "disabled");
1873 	}
1874 	seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1875 
1876 	pm_runtime_get_sync(host->dev);
1877 	seq_puts(s, "\nregs:\n");
1878 	seq_printf(s, "CON:\t\t0x%08x\n",
1879 			OMAP_HSMMC_READ(host->base, CON));
1880 	seq_printf(s, "PSTATE:\t\t0x%08x\n",
1881 		   OMAP_HSMMC_READ(host->base, PSTATE));
1882 	seq_printf(s, "HCTL:\t\t0x%08x\n",
1883 			OMAP_HSMMC_READ(host->base, HCTL));
1884 	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1885 			OMAP_HSMMC_READ(host->base, SYSCTL));
1886 	seq_printf(s, "IE:\t\t0x%08x\n",
1887 			OMAP_HSMMC_READ(host->base, IE));
1888 	seq_printf(s, "ISE:\t\t0x%08x\n",
1889 			OMAP_HSMMC_READ(host->base, ISE));
1890 	seq_printf(s, "CAPA:\t\t0x%08x\n",
1891 			OMAP_HSMMC_READ(host->base, CAPA));
1892 
1893 	pm_runtime_mark_last_busy(host->dev);
1894 	pm_runtime_put_autosuspend(host->dev);
1895 
1896 	return 0;
1897 }
1898 
1899 static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1900 {
1901 	return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1902 }
1903 
1904 static const struct file_operations mmc_regs_fops = {
1905 	.open           = omap_hsmmc_regs_open,
1906 	.read           = seq_read,
1907 	.llseek         = seq_lseek,
1908 	.release        = single_release,
1909 };
1910 
1911 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1912 {
1913 	if (mmc->debugfs_root)
1914 		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1915 			mmc, &mmc_regs_fops);
1916 }
1917 
1918 #else
1919 
1920 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1921 {
1922 }
1923 
1924 #endif
1925 
1926 #ifdef CONFIG_OF
1927 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1928 	/* See 35xx errata 2.1.1.128 in SPRZ278F */
1929 	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1930 };
1931 
1932 static const struct omap_mmc_of_data omap4_mmc_of_data = {
1933 	.reg_offset = 0x100,
1934 };
1935 static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1936 	.reg_offset = 0x100,
1937 	.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1938 };
1939 
1940 static const struct of_device_id omap_mmc_of_match[] = {
1941 	{
1942 		.compatible = "ti,omap2-hsmmc",
1943 	},
1944 	{
1945 		.compatible = "ti,omap3-pre-es3-hsmmc",
1946 		.data = &omap3_pre_es3_mmc_of_data,
1947 	},
1948 	{
1949 		.compatible = "ti,omap3-hsmmc",
1950 	},
1951 	{
1952 		.compatible = "ti,omap4-hsmmc",
1953 		.data = &omap4_mmc_of_data,
1954 	},
1955 	{
1956 		.compatible = "ti,am33xx-hsmmc",
1957 		.data = &am33xx_mmc_of_data,
1958 	},
1959 	{},
1960 };
1961 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1962 
1963 static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1964 {
1965 	struct omap_hsmmc_platform_data *pdata;
1966 	struct device_node *np = dev->of_node;
1967 
1968 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1969 	if (!pdata)
1970 		return ERR_PTR(-ENOMEM); /* out of memory */
1971 
1972 	if (of_find_property(np, "ti,dual-volt", NULL))
1973 		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1974 
1975 	pdata->gpio_cd = -EINVAL;
1976 	pdata->gpio_cod = -EINVAL;
1977 	pdata->gpio_wp = -EINVAL;
1978 
1979 	if (of_find_property(np, "ti,non-removable", NULL)) {
1980 		pdata->nonremovable = true;
1981 		pdata->no_regulator_off_init = true;
1982 	}
1983 
1984 	if (of_find_property(np, "ti,needs-special-reset", NULL))
1985 		pdata->features |= HSMMC_HAS_UPDATED_RESET;
1986 
1987 	if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1988 		pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1989 
1990 	return pdata;
1991 }
1992 #else
1993 static inline struct omap_hsmmc_platform_data
1994 			*of_get_hsmmc_pdata(struct device *dev)
1995 {
1996 	return ERR_PTR(-EINVAL);
1997 }
1998 #endif
1999 
2000 static int omap_hsmmc_probe(struct platform_device *pdev)
2001 {
2002 	struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
2003 	struct mmc_host *mmc;
2004 	struct omap_hsmmc_host *host = NULL;
2005 	struct resource *res;
2006 	int ret, irq;
2007 	const struct of_device_id *match;
2008 	dma_cap_mask_t mask;
2009 	unsigned tx_req, rx_req;
2010 	const struct omap_mmc_of_data *data;
2011 	void __iomem *base;
2012 
2013 	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
2014 	if (match) {
2015 		pdata = of_get_hsmmc_pdata(&pdev->dev);
2016 
2017 		if (IS_ERR(pdata))
2018 			return PTR_ERR(pdata);
2019 
2020 		if (match->data) {
2021 			data = match->data;
2022 			pdata->reg_offset = data->reg_offset;
2023 			pdata->controller_flags |= data->controller_flags;
2024 		}
2025 	}
2026 
2027 	if (pdata == NULL) {
2028 		dev_err(&pdev->dev, "Platform Data is missing\n");
2029 		return -ENXIO;
2030 	}
2031 
2032 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2033 	irq = platform_get_irq(pdev, 0);
2034 	if (res == NULL || irq < 0)
2035 		return -ENXIO;
2036 
2037 	base = devm_ioremap_resource(&pdev->dev, res);
2038 	if (IS_ERR(base))
2039 		return PTR_ERR(base);
2040 
2041 	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
2042 	if (!mmc) {
2043 		ret = -ENOMEM;
2044 		goto err;
2045 	}
2046 
2047 	ret = mmc_of_parse(mmc);
2048 	if (ret)
2049 		goto err1;
2050 
2051 	host		= mmc_priv(mmc);
2052 	host->mmc	= mmc;
2053 	host->pdata	= pdata;
2054 	host->dev	= &pdev->dev;
2055 	host->use_dma	= 1;
2056 	host->dma_ch	= -1;
2057 	host->irq	= irq;
2058 	host->mapbase	= res->start + pdata->reg_offset;
2059 	host->base	= base + pdata->reg_offset;
2060 	host->power_mode = MMC_POWER_OFF;
2061 	host->next_data.cookie = 1;
2062 	host->pbias_enabled = 0;
2063 	host->vqmmc_enabled = 0;
2064 
2065 	ret = omap_hsmmc_gpio_init(mmc, host, pdata);
2066 	if (ret)
2067 		goto err_gpio;
2068 
2069 	platform_set_drvdata(pdev, host);
2070 
2071 	if (pdev->dev.of_node)
2072 		host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
2073 
2074 	mmc->ops	= &omap_hsmmc_ops;
2075 
2076 	mmc->f_min = OMAP_MMC_MIN_CLOCK;
2077 
2078 	if (pdata->max_freq > 0)
2079 		mmc->f_max = pdata->max_freq;
2080 	else if (mmc->f_max == 0)
2081 		mmc->f_max = OMAP_MMC_MAX_CLOCK;
2082 
2083 	spin_lock_init(&host->irq_lock);
2084 
2085 	host->fclk = devm_clk_get(&pdev->dev, "fck");
2086 	if (IS_ERR(host->fclk)) {
2087 		ret = PTR_ERR(host->fclk);
2088 		host->fclk = NULL;
2089 		goto err1;
2090 	}
2091 
2092 	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
2093 		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
2094 		omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
2095 	}
2096 
2097 	device_init_wakeup(&pdev->dev, true);
2098 	pm_runtime_enable(host->dev);
2099 	pm_runtime_get_sync(host->dev);
2100 	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
2101 	pm_runtime_use_autosuspend(host->dev);
2102 
2103 	omap_hsmmc_context_save(host);
2104 
2105 	host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
2106 	/*
2107 	 * MMC can still work without debounce clock.
2108 	 */
2109 	if (IS_ERR(host->dbclk)) {
2110 		host->dbclk = NULL;
2111 	} else if (clk_prepare_enable(host->dbclk) != 0) {
2112 		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
2113 		host->dbclk = NULL;
2114 	}
2115 
2116 	/* Since we do only SG emulation, we can have as many segs
2117 	 * as we want. */
2118 	mmc->max_segs = 1024;
2119 
2120 	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
2121 	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
2122 	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
2123 	mmc->max_seg_size = mmc->max_req_size;
2124 
2125 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
2126 		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
2127 
2128 	mmc->caps |= mmc_pdata(host)->caps;
2129 	if (mmc->caps & MMC_CAP_8_BIT_DATA)
2130 		mmc->caps |= MMC_CAP_4_BIT_DATA;
2131 
2132 	if (mmc_pdata(host)->nonremovable)
2133 		mmc->caps |= MMC_CAP_NONREMOVABLE;
2134 
2135 	mmc->pm_caps |= mmc_pdata(host)->pm_caps;
2136 
2137 	omap_hsmmc_conf_bus_power(host);
2138 
2139 	if (!pdev->dev.of_node) {
2140 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
2141 		if (!res) {
2142 			dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n");
2143 			ret = -ENXIO;
2144 			goto err_irq;
2145 		}
2146 		tx_req = res->start;
2147 
2148 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
2149 		if (!res) {
2150 			dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n");
2151 			ret = -ENXIO;
2152 			goto err_irq;
2153 		}
2154 		rx_req = res->start;
2155 	}
2156 
2157 	dma_cap_zero(mask);
2158 	dma_cap_set(DMA_SLAVE, mask);
2159 
2160 	host->rx_chan =
2161 		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2162 						 &rx_req, &pdev->dev, "rx");
2163 
2164 	if (!host->rx_chan) {
2165 		dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel\n");
2166 		ret = -ENXIO;
2167 		goto err_irq;
2168 	}
2169 
2170 	host->tx_chan =
2171 		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2172 						 &tx_req, &pdev->dev, "tx");
2173 
2174 	if (!host->tx_chan) {
2175 		dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel\n");
2176 		ret = -ENXIO;
2177 		goto err_irq;
2178 	}
2179 
2180 	/* Request IRQ for MMC operations */
2181 	ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
2182 			mmc_hostname(mmc), host);
2183 	if (ret) {
2184 		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
2185 		goto err_irq;
2186 	}
2187 
2188 	ret = omap_hsmmc_reg_get(host);
2189 	if (ret)
2190 		goto err_irq;
2191 
2192 	mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
2193 
2194 	omap_hsmmc_disable_irq(host);
2195 
2196 	/*
2197 	 * For now, only support SDIO interrupt if we have a separate
2198 	 * wake-up interrupt configured from device tree. This is because
2199 	 * the wake-up interrupt is needed for idle state and some
2200 	 * platforms need special quirks. And we don't want to add new
2201 	 * legacy mux platform init code callbacks any longer as we
2202 	 * are moving to DT based booting anyways.
2203 	 */
2204 	ret = omap_hsmmc_configure_wake_irq(host);
2205 	if (!ret)
2206 		mmc->caps |= MMC_CAP_SDIO_IRQ;
2207 
2208 	omap_hsmmc_protect_card(host);
2209 
2210 	mmc_add_host(mmc);
2211 
2212 	if (mmc_pdata(host)->name != NULL) {
2213 		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
2214 		if (ret < 0)
2215 			goto err_slot_name;
2216 	}
2217 	if (host->get_cover_state) {
2218 		ret = device_create_file(&mmc->class_dev,
2219 					 &dev_attr_cover_switch);
2220 		if (ret < 0)
2221 			goto err_slot_name;
2222 	}
2223 
2224 	omap_hsmmc_debugfs(mmc);
2225 	pm_runtime_mark_last_busy(host->dev);
2226 	pm_runtime_put_autosuspend(host->dev);
2227 
2228 	return 0;
2229 
2230 err_slot_name:
2231 	mmc_remove_host(mmc);
2232 err_irq:
2233 	device_init_wakeup(&pdev->dev, false);
2234 	if (host->tx_chan)
2235 		dma_release_channel(host->tx_chan);
2236 	if (host->rx_chan)
2237 		dma_release_channel(host->rx_chan);
2238 	pm_runtime_dont_use_autosuspend(host->dev);
2239 	pm_runtime_put_sync(host->dev);
2240 	pm_runtime_disable(host->dev);
2241 	if (host->dbclk)
2242 		clk_disable_unprepare(host->dbclk);
2243 err1:
2244 err_gpio:
2245 	mmc_free_host(mmc);
2246 err:
2247 	return ret;
2248 }
2249 
2250 static int omap_hsmmc_remove(struct platform_device *pdev)
2251 {
2252 	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2253 
2254 	pm_runtime_get_sync(host->dev);
2255 	mmc_remove_host(host->mmc);
2256 
2257 	dma_release_channel(host->tx_chan);
2258 	dma_release_channel(host->rx_chan);
2259 
2260 	pm_runtime_dont_use_autosuspend(host->dev);
2261 	pm_runtime_put_sync(host->dev);
2262 	pm_runtime_disable(host->dev);
2263 	device_init_wakeup(&pdev->dev, false);
2264 	if (host->dbclk)
2265 		clk_disable_unprepare(host->dbclk);
2266 
2267 	mmc_free_host(host->mmc);
2268 
2269 	return 0;
2270 }
2271 
2272 #ifdef CONFIG_PM_SLEEP
2273 static int omap_hsmmc_suspend(struct device *dev)
2274 {
2275 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2276 
2277 	if (!host)
2278 		return 0;
2279 
2280 	pm_runtime_get_sync(host->dev);
2281 
2282 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2283 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2284 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2285 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2286 		OMAP_HSMMC_WRITE(host->base, HCTL,
2287 				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2288 	}
2289 
2290 	if (host->dbclk)
2291 		clk_disable_unprepare(host->dbclk);
2292 
2293 	pm_runtime_put_sync(host->dev);
2294 	return 0;
2295 }
2296 
2297 /* Routine to resume the MMC device */
2298 static int omap_hsmmc_resume(struct device *dev)
2299 {
2300 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2301 
2302 	if (!host)
2303 		return 0;
2304 
2305 	pm_runtime_get_sync(host->dev);
2306 
2307 	if (host->dbclk)
2308 		clk_prepare_enable(host->dbclk);
2309 
2310 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2311 		omap_hsmmc_conf_bus_power(host);
2312 
2313 	omap_hsmmc_protect_card(host);
2314 	pm_runtime_mark_last_busy(host->dev);
2315 	pm_runtime_put_autosuspend(host->dev);
2316 	return 0;
2317 }
2318 #endif
2319 
2320 static int omap_hsmmc_runtime_suspend(struct device *dev)
2321 {
2322 	struct omap_hsmmc_host *host;
2323 	unsigned long flags;
2324 	int ret = 0;
2325 
2326 	host = platform_get_drvdata(to_platform_device(dev));
2327 	omap_hsmmc_context_save(host);
2328 	dev_dbg(dev, "disabled\n");
2329 
2330 	spin_lock_irqsave(&host->irq_lock, flags);
2331 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2332 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2333 		/* disable sdio irq handling to prevent race */
2334 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2335 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2336 
2337 		if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2338 			/*
2339 			 * dat1 line low, pending sdio irq
2340 			 * race condition: possible irq handler running on
2341 			 * multi-core, abort
2342 			 */
2343 			dev_dbg(dev, "pending sdio irq, abort suspend\n");
2344 			OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2345 			OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2346 			OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2347 			pm_runtime_mark_last_busy(dev);
2348 			ret = -EBUSY;
2349 			goto abort;
2350 		}
2351 
2352 		pinctrl_pm_select_idle_state(dev);
2353 	} else {
2354 		pinctrl_pm_select_idle_state(dev);
2355 	}
2356 
2357 abort:
2358 	spin_unlock_irqrestore(&host->irq_lock, flags);
2359 	return ret;
2360 }
2361 
2362 static int omap_hsmmc_runtime_resume(struct device *dev)
2363 {
2364 	struct omap_hsmmc_host *host;
2365 	unsigned long flags;
2366 
2367 	host = platform_get_drvdata(to_platform_device(dev));
2368 	omap_hsmmc_context_restore(host);
2369 	dev_dbg(dev, "enabled\n");
2370 
2371 	spin_lock_irqsave(&host->irq_lock, flags);
2372 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2373 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2374 
2375 		pinctrl_pm_select_default_state(host->dev);
2376 
2377 		/* irq lost, if pinmux incorrect */
2378 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2379 		OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2380 		OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2381 	} else {
2382 		pinctrl_pm_select_default_state(host->dev);
2383 	}
2384 	spin_unlock_irqrestore(&host->irq_lock, flags);
2385 	return 0;
2386 }
2387 
2388 static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2389 	SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2390 	.runtime_suspend = omap_hsmmc_runtime_suspend,
2391 	.runtime_resume = omap_hsmmc_runtime_resume,
2392 };
2393 
2394 static struct platform_driver omap_hsmmc_driver = {
2395 	.probe		= omap_hsmmc_probe,
2396 	.remove		= omap_hsmmc_remove,
2397 	.driver		= {
2398 		.name = DRIVER_NAME,
2399 		.pm = &omap_hsmmc_dev_pm_ops,
2400 		.of_match_table = of_match_ptr(omap_mmc_of_match),
2401 	},
2402 };
2403 
2404 module_platform_driver(omap_hsmmc_driver);
2405 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2406 MODULE_LICENSE("GPL");
2407 MODULE_ALIAS("platform:" DRIVER_NAME);
2408 MODULE_AUTHOR("Texas Instruments Inc");
2409