xref: /openbmc/linux/drivers/mmc/host/omap_hsmmc.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  * drivers/mmc/host/omap_hsmmc.c
3  *
4  * Driver for OMAP2430/3430 MMC controller.
5  *
6  * Copyright (C) 2007 Texas Instruments.
7  *
8  * Authors:
9  *	Syed Mohammed Khasim	<x0khasim@ti.com>
10  *	Madhusudhan		<madhu.cr@ti.com>
11  *	Mohit Jalori		<mjalori@ti.com>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/sizes.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/timer.h>
30 #include <linux/clk.h>
31 #include <linux/of.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_device.h>
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/core.h>
37 #include <linux/mmc/mmc.h>
38 #include <linux/mmc/slot-gpio.h>
39 #include <linux/io.h>
40 #include <linux/irq.h>
41 #include <linux/gpio.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/pinctrl/consumer.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/pm_wakeirq.h>
46 #include <linux/platform_data/hsmmc-omap.h>
47 
48 /* OMAP HSMMC Host Controller Registers */
49 #define OMAP_HSMMC_SYSSTATUS	0x0014
50 #define OMAP_HSMMC_CON		0x002C
51 #define OMAP_HSMMC_SDMASA	0x0100
52 #define OMAP_HSMMC_BLK		0x0104
53 #define OMAP_HSMMC_ARG		0x0108
54 #define OMAP_HSMMC_CMD		0x010C
55 #define OMAP_HSMMC_RSP10	0x0110
56 #define OMAP_HSMMC_RSP32	0x0114
57 #define OMAP_HSMMC_RSP54	0x0118
58 #define OMAP_HSMMC_RSP76	0x011C
59 #define OMAP_HSMMC_DATA		0x0120
60 #define OMAP_HSMMC_PSTATE	0x0124
61 #define OMAP_HSMMC_HCTL		0x0128
62 #define OMAP_HSMMC_SYSCTL	0x012C
63 #define OMAP_HSMMC_STAT		0x0130
64 #define OMAP_HSMMC_IE		0x0134
65 #define OMAP_HSMMC_ISE		0x0138
66 #define OMAP_HSMMC_AC12		0x013C
67 #define OMAP_HSMMC_CAPA		0x0140
68 
69 #define VS18			(1 << 26)
70 #define VS30			(1 << 25)
71 #define HSS			(1 << 21)
72 #define SDVS18			(0x5 << 9)
73 #define SDVS30			(0x6 << 9)
74 #define SDVS33			(0x7 << 9)
75 #define SDVS_MASK		0x00000E00
76 #define SDVSCLR			0xFFFFF1FF
77 #define SDVSDET			0x00000400
78 #define AUTOIDLE		0x1
79 #define SDBP			(1 << 8)
80 #define DTO			0xe
81 #define ICE			0x1
82 #define ICS			0x2
83 #define CEN			(1 << 2)
84 #define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
85 #define CLKD_MASK		0x0000FFC0
86 #define CLKD_SHIFT		6
87 #define DTO_MASK		0x000F0000
88 #define DTO_SHIFT		16
89 #define INIT_STREAM		(1 << 1)
90 #define ACEN_ACMD23		(2 << 2)
91 #define DP_SELECT		(1 << 21)
92 #define DDIR			(1 << 4)
93 #define DMAE			0x1
94 #define MSBS			(1 << 5)
95 #define BCE			(1 << 1)
96 #define FOUR_BIT		(1 << 1)
97 #define HSPE			(1 << 2)
98 #define IWE			(1 << 24)
99 #define DDR			(1 << 19)
100 #define CLKEXTFREE		(1 << 16)
101 #define CTPL			(1 << 11)
102 #define DW8			(1 << 5)
103 #define OD			0x1
104 #define STAT_CLEAR		0xFFFFFFFF
105 #define INIT_STREAM_CMD		0x00000000
106 #define DUAL_VOLT_OCR_BIT	7
107 #define SRC			(1 << 25)
108 #define SRD			(1 << 26)
109 #define SOFTRESET		(1 << 1)
110 
111 /* PSTATE */
112 #define DLEV_DAT(x)		(1 << (20 + (x)))
113 
114 /* Interrupt masks for IE and ISE register */
115 #define CC_EN			(1 << 0)
116 #define TC_EN			(1 << 1)
117 #define BWR_EN			(1 << 4)
118 #define BRR_EN			(1 << 5)
119 #define CIRQ_EN			(1 << 8)
120 #define ERR_EN			(1 << 15)
121 #define CTO_EN			(1 << 16)
122 #define CCRC_EN			(1 << 17)
123 #define CEB_EN			(1 << 18)
124 #define CIE_EN			(1 << 19)
125 #define DTO_EN			(1 << 20)
126 #define DCRC_EN			(1 << 21)
127 #define DEB_EN			(1 << 22)
128 #define ACE_EN			(1 << 24)
129 #define CERR_EN			(1 << 28)
130 #define BADA_EN			(1 << 29)
131 
132 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
133 		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
134 		BRR_EN | BWR_EN | TC_EN | CC_EN)
135 
136 #define CNI	(1 << 7)
137 #define ACIE	(1 << 4)
138 #define ACEB	(1 << 3)
139 #define ACCE	(1 << 2)
140 #define ACTO	(1 << 1)
141 #define ACNE	(1 << 0)
142 
143 #define MMC_AUTOSUSPEND_DELAY	100
144 #define MMC_TIMEOUT_MS		20		/* 20 mSec */
145 #define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
146 #define OMAP_MMC_MIN_CLOCK	400000
147 #define OMAP_MMC_MAX_CLOCK	52000000
148 #define DRIVER_NAME		"omap_hsmmc"
149 
150 /*
151  * One controller can have multiple slots, like on some omap boards using
152  * omap.c controller driver. Luckily this is not currently done on any known
153  * omap_hsmmc.c device.
154  */
155 #define mmc_pdata(host)		host->pdata
156 
157 /*
158  * MMC Host controller read/write API's
159  */
160 #define OMAP_HSMMC_READ(base, reg)	\
161 	__raw_readl((base) + OMAP_HSMMC_##reg)
162 
163 #define OMAP_HSMMC_WRITE(base, reg, val) \
164 	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
165 
166 struct omap_hsmmc_next {
167 	unsigned int	dma_len;
168 	s32		cookie;
169 };
170 
171 struct omap_hsmmc_host {
172 	struct	device		*dev;
173 	struct	mmc_host	*mmc;
174 	struct	mmc_request	*mrq;
175 	struct	mmc_command	*cmd;
176 	struct	mmc_data	*data;
177 	struct	clk		*fclk;
178 	struct	clk		*dbclk;
179 	struct	regulator	*pbias;
180 	bool			pbias_enabled;
181 	void	__iomem		*base;
182 	int			vqmmc_enabled;
183 	resource_size_t		mapbase;
184 	spinlock_t		irq_lock; /* Prevent races with irq handler */
185 	unsigned int		dma_len;
186 	unsigned int		dma_sg_idx;
187 	unsigned char		bus_mode;
188 	unsigned char		power_mode;
189 	int			suspended;
190 	u32			con;
191 	u32			hctl;
192 	u32			sysctl;
193 	u32			capa;
194 	int			irq;
195 	int			wake_irq;
196 	int			use_dma, dma_ch;
197 	struct dma_chan		*tx_chan;
198 	struct dma_chan		*rx_chan;
199 	int			response_busy;
200 	int			context_loss;
201 	int			protect_card;
202 	int			reqs_blocked;
203 	int			req_in_progress;
204 	unsigned long		clk_rate;
205 	unsigned int		flags;
206 #define AUTO_CMD23		(1 << 0)        /* Auto CMD23 support */
207 #define HSMMC_SDIO_IRQ_ENABLED	(1 << 1)        /* SDIO irq enabled */
208 	struct omap_hsmmc_next	next_data;
209 	struct	omap_hsmmc_platform_data	*pdata;
210 
211 	/* return MMC cover switch state, can be NULL if not supported.
212 	 *
213 	 * possible return values:
214 	 *   0 - closed
215 	 *   1 - open
216 	 */
217 	int (*get_cover_state)(struct device *dev);
218 
219 	int (*card_detect)(struct device *dev);
220 };
221 
222 struct omap_mmc_of_data {
223 	u32 reg_offset;
224 	u8 controller_flags;
225 };
226 
227 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
228 
229 static int omap_hsmmc_card_detect(struct device *dev)
230 {
231 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
232 
233 	return mmc_gpio_get_cd(host->mmc);
234 }
235 
236 static int omap_hsmmc_get_cover_state(struct device *dev)
237 {
238 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
239 
240 	return mmc_gpio_get_cd(host->mmc);
241 }
242 
243 static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
244 {
245 	int ret;
246 	struct omap_hsmmc_host *host = mmc_priv(mmc);
247 	struct mmc_ios *ios = &mmc->ios;
248 
249 	if (!IS_ERR(mmc->supply.vmmc)) {
250 		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
251 		if (ret)
252 			return ret;
253 	}
254 
255 	/* Enable interface voltage rail, if needed */
256 	if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
257 		ret = regulator_enable(mmc->supply.vqmmc);
258 		if (ret) {
259 			dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
260 			goto err_vqmmc;
261 		}
262 		host->vqmmc_enabled = 1;
263 	}
264 
265 	return 0;
266 
267 err_vqmmc:
268 	if (!IS_ERR(mmc->supply.vmmc))
269 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
270 
271 	return ret;
272 }
273 
274 static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
275 {
276 	int ret;
277 	int status;
278 	struct omap_hsmmc_host *host = mmc_priv(mmc);
279 
280 	if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
281 		ret = regulator_disable(mmc->supply.vqmmc);
282 		if (ret) {
283 			dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
284 			return ret;
285 		}
286 		host->vqmmc_enabled = 0;
287 	}
288 
289 	if (!IS_ERR(mmc->supply.vmmc)) {
290 		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
291 		if (ret)
292 			goto err_set_ocr;
293 	}
294 
295 	return 0;
296 
297 err_set_ocr:
298 	if (!IS_ERR(mmc->supply.vqmmc)) {
299 		status = regulator_enable(mmc->supply.vqmmc);
300 		if (status)
301 			dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
302 	}
303 
304 	return ret;
305 }
306 
307 static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on)
308 {
309 	int ret;
310 
311 	if (IS_ERR(host->pbias))
312 		return 0;
313 
314 	if (power_on) {
315 		if (host->pbias_enabled == 0) {
316 			ret = regulator_enable(host->pbias);
317 			if (ret) {
318 				dev_err(host->dev, "pbias reg enable fail\n");
319 				return ret;
320 			}
321 			host->pbias_enabled = 1;
322 		}
323 	} else {
324 		if (host->pbias_enabled == 1) {
325 			ret = regulator_disable(host->pbias);
326 			if (ret) {
327 				dev_err(host->dev, "pbias reg disable fail\n");
328 				return ret;
329 			}
330 			host->pbias_enabled = 0;
331 		}
332 	}
333 
334 	return 0;
335 }
336 
337 static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on)
338 {
339 	struct mmc_host *mmc = host->mmc;
340 	int ret = 0;
341 
342 	/*
343 	 * If we don't see a Vcc regulator, assume it's a fixed
344 	 * voltage always-on regulator.
345 	 */
346 	if (IS_ERR(mmc->supply.vmmc))
347 		return 0;
348 
349 	ret = omap_hsmmc_set_pbias(host, false);
350 	if (ret)
351 		return ret;
352 
353 	/*
354 	 * Assume Vcc regulator is used only to power the card ... OMAP
355 	 * VDDS is used to power the pins, optionally with a transceiver to
356 	 * support cards using voltages other than VDDS (1.8V nominal).  When a
357 	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
358 	 *
359 	 * In some cases this regulator won't support enable/disable;
360 	 * e.g. it's a fixed rail for a WLAN chip.
361 	 *
362 	 * In other cases vcc_aux switches interface power.  Example, for
363 	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
364 	 * chips/cards need an interface voltage rail too.
365 	 */
366 	if (power_on) {
367 		ret = omap_hsmmc_enable_supply(mmc);
368 		if (ret)
369 			return ret;
370 
371 		ret = omap_hsmmc_set_pbias(host, true);
372 		if (ret)
373 			goto err_set_voltage;
374 	} else {
375 		ret = omap_hsmmc_disable_supply(mmc);
376 		if (ret)
377 			return ret;
378 	}
379 
380 	return 0;
381 
382 err_set_voltage:
383 	omap_hsmmc_disable_supply(mmc);
384 
385 	return ret;
386 }
387 
388 static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
389 {
390 	int ret;
391 
392 	if (IS_ERR(reg))
393 		return 0;
394 
395 	if (regulator_is_enabled(reg)) {
396 		ret = regulator_enable(reg);
397 		if (ret)
398 			return ret;
399 
400 		ret = regulator_disable(reg);
401 		if (ret)
402 			return ret;
403 	}
404 
405 	return 0;
406 }
407 
408 static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
409 {
410 	struct mmc_host *mmc = host->mmc;
411 	int ret;
412 
413 	/*
414 	 * disable regulators enabled during boot and get the usecount
415 	 * right so that regulators can be enabled/disabled by checking
416 	 * the return value of regulator_is_enabled
417 	 */
418 	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
419 	if (ret) {
420 		dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
421 		return ret;
422 	}
423 
424 	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
425 	if (ret) {
426 		dev_err(host->dev,
427 			"fail to disable boot enabled vmmc_aux reg\n");
428 		return ret;
429 	}
430 
431 	ret = omap_hsmmc_disable_boot_regulator(host->pbias);
432 	if (ret) {
433 		dev_err(host->dev,
434 			"failed to disable boot enabled pbias reg\n");
435 		return ret;
436 	}
437 
438 	return 0;
439 }
440 
441 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
442 {
443 	int ret;
444 	struct mmc_host *mmc = host->mmc;
445 
446 
447 	ret = mmc_regulator_get_supply(mmc);
448 	if (ret)
449 		return ret;
450 
451 	/* Allow an aux regulator */
452 	if (IS_ERR(mmc->supply.vqmmc)) {
453 		mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
454 								"vmmc_aux");
455 		if (IS_ERR(mmc->supply.vqmmc)) {
456 			ret = PTR_ERR(mmc->supply.vqmmc);
457 			if ((ret != -ENODEV) && host->dev->of_node)
458 				return ret;
459 			dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
460 				PTR_ERR(mmc->supply.vqmmc));
461 		}
462 	}
463 
464 	host->pbias = devm_regulator_get_optional(host->dev, "pbias");
465 	if (IS_ERR(host->pbias)) {
466 		ret = PTR_ERR(host->pbias);
467 		if ((ret != -ENODEV) && host->dev->of_node) {
468 			dev_err(host->dev,
469 			"SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
470 			return ret;
471 		}
472 		dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
473 			PTR_ERR(host->pbias));
474 	}
475 
476 	/* For eMMC do not power off when not in sleep state */
477 	if (mmc_pdata(host)->no_regulator_off_init)
478 		return 0;
479 
480 	ret = omap_hsmmc_disable_boot_regulators(host);
481 	if (ret)
482 		return ret;
483 
484 	return 0;
485 }
486 
487 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id);
488 
489 static int omap_hsmmc_gpio_init(struct mmc_host *mmc,
490 				struct omap_hsmmc_host *host,
491 				struct omap_hsmmc_platform_data *pdata)
492 {
493 	int ret;
494 
495 	if (gpio_is_valid(pdata->gpio_cod)) {
496 		ret = mmc_gpio_request_cd(mmc, pdata->gpio_cod, 0);
497 		if (ret)
498 			return ret;
499 
500 		host->get_cover_state = omap_hsmmc_get_cover_state;
501 		mmc_gpio_set_cd_isr(mmc, omap_hsmmc_cover_irq);
502 	} else if (gpio_is_valid(pdata->gpio_cd)) {
503 		ret = mmc_gpio_request_cd(mmc, pdata->gpio_cd, 0);
504 		if (ret)
505 			return ret;
506 
507 		host->card_detect = omap_hsmmc_card_detect;
508 	}
509 
510 	if (gpio_is_valid(pdata->gpio_wp)) {
511 		ret = mmc_gpio_request_ro(mmc, pdata->gpio_wp);
512 		if (ret)
513 			return ret;
514 	}
515 
516 	return 0;
517 }
518 
519 /*
520  * Start clock to the card
521  */
522 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
523 {
524 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
525 		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
526 }
527 
528 /*
529  * Stop clock to the card
530  */
531 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
532 {
533 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
534 		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
535 	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
536 		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
537 }
538 
539 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
540 				  struct mmc_command *cmd)
541 {
542 	u32 irq_mask = INT_EN_MASK;
543 	unsigned long flags;
544 
545 	if (host->use_dma)
546 		irq_mask &= ~(BRR_EN | BWR_EN);
547 
548 	/* Disable timeout for erases */
549 	if (cmd->opcode == MMC_ERASE)
550 		irq_mask &= ~DTO_EN;
551 
552 	spin_lock_irqsave(&host->irq_lock, flags);
553 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
554 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
555 
556 	/* latch pending CIRQ, but don't signal MMC core */
557 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
558 		irq_mask |= CIRQ_EN;
559 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
560 	spin_unlock_irqrestore(&host->irq_lock, flags);
561 }
562 
563 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
564 {
565 	u32 irq_mask = 0;
566 	unsigned long flags;
567 
568 	spin_lock_irqsave(&host->irq_lock, flags);
569 	/* no transfer running but need to keep cirq if enabled */
570 	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
571 		irq_mask |= CIRQ_EN;
572 	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
573 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
574 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
575 	spin_unlock_irqrestore(&host->irq_lock, flags);
576 }
577 
578 /* Calculate divisor for the given clock frequency */
579 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
580 {
581 	u16 dsor = 0;
582 
583 	if (ios->clock) {
584 		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
585 		if (dsor > CLKD_MAX)
586 			dsor = CLKD_MAX;
587 	}
588 
589 	return dsor;
590 }
591 
592 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
593 {
594 	struct mmc_ios *ios = &host->mmc->ios;
595 	unsigned long regval;
596 	unsigned long timeout;
597 	unsigned long clkdiv;
598 
599 	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
600 
601 	omap_hsmmc_stop_clock(host);
602 
603 	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
604 	regval = regval & ~(CLKD_MASK | DTO_MASK);
605 	clkdiv = calc_divisor(host, ios);
606 	regval = regval | (clkdiv << 6) | (DTO << 16);
607 	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
608 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
609 		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
610 
611 	/* Wait till the ICS bit is set */
612 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
613 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
614 		&& time_before(jiffies, timeout))
615 		cpu_relax();
616 
617 	/*
618 	 * Enable High-Speed Support
619 	 * Pre-Requisites
620 	 *	- Controller should support High-Speed-Enable Bit
621 	 *	- Controller should not be using DDR Mode
622 	 *	- Controller should advertise that it supports High Speed
623 	 *	  in capabilities register
624 	 *	- MMC/SD clock coming out of controller > 25MHz
625 	 */
626 	if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
627 	    (ios->timing != MMC_TIMING_MMC_DDR52) &&
628 	    (ios->timing != MMC_TIMING_UHS_DDR50) &&
629 	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
630 		regval = OMAP_HSMMC_READ(host->base, HCTL);
631 		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
632 			regval |= HSPE;
633 		else
634 			regval &= ~HSPE;
635 
636 		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
637 	}
638 
639 	omap_hsmmc_start_clock(host);
640 }
641 
642 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
643 {
644 	struct mmc_ios *ios = &host->mmc->ios;
645 	u32 con;
646 
647 	con = OMAP_HSMMC_READ(host->base, CON);
648 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
649 	    ios->timing == MMC_TIMING_UHS_DDR50)
650 		con |= DDR;	/* configure in DDR mode */
651 	else
652 		con &= ~DDR;
653 	switch (ios->bus_width) {
654 	case MMC_BUS_WIDTH_8:
655 		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
656 		break;
657 	case MMC_BUS_WIDTH_4:
658 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
659 		OMAP_HSMMC_WRITE(host->base, HCTL,
660 			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
661 		break;
662 	case MMC_BUS_WIDTH_1:
663 		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
664 		OMAP_HSMMC_WRITE(host->base, HCTL,
665 			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
666 		break;
667 	}
668 }
669 
670 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
671 {
672 	struct mmc_ios *ios = &host->mmc->ios;
673 	u32 con;
674 
675 	con = OMAP_HSMMC_READ(host->base, CON);
676 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
677 		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
678 	else
679 		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
680 }
681 
682 #ifdef CONFIG_PM
683 
684 /*
685  * Restore the MMC host context, if it was lost as result of a
686  * power state change.
687  */
688 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
689 {
690 	struct mmc_ios *ios = &host->mmc->ios;
691 	u32 hctl, capa;
692 	unsigned long timeout;
693 
694 	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
695 	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
696 	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
697 	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
698 		return 0;
699 
700 	host->context_loss++;
701 
702 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
703 		if (host->power_mode != MMC_POWER_OFF &&
704 		    (1 << ios->vdd) <= MMC_VDD_23_24)
705 			hctl = SDVS18;
706 		else
707 			hctl = SDVS30;
708 		capa = VS30 | VS18;
709 	} else {
710 		hctl = SDVS18;
711 		capa = VS18;
712 	}
713 
714 	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
715 		hctl |= IWE;
716 
717 	OMAP_HSMMC_WRITE(host->base, HCTL,
718 			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
719 
720 	OMAP_HSMMC_WRITE(host->base, CAPA,
721 			OMAP_HSMMC_READ(host->base, CAPA) | capa);
722 
723 	OMAP_HSMMC_WRITE(host->base, HCTL,
724 			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
725 
726 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
727 	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
728 		&& time_before(jiffies, timeout))
729 		;
730 
731 	OMAP_HSMMC_WRITE(host->base, ISE, 0);
732 	OMAP_HSMMC_WRITE(host->base, IE, 0);
733 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
734 
735 	/* Do not initialize card-specific things if the power is off */
736 	if (host->power_mode == MMC_POWER_OFF)
737 		goto out;
738 
739 	omap_hsmmc_set_bus_width(host);
740 
741 	omap_hsmmc_set_clock(host);
742 
743 	omap_hsmmc_set_bus_mode(host);
744 
745 out:
746 	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
747 		host->context_loss);
748 	return 0;
749 }
750 
751 /*
752  * Save the MMC host context (store the number of power state changes so far).
753  */
754 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
755 {
756 	host->con =  OMAP_HSMMC_READ(host->base, CON);
757 	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
758 	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
759 	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
760 }
761 
762 #else
763 
764 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
765 {
766 	return 0;
767 }
768 
769 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
770 {
771 }
772 
773 #endif
774 
775 /*
776  * Send init stream sequence to card
777  * before sending IDLE command
778  */
779 static void send_init_stream(struct omap_hsmmc_host *host)
780 {
781 	int reg = 0;
782 	unsigned long timeout;
783 
784 	if (host->protect_card)
785 		return;
786 
787 	disable_irq(host->irq);
788 
789 	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
790 	OMAP_HSMMC_WRITE(host->base, CON,
791 		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
792 	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
793 
794 	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
795 	while ((reg != CC_EN) && time_before(jiffies, timeout))
796 		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
797 
798 	OMAP_HSMMC_WRITE(host->base, CON,
799 		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
800 
801 	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
802 	OMAP_HSMMC_READ(host->base, STAT);
803 
804 	enable_irq(host->irq);
805 }
806 
807 static inline
808 int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
809 {
810 	int r = 1;
811 
812 	if (host->get_cover_state)
813 		r = host->get_cover_state(host->dev);
814 	return r;
815 }
816 
817 static ssize_t
818 omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
819 			   char *buf)
820 {
821 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
822 	struct omap_hsmmc_host *host = mmc_priv(mmc);
823 
824 	return sprintf(buf, "%s\n",
825 			omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
826 }
827 
828 static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
829 
830 static ssize_t
831 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
832 			char *buf)
833 {
834 	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
835 	struct omap_hsmmc_host *host = mmc_priv(mmc);
836 
837 	return sprintf(buf, "%s\n", mmc_pdata(host)->name);
838 }
839 
840 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
841 
842 /*
843  * Configure the response type and send the cmd.
844  */
845 static void
846 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
847 	struct mmc_data *data)
848 {
849 	int cmdreg = 0, resptype = 0, cmdtype = 0;
850 
851 	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
852 		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
853 	host->cmd = cmd;
854 
855 	omap_hsmmc_enable_irq(host, cmd);
856 
857 	host->response_busy = 0;
858 	if (cmd->flags & MMC_RSP_PRESENT) {
859 		if (cmd->flags & MMC_RSP_136)
860 			resptype = 1;
861 		else if (cmd->flags & MMC_RSP_BUSY) {
862 			resptype = 3;
863 			host->response_busy = 1;
864 		} else
865 			resptype = 2;
866 	}
867 
868 	/*
869 	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
870 	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
871 	 * a val of 0x3, rest 0x0.
872 	 */
873 	if (cmd == host->mrq->stop)
874 		cmdtype = 0x3;
875 
876 	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
877 
878 	if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
879 	    host->mrq->sbc) {
880 		cmdreg |= ACEN_ACMD23;
881 		OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
882 	}
883 	if (data) {
884 		cmdreg |= DP_SELECT | MSBS | BCE;
885 		if (data->flags & MMC_DATA_READ)
886 			cmdreg |= DDIR;
887 		else
888 			cmdreg &= ~(DDIR);
889 	}
890 
891 	if (host->use_dma)
892 		cmdreg |= DMAE;
893 
894 	host->req_in_progress = 1;
895 
896 	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
897 	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
898 }
899 
900 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
901 	struct mmc_data *data)
902 {
903 	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
904 }
905 
906 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
907 {
908 	int dma_ch;
909 	unsigned long flags;
910 
911 	spin_lock_irqsave(&host->irq_lock, flags);
912 	host->req_in_progress = 0;
913 	dma_ch = host->dma_ch;
914 	spin_unlock_irqrestore(&host->irq_lock, flags);
915 
916 	omap_hsmmc_disable_irq(host);
917 	/* Do not complete the request if DMA is still in progress */
918 	if (mrq->data && host->use_dma && dma_ch != -1)
919 		return;
920 	host->mrq = NULL;
921 	mmc_request_done(host->mmc, mrq);
922 }
923 
924 /*
925  * Notify the transfer complete to MMC core
926  */
927 static void
928 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
929 {
930 	if (!data) {
931 		struct mmc_request *mrq = host->mrq;
932 
933 		/* TC before CC from CMD6 - don't know why, but it happens */
934 		if (host->cmd && host->cmd->opcode == 6 &&
935 		    host->response_busy) {
936 			host->response_busy = 0;
937 			return;
938 		}
939 
940 		omap_hsmmc_request_done(host, mrq);
941 		return;
942 	}
943 
944 	host->data = NULL;
945 
946 	if (!data->error)
947 		data->bytes_xfered += data->blocks * (data->blksz);
948 	else
949 		data->bytes_xfered = 0;
950 
951 	if (data->stop && (data->error || !host->mrq->sbc))
952 		omap_hsmmc_start_command(host, data->stop, NULL);
953 	else
954 		omap_hsmmc_request_done(host, data->mrq);
955 }
956 
957 /*
958  * Notify the core about command completion
959  */
960 static void
961 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
962 {
963 	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
964 	    !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
965 		host->cmd = NULL;
966 		omap_hsmmc_start_dma_transfer(host);
967 		omap_hsmmc_start_command(host, host->mrq->cmd,
968 						host->mrq->data);
969 		return;
970 	}
971 
972 	host->cmd = NULL;
973 
974 	if (cmd->flags & MMC_RSP_PRESENT) {
975 		if (cmd->flags & MMC_RSP_136) {
976 			/* response type 2 */
977 			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
978 			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
979 			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
980 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
981 		} else {
982 			/* response types 1, 1b, 3, 4, 5, 6 */
983 			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
984 		}
985 	}
986 	if ((host->data == NULL && !host->response_busy) || cmd->error)
987 		omap_hsmmc_request_done(host, host->mrq);
988 }
989 
990 /*
991  * DMA clean up for command errors
992  */
993 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
994 {
995 	int dma_ch;
996 	unsigned long flags;
997 
998 	host->data->error = errno;
999 
1000 	spin_lock_irqsave(&host->irq_lock, flags);
1001 	dma_ch = host->dma_ch;
1002 	host->dma_ch = -1;
1003 	spin_unlock_irqrestore(&host->irq_lock, flags);
1004 
1005 	if (host->use_dma && dma_ch != -1) {
1006 		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
1007 
1008 		dmaengine_terminate_all(chan);
1009 		dma_unmap_sg(chan->device->dev,
1010 			host->data->sg, host->data->sg_len,
1011 			mmc_get_dma_dir(host->data));
1012 
1013 		host->data->host_cookie = 0;
1014 	}
1015 	host->data = NULL;
1016 }
1017 
1018 /*
1019  * Readable error output
1020  */
1021 #ifdef CONFIG_MMC_DEBUG
1022 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
1023 {
1024 	/* --- means reserved bit without definition at documentation */
1025 	static const char *omap_hsmmc_status_bits[] = {
1026 		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
1027 		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
1028 		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
1029 		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
1030 	};
1031 	char res[256];
1032 	char *buf = res;
1033 	int len, i;
1034 
1035 	len = sprintf(buf, "MMC IRQ 0x%x :", status);
1036 	buf += len;
1037 
1038 	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
1039 		if (status & (1 << i)) {
1040 			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
1041 			buf += len;
1042 		}
1043 
1044 	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
1045 }
1046 #else
1047 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
1048 					     u32 status)
1049 {
1050 }
1051 #endif  /* CONFIG_MMC_DEBUG */
1052 
1053 /*
1054  * MMC controller internal state machines reset
1055  *
1056  * Used to reset command or data internal state machines, using respectively
1057  *  SRC or SRD bit of SYSCTL register
1058  * Can be called from interrupt context
1059  */
1060 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
1061 						   unsigned long bit)
1062 {
1063 	unsigned long i = 0;
1064 	unsigned long limit = MMC_TIMEOUT_US;
1065 
1066 	OMAP_HSMMC_WRITE(host->base, SYSCTL,
1067 			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
1068 
1069 	/*
1070 	 * OMAP4 ES2 and greater has an updated reset logic.
1071 	 * Monitor a 0->1 transition first
1072 	 */
1073 	if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
1074 		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
1075 					&& (i++ < limit))
1076 			udelay(1);
1077 	}
1078 	i = 0;
1079 
1080 	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
1081 		(i++ < limit))
1082 		udelay(1);
1083 
1084 	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1085 		dev_err(mmc_dev(host->mmc),
1086 			"Timeout waiting on controller reset in %s\n",
1087 			__func__);
1088 }
1089 
1090 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1091 					int err, int end_cmd)
1092 {
1093 	if (end_cmd) {
1094 		omap_hsmmc_reset_controller_fsm(host, SRC);
1095 		if (host->cmd)
1096 			host->cmd->error = err;
1097 	}
1098 
1099 	if (host->data) {
1100 		omap_hsmmc_reset_controller_fsm(host, SRD);
1101 		omap_hsmmc_dma_cleanup(host, err);
1102 	} else if (host->mrq && host->mrq->cmd)
1103 		host->mrq->cmd->error = err;
1104 }
1105 
1106 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1107 {
1108 	struct mmc_data *data;
1109 	int end_cmd = 0, end_trans = 0;
1110 	int error = 0;
1111 
1112 	data = host->data;
1113 	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1114 
1115 	if (status & ERR_EN) {
1116 		omap_hsmmc_dbg_report_irq(host, status);
1117 
1118 		if (status & (CTO_EN | CCRC_EN | CEB_EN))
1119 			end_cmd = 1;
1120 		if (host->data || host->response_busy) {
1121 			end_trans = !end_cmd;
1122 			host->response_busy = 0;
1123 		}
1124 		if (status & (CTO_EN | DTO_EN))
1125 			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1126 		else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1127 				   BADA_EN))
1128 			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1129 
1130 		if (status & ACE_EN) {
1131 			u32 ac12;
1132 			ac12 = OMAP_HSMMC_READ(host->base, AC12);
1133 			if (!(ac12 & ACNE) && host->mrq->sbc) {
1134 				end_cmd = 1;
1135 				if (ac12 & ACTO)
1136 					error =  -ETIMEDOUT;
1137 				else if (ac12 & (ACCE | ACEB | ACIE))
1138 					error = -EILSEQ;
1139 				host->mrq->sbc->error = error;
1140 				hsmmc_command_incomplete(host, error, end_cmd);
1141 			}
1142 			dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1143 		}
1144 	}
1145 
1146 	OMAP_HSMMC_WRITE(host->base, STAT, status);
1147 	if (end_cmd || ((status & CC_EN) && host->cmd))
1148 		omap_hsmmc_cmd_done(host, host->cmd);
1149 	if ((end_trans || (status & TC_EN)) && host->mrq)
1150 		omap_hsmmc_xfer_done(host, data);
1151 }
1152 
1153 /*
1154  * MMC controller IRQ handler
1155  */
1156 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1157 {
1158 	struct omap_hsmmc_host *host = dev_id;
1159 	int status;
1160 
1161 	status = OMAP_HSMMC_READ(host->base, STAT);
1162 	while (status & (INT_EN_MASK | CIRQ_EN)) {
1163 		if (host->req_in_progress)
1164 			omap_hsmmc_do_irq(host, status);
1165 
1166 		if (status & CIRQ_EN)
1167 			mmc_signal_sdio_irq(host->mmc);
1168 
1169 		/* Flush posted write */
1170 		status = OMAP_HSMMC_READ(host->base, STAT);
1171 	}
1172 
1173 	return IRQ_HANDLED;
1174 }
1175 
1176 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1177 {
1178 	unsigned long i;
1179 
1180 	OMAP_HSMMC_WRITE(host->base, HCTL,
1181 			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1182 	for (i = 0; i < loops_per_jiffy; i++) {
1183 		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1184 			break;
1185 		cpu_relax();
1186 	}
1187 }
1188 
1189 /*
1190  * Switch MMC interface voltage ... only relevant for MMC1.
1191  *
1192  * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1193  * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1194  * Some chips, like eMMC ones, use internal transceivers.
1195  */
1196 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1197 {
1198 	u32 reg_val = 0;
1199 	int ret;
1200 
1201 	/* Disable the clocks */
1202 	if (host->dbclk)
1203 		clk_disable_unprepare(host->dbclk);
1204 
1205 	/* Turn the power off */
1206 	ret = omap_hsmmc_set_power(host, 0);
1207 
1208 	/* Turn the power ON with given VDD 1.8 or 3.0v */
1209 	if (!ret)
1210 		ret = omap_hsmmc_set_power(host, 1);
1211 	if (host->dbclk)
1212 		clk_prepare_enable(host->dbclk);
1213 
1214 	if (ret != 0)
1215 		goto err;
1216 
1217 	OMAP_HSMMC_WRITE(host->base, HCTL,
1218 		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1219 	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1220 
1221 	/*
1222 	 * If a MMC dual voltage card is detected, the set_ios fn calls
1223 	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1224 	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1225 	 *
1226 	 * Cope with a bit of slop in the range ... per data sheets:
1227 	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1228 	 *    but recommended values are 1.71V to 1.89V
1229 	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1230 	 *    but recommended values are 2.7V to 3.3V
1231 	 *
1232 	 * Board setup code shouldn't permit anything very out-of-range.
1233 	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1234 	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1235 	 */
1236 	if ((1 << vdd) <= MMC_VDD_23_24)
1237 		reg_val |= SDVS18;
1238 	else
1239 		reg_val |= SDVS30;
1240 
1241 	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1242 	set_sd_bus_power(host);
1243 
1244 	return 0;
1245 err:
1246 	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1247 	return ret;
1248 }
1249 
1250 /* Protect the card while the cover is open */
1251 static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1252 {
1253 	if (!host->get_cover_state)
1254 		return;
1255 
1256 	host->reqs_blocked = 0;
1257 	if (host->get_cover_state(host->dev)) {
1258 		if (host->protect_card) {
1259 			dev_info(host->dev, "%s: cover is closed, "
1260 					 "card is now accessible\n",
1261 					 mmc_hostname(host->mmc));
1262 			host->protect_card = 0;
1263 		}
1264 	} else {
1265 		if (!host->protect_card) {
1266 			dev_info(host->dev, "%s: cover is open, "
1267 					 "card is now inaccessible\n",
1268 					 mmc_hostname(host->mmc));
1269 			host->protect_card = 1;
1270 		}
1271 	}
1272 }
1273 
1274 /*
1275  * irq handler when (cell-phone) cover is mounted/removed
1276  */
1277 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id)
1278 {
1279 	struct omap_hsmmc_host *host = dev_id;
1280 
1281 	sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1282 
1283 	omap_hsmmc_protect_card(host);
1284 	mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1285 	return IRQ_HANDLED;
1286 }
1287 
1288 static void omap_hsmmc_dma_callback(void *param)
1289 {
1290 	struct omap_hsmmc_host *host = param;
1291 	struct dma_chan *chan;
1292 	struct mmc_data *data;
1293 	int req_in_progress;
1294 
1295 	spin_lock_irq(&host->irq_lock);
1296 	if (host->dma_ch < 0) {
1297 		spin_unlock_irq(&host->irq_lock);
1298 		return;
1299 	}
1300 
1301 	data = host->mrq->data;
1302 	chan = omap_hsmmc_get_dma_chan(host, data);
1303 	if (!data->host_cookie)
1304 		dma_unmap_sg(chan->device->dev,
1305 			     data->sg, data->sg_len,
1306 			     mmc_get_dma_dir(data));
1307 
1308 	req_in_progress = host->req_in_progress;
1309 	host->dma_ch = -1;
1310 	spin_unlock_irq(&host->irq_lock);
1311 
1312 	/* If DMA has finished after TC, complete the request */
1313 	if (!req_in_progress) {
1314 		struct mmc_request *mrq = host->mrq;
1315 
1316 		host->mrq = NULL;
1317 		mmc_request_done(host->mmc, mrq);
1318 	}
1319 }
1320 
1321 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1322 				       struct mmc_data *data,
1323 				       struct omap_hsmmc_next *next,
1324 				       struct dma_chan *chan)
1325 {
1326 	int dma_len;
1327 
1328 	if (!next && data->host_cookie &&
1329 	    data->host_cookie != host->next_data.cookie) {
1330 		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1331 		       " host->next_data.cookie %d\n",
1332 		       __func__, data->host_cookie, host->next_data.cookie);
1333 		data->host_cookie = 0;
1334 	}
1335 
1336 	/* Check if next job is already prepared */
1337 	if (next || data->host_cookie != host->next_data.cookie) {
1338 		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1339 				     mmc_get_dma_dir(data));
1340 
1341 	} else {
1342 		dma_len = host->next_data.dma_len;
1343 		host->next_data.dma_len = 0;
1344 	}
1345 
1346 
1347 	if (dma_len == 0)
1348 		return -EINVAL;
1349 
1350 	if (next) {
1351 		next->dma_len = dma_len;
1352 		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1353 	} else
1354 		host->dma_len = dma_len;
1355 
1356 	return 0;
1357 }
1358 
1359 /*
1360  * Routine to configure and start DMA for the MMC card
1361  */
1362 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1363 					struct mmc_request *req)
1364 {
1365 	struct dma_async_tx_descriptor *tx;
1366 	int ret = 0, i;
1367 	struct mmc_data *data = req->data;
1368 	struct dma_chan *chan;
1369 	struct dma_slave_config cfg = {
1370 		.src_addr = host->mapbase + OMAP_HSMMC_DATA,
1371 		.dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1372 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1373 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1374 		.src_maxburst = data->blksz / 4,
1375 		.dst_maxburst = data->blksz / 4,
1376 	};
1377 
1378 	/* Sanity check: all the SG entries must be aligned by block size. */
1379 	for (i = 0; i < data->sg_len; i++) {
1380 		struct scatterlist *sgl;
1381 
1382 		sgl = data->sg + i;
1383 		if (sgl->length % data->blksz)
1384 			return -EINVAL;
1385 	}
1386 	if ((data->blksz % 4) != 0)
1387 		/* REVISIT: The MMC buffer increments only when MSB is written.
1388 		 * Return error for blksz which is non multiple of four.
1389 		 */
1390 		return -EINVAL;
1391 
1392 	BUG_ON(host->dma_ch != -1);
1393 
1394 	chan = omap_hsmmc_get_dma_chan(host, data);
1395 
1396 	ret = dmaengine_slave_config(chan, &cfg);
1397 	if (ret)
1398 		return ret;
1399 
1400 	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1401 	if (ret)
1402 		return ret;
1403 
1404 	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1405 		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1406 		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1407 	if (!tx) {
1408 		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1409 		/* FIXME: cleanup */
1410 		return -1;
1411 	}
1412 
1413 	tx->callback = omap_hsmmc_dma_callback;
1414 	tx->callback_param = host;
1415 
1416 	/* Does not fail */
1417 	dmaengine_submit(tx);
1418 
1419 	host->dma_ch = 1;
1420 
1421 	return 0;
1422 }
1423 
1424 static void set_data_timeout(struct omap_hsmmc_host *host,
1425 			     unsigned long long timeout_ns,
1426 			     unsigned int timeout_clks)
1427 {
1428 	unsigned long long timeout = timeout_ns;
1429 	unsigned int cycle_ns;
1430 	uint32_t reg, clkd, dto = 0;
1431 
1432 	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1433 	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1434 	if (clkd == 0)
1435 		clkd = 1;
1436 
1437 	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1438 	do_div(timeout, cycle_ns);
1439 	timeout += timeout_clks;
1440 	if (timeout) {
1441 		while ((timeout & 0x80000000) == 0) {
1442 			dto += 1;
1443 			timeout <<= 1;
1444 		}
1445 		dto = 31 - dto;
1446 		timeout <<= 1;
1447 		if (timeout && dto)
1448 			dto += 1;
1449 		if (dto >= 13)
1450 			dto -= 13;
1451 		else
1452 			dto = 0;
1453 		if (dto > 14)
1454 			dto = 14;
1455 	}
1456 
1457 	reg &= ~DTO_MASK;
1458 	reg |= dto << DTO_SHIFT;
1459 	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1460 }
1461 
1462 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1463 {
1464 	struct mmc_request *req = host->mrq;
1465 	struct dma_chan *chan;
1466 
1467 	if (!req->data)
1468 		return;
1469 	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1470 				| (req->data->blocks << 16));
1471 	set_data_timeout(host, req->data->timeout_ns,
1472 				req->data->timeout_clks);
1473 	chan = omap_hsmmc_get_dma_chan(host, req->data);
1474 	dma_async_issue_pending(chan);
1475 }
1476 
1477 /*
1478  * Configure block length for MMC/SD cards and initiate the transfer.
1479  */
1480 static int
1481 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1482 {
1483 	int ret;
1484 	unsigned long long timeout;
1485 
1486 	host->data = req->data;
1487 
1488 	if (req->data == NULL) {
1489 		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1490 		if (req->cmd->flags & MMC_RSP_BUSY) {
1491 			timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1492 
1493 			/*
1494 			 * Set an arbitrary 100ms data timeout for commands with
1495 			 * busy signal and no indication of busy_timeout.
1496 			 */
1497 			if (!timeout)
1498 				timeout = 100000000U;
1499 
1500 			set_data_timeout(host, timeout, 0);
1501 		}
1502 		return 0;
1503 	}
1504 
1505 	if (host->use_dma) {
1506 		ret = omap_hsmmc_setup_dma_transfer(host, req);
1507 		if (ret != 0) {
1508 			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1509 			return ret;
1510 		}
1511 	}
1512 	return 0;
1513 }
1514 
1515 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1516 				int err)
1517 {
1518 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1519 	struct mmc_data *data = mrq->data;
1520 
1521 	if (host->use_dma && data->host_cookie) {
1522 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1523 
1524 		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1525 			     mmc_get_dma_dir(data));
1526 		data->host_cookie = 0;
1527 	}
1528 }
1529 
1530 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
1531 {
1532 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1533 
1534 	if (mrq->data->host_cookie) {
1535 		mrq->data->host_cookie = 0;
1536 		return ;
1537 	}
1538 
1539 	if (host->use_dma) {
1540 		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1541 
1542 		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1543 						&host->next_data, c))
1544 			mrq->data->host_cookie = 0;
1545 	}
1546 }
1547 
1548 /*
1549  * Request function. for read/write operation
1550  */
1551 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1552 {
1553 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1554 	int err;
1555 
1556 	BUG_ON(host->req_in_progress);
1557 	BUG_ON(host->dma_ch != -1);
1558 	if (host->protect_card) {
1559 		if (host->reqs_blocked < 3) {
1560 			/*
1561 			 * Ensure the controller is left in a consistent
1562 			 * state by resetting the command and data state
1563 			 * machines.
1564 			 */
1565 			omap_hsmmc_reset_controller_fsm(host, SRD);
1566 			omap_hsmmc_reset_controller_fsm(host, SRC);
1567 			host->reqs_blocked += 1;
1568 		}
1569 		req->cmd->error = -EBADF;
1570 		if (req->data)
1571 			req->data->error = -EBADF;
1572 		req->cmd->retries = 0;
1573 		mmc_request_done(mmc, req);
1574 		return;
1575 	} else if (host->reqs_blocked)
1576 		host->reqs_blocked = 0;
1577 	WARN_ON(host->mrq != NULL);
1578 	host->mrq = req;
1579 	host->clk_rate = clk_get_rate(host->fclk);
1580 	err = omap_hsmmc_prepare_data(host, req);
1581 	if (err) {
1582 		req->cmd->error = err;
1583 		if (req->data)
1584 			req->data->error = err;
1585 		host->mrq = NULL;
1586 		mmc_request_done(mmc, req);
1587 		return;
1588 	}
1589 	if (req->sbc && !(host->flags & AUTO_CMD23)) {
1590 		omap_hsmmc_start_command(host, req->sbc, NULL);
1591 		return;
1592 	}
1593 
1594 	omap_hsmmc_start_dma_transfer(host);
1595 	omap_hsmmc_start_command(host, req->cmd, req->data);
1596 }
1597 
1598 /* Routine to configure clock values. Exposed API to core */
1599 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1600 {
1601 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1602 	int do_send_init_stream = 0;
1603 
1604 	if (ios->power_mode != host->power_mode) {
1605 		switch (ios->power_mode) {
1606 		case MMC_POWER_OFF:
1607 			omap_hsmmc_set_power(host, 0);
1608 			break;
1609 		case MMC_POWER_UP:
1610 			omap_hsmmc_set_power(host, 1);
1611 			break;
1612 		case MMC_POWER_ON:
1613 			do_send_init_stream = 1;
1614 			break;
1615 		}
1616 		host->power_mode = ios->power_mode;
1617 	}
1618 
1619 	/* FIXME: set registers based only on changes to ios */
1620 
1621 	omap_hsmmc_set_bus_width(host);
1622 
1623 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1624 		/* Only MMC1 can interface at 3V without some flavor
1625 		 * of external transceiver; but they all handle 1.8V.
1626 		 */
1627 		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1628 			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1629 				/*
1630 				 * The mmc_select_voltage fn of the core does
1631 				 * not seem to set the power_mode to
1632 				 * MMC_POWER_UP upon recalculating the voltage.
1633 				 * vdd 1.8v.
1634 				 */
1635 			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1636 				dev_dbg(mmc_dev(host->mmc),
1637 						"Switch operation failed\n");
1638 		}
1639 	}
1640 
1641 	omap_hsmmc_set_clock(host);
1642 
1643 	if (do_send_init_stream)
1644 		send_init_stream(host);
1645 
1646 	omap_hsmmc_set_bus_mode(host);
1647 }
1648 
1649 static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1650 {
1651 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1652 
1653 	if (!host->card_detect)
1654 		return -ENOSYS;
1655 	return host->card_detect(host->dev);
1656 }
1657 
1658 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1659 {
1660 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1661 
1662 	if (mmc_pdata(host)->init_card)
1663 		mmc_pdata(host)->init_card(card);
1664 }
1665 
1666 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1667 {
1668 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1669 	u32 irq_mask, con;
1670 	unsigned long flags;
1671 
1672 	spin_lock_irqsave(&host->irq_lock, flags);
1673 
1674 	con = OMAP_HSMMC_READ(host->base, CON);
1675 	irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1676 	if (enable) {
1677 		host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1678 		irq_mask |= CIRQ_EN;
1679 		con |= CTPL | CLKEXTFREE;
1680 	} else {
1681 		host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1682 		irq_mask &= ~CIRQ_EN;
1683 		con &= ~(CTPL | CLKEXTFREE);
1684 	}
1685 	OMAP_HSMMC_WRITE(host->base, CON, con);
1686 	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1687 
1688 	/*
1689 	 * if enable, piggy back detection on current request
1690 	 * but always disable immediately
1691 	 */
1692 	if (!host->req_in_progress || !enable)
1693 		OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1694 
1695 	/* flush posted write */
1696 	OMAP_HSMMC_READ(host->base, IE);
1697 
1698 	spin_unlock_irqrestore(&host->irq_lock, flags);
1699 }
1700 
1701 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1702 {
1703 	int ret;
1704 
1705 	/*
1706 	 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1707 	 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1708 	 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1709 	 * with functional clock disabled.
1710 	 */
1711 	if (!host->dev->of_node || !host->wake_irq)
1712 		return -ENODEV;
1713 
1714 	ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1715 	if (ret) {
1716 		dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1717 		goto err;
1718 	}
1719 
1720 	/*
1721 	 * Some omaps don't have wake-up path from deeper idle states
1722 	 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1723 	 */
1724 	if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1725 		struct pinctrl *p = devm_pinctrl_get(host->dev);
1726 		if (IS_ERR(p)) {
1727 			ret = PTR_ERR(p);
1728 			goto err_free_irq;
1729 		}
1730 		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
1731 			dev_info(host->dev, "missing default pinctrl state\n");
1732 			devm_pinctrl_put(p);
1733 			ret = -EINVAL;
1734 			goto err_free_irq;
1735 		}
1736 
1737 		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1738 			dev_info(host->dev, "missing idle pinctrl state\n");
1739 			devm_pinctrl_put(p);
1740 			ret = -EINVAL;
1741 			goto err_free_irq;
1742 		}
1743 		devm_pinctrl_put(p);
1744 	}
1745 
1746 	OMAP_HSMMC_WRITE(host->base, HCTL,
1747 			 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1748 	return 0;
1749 
1750 err_free_irq:
1751 	dev_pm_clear_wake_irq(host->dev);
1752 err:
1753 	dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1754 	host->wake_irq = 0;
1755 	return ret;
1756 }
1757 
1758 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1759 {
1760 	u32 hctl, capa, value;
1761 
1762 	/* Only MMC1 supports 3.0V */
1763 	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1764 		hctl = SDVS30;
1765 		capa = VS30 | VS18;
1766 	} else {
1767 		hctl = SDVS18;
1768 		capa = VS18;
1769 	}
1770 
1771 	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1772 	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1773 
1774 	value = OMAP_HSMMC_READ(host->base, CAPA);
1775 	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1776 
1777 	/* Set SD bus power bit */
1778 	set_sd_bus_power(host);
1779 }
1780 
1781 static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1782 				     unsigned int direction, int blk_size)
1783 {
1784 	/* This controller can't do multiblock reads due to hw bugs */
1785 	if (direction == MMC_DATA_READ)
1786 		return 1;
1787 
1788 	return blk_size;
1789 }
1790 
1791 static struct mmc_host_ops omap_hsmmc_ops = {
1792 	.post_req = omap_hsmmc_post_req,
1793 	.pre_req = omap_hsmmc_pre_req,
1794 	.request = omap_hsmmc_request,
1795 	.set_ios = omap_hsmmc_set_ios,
1796 	.get_cd = omap_hsmmc_get_cd,
1797 	.get_ro = mmc_gpio_get_ro,
1798 	.init_card = omap_hsmmc_init_card,
1799 	.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1800 };
1801 
1802 #ifdef CONFIG_DEBUG_FS
1803 
1804 static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1805 {
1806 	struct mmc_host *mmc = s->private;
1807 	struct omap_hsmmc_host *host = mmc_priv(mmc);
1808 
1809 	seq_printf(s, "mmc%d:\n", mmc->index);
1810 	seq_printf(s, "sdio irq mode\t%s\n",
1811 		   (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1812 
1813 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1814 		seq_printf(s, "sdio irq \t%s\n",
1815 			   (host->flags & HSMMC_SDIO_IRQ_ENABLED) ?  "enabled"
1816 			   : "disabled");
1817 	}
1818 	seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1819 
1820 	pm_runtime_get_sync(host->dev);
1821 	seq_puts(s, "\nregs:\n");
1822 	seq_printf(s, "CON:\t\t0x%08x\n",
1823 			OMAP_HSMMC_READ(host->base, CON));
1824 	seq_printf(s, "PSTATE:\t\t0x%08x\n",
1825 		   OMAP_HSMMC_READ(host->base, PSTATE));
1826 	seq_printf(s, "HCTL:\t\t0x%08x\n",
1827 			OMAP_HSMMC_READ(host->base, HCTL));
1828 	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1829 			OMAP_HSMMC_READ(host->base, SYSCTL));
1830 	seq_printf(s, "IE:\t\t0x%08x\n",
1831 			OMAP_HSMMC_READ(host->base, IE));
1832 	seq_printf(s, "ISE:\t\t0x%08x\n",
1833 			OMAP_HSMMC_READ(host->base, ISE));
1834 	seq_printf(s, "CAPA:\t\t0x%08x\n",
1835 			OMAP_HSMMC_READ(host->base, CAPA));
1836 
1837 	pm_runtime_mark_last_busy(host->dev);
1838 	pm_runtime_put_autosuspend(host->dev);
1839 
1840 	return 0;
1841 }
1842 
1843 static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1844 {
1845 	return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1846 }
1847 
1848 static const struct file_operations mmc_regs_fops = {
1849 	.open           = omap_hsmmc_regs_open,
1850 	.read           = seq_read,
1851 	.llseek         = seq_lseek,
1852 	.release        = single_release,
1853 };
1854 
1855 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1856 {
1857 	if (mmc->debugfs_root)
1858 		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1859 			mmc, &mmc_regs_fops);
1860 }
1861 
1862 #else
1863 
1864 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1865 {
1866 }
1867 
1868 #endif
1869 
1870 #ifdef CONFIG_OF
1871 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1872 	/* See 35xx errata 2.1.1.128 in SPRZ278F */
1873 	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1874 };
1875 
1876 static const struct omap_mmc_of_data omap4_mmc_of_data = {
1877 	.reg_offset = 0x100,
1878 };
1879 static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1880 	.reg_offset = 0x100,
1881 	.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1882 };
1883 
1884 static const struct of_device_id omap_mmc_of_match[] = {
1885 	{
1886 		.compatible = "ti,omap2-hsmmc",
1887 	},
1888 	{
1889 		.compatible = "ti,omap3-pre-es3-hsmmc",
1890 		.data = &omap3_pre_es3_mmc_of_data,
1891 	},
1892 	{
1893 		.compatible = "ti,omap3-hsmmc",
1894 	},
1895 	{
1896 		.compatible = "ti,omap4-hsmmc",
1897 		.data = &omap4_mmc_of_data,
1898 	},
1899 	{
1900 		.compatible = "ti,am33xx-hsmmc",
1901 		.data = &am33xx_mmc_of_data,
1902 	},
1903 	{},
1904 };
1905 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1906 
1907 static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1908 {
1909 	struct omap_hsmmc_platform_data *pdata, *legacy;
1910 	struct device_node *np = dev->of_node;
1911 
1912 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1913 	if (!pdata)
1914 		return ERR_PTR(-ENOMEM); /* out of memory */
1915 
1916 	legacy = dev_get_platdata(dev);
1917 	if (legacy && legacy->name)
1918 		pdata->name = legacy->name;
1919 
1920 	if (of_find_property(np, "ti,dual-volt", NULL))
1921 		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1922 
1923 	pdata->gpio_cd = -EINVAL;
1924 	pdata->gpio_cod = -EINVAL;
1925 	pdata->gpio_wp = -EINVAL;
1926 
1927 	if (of_find_property(np, "ti,non-removable", NULL)) {
1928 		pdata->nonremovable = true;
1929 		pdata->no_regulator_off_init = true;
1930 	}
1931 
1932 	if (of_find_property(np, "ti,needs-special-reset", NULL))
1933 		pdata->features |= HSMMC_HAS_UPDATED_RESET;
1934 
1935 	if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1936 		pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1937 
1938 	return pdata;
1939 }
1940 #else
1941 static inline struct omap_hsmmc_platform_data
1942 			*of_get_hsmmc_pdata(struct device *dev)
1943 {
1944 	return ERR_PTR(-EINVAL);
1945 }
1946 #endif
1947 
1948 static int omap_hsmmc_probe(struct platform_device *pdev)
1949 {
1950 	struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1951 	struct mmc_host *mmc;
1952 	struct omap_hsmmc_host *host = NULL;
1953 	struct resource *res;
1954 	int ret, irq;
1955 	const struct of_device_id *match;
1956 	const struct omap_mmc_of_data *data;
1957 	void __iomem *base;
1958 
1959 	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1960 	if (match) {
1961 		pdata = of_get_hsmmc_pdata(&pdev->dev);
1962 
1963 		if (IS_ERR(pdata))
1964 			return PTR_ERR(pdata);
1965 
1966 		if (match->data) {
1967 			data = match->data;
1968 			pdata->reg_offset = data->reg_offset;
1969 			pdata->controller_flags |= data->controller_flags;
1970 		}
1971 	}
1972 
1973 	if (pdata == NULL) {
1974 		dev_err(&pdev->dev, "Platform Data is missing\n");
1975 		return -ENXIO;
1976 	}
1977 
1978 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1979 	irq = platform_get_irq(pdev, 0);
1980 	if (res == NULL || irq < 0)
1981 		return -ENXIO;
1982 
1983 	base = devm_ioremap_resource(&pdev->dev, res);
1984 	if (IS_ERR(base))
1985 		return PTR_ERR(base);
1986 
1987 	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1988 	if (!mmc) {
1989 		ret = -ENOMEM;
1990 		goto err;
1991 	}
1992 
1993 	ret = mmc_of_parse(mmc);
1994 	if (ret)
1995 		goto err1;
1996 
1997 	host		= mmc_priv(mmc);
1998 	host->mmc	= mmc;
1999 	host->pdata	= pdata;
2000 	host->dev	= &pdev->dev;
2001 	host->use_dma	= 1;
2002 	host->dma_ch	= -1;
2003 	host->irq	= irq;
2004 	host->mapbase	= res->start + pdata->reg_offset;
2005 	host->base	= base + pdata->reg_offset;
2006 	host->power_mode = MMC_POWER_OFF;
2007 	host->next_data.cookie = 1;
2008 	host->pbias_enabled = 0;
2009 	host->vqmmc_enabled = 0;
2010 
2011 	ret = omap_hsmmc_gpio_init(mmc, host, pdata);
2012 	if (ret)
2013 		goto err_gpio;
2014 
2015 	platform_set_drvdata(pdev, host);
2016 
2017 	if (pdev->dev.of_node)
2018 		host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
2019 
2020 	mmc->ops	= &omap_hsmmc_ops;
2021 
2022 	mmc->f_min = OMAP_MMC_MIN_CLOCK;
2023 
2024 	if (pdata->max_freq > 0)
2025 		mmc->f_max = pdata->max_freq;
2026 	else if (mmc->f_max == 0)
2027 		mmc->f_max = OMAP_MMC_MAX_CLOCK;
2028 
2029 	spin_lock_init(&host->irq_lock);
2030 
2031 	host->fclk = devm_clk_get(&pdev->dev, "fck");
2032 	if (IS_ERR(host->fclk)) {
2033 		ret = PTR_ERR(host->fclk);
2034 		host->fclk = NULL;
2035 		goto err1;
2036 	}
2037 
2038 	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
2039 		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
2040 		omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
2041 	}
2042 
2043 	device_init_wakeup(&pdev->dev, true);
2044 	pm_runtime_enable(host->dev);
2045 	pm_runtime_get_sync(host->dev);
2046 	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
2047 	pm_runtime_use_autosuspend(host->dev);
2048 
2049 	omap_hsmmc_context_save(host);
2050 
2051 	host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
2052 	/*
2053 	 * MMC can still work without debounce clock.
2054 	 */
2055 	if (IS_ERR(host->dbclk)) {
2056 		host->dbclk = NULL;
2057 	} else if (clk_prepare_enable(host->dbclk) != 0) {
2058 		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
2059 		host->dbclk = NULL;
2060 	}
2061 
2062 	/* Set this to a value that allows allocating an entire descriptor
2063 	 * list within a page (zero order allocation). */
2064 	mmc->max_segs = 64;
2065 
2066 	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
2067 	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
2068 	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
2069 	mmc->max_seg_size = mmc->max_req_size;
2070 
2071 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
2072 		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE | MMC_CAP_CMD23;
2073 
2074 	mmc->caps |= mmc_pdata(host)->caps;
2075 	if (mmc->caps & MMC_CAP_8_BIT_DATA)
2076 		mmc->caps |= MMC_CAP_4_BIT_DATA;
2077 
2078 	if (mmc_pdata(host)->nonremovable)
2079 		mmc->caps |= MMC_CAP_NONREMOVABLE;
2080 
2081 	mmc->pm_caps |= mmc_pdata(host)->pm_caps;
2082 
2083 	omap_hsmmc_conf_bus_power(host);
2084 
2085 	host->rx_chan = dma_request_chan(&pdev->dev, "rx");
2086 	if (IS_ERR(host->rx_chan)) {
2087 		dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
2088 		ret = PTR_ERR(host->rx_chan);
2089 		goto err_irq;
2090 	}
2091 
2092 	host->tx_chan = dma_request_chan(&pdev->dev, "tx");
2093 	if (IS_ERR(host->tx_chan)) {
2094 		dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
2095 		ret = PTR_ERR(host->tx_chan);
2096 		goto err_irq;
2097 	}
2098 
2099 	/* Request IRQ for MMC operations */
2100 	ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
2101 			mmc_hostname(mmc), host);
2102 	if (ret) {
2103 		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
2104 		goto err_irq;
2105 	}
2106 
2107 	ret = omap_hsmmc_reg_get(host);
2108 	if (ret)
2109 		goto err_irq;
2110 
2111 	if (!mmc->ocr_avail)
2112 		mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
2113 
2114 	omap_hsmmc_disable_irq(host);
2115 
2116 	/*
2117 	 * For now, only support SDIO interrupt if we have a separate
2118 	 * wake-up interrupt configured from device tree. This is because
2119 	 * the wake-up interrupt is needed for idle state and some
2120 	 * platforms need special quirks. And we don't want to add new
2121 	 * legacy mux platform init code callbacks any longer as we
2122 	 * are moving to DT based booting anyways.
2123 	 */
2124 	ret = omap_hsmmc_configure_wake_irq(host);
2125 	if (!ret)
2126 		mmc->caps |= MMC_CAP_SDIO_IRQ;
2127 
2128 	omap_hsmmc_protect_card(host);
2129 
2130 	mmc_add_host(mmc);
2131 
2132 	if (mmc_pdata(host)->name != NULL) {
2133 		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
2134 		if (ret < 0)
2135 			goto err_slot_name;
2136 	}
2137 	if (host->get_cover_state) {
2138 		ret = device_create_file(&mmc->class_dev,
2139 					 &dev_attr_cover_switch);
2140 		if (ret < 0)
2141 			goto err_slot_name;
2142 	}
2143 
2144 	omap_hsmmc_debugfs(mmc);
2145 	pm_runtime_mark_last_busy(host->dev);
2146 	pm_runtime_put_autosuspend(host->dev);
2147 
2148 	return 0;
2149 
2150 err_slot_name:
2151 	mmc_remove_host(mmc);
2152 err_irq:
2153 	device_init_wakeup(&pdev->dev, false);
2154 	if (!IS_ERR_OR_NULL(host->tx_chan))
2155 		dma_release_channel(host->tx_chan);
2156 	if (!IS_ERR_OR_NULL(host->rx_chan))
2157 		dma_release_channel(host->rx_chan);
2158 	pm_runtime_dont_use_autosuspend(host->dev);
2159 	pm_runtime_put_sync(host->dev);
2160 	pm_runtime_disable(host->dev);
2161 	if (host->dbclk)
2162 		clk_disable_unprepare(host->dbclk);
2163 err1:
2164 err_gpio:
2165 	mmc_free_host(mmc);
2166 err:
2167 	return ret;
2168 }
2169 
2170 static int omap_hsmmc_remove(struct platform_device *pdev)
2171 {
2172 	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2173 
2174 	pm_runtime_get_sync(host->dev);
2175 	mmc_remove_host(host->mmc);
2176 
2177 	dma_release_channel(host->tx_chan);
2178 	dma_release_channel(host->rx_chan);
2179 
2180 	pm_runtime_dont_use_autosuspend(host->dev);
2181 	pm_runtime_put_sync(host->dev);
2182 	pm_runtime_disable(host->dev);
2183 	device_init_wakeup(&pdev->dev, false);
2184 	if (host->dbclk)
2185 		clk_disable_unprepare(host->dbclk);
2186 
2187 	mmc_free_host(host->mmc);
2188 
2189 	return 0;
2190 }
2191 
2192 #ifdef CONFIG_PM_SLEEP
2193 static int omap_hsmmc_suspend(struct device *dev)
2194 {
2195 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2196 
2197 	if (!host)
2198 		return 0;
2199 
2200 	pm_runtime_get_sync(host->dev);
2201 
2202 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2203 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2204 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2205 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2206 		OMAP_HSMMC_WRITE(host->base, HCTL,
2207 				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2208 	}
2209 
2210 	if (host->dbclk)
2211 		clk_disable_unprepare(host->dbclk);
2212 
2213 	pm_runtime_put_sync(host->dev);
2214 	return 0;
2215 }
2216 
2217 /* Routine to resume the MMC device */
2218 static int omap_hsmmc_resume(struct device *dev)
2219 {
2220 	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2221 
2222 	if (!host)
2223 		return 0;
2224 
2225 	pm_runtime_get_sync(host->dev);
2226 
2227 	if (host->dbclk)
2228 		clk_prepare_enable(host->dbclk);
2229 
2230 	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2231 		omap_hsmmc_conf_bus_power(host);
2232 
2233 	omap_hsmmc_protect_card(host);
2234 	pm_runtime_mark_last_busy(host->dev);
2235 	pm_runtime_put_autosuspend(host->dev);
2236 	return 0;
2237 }
2238 #endif
2239 
2240 static int omap_hsmmc_runtime_suspend(struct device *dev)
2241 {
2242 	struct omap_hsmmc_host *host;
2243 	unsigned long flags;
2244 	int ret = 0;
2245 
2246 	host = platform_get_drvdata(to_platform_device(dev));
2247 	omap_hsmmc_context_save(host);
2248 	dev_dbg(dev, "disabled\n");
2249 
2250 	spin_lock_irqsave(&host->irq_lock, flags);
2251 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2252 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2253 		/* disable sdio irq handling to prevent race */
2254 		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2255 		OMAP_HSMMC_WRITE(host->base, IE, 0);
2256 
2257 		if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2258 			/*
2259 			 * dat1 line low, pending sdio irq
2260 			 * race condition: possible irq handler running on
2261 			 * multi-core, abort
2262 			 */
2263 			dev_dbg(dev, "pending sdio irq, abort suspend\n");
2264 			OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2265 			OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2266 			OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2267 			pm_runtime_mark_last_busy(dev);
2268 			ret = -EBUSY;
2269 			goto abort;
2270 		}
2271 
2272 		pinctrl_pm_select_idle_state(dev);
2273 	} else {
2274 		pinctrl_pm_select_idle_state(dev);
2275 	}
2276 
2277 abort:
2278 	spin_unlock_irqrestore(&host->irq_lock, flags);
2279 	return ret;
2280 }
2281 
2282 static int omap_hsmmc_runtime_resume(struct device *dev)
2283 {
2284 	struct omap_hsmmc_host *host;
2285 	unsigned long flags;
2286 
2287 	host = platform_get_drvdata(to_platform_device(dev));
2288 	omap_hsmmc_context_restore(host);
2289 	dev_dbg(dev, "enabled\n");
2290 
2291 	spin_lock_irqsave(&host->irq_lock, flags);
2292 	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2293 	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2294 
2295 		pinctrl_pm_select_default_state(host->dev);
2296 
2297 		/* irq lost, if pinmux incorrect */
2298 		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2299 		OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2300 		OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2301 	} else {
2302 		pinctrl_pm_select_default_state(host->dev);
2303 	}
2304 	spin_unlock_irqrestore(&host->irq_lock, flags);
2305 	return 0;
2306 }
2307 
2308 static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2309 	SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2310 	.runtime_suspend = omap_hsmmc_runtime_suspend,
2311 	.runtime_resume = omap_hsmmc_runtime_resume,
2312 };
2313 
2314 static struct platform_driver omap_hsmmc_driver = {
2315 	.probe		= omap_hsmmc_probe,
2316 	.remove		= omap_hsmmc_remove,
2317 	.driver		= {
2318 		.name = DRIVER_NAME,
2319 		.pm = &omap_hsmmc_dev_pm_ops,
2320 		.of_match_table = of_match_ptr(omap_mmc_of_match),
2321 	},
2322 };
2323 
2324 module_platform_driver(omap_hsmmc_driver);
2325 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2326 MODULE_LICENSE("GPL");
2327 MODULE_ALIAS("platform:" DRIVER_NAME);
2328 MODULE_AUTHOR("Texas Instruments Inc");
2329