xref: /openbmc/linux/drivers/mmc/host/omap_hsmmc.c (revision 9fa0e05e)
1 /*
2  * drivers/mmc/host/omap_hsmmc.c
3  *
4  * Driver for OMAP2430/3430 MMC controller.
5  *
6  * Copyright (C) 2007 Texas Instruments.
7  *
8  * Authors:
9  *	Syed Mohammed Khasim	<x0khasim@ti.com>
10  *	Madhusudhan		<madhu.cr@ti.com>
11  *	Mohit Jalori		<mjalori@ti.com>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/sizes.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/timer.h>
30 #include <linux/clk.h>
31 #include <linux/of.h>
32 #include <linux/of_gpio.h>
33 #include <linux/of_device.h>
34 #include <linux/omap-dma.h>
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/core.h>
37 #include <linux/mmc/mmc.h>
38 #include <linux/io.h>
39 #include <linux/gpio.h>
40 #include <linux/regulator/consumer.h>
41 #include <linux/pinctrl/consumer.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/platform_data/mmc-omap.h>
44 
45 /* OMAP HSMMC Host Controller Registers */
46 #define OMAP_HSMMC_SYSSTATUS	0x0014
47 #define OMAP_HSMMC_CON		0x002C
48 #define OMAP_HSMMC_SDMASA	0x0100
49 #define OMAP_HSMMC_BLK		0x0104
50 #define OMAP_HSMMC_ARG		0x0108
51 #define OMAP_HSMMC_CMD		0x010C
52 #define OMAP_HSMMC_RSP10	0x0110
53 #define OMAP_HSMMC_RSP32	0x0114
54 #define OMAP_HSMMC_RSP54	0x0118
55 #define OMAP_HSMMC_RSP76	0x011C
56 #define OMAP_HSMMC_DATA		0x0120
57 #define OMAP_HSMMC_HCTL		0x0128
58 #define OMAP_HSMMC_SYSCTL	0x012C
59 #define OMAP_HSMMC_STAT		0x0130
60 #define OMAP_HSMMC_IE		0x0134
61 #define OMAP_HSMMC_ISE		0x0138
62 #define OMAP_HSMMC_AC12		0x013C
63 #define OMAP_HSMMC_CAPA		0x0140
64 
65 #define VS18			(1 << 26)
66 #define VS30			(1 << 25)
67 #define HSS			(1 << 21)
68 #define SDVS18			(0x5 << 9)
69 #define SDVS30			(0x6 << 9)
70 #define SDVS33			(0x7 << 9)
71 #define SDVS_MASK		0x00000E00
72 #define SDVSCLR			0xFFFFF1FF
73 #define SDVSDET			0x00000400
74 #define AUTOIDLE		0x1
75 #define SDBP			(1 << 8)
76 #define DTO			0xe
77 #define ICE			0x1
78 #define ICS			0x2
79 #define CEN			(1 << 2)
80 #define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
81 #define CLKD_MASK		0x0000FFC0
82 #define CLKD_SHIFT		6
83 #define DTO_MASK		0x000F0000
84 #define DTO_SHIFT		16
85 #define INIT_STREAM		(1 << 1)
86 #define ACEN_ACMD23		(2 << 2)
87 #define DP_SELECT		(1 << 21)
88 #define DDIR			(1 << 4)
89 #define DMAE			0x1
90 #define MSBS			(1 << 5)
91 #define BCE			(1 << 1)
92 #define FOUR_BIT		(1 << 1)
93 #define HSPE			(1 << 2)
94 #define DDR			(1 << 19)
95 #define DW8			(1 << 5)
96 #define OD			0x1
97 #define STAT_CLEAR		0xFFFFFFFF
98 #define INIT_STREAM_CMD		0x00000000
99 #define DUAL_VOLT_OCR_BIT	7
100 #define SRC			(1 << 25)
101 #define SRD			(1 << 26)
102 #define SOFTRESET		(1 << 1)
103 
104 /* Interrupt masks for IE and ISE register */
105 #define CC_EN			(1 << 0)
106 #define TC_EN			(1 << 1)
107 #define BWR_EN			(1 << 4)
108 #define BRR_EN			(1 << 5)
109 #define ERR_EN			(1 << 15)
110 #define CTO_EN			(1 << 16)
111 #define CCRC_EN			(1 << 17)
112 #define CEB_EN			(1 << 18)
113 #define CIE_EN			(1 << 19)
114 #define DTO_EN			(1 << 20)
115 #define DCRC_EN			(1 << 21)
116 #define DEB_EN			(1 << 22)
117 #define ACE_EN			(1 << 24)
118 #define CERR_EN			(1 << 28)
119 #define BADA_EN			(1 << 29)
120 
121 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
122 		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
123 		BRR_EN | BWR_EN | TC_EN | CC_EN)
124 
125 #define CNI	(1 << 7)
126 #define ACIE	(1 << 4)
127 #define ACEB	(1 << 3)
128 #define ACCE	(1 << 2)
129 #define ACTO	(1 << 1)
130 #define ACNE	(1 << 0)
131 
132 #define MMC_AUTOSUSPEND_DELAY	100
133 #define MMC_TIMEOUT_MS		20		/* 20 mSec */
134 #define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
135 #define OMAP_MMC_MIN_CLOCK	400000
136 #define OMAP_MMC_MAX_CLOCK	52000000
137 #define DRIVER_NAME		"omap_hsmmc"
138 
139 #define VDD_1V8			1800000		/* 180000 uV */
140 #define VDD_3V0			3000000		/* 300000 uV */
141 #define VDD_165_195		(ffs(MMC_VDD_165_195) - 1)
142 
143 #define AUTO_CMD23		(1 << 1)	/* Auto CMD23 support */
144 /*
145  * One controller can have multiple slots, like on some omap boards using
146  * omap.c controller driver. Luckily this is not currently done on any known
147  * omap_hsmmc.c device.
148  */
149 #define mmc_slot(host)		(host->pdata->slots[host->slot_id])
150 
151 /*
152  * MMC Host controller read/write API's
153  */
154 #define OMAP_HSMMC_READ(base, reg)	\
155 	__raw_readl((base) + OMAP_HSMMC_##reg)
156 
157 #define OMAP_HSMMC_WRITE(base, reg, val) \
158 	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
159 
160 struct omap_hsmmc_next {
161 	unsigned int	dma_len;
162 	s32		cookie;
163 };
164 
165 struct omap_hsmmc_host {
166 	struct	device		*dev;
167 	struct	mmc_host	*mmc;
168 	struct	mmc_request	*mrq;
169 	struct	mmc_command	*cmd;
170 	struct	mmc_data	*data;
171 	struct	clk		*fclk;
172 	struct	clk		*dbclk;
173 	/*
174 	 * vcc == configured supply
175 	 * vcc_aux == optional
176 	 *   -	MMC1, supply for DAT4..DAT7
177 	 *   -	MMC2/MMC2, external level shifter voltage supply, for
178 	 *	chip (SDIO, eMMC, etc) or transceiver (MMC2 only)
179 	 */
180 	struct	regulator	*vcc;
181 	struct	regulator	*vcc_aux;
182 	struct	regulator	*pbias;
183 	bool			pbias_enabled;
184 	void	__iomem		*base;
185 	resource_size_t		mapbase;
186 	spinlock_t		irq_lock; /* Prevent races with irq handler */
187 	unsigned int		dma_len;
188 	unsigned int		dma_sg_idx;
189 	unsigned char		bus_mode;
190 	unsigned char		power_mode;
191 	int			suspended;
192 	u32			con;
193 	u32			hctl;
194 	u32			sysctl;
195 	u32			capa;
196 	int			irq;
197 	int			use_dma, dma_ch;
198 	struct dma_chan		*tx_chan;
199 	struct dma_chan		*rx_chan;
200 	int			slot_id;
201 	int			response_busy;
202 	int			context_loss;
203 	int			protect_card;
204 	int			reqs_blocked;
205 	int			use_reg;
206 	int			req_in_progress;
207 	unsigned long		clk_rate;
208 	unsigned int		flags;
209 	struct omap_hsmmc_next	next_data;
210 	struct	omap_mmc_platform_data	*pdata;
211 };
212 
213 struct omap_mmc_of_data {
214 	u32 reg_offset;
215 	u8 controller_flags;
216 };
217 
218 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
219 
220 static int omap_hsmmc_card_detect(struct device *dev, int slot)
221 {
222 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
223 	struct omap_mmc_platform_data *mmc = host->pdata;
224 
225 	/* NOTE: assumes card detect signal is active-low */
226 	return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
227 }
228 
229 static int omap_hsmmc_get_wp(struct device *dev, int slot)
230 {
231 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
232 	struct omap_mmc_platform_data *mmc = host->pdata;
233 
234 	/* NOTE: assumes write protect signal is active-high */
235 	return gpio_get_value_cansleep(mmc->slots[0].gpio_wp);
236 }
237 
238 static int omap_hsmmc_get_cover_state(struct device *dev, int slot)
239 {
240 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
241 	struct omap_mmc_platform_data *mmc = host->pdata;
242 
243 	/* NOTE: assumes card detect signal is active-low */
244 	return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
245 }
246 
247 #ifdef CONFIG_PM
248 
249 static int omap_hsmmc_suspend_cdirq(struct device *dev, int slot)
250 {
251 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
252 	struct omap_mmc_platform_data *mmc = host->pdata;
253 
254 	disable_irq(mmc->slots[0].card_detect_irq);
255 	return 0;
256 }
257 
258 static int omap_hsmmc_resume_cdirq(struct device *dev, int slot)
259 {
260 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
261 	struct omap_mmc_platform_data *mmc = host->pdata;
262 
263 	enable_irq(mmc->slots[0].card_detect_irq);
264 	return 0;
265 }
266 
267 #else
268 
269 #define omap_hsmmc_suspend_cdirq	NULL
270 #define omap_hsmmc_resume_cdirq		NULL
271 
272 #endif
273 
274 #ifdef CONFIG_REGULATOR
275 
276 static int omap_hsmmc_set_power(struct device *dev, int slot, int power_on,
277 				   int vdd)
278 {
279 	struct omap_hsmmc_host *host =
280 		platform_get_drvdata(to_platform_device(dev));
281 	int ret = 0;
282 
283 	/*
284 	 * If we don't see a Vcc regulator, assume it's a fixed
285 	 * voltage always-on regulator.
286 	 */
287 	if (!host->vcc)
288 		return 0;
289 
290 	if (mmc_slot(host).before_set_reg)
291 		mmc_slot(host).before_set_reg(dev, slot, power_on, vdd);
292 
293 	if (host->pbias) {
294 		if (host->pbias_enabled == 1) {
295 			ret = regulator_disable(host->pbias);
296 			if (!ret)
297 				host->pbias_enabled = 0;
298 		}
299 		regulator_set_voltage(host->pbias, VDD_3V0, VDD_3V0);
300 	}
301 
302 	/*
303 	 * Assume Vcc regulator is used only to power the card ... OMAP
304 	 * VDDS is used to power the pins, optionally with a transceiver to
305 	 * support cards using voltages other than VDDS (1.8V nominal).  When a
306 	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
307 	 *
308 	 * In some cases this regulator won't support enable/disable;
309 	 * e.g. it's a fixed rail for a WLAN chip.
310 	 *
311 	 * In other cases vcc_aux switches interface power.  Example, for
312 	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
313 	 * chips/cards need an interface voltage rail too.
314 	 */
315 	if (power_on) {
316 		if (host->vcc)
317 			ret = mmc_regulator_set_ocr(host->mmc, host->vcc, vdd);
318 		/* Enable interface voltage rail, if needed */
319 		if (ret == 0 && host->vcc_aux) {
320 			ret = regulator_enable(host->vcc_aux);
321 			if (ret < 0 && host->vcc)
322 				ret = mmc_regulator_set_ocr(host->mmc,
323 							host->vcc, 0);
324 		}
325 	} else {
326 		/* Shut down the rail */
327 		if (host->vcc_aux)
328 			ret = regulator_disable(host->vcc_aux);
329 		if (host->vcc) {
330 			/* Then proceed to shut down the local regulator */
331 			ret = mmc_regulator_set_ocr(host->mmc,
332 						host->vcc, 0);
333 		}
334 	}
335 
336 	if (host->pbias) {
337 		if (vdd <= VDD_165_195)
338 			ret = regulator_set_voltage(host->pbias, VDD_1V8,
339 								VDD_1V8);
340 		else
341 			ret = regulator_set_voltage(host->pbias, VDD_3V0,
342 								VDD_3V0);
343 		if (ret < 0)
344 			goto error_set_power;
345 
346 		if (host->pbias_enabled == 0) {
347 			ret = regulator_enable(host->pbias);
348 			if (!ret)
349 				host->pbias_enabled = 1;
350 		}
351 	}
352 
353 	if (mmc_slot(host).after_set_reg)
354 		mmc_slot(host).after_set_reg(dev, slot, power_on, vdd);
355 
356 error_set_power:
357 	return ret;
358 }
359 
360 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
361 {
362 	struct regulator *reg;
363 	int ocr_value = 0;
364 
365 	reg = devm_regulator_get(host->dev, "vmmc");
366 	if (IS_ERR(reg)) {
367 		dev_err(host->dev, "unable to get vmmc regulator %ld\n",
368 			PTR_ERR(reg));
369 		return PTR_ERR(reg);
370 	} else {
371 		host->vcc = reg;
372 		ocr_value = mmc_regulator_get_ocrmask(reg);
373 		if (!mmc_slot(host).ocr_mask) {
374 			mmc_slot(host).ocr_mask = ocr_value;
375 		} else {
376 			if (!(mmc_slot(host).ocr_mask & ocr_value)) {
377 				dev_err(host->dev, "ocrmask %x is not supported\n",
378 					mmc_slot(host).ocr_mask);
379 				mmc_slot(host).ocr_mask = 0;
380 				return -EINVAL;
381 			}
382 		}
383 	}
384 	mmc_slot(host).set_power = omap_hsmmc_set_power;
385 
386 	/* Allow an aux regulator */
387 	reg = devm_regulator_get_optional(host->dev, "vmmc_aux");
388 	host->vcc_aux = IS_ERR(reg) ? NULL : reg;
389 
390 	reg = devm_regulator_get_optional(host->dev, "pbias");
391 	host->pbias = IS_ERR(reg) ? NULL : reg;
392 
393 	/* For eMMC do not power off when not in sleep state */
394 	if (mmc_slot(host).no_regulator_off_init)
395 		return 0;
396 	/*
397 	 * To disable boot_on regulator, enable regulator
398 	 * to increase usecount and then disable it.
399 	 */
400 	if ((host->vcc && regulator_is_enabled(host->vcc) > 0) ||
401 	    (host->vcc_aux && regulator_is_enabled(host->vcc_aux))) {
402 		int vdd = ffs(mmc_slot(host).ocr_mask) - 1;
403 
404 		mmc_slot(host).set_power(host->dev, host->slot_id, 1, vdd);
405 		mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
406 	}
407 
408 	return 0;
409 }
410 
411 static void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
412 {
413 	mmc_slot(host).set_power = NULL;
414 }
415 
416 static inline int omap_hsmmc_have_reg(void)
417 {
418 	return 1;
419 }
420 
421 #else
422 
423 static inline int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
424 {
425 	return -EINVAL;
426 }
427 
428 static inline void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
429 {
430 }
431 
432 static inline int omap_hsmmc_have_reg(void)
433 {
434 	return 0;
435 }
436 
437 #endif
438 
439 static int omap_hsmmc_gpio_init(struct omap_mmc_platform_data *pdata)
440 {
441 	int ret;
442 
443 	if (gpio_is_valid(pdata->slots[0].switch_pin)) {
444 		if (pdata->slots[0].cover)
445 			pdata->slots[0].get_cover_state =
446 					omap_hsmmc_get_cover_state;
447 		else
448 			pdata->slots[0].card_detect = omap_hsmmc_card_detect;
449 		pdata->slots[0].card_detect_irq =
450 				gpio_to_irq(pdata->slots[0].switch_pin);
451 		ret = gpio_request(pdata->slots[0].switch_pin, "mmc_cd");
452 		if (ret)
453 			return ret;
454 		ret = gpio_direction_input(pdata->slots[0].switch_pin);
455 		if (ret)
456 			goto err_free_sp;
457 	} else
458 		pdata->slots[0].switch_pin = -EINVAL;
459 
460 	if (gpio_is_valid(pdata->slots[0].gpio_wp)) {
461 		pdata->slots[0].get_ro = omap_hsmmc_get_wp;
462 		ret = gpio_request(pdata->slots[0].gpio_wp, "mmc_wp");
463 		if (ret)
464 			goto err_free_cd;
465 		ret = gpio_direction_input(pdata->slots[0].gpio_wp);
466 		if (ret)
467 			goto err_free_wp;
468 	} else
469 		pdata->slots[0].gpio_wp = -EINVAL;
470 
471 	return 0;
472 
473 err_free_wp:
474 	gpio_free(pdata->slots[0].gpio_wp);
475 err_free_cd:
476 	if (gpio_is_valid(pdata->slots[0].switch_pin))
477 err_free_sp:
478 		gpio_free(pdata->slots[0].switch_pin);
479 	return ret;
480 }
481 
482 static void omap_hsmmc_gpio_free(struct omap_mmc_platform_data *pdata)
483 {
484 	if (gpio_is_valid(pdata->slots[0].gpio_wp))
485 		gpio_free(pdata->slots[0].gpio_wp);
486 	if (gpio_is_valid(pdata->slots[0].switch_pin))
487 		gpio_free(pdata->slots[0].switch_pin);
488 }
489 
490 /*
491  * Start clock to the card
492  */
493 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
494 {
495 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
496 		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
497 }
498 
499 /*
500  * Stop clock to the card
501  */
502 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
503 {
504 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
505 		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
506 	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
507 		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
508 }
509 
510 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
511 				  struct mmc_command *cmd)
512 {
513 	unsigned int irq_mask;
514 
515 	if (host->use_dma)
516 		irq_mask = INT_EN_MASK & ~(BRR_EN | BWR_EN);
517 	else
518 		irq_mask = INT_EN_MASK;
519 
520 	/* Disable timeout for erases */
521 	if (cmd->opcode == MMC_ERASE)
522 		irq_mask &= ~DTO_EN;
523 
524 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
525 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
526 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
527 }
528 
529 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
530 {
531 	OMAP_HSMMC_WRITE(host->base, ISE, 0);
532 	OMAP_HSMMC_WRITE(host->base, IE, 0);
533 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
534 }
535 
536 /* Calculate divisor for the given clock frequency */
537 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
538 {
539 	u16 dsor = 0;
540 
541 	if (ios->clock) {
542 		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
543 		if (dsor > CLKD_MAX)
544 			dsor = CLKD_MAX;
545 	}
546 
547 	return dsor;
548 }
549 
550 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
551 {
552 	struct mmc_ios *ios = &host->mmc->ios;
553 	unsigned long regval;
554 	unsigned long timeout;
555 	unsigned long clkdiv;
556 
557 	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
558 
559 	omap_hsmmc_stop_clock(host);
560 
561 	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
562 	regval = regval & ~(CLKD_MASK | DTO_MASK);
563 	clkdiv = calc_divisor(host, ios);
564 	regval = regval | (clkdiv << 6) | (DTO << 16);
565 	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
566 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
567 		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
568 
569 	/* Wait till the ICS bit is set */
570 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
571 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
572 		&& time_before(jiffies, timeout))
573 		cpu_relax();
574 
575 	/*
576 	 * Enable High-Speed Support
577 	 * Pre-Requisites
578 	 *	- Controller should support High-Speed-Enable Bit
579 	 *	- Controller should not be using DDR Mode
580 	 *	- Controller should advertise that it supports High Speed
581 	 *	  in capabilities register
582 	 *	- MMC/SD clock coming out of controller > 25MHz
583 	 */
584 	if ((mmc_slot(host).features & HSMMC_HAS_HSPE_SUPPORT) &&
585 	    (ios->timing != MMC_TIMING_MMC_DDR52) &&
586 	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
587 		regval = OMAP_HSMMC_READ(host->base, HCTL);
588 		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
589 			regval |= HSPE;
590 		else
591 			regval &= ~HSPE;
592 
593 		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
594 	}
595 
596 	omap_hsmmc_start_clock(host);
597 }
598 
599 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
600 {
601 	struct mmc_ios *ios = &host->mmc->ios;
602 	u32 con;
603 
604 	con = OMAP_HSMMC_READ(host->base, CON);
605 	if (ios->timing == MMC_TIMING_MMC_DDR52)
606 		con |= DDR;	/* configure in DDR mode */
607 	else
608 		con &= ~DDR;
609 	switch (ios->bus_width) {
610 	case MMC_BUS_WIDTH_8:
611 		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
612 		break;
613 	case MMC_BUS_WIDTH_4:
614 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
615 		OMAP_HSMMC_WRITE(host->base, HCTL,
616 			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
617 		break;
618 	case MMC_BUS_WIDTH_1:
619 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
620 		OMAP_HSMMC_WRITE(host->base, HCTL,
621 			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
622 		break;
623 	}
624 }
625 
626 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
627 {
628 	struct mmc_ios *ios = &host->mmc->ios;
629 	u32 con;
630 
631 	con = OMAP_HSMMC_READ(host->base, CON);
632 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
633 		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
634 	else
635 		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
636 }
637 
638 #ifdef CONFIG_PM
639 
640 /*
641  * Restore the MMC host context, if it was lost as result of a
642  * power state change.
643  */
644 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
645 {
646 	struct mmc_ios *ios = &host->mmc->ios;
647 	u32 hctl, capa;
648 	unsigned long timeout;
649 
650 	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
651 	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
652 	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
653 	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
654 		return 0;
655 
656 	host->context_loss++;
657 
658 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
659 		if (host->power_mode != MMC_POWER_OFF &&
660 		    (1 << ios->vdd) <= MMC_VDD_23_24)
661 			hctl = SDVS18;
662 		else
663 			hctl = SDVS30;
664 		capa = VS30 | VS18;
665 	} else {
666 		hctl = SDVS18;
667 		capa = VS18;
668 	}
669 
670 	OMAP_HSMMC_WRITE(host->base, HCTL,
671 			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
672 
673 	OMAP_HSMMC_WRITE(host->base, CAPA,
674 			OMAP_HSMMC_READ(host->base, CAPA) | capa);
675 
676 	OMAP_HSMMC_WRITE(host->base, HCTL,
677 			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
678 
679 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
680 	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
681 		&& time_before(jiffies, timeout))
682 		;
683 
684 	omap_hsmmc_disable_irq(host);
685 
686 	/* Do not initialize card-specific things if the power is off */
687 	if (host->power_mode == MMC_POWER_OFF)
688 		goto out;
689 
690 	omap_hsmmc_set_bus_width(host);
691 
692 	omap_hsmmc_set_clock(host);
693 
694 	omap_hsmmc_set_bus_mode(host);
695 
696 out:
697 	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
698 		host->context_loss);
699 	return 0;
700 }
701 
702 /*
703  * Save the MMC host context (store the number of power state changes so far).
704  */
705 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
706 {
707 	host->con =  OMAP_HSMMC_READ(host->base, CON);
708 	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
709 	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
710 	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
711 }
712 
713 #else
714 
715 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
716 {
717 	return 0;
718 }
719 
720 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
721 {
722 }
723 
724 #endif
725 
726 /*
727  * Send init stream sequence to card
728  * before sending IDLE command
729  */
730 static void send_init_stream(struct omap_hsmmc_host *host)
731 {
732 	int reg = 0;
733 	unsigned long timeout;
734 
735 	if (host->protect_card)
736 		return;
737 
738 	disable_irq(host->irq);
739 
740 	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
741 	OMAP_HSMMC_WRITE(host->base, CON,
742 		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
743 	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
744 
745 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
746 	while ((reg != CC_EN) && time_before(jiffies, timeout))
747 		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
748 
749 	OMAP_HSMMC_WRITE(host->base, CON,
750 		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
751 
752 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
753 	OMAP_HSMMC_READ(host->base, STAT);
754 
755 	enable_irq(host->irq);
756 }
757 
758 static inline
759 int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
760 {
761 	int r = 1;
762 
763 	if (mmc_slot(host).get_cover_state)
764 		r = mmc_slot(host).get_cover_state(host->dev, host->slot_id);
765 	return r;
766 }
767 
768 static ssize_t
769 omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
770 			   char *buf)
771 {
772 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
773 	struct omap_hsmmc_host *host = mmc_priv(mmc);
774 
775 	return sprintf(buf, "%s\n",
776 			omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
777 }
778 
779 static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
780 
781 static ssize_t
782 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
783 			char *buf)
784 {
785 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
786 	struct omap_hsmmc_host *host = mmc_priv(mmc);
787 
788 	return sprintf(buf, "%s\n", mmc_slot(host).name);
789 }
790 
791 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
792 
793 /*
794  * Configure the response type and send the cmd.
795  */
796 static void
797 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
798 	struct mmc_data *data)
799 {
800 	int cmdreg = 0, resptype = 0, cmdtype = 0;
801 
802 	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
803 		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
804 	host->cmd = cmd;
805 
806 	omap_hsmmc_enable_irq(host, cmd);
807 
808 	host->response_busy = 0;
809 	if (cmd->flags & MMC_RSP_PRESENT) {
810 		if (cmd->flags & MMC_RSP_136)
811 			resptype = 1;
812 		else if (cmd->flags & MMC_RSP_BUSY) {
813 			resptype = 3;
814 			host->response_busy = 1;
815 		} else
816 			resptype = 2;
817 	}
818 
819 	/*
820 	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
821 	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
822 	 * a val of 0x3, rest 0x0.
823 	 */
824 	if (cmd == host->mrq->stop)
825 		cmdtype = 0x3;
826 
827 	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
828 
829 	if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
830 	    host->mrq->sbc) {
831 		cmdreg |= ACEN_ACMD23;
832 		OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
833 	}
834 	if (data) {
835 		cmdreg |= DP_SELECT | MSBS | BCE;
836 		if (data->flags & MMC_DATA_READ)
837 			cmdreg |= DDIR;
838 		else
839 			cmdreg &= ~(DDIR);
840 	}
841 
842 	if (host->use_dma)
843 		cmdreg |= DMAE;
844 
845 	host->req_in_progress = 1;
846 
847 	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
848 	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
849 }
850 
851 static int
852 omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
853 {
854 	if (data->flags & MMC_DATA_WRITE)
855 		return DMA_TO_DEVICE;
856 	else
857 		return DMA_FROM_DEVICE;
858 }
859 
860 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
861 	struct mmc_data *data)
862 {
863 	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
864 }
865 
866 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
867 {
868 	int dma_ch;
869 	unsigned long flags;
870 
871 	spin_lock_irqsave(&host->irq_lock, flags);
872 	host->req_in_progress = 0;
873 	dma_ch = host->dma_ch;
874 	spin_unlock_irqrestore(&host->irq_lock, flags);
875 
876 	omap_hsmmc_disable_irq(host);
877 	/* Do not complete the request if DMA is still in progress */
878 	if (mrq->data && host->use_dma && dma_ch != -1)
879 		return;
880 	host->mrq = NULL;
881 	mmc_request_done(host->mmc, mrq);
882 }
883 
884 /*
885  * Notify the transfer complete to MMC core
886  */
887 static void
888 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
889 {
890 	if (!data) {
891 		struct mmc_request *mrq = host->mrq;
892 
893 		/* TC before CC from CMD6 - don't know why, but it happens */
894 		if (host->cmd && host->cmd->opcode == 6 &&
895 		    host->response_busy) {
896 			host->response_busy = 0;
897 			return;
898 		}
899 
900 		omap_hsmmc_request_done(host, mrq);
901 		return;
902 	}
903 
904 	host->data = NULL;
905 
906 	if (!data->error)
907 		data->bytes_xfered += data->blocks * (data->blksz);
908 	else
909 		data->bytes_xfered = 0;
910 
911 	if (data->stop && (data->error || !host->mrq->sbc))
912 		omap_hsmmc_start_command(host, data->stop, NULL);
913 	else
914 		omap_hsmmc_request_done(host, data->mrq);
915 }
916 
917 /*
918  * Notify the core about command completion
919  */
920 static void
921 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
922 {
923 	host->cmd = NULL;
924 
925 	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
926 	    !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
927 		omap_hsmmc_start_dma_transfer(host);
928 		omap_hsmmc_start_command(host, host->mrq->cmd,
929 						host->mrq->data);
930 		return;
931 	}
932 
933 	if (cmd->flags & MMC_RSP_PRESENT) {
934 		if (cmd->flags & MMC_RSP_136) {
935 			/* response type 2 */
936 			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
937 			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
938 			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
939 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
940 		} else {
941 			/* response types 1, 1b, 3, 4, 5, 6 */
942 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
943 		}
944 	}
945 	if ((host->data == NULL && !host->response_busy) || cmd->error)
946 		omap_hsmmc_request_done(host, host->mrq);
947 }
948 
949 /*
950  * DMA clean up for command errors
951  */
952 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
953 {
954 	int dma_ch;
955 	unsigned long flags;
956 
957 	host->data->error = errno;
958 
959 	spin_lock_irqsave(&host->irq_lock, flags);
960 	dma_ch = host->dma_ch;
961 	host->dma_ch = -1;
962 	spin_unlock_irqrestore(&host->irq_lock, flags);
963 
964 	if (host->use_dma && dma_ch != -1) {
965 		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
966 
967 		dmaengine_terminate_all(chan);
968 		dma_unmap_sg(chan->device->dev,
969 			host->data->sg, host->data->sg_len,
970 			omap_hsmmc_get_dma_dir(host, host->data));
971 
972 		host->data->host_cookie = 0;
973 	}
974 	host->data = NULL;
975 }
976 
977 /*
978  * Readable error output
979  */
980 #ifdef CONFIG_MMC_DEBUG
981 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
982 {
983 	/* --- means reserved bit without definition at documentation */
984 	static const char *omap_hsmmc_status_bits[] = {
985 		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
986 		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
987 		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
988 		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
989 	};
990 	char res[256];
991 	char *buf = res;
992 	int len, i;
993 
994 	len = sprintf(buf, "MMC IRQ 0x%x :", status);
995 	buf += len;
996 
997 	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
998 		if (status & (1 << i)) {
999 			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
1000 			buf += len;
1001 		}
1002 
1003 	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
1004 }
1005 #else
1006 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
1007 					     u32 status)
1008 {
1009 }
1010 #endif  /* CONFIG_MMC_DEBUG */
1011 
1012 /*
1013  * MMC controller internal state machines reset
1014  *
1015  * Used to reset command or data internal state machines, using respectively
1016  *  SRC or SRD bit of SYSCTL register
1017  * Can be called from interrupt context
1018  */
1019 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
1020 						   unsigned long bit)
1021 {
1022 	unsigned long i = 0;
1023 	unsigned long limit = MMC_TIMEOUT_US;
1024 
1025 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
1026 			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
1027 
1028 	/*
1029 	 * OMAP4 ES2 and greater has an updated reset logic.
1030 	 * Monitor a 0->1 transition first
1031 	 */
1032 	if (mmc_slot(host).features & HSMMC_HAS_UPDATED_RESET) {
1033 		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
1034 					&& (i++ < limit))
1035 			udelay(1);
1036 	}
1037 	i = 0;
1038 
1039 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
1040 		(i++ < limit))
1041 		udelay(1);
1042 
1043 	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1044 		dev_err(mmc_dev(host->mmc),
1045 			"Timeout waiting on controller reset in %s\n",
1046 			__func__);
1047 }
1048 
1049 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1050 					int err, int end_cmd)
1051 {
1052 	if (end_cmd) {
1053 		omap_hsmmc_reset_controller_fsm(host, SRC);
1054 		if (host->cmd)
1055 			host->cmd->error = err;
1056 	}
1057 
1058 	if (host->data) {
1059 		omap_hsmmc_reset_controller_fsm(host, SRD);
1060 		omap_hsmmc_dma_cleanup(host, err);
1061 	} else if (host->mrq && host->mrq->cmd)
1062 		host->mrq->cmd->error = err;
1063 }
1064 
1065 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1066 {
1067 	struct mmc_data *data;
1068 	int end_cmd = 0, end_trans = 0;
1069 	int error = 0;
1070 
1071 	data = host->data;
1072 	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1073 
1074 	if (status & ERR_EN) {
1075 		omap_hsmmc_dbg_report_irq(host, status);
1076 
1077 		if (status & (CTO_EN | CCRC_EN))
1078 			end_cmd = 1;
1079 		if (status & (CTO_EN | DTO_EN))
1080 			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1081 		else if (status & (CCRC_EN | DCRC_EN))
1082 			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1083 
1084 		if (status & ACE_EN) {
1085 			u32 ac12;
1086 			ac12 = OMAP_HSMMC_READ(host->base, AC12);
1087 			if (!(ac12 & ACNE) && host->mrq->sbc) {
1088 				end_cmd = 1;
1089 				if (ac12 & ACTO)
1090 					error =  -ETIMEDOUT;
1091 				else if (ac12 & (ACCE | ACEB | ACIE))
1092 					error = -EILSEQ;
1093 				host->mrq->sbc->error = error;
1094 				hsmmc_command_incomplete(host, error, end_cmd);
1095 			}
1096 			dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1097 		}
1098 		if (host->data || host->response_busy) {
1099 			end_trans = !end_cmd;
1100 			host->response_busy = 0;
1101 		}
1102 	}
1103 
1104 	OMAP_HSMMC_WRITE(host->base, STAT, status);
1105 	if (end_cmd || ((status & CC_EN) && host->cmd))
1106 		omap_hsmmc_cmd_done(host, host->cmd);
1107 	if ((end_trans || (status & TC_EN)) && host->mrq)
1108 		omap_hsmmc_xfer_done(host, data);
1109 }
1110 
1111 /*
1112  * MMC controller IRQ handler
1113  */
1114 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1115 {
1116 	struct omap_hsmmc_host *host = dev_id;
1117 	int status;
1118 
1119 	status = OMAP_HSMMC_READ(host->base, STAT);
1120 	while (status & INT_EN_MASK && host->req_in_progress) {
1121 		omap_hsmmc_do_irq(host, status);
1122 
1123 		/* Flush posted write */
1124 		status = OMAP_HSMMC_READ(host->base, STAT);
1125 	}
1126 
1127 	return IRQ_HANDLED;
1128 }
1129 
1130 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1131 {
1132 	unsigned long i;
1133 
1134 	OMAP_HSMMC_WRITE(host->base, HCTL,
1135 			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1136 	for (i = 0; i < loops_per_jiffy; i++) {
1137 		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1138 			break;
1139 		cpu_relax();
1140 	}
1141 }
1142 
1143 /*
1144  * Switch MMC interface voltage ... only relevant for MMC1.
1145  *
1146  * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1147  * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1148  * Some chips, like eMMC ones, use internal transceivers.
1149  */
1150 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1151 {
1152 	u32 reg_val = 0;
1153 	int ret;
1154 
1155 	/* Disable the clocks */
1156 	pm_runtime_put_sync(host->dev);
1157 	if (host->dbclk)
1158 		clk_disable_unprepare(host->dbclk);
1159 
1160 	/* Turn the power off */
1161 	ret = mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
1162 
1163 	/* Turn the power ON with given VDD 1.8 or 3.0v */
1164 	if (!ret)
1165 		ret = mmc_slot(host).set_power(host->dev, host->slot_id, 1,
1166 					       vdd);
1167 	pm_runtime_get_sync(host->dev);
1168 	if (host->dbclk)
1169 		clk_prepare_enable(host->dbclk);
1170 
1171 	if (ret != 0)
1172 		goto err;
1173 
1174 	OMAP_HSMMC_WRITE(host->base, HCTL,
1175 		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1176 	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1177 
1178 	/*
1179 	 * If a MMC dual voltage card is detected, the set_ios fn calls
1180 	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1181 	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1182 	 *
1183 	 * Cope with a bit of slop in the range ... per data sheets:
1184 	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1185 	 *    but recommended values are 1.71V to 1.89V
1186 	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1187 	 *    but recommended values are 2.7V to 3.3V
1188 	 *
1189 	 * Board setup code shouldn't permit anything very out-of-range.
1190 	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1191 	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1192 	 */
1193 	if ((1 << vdd) <= MMC_VDD_23_24)
1194 		reg_val |= SDVS18;
1195 	else
1196 		reg_val |= SDVS30;
1197 
1198 	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1199 	set_sd_bus_power(host);
1200 
1201 	return 0;
1202 err:
1203 	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1204 	return ret;
1205 }
1206 
1207 /* Protect the card while the cover is open */
1208 static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1209 {
1210 	if (!mmc_slot(host).get_cover_state)
1211 		return;
1212 
1213 	host->reqs_blocked = 0;
1214 	if (mmc_slot(host).get_cover_state(host->dev, host->slot_id)) {
1215 		if (host->protect_card) {
1216 			dev_info(host->dev, "%s: cover is closed, "
1217 					 "card is now accessible\n",
1218 					 mmc_hostname(host->mmc));
1219 			host->protect_card = 0;
1220 		}
1221 	} else {
1222 		if (!host->protect_card) {
1223 			dev_info(host->dev, "%s: cover is open, "
1224 					 "card is now inaccessible\n",
1225 					 mmc_hostname(host->mmc));
1226 			host->protect_card = 1;
1227 		}
1228 	}
1229 }
1230 
1231 /*
1232  * irq handler to notify the core about card insertion/removal
1233  */
1234 static irqreturn_t omap_hsmmc_detect(int irq, void *dev_id)
1235 {
1236 	struct omap_hsmmc_host *host = dev_id;
1237 	struct omap_mmc_slot_data *slot = &mmc_slot(host);
1238 	int carddetect;
1239 
1240 	sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1241 
1242 	if (slot->card_detect)
1243 		carddetect = slot->card_detect(host->dev, host->slot_id);
1244 	else {
1245 		omap_hsmmc_protect_card(host);
1246 		carddetect = -ENOSYS;
1247 	}
1248 
1249 	if (carddetect)
1250 		mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1251 	else
1252 		mmc_detect_change(host->mmc, (HZ * 50) / 1000);
1253 	return IRQ_HANDLED;
1254 }
1255 
1256 static void omap_hsmmc_dma_callback(void *param)
1257 {
1258 	struct omap_hsmmc_host *host = param;
1259 	struct dma_chan *chan;
1260 	struct mmc_data *data;
1261 	int req_in_progress;
1262 
1263 	spin_lock_irq(&host->irq_lock);
1264 	if (host->dma_ch < 0) {
1265 		spin_unlock_irq(&host->irq_lock);
1266 		return;
1267 	}
1268 
1269 	data = host->mrq->data;
1270 	chan = omap_hsmmc_get_dma_chan(host, data);
1271 	if (!data->host_cookie)
1272 		dma_unmap_sg(chan->device->dev,
1273 			     data->sg, data->sg_len,
1274 			     omap_hsmmc_get_dma_dir(host, data));
1275 
1276 	req_in_progress = host->req_in_progress;
1277 	host->dma_ch = -1;
1278 	spin_unlock_irq(&host->irq_lock);
1279 
1280 	/* If DMA has finished after TC, complete the request */
1281 	if (!req_in_progress) {
1282 		struct mmc_request *mrq = host->mrq;
1283 
1284 		host->mrq = NULL;
1285 		mmc_request_done(host->mmc, mrq);
1286 	}
1287 }
1288 
1289 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1290 				       struct mmc_data *data,
1291 				       struct omap_hsmmc_next *next,
1292 				       struct dma_chan *chan)
1293 {
1294 	int dma_len;
1295 
1296 	if (!next && data->host_cookie &&
1297 	    data->host_cookie != host->next_data.cookie) {
1298 		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1299 		       " host->next_data.cookie %d\n",
1300 		       __func__, data->host_cookie, host->next_data.cookie);
1301 		data->host_cookie = 0;
1302 	}
1303 
1304 	/* Check if next job is already prepared */
1305 	if (next || data->host_cookie != host->next_data.cookie) {
1306 		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1307 				     omap_hsmmc_get_dma_dir(host, data));
1308 
1309 	} else {
1310 		dma_len = host->next_data.dma_len;
1311 		host->next_data.dma_len = 0;
1312 	}
1313 
1314 
1315 	if (dma_len == 0)
1316 		return -EINVAL;
1317 
1318 	if (next) {
1319 		next->dma_len = dma_len;
1320 		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1321 	} else
1322 		host->dma_len = dma_len;
1323 
1324 	return 0;
1325 }
1326 
1327 /*
1328  * Routine to configure and start DMA for the MMC card
1329  */
1330 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1331 					struct mmc_request *req)
1332 {
1333 	struct dma_slave_config cfg;
1334 	struct dma_async_tx_descriptor *tx;
1335 	int ret = 0, i;
1336 	struct mmc_data *data = req->data;
1337 	struct dma_chan *chan;
1338 
1339 	/* Sanity check: all the SG entries must be aligned by block size. */
1340 	for (i = 0; i < data->sg_len; i++) {
1341 		struct scatterlist *sgl;
1342 
1343 		sgl = data->sg + i;
1344 		if (sgl->length % data->blksz)
1345 			return -EINVAL;
1346 	}
1347 	if ((data->blksz % 4) != 0)
1348 		/* REVISIT: The MMC buffer increments only when MSB is written.
1349 		 * Return error for blksz which is non multiple of four.
1350 		 */
1351 		return -EINVAL;
1352 
1353 	BUG_ON(host->dma_ch != -1);
1354 
1355 	chan = omap_hsmmc_get_dma_chan(host, data);
1356 
1357 	cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA;
1358 	cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA;
1359 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1360 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1361 	cfg.src_maxburst = data->blksz / 4;
1362 	cfg.dst_maxburst = data->blksz / 4;
1363 
1364 	ret = dmaengine_slave_config(chan, &cfg);
1365 	if (ret)
1366 		return ret;
1367 
1368 	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1369 	if (ret)
1370 		return ret;
1371 
1372 	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1373 		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1374 		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1375 	if (!tx) {
1376 		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1377 		/* FIXME: cleanup */
1378 		return -1;
1379 	}
1380 
1381 	tx->callback = omap_hsmmc_dma_callback;
1382 	tx->callback_param = host;
1383 
1384 	/* Does not fail */
1385 	dmaengine_submit(tx);
1386 
1387 	host->dma_ch = 1;
1388 
1389 	return 0;
1390 }
1391 
1392 static void set_data_timeout(struct omap_hsmmc_host *host,
1393 			     unsigned int timeout_ns,
1394 			     unsigned int timeout_clks)
1395 {
1396 	unsigned int timeout, cycle_ns;
1397 	uint32_t reg, clkd, dto = 0;
1398 
1399 	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1400 	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1401 	if (clkd == 0)
1402 		clkd = 1;
1403 
1404 	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1405 	timeout = timeout_ns / cycle_ns;
1406 	timeout += timeout_clks;
1407 	if (timeout) {
1408 		while ((timeout & 0x80000000) == 0) {
1409 			dto += 1;
1410 			timeout <<= 1;
1411 		}
1412 		dto = 31 - dto;
1413 		timeout <<= 1;
1414 		if (timeout && dto)
1415 			dto += 1;
1416 		if (dto >= 13)
1417 			dto -= 13;
1418 		else
1419 			dto = 0;
1420 		if (dto > 14)
1421 			dto = 14;
1422 	}
1423 
1424 	reg &= ~DTO_MASK;
1425 	reg |= dto << DTO_SHIFT;
1426 	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1427 }
1428 
1429 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1430 {
1431 	struct mmc_request *req = host->mrq;
1432 	struct dma_chan *chan;
1433 
1434 	if (!req->data)
1435 		return;
1436 	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1437 				| (req->data->blocks << 16));
1438 	set_data_timeout(host, req->data->timeout_ns,
1439 				req->data->timeout_clks);
1440 	chan = omap_hsmmc_get_dma_chan(host, req->data);
1441 	dma_async_issue_pending(chan);
1442 }
1443 
1444 /*
1445  * Configure block length for MMC/SD cards and initiate the transfer.
1446  */
1447 static int
1448 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1449 {
1450 	int ret;
1451 	host->data = req->data;
1452 
1453 	if (req->data == NULL) {
1454 		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1455 		/*
1456 		 * Set an arbitrary 100ms data timeout for commands with
1457 		 * busy signal.
1458 		 */
1459 		if (req->cmd->flags & MMC_RSP_BUSY)
1460 			set_data_timeout(host, 100000000U, 0);
1461 		return 0;
1462 	}
1463 
1464 	if (host->use_dma) {
1465 		ret = omap_hsmmc_setup_dma_transfer(host, req);
1466 		if (ret != 0) {
1467 			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1468 			return ret;
1469 		}
1470 	}
1471 	return 0;
1472 }
1473 
1474 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1475 				int err)
1476 {
1477 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1478 	struct mmc_data *data = mrq->data;
1479 
1480 	if (host->use_dma && data->host_cookie) {
1481 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1482 
1483 		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1484 			     omap_hsmmc_get_dma_dir(host, data));
1485 		data->host_cookie = 0;
1486 	}
1487 }
1488 
1489 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
1490 			       bool is_first_req)
1491 {
1492 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1493 
1494 	if (mrq->data->host_cookie) {
1495 		mrq->data->host_cookie = 0;
1496 		return ;
1497 	}
1498 
1499 	if (host->use_dma) {
1500 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1501 
1502 		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1503 						&host->next_data, c))
1504 			mrq->data->host_cookie = 0;
1505 	}
1506 }
1507 
1508 /*
1509  * Request function. for read/write operation
1510  */
1511 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1512 {
1513 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1514 	int err;
1515 
1516 	BUG_ON(host->req_in_progress);
1517 	BUG_ON(host->dma_ch != -1);
1518 	if (host->protect_card) {
1519 		if (host->reqs_blocked < 3) {
1520 			/*
1521 			 * Ensure the controller is left in a consistent
1522 			 * state by resetting the command and data state
1523 			 * machines.
1524 			 */
1525 			omap_hsmmc_reset_controller_fsm(host, SRD);
1526 			omap_hsmmc_reset_controller_fsm(host, SRC);
1527 			host->reqs_blocked += 1;
1528 		}
1529 		req->cmd->error = -EBADF;
1530 		if (req->data)
1531 			req->data->error = -EBADF;
1532 		req->cmd->retries = 0;
1533 		mmc_request_done(mmc, req);
1534 		return;
1535 	} else if (host->reqs_blocked)
1536 		host->reqs_blocked = 0;
1537 	WARN_ON(host->mrq != NULL);
1538 	host->mrq = req;
1539 	host->clk_rate = clk_get_rate(host->fclk);
1540 	err = omap_hsmmc_prepare_data(host, req);
1541 	if (err) {
1542 		req->cmd->error = err;
1543 		if (req->data)
1544 			req->data->error = err;
1545 		host->mrq = NULL;
1546 		mmc_request_done(mmc, req);
1547 		return;
1548 	}
1549 	if (req->sbc && !(host->flags & AUTO_CMD23)) {
1550 		omap_hsmmc_start_command(host, req->sbc, NULL);
1551 		return;
1552 	}
1553 
1554 	omap_hsmmc_start_dma_transfer(host);
1555 	omap_hsmmc_start_command(host, req->cmd, req->data);
1556 }
1557 
1558 /* Routine to configure clock values. Exposed API to core */
1559 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1560 {
1561 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1562 	int do_send_init_stream = 0;
1563 
1564 	pm_runtime_get_sync(host->dev);
1565 
1566 	if (ios->power_mode != host->power_mode) {
1567 		switch (ios->power_mode) {
1568 		case MMC_POWER_OFF:
1569 			mmc_slot(host).set_power(host->dev, host->slot_id,
1570 						 0, 0);
1571 			break;
1572 		case MMC_POWER_UP:
1573 			mmc_slot(host).set_power(host->dev, host->slot_id,
1574 						 1, ios->vdd);
1575 			break;
1576 		case MMC_POWER_ON:
1577 			do_send_init_stream = 1;
1578 			break;
1579 		}
1580 		host->power_mode = ios->power_mode;
1581 	}
1582 
1583 	/* FIXME: set registers based only on changes to ios */
1584 
1585 	omap_hsmmc_set_bus_width(host);
1586 
1587 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1588 		/* Only MMC1 can interface at 3V without some flavor
1589 		 * of external transceiver; but they all handle 1.8V.
1590 		 */
1591 		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1592 			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1593 				/*
1594 				 * The mmc_select_voltage fn of the core does
1595 				 * not seem to set the power_mode to
1596 				 * MMC_POWER_UP upon recalculating the voltage.
1597 				 * vdd 1.8v.
1598 				 */
1599 			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1600 				dev_dbg(mmc_dev(host->mmc),
1601 						"Switch operation failed\n");
1602 		}
1603 	}
1604 
1605 	omap_hsmmc_set_clock(host);
1606 
1607 	if (do_send_init_stream)
1608 		send_init_stream(host);
1609 
1610 	omap_hsmmc_set_bus_mode(host);
1611 
1612 	pm_runtime_put_autosuspend(host->dev);
1613 }
1614 
1615 static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1616 {
1617 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1618 
1619 	if (!mmc_slot(host).card_detect)
1620 		return -ENOSYS;
1621 	return mmc_slot(host).card_detect(host->dev, host->slot_id);
1622 }
1623 
1624 static int omap_hsmmc_get_ro(struct mmc_host *mmc)
1625 {
1626 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1627 
1628 	if (!mmc_slot(host).get_ro)
1629 		return -ENOSYS;
1630 	return mmc_slot(host).get_ro(host->dev, 0);
1631 }
1632 
1633 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1634 {
1635 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1636 
1637 	if (mmc_slot(host).init_card)
1638 		mmc_slot(host).init_card(card);
1639 }
1640 
1641 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1642 {
1643 	u32 hctl, capa, value;
1644 
1645 	/* Only MMC1 supports 3.0V */
1646 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1647 		hctl = SDVS30;
1648 		capa = VS30 | VS18;
1649 	} else {
1650 		hctl = SDVS18;
1651 		capa = VS18;
1652 	}
1653 
1654 	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1655 	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1656 
1657 	value = OMAP_HSMMC_READ(host->base, CAPA);
1658 	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1659 
1660 	/* Set SD bus power bit */
1661 	set_sd_bus_power(host);
1662 }
1663 
1664 static int omap_hsmmc_enable_fclk(struct mmc_host *mmc)
1665 {
1666 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1667 
1668 	pm_runtime_get_sync(host->dev);
1669 
1670 	return 0;
1671 }
1672 
1673 static int omap_hsmmc_disable_fclk(struct mmc_host *mmc)
1674 {
1675 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1676 
1677 	pm_runtime_mark_last_busy(host->dev);
1678 	pm_runtime_put_autosuspend(host->dev);
1679 
1680 	return 0;
1681 }
1682 
1683 static const struct mmc_host_ops omap_hsmmc_ops = {
1684 	.enable = omap_hsmmc_enable_fclk,
1685 	.disable = omap_hsmmc_disable_fclk,
1686 	.post_req = omap_hsmmc_post_req,
1687 	.pre_req = omap_hsmmc_pre_req,
1688 	.request = omap_hsmmc_request,
1689 	.set_ios = omap_hsmmc_set_ios,
1690 	.get_cd = omap_hsmmc_get_cd,
1691 	.get_ro = omap_hsmmc_get_ro,
1692 	.init_card = omap_hsmmc_init_card,
1693 	/* NYET -- enable_sdio_irq */
1694 };
1695 
1696 #ifdef CONFIG_DEBUG_FS
1697 
1698 static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1699 {
1700 	struct mmc_host *mmc = s->private;
1701 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1702 
1703 	seq_printf(s, "mmc%d:\n ctx_loss:\t%d\n\nregs:\n",
1704 			mmc->index, host->context_loss);
1705 
1706 	pm_runtime_get_sync(host->dev);
1707 
1708 	seq_printf(s, "CON:\t\t0x%08x\n",
1709 			OMAP_HSMMC_READ(host->base, CON));
1710 	seq_printf(s, "HCTL:\t\t0x%08x\n",
1711 			OMAP_HSMMC_READ(host->base, HCTL));
1712 	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1713 			OMAP_HSMMC_READ(host->base, SYSCTL));
1714 	seq_printf(s, "IE:\t\t0x%08x\n",
1715 			OMAP_HSMMC_READ(host->base, IE));
1716 	seq_printf(s, "ISE:\t\t0x%08x\n",
1717 			OMAP_HSMMC_READ(host->base, ISE));
1718 	seq_printf(s, "CAPA:\t\t0x%08x\n",
1719 			OMAP_HSMMC_READ(host->base, CAPA));
1720 
1721 	pm_runtime_mark_last_busy(host->dev);
1722 	pm_runtime_put_autosuspend(host->dev);
1723 
1724 	return 0;
1725 }
1726 
1727 static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1728 {
1729 	return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1730 }
1731 
1732 static const struct file_operations mmc_regs_fops = {
1733 	.open           = omap_hsmmc_regs_open,
1734 	.read           = seq_read,
1735 	.llseek         = seq_lseek,
1736 	.release        = single_release,
1737 };
1738 
1739 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1740 {
1741 	if (mmc->debugfs_root)
1742 		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1743 			mmc, &mmc_regs_fops);
1744 }
1745 
1746 #else
1747 
1748 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1749 {
1750 }
1751 
1752 #endif
1753 
1754 #ifdef CONFIG_OF
1755 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1756 	/* See 35xx errata 2.1.1.128 in SPRZ278F */
1757 	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1758 };
1759 
1760 static const struct omap_mmc_of_data omap4_mmc_of_data = {
1761 	.reg_offset = 0x100,
1762 };
1763 
1764 static const struct of_device_id omap_mmc_of_match[] = {
1765 	{
1766 		.compatible = "ti,omap2-hsmmc",
1767 	},
1768 	{
1769 		.compatible = "ti,omap3-pre-es3-hsmmc",
1770 		.data = &omap3_pre_es3_mmc_of_data,
1771 	},
1772 	{
1773 		.compatible = "ti,omap3-hsmmc",
1774 	},
1775 	{
1776 		.compatible = "ti,omap4-hsmmc",
1777 		.data = &omap4_mmc_of_data,
1778 	},
1779 	{},
1780 };
1781 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1782 
1783 static struct omap_mmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1784 {
1785 	struct omap_mmc_platform_data *pdata;
1786 	struct device_node *np = dev->of_node;
1787 	u32 bus_width, max_freq;
1788 	int cd_gpio, wp_gpio;
1789 
1790 	cd_gpio = of_get_named_gpio(np, "cd-gpios", 0);
1791 	wp_gpio = of_get_named_gpio(np, "wp-gpios", 0);
1792 	if (cd_gpio == -EPROBE_DEFER || wp_gpio == -EPROBE_DEFER)
1793 		return ERR_PTR(-EPROBE_DEFER);
1794 
1795 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1796 	if (!pdata)
1797 		return ERR_PTR(-ENOMEM); /* out of memory */
1798 
1799 	if (of_find_property(np, "ti,dual-volt", NULL))
1800 		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1801 
1802 	/* This driver only supports 1 slot */
1803 	pdata->nr_slots = 1;
1804 	pdata->slots[0].switch_pin = cd_gpio;
1805 	pdata->slots[0].gpio_wp = wp_gpio;
1806 
1807 	if (of_find_property(np, "ti,non-removable", NULL)) {
1808 		pdata->slots[0].nonremovable = true;
1809 		pdata->slots[0].no_regulator_off_init = true;
1810 	}
1811 	of_property_read_u32(np, "bus-width", &bus_width);
1812 	if (bus_width == 4)
1813 		pdata->slots[0].caps |= MMC_CAP_4_BIT_DATA;
1814 	else if (bus_width == 8)
1815 		pdata->slots[0].caps |= MMC_CAP_8_BIT_DATA;
1816 
1817 	if (of_find_property(np, "ti,needs-special-reset", NULL))
1818 		pdata->slots[0].features |= HSMMC_HAS_UPDATED_RESET;
1819 
1820 	if (!of_property_read_u32(np, "max-frequency", &max_freq))
1821 		pdata->max_freq = max_freq;
1822 
1823 	if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1824 		pdata->slots[0].features |= HSMMC_HAS_HSPE_SUPPORT;
1825 
1826 	if (of_find_property(np, "keep-power-in-suspend", NULL))
1827 		pdata->slots[0].pm_caps |= MMC_PM_KEEP_POWER;
1828 
1829 	if (of_find_property(np, "enable-sdio-wakeup", NULL))
1830 		pdata->slots[0].pm_caps |= MMC_PM_WAKE_SDIO_IRQ;
1831 
1832 	return pdata;
1833 }
1834 #else
1835 static inline struct omap_mmc_platform_data
1836 			*of_get_hsmmc_pdata(struct device *dev)
1837 {
1838 	return ERR_PTR(-EINVAL);
1839 }
1840 #endif
1841 
1842 static int omap_hsmmc_probe(struct platform_device *pdev)
1843 {
1844 	struct omap_mmc_platform_data *pdata = pdev->dev.platform_data;
1845 	struct mmc_host *mmc;
1846 	struct omap_hsmmc_host *host = NULL;
1847 	struct resource *res;
1848 	int ret, irq;
1849 	const struct of_device_id *match;
1850 	dma_cap_mask_t mask;
1851 	unsigned tx_req, rx_req;
1852 	struct pinctrl *pinctrl;
1853 	const struct omap_mmc_of_data *data;
1854 
1855 	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1856 	if (match) {
1857 		pdata = of_get_hsmmc_pdata(&pdev->dev);
1858 
1859 		if (IS_ERR(pdata))
1860 			return PTR_ERR(pdata);
1861 
1862 		if (match->data) {
1863 			data = match->data;
1864 			pdata->reg_offset = data->reg_offset;
1865 			pdata->controller_flags |= data->controller_flags;
1866 		}
1867 	}
1868 
1869 	if (pdata == NULL) {
1870 		dev_err(&pdev->dev, "Platform Data is missing\n");
1871 		return -ENXIO;
1872 	}
1873 
1874 	if (pdata->nr_slots == 0) {
1875 		dev_err(&pdev->dev, "No Slots\n");
1876 		return -ENXIO;
1877 	}
1878 
1879 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1880 	irq = platform_get_irq(pdev, 0);
1881 	if (res == NULL || irq < 0)
1882 		return -ENXIO;
1883 
1884 	res = request_mem_region(res->start, resource_size(res), pdev->name);
1885 	if (res == NULL)
1886 		return -EBUSY;
1887 
1888 	ret = omap_hsmmc_gpio_init(pdata);
1889 	if (ret)
1890 		goto err;
1891 
1892 	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1893 	if (!mmc) {
1894 		ret = -ENOMEM;
1895 		goto err_alloc;
1896 	}
1897 
1898 	host		= mmc_priv(mmc);
1899 	host->mmc	= mmc;
1900 	host->pdata	= pdata;
1901 	host->dev	= &pdev->dev;
1902 	host->use_dma	= 1;
1903 	host->dma_ch	= -1;
1904 	host->irq	= irq;
1905 	host->slot_id	= 0;
1906 	host->mapbase	= res->start + pdata->reg_offset;
1907 	host->base	= ioremap(host->mapbase, SZ_4K);
1908 	host->power_mode = MMC_POWER_OFF;
1909 	host->next_data.cookie = 1;
1910 	host->pbias_enabled = 0;
1911 
1912 	platform_set_drvdata(pdev, host);
1913 
1914 	mmc->ops	= &omap_hsmmc_ops;
1915 
1916 	mmc->f_min = OMAP_MMC_MIN_CLOCK;
1917 
1918 	if (pdata->max_freq > 0)
1919 		mmc->f_max = pdata->max_freq;
1920 	else
1921 		mmc->f_max = OMAP_MMC_MAX_CLOCK;
1922 
1923 	spin_lock_init(&host->irq_lock);
1924 
1925 	host->fclk = devm_clk_get(&pdev->dev, "fck");
1926 	if (IS_ERR(host->fclk)) {
1927 		ret = PTR_ERR(host->fclk);
1928 		host->fclk = NULL;
1929 		goto err1;
1930 	}
1931 
1932 	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1933 		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1934 		mmc->caps2 |= MMC_CAP2_NO_MULTI_READ;
1935 	}
1936 
1937 	pm_runtime_enable(host->dev);
1938 	pm_runtime_get_sync(host->dev);
1939 	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1940 	pm_runtime_use_autosuspend(host->dev);
1941 
1942 	omap_hsmmc_context_save(host);
1943 
1944 	host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
1945 	/*
1946 	 * MMC can still work without debounce clock.
1947 	 */
1948 	if (IS_ERR(host->dbclk)) {
1949 		host->dbclk = NULL;
1950 	} else if (clk_prepare_enable(host->dbclk) != 0) {
1951 		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1952 		host->dbclk = NULL;
1953 	}
1954 
1955 	/* Since we do only SG emulation, we can have as many segs
1956 	 * as we want. */
1957 	mmc->max_segs = 1024;
1958 
1959 	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
1960 	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
1961 	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1962 	mmc->max_seg_size = mmc->max_req_size;
1963 
1964 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1965 		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
1966 
1967 	mmc->caps |= mmc_slot(host).caps;
1968 	if (mmc->caps & MMC_CAP_8_BIT_DATA)
1969 		mmc->caps |= MMC_CAP_4_BIT_DATA;
1970 
1971 	if (mmc_slot(host).nonremovable)
1972 		mmc->caps |= MMC_CAP_NONREMOVABLE;
1973 
1974 	mmc->pm_caps = mmc_slot(host).pm_caps;
1975 
1976 	omap_hsmmc_conf_bus_power(host);
1977 
1978 	if (!pdev->dev.of_node) {
1979 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
1980 		if (!res) {
1981 			dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n");
1982 			ret = -ENXIO;
1983 			goto err_irq;
1984 		}
1985 		tx_req = res->start;
1986 
1987 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
1988 		if (!res) {
1989 			dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n");
1990 			ret = -ENXIO;
1991 			goto err_irq;
1992 		}
1993 		rx_req = res->start;
1994 	}
1995 
1996 	dma_cap_zero(mask);
1997 	dma_cap_set(DMA_SLAVE, mask);
1998 
1999 	host->rx_chan =
2000 		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2001 						 &rx_req, &pdev->dev, "rx");
2002 
2003 	if (!host->rx_chan) {
2004 		dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel %u\n", rx_req);
2005 		ret = -ENXIO;
2006 		goto err_irq;
2007 	}
2008 
2009 	host->tx_chan =
2010 		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2011 						 &tx_req, &pdev->dev, "tx");
2012 
2013 	if (!host->tx_chan) {
2014 		dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel %u\n", tx_req);
2015 		ret = -ENXIO;
2016 		goto err_irq;
2017 	}
2018 
2019 	/* Request IRQ for MMC operations */
2020 	ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
2021 			mmc_hostname(mmc), host);
2022 	if (ret) {
2023 		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
2024 		goto err_irq;
2025 	}
2026 
2027 	if (pdata->init != NULL) {
2028 		if (pdata->init(&pdev->dev) != 0) {
2029 			dev_err(mmc_dev(host->mmc),
2030 				"Unable to configure MMC IRQs\n");
2031 			goto err_irq;
2032 		}
2033 	}
2034 
2035 	if (omap_hsmmc_have_reg() && !mmc_slot(host).set_power) {
2036 		ret = omap_hsmmc_reg_get(host);
2037 		if (ret)
2038 			goto err_reg;
2039 		host->use_reg = 1;
2040 	}
2041 
2042 	mmc->ocr_avail = mmc_slot(host).ocr_mask;
2043 
2044 	/* Request IRQ for card detect */
2045 	if ((mmc_slot(host).card_detect_irq)) {
2046 		ret = devm_request_threaded_irq(&pdev->dev,
2047 						mmc_slot(host).card_detect_irq,
2048 						NULL, omap_hsmmc_detect,
2049 					   IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
2050 					   mmc_hostname(mmc), host);
2051 		if (ret) {
2052 			dev_err(mmc_dev(host->mmc),
2053 				"Unable to grab MMC CD IRQ\n");
2054 			goto err_irq_cd;
2055 		}
2056 		pdata->suspend = omap_hsmmc_suspend_cdirq;
2057 		pdata->resume = omap_hsmmc_resume_cdirq;
2058 	}
2059 
2060 	omap_hsmmc_disable_irq(host);
2061 
2062 	pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
2063 	if (IS_ERR(pinctrl))
2064 		dev_warn(&pdev->dev,
2065 			"pins are not configured from the driver\n");
2066 
2067 	omap_hsmmc_protect_card(host);
2068 
2069 	mmc_add_host(mmc);
2070 
2071 	if (mmc_slot(host).name != NULL) {
2072 		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
2073 		if (ret < 0)
2074 			goto err_slot_name;
2075 	}
2076 	if (mmc_slot(host).card_detect_irq && mmc_slot(host).get_cover_state) {
2077 		ret = device_create_file(&mmc->class_dev,
2078 					&dev_attr_cover_switch);
2079 		if (ret < 0)
2080 			goto err_slot_name;
2081 	}
2082 
2083 	omap_hsmmc_debugfs(mmc);
2084 	pm_runtime_mark_last_busy(host->dev);
2085 	pm_runtime_put_autosuspend(host->dev);
2086 
2087 	return 0;
2088 
2089 err_slot_name:
2090 	mmc_remove_host(mmc);
2091 err_irq_cd:
2092 	if (host->use_reg)
2093 		omap_hsmmc_reg_put(host);
2094 err_reg:
2095 	if (host->pdata->cleanup)
2096 		host->pdata->cleanup(&pdev->dev);
2097 err_irq:
2098 	if (host->tx_chan)
2099 		dma_release_channel(host->tx_chan);
2100 	if (host->rx_chan)
2101 		dma_release_channel(host->rx_chan);
2102 	pm_runtime_put_sync(host->dev);
2103 	pm_runtime_disable(host->dev);
2104 	if (host->dbclk)
2105 		clk_disable_unprepare(host->dbclk);
2106 err1:
2107 	iounmap(host->base);
2108 	mmc_free_host(mmc);
2109 err_alloc:
2110 	omap_hsmmc_gpio_free(pdata);
2111 err:
2112 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2113 	if (res)
2114 		release_mem_region(res->start, resource_size(res));
2115 	return ret;
2116 }
2117 
2118 static int omap_hsmmc_remove(struct platform_device *pdev)
2119 {
2120 	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2121 	struct resource *res;
2122 
2123 	pm_runtime_get_sync(host->dev);
2124 	mmc_remove_host(host->mmc);
2125 	if (host->use_reg)
2126 		omap_hsmmc_reg_put(host);
2127 	if (host->pdata->cleanup)
2128 		host->pdata->cleanup(&pdev->dev);
2129 
2130 	if (host->tx_chan)
2131 		dma_release_channel(host->tx_chan);
2132 	if (host->rx_chan)
2133 		dma_release_channel(host->rx_chan);
2134 
2135 	pm_runtime_put_sync(host->dev);
2136 	pm_runtime_disable(host->dev);
2137 	if (host->dbclk)
2138 		clk_disable_unprepare(host->dbclk);
2139 
2140 	omap_hsmmc_gpio_free(host->pdata);
2141 	iounmap(host->base);
2142 	mmc_free_host(host->mmc);
2143 
2144 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2145 	if (res)
2146 		release_mem_region(res->start, resource_size(res));
2147 
2148 	return 0;
2149 }
2150 
2151 #ifdef CONFIG_PM
2152 static int omap_hsmmc_prepare(struct device *dev)
2153 {
2154 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2155 
2156 	if (host->pdata->suspend)
2157 		return host->pdata->suspend(dev, host->slot_id);
2158 
2159 	return 0;
2160 }
2161 
2162 static void omap_hsmmc_complete(struct device *dev)
2163 {
2164 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2165 
2166 	if (host->pdata->resume)
2167 		host->pdata->resume(dev, host->slot_id);
2168 
2169 }
2170 
2171 static int omap_hsmmc_suspend(struct device *dev)
2172 {
2173 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2174 
2175 	if (!host)
2176 		return 0;
2177 
2178 	pm_runtime_get_sync(host->dev);
2179 
2180 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2181 		omap_hsmmc_disable_irq(host);
2182 		OMAP_HSMMC_WRITE(host->base, HCTL,
2183 				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2184 	}
2185 
2186 	if (host->dbclk)
2187 		clk_disable_unprepare(host->dbclk);
2188 
2189 	pm_runtime_put_sync(host->dev);
2190 	return 0;
2191 }
2192 
2193 /* Routine to resume the MMC device */
2194 static int omap_hsmmc_resume(struct device *dev)
2195 {
2196 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2197 
2198 	if (!host)
2199 		return 0;
2200 
2201 	pm_runtime_get_sync(host->dev);
2202 
2203 	if (host->dbclk)
2204 		clk_prepare_enable(host->dbclk);
2205 
2206 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2207 		omap_hsmmc_conf_bus_power(host);
2208 
2209 	omap_hsmmc_protect_card(host);
2210 
2211 	pm_runtime_mark_last_busy(host->dev);
2212 	pm_runtime_put_autosuspend(host->dev);
2213 	return 0;
2214 }
2215 
2216 #else
2217 #define omap_hsmmc_prepare	NULL
2218 #define omap_hsmmc_complete	NULL
2219 #define omap_hsmmc_suspend	NULL
2220 #define omap_hsmmc_resume	NULL
2221 #endif
2222 
2223 static int omap_hsmmc_runtime_suspend(struct device *dev)
2224 {
2225 	struct omap_hsmmc_host *host;
2226 
2227 	host = platform_get_drvdata(to_platform_device(dev));
2228 	omap_hsmmc_context_save(host);
2229 	dev_dbg(dev, "disabled\n");
2230 
2231 	return 0;
2232 }
2233 
2234 static int omap_hsmmc_runtime_resume(struct device *dev)
2235 {
2236 	struct omap_hsmmc_host *host;
2237 
2238 	host = platform_get_drvdata(to_platform_device(dev));
2239 	omap_hsmmc_context_restore(host);
2240 	dev_dbg(dev, "enabled\n");
2241 
2242 	return 0;
2243 }
2244 
2245 static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2246 	.suspend	= omap_hsmmc_suspend,
2247 	.resume		= omap_hsmmc_resume,
2248 	.prepare	= omap_hsmmc_prepare,
2249 	.complete	= omap_hsmmc_complete,
2250 	.runtime_suspend = omap_hsmmc_runtime_suspend,
2251 	.runtime_resume = omap_hsmmc_runtime_resume,
2252 };
2253 
2254 static struct platform_driver omap_hsmmc_driver = {
2255 	.probe		= omap_hsmmc_probe,
2256 	.remove		= omap_hsmmc_remove,
2257 	.driver		= {
2258 		.name = DRIVER_NAME,
2259 		.owner = THIS_MODULE,
2260 		.pm = &omap_hsmmc_dev_pm_ops,
2261 		.of_match_table = of_match_ptr(omap_mmc_of_match),
2262 	},
2263 };
2264 
2265 module_platform_driver(omap_hsmmc_driver);
2266 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2267 MODULE_LICENSE("GPL");
2268 MODULE_ALIAS("platform:" DRIVER_NAME);
2269 MODULE_AUTHOR("Texas Instruments Inc");
2270