1 /* 2 * drivers/mmc/host/omap_hsmmc.c 3 * 4 * Driver for OMAP2430/3430 MMC controller. 5 * 6 * Copyright (C) 2007 Texas Instruments. 7 * 8 * Authors: 9 * Syed Mohammed Khasim <x0khasim@ti.com> 10 * Madhusudhan <madhu.cr@ti.com> 11 * Mohit Jalori <mjalori@ti.com> 12 * 13 * This file is licensed under the terms of the GNU General Public License 14 * version 2. This program is licensed "as is" without any warranty of any 15 * kind, whether express or implied. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/debugfs.h> 22 #include <linux/dmaengine.h> 23 #include <linux/seq_file.h> 24 #include <linux/sizes.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/platform_device.h> 29 #include <linux/timer.h> 30 #include <linux/clk.h> 31 #include <linux/of.h> 32 #include <linux/of_irq.h> 33 #include <linux/of_gpio.h> 34 #include <linux/of_device.h> 35 #include <linux/omap-dmaengine.h> 36 #include <linux/mmc/host.h> 37 #include <linux/mmc/core.h> 38 #include <linux/mmc/mmc.h> 39 #include <linux/mmc/slot-gpio.h> 40 #include <linux/io.h> 41 #include <linux/irq.h> 42 #include <linux/gpio.h> 43 #include <linux/regulator/consumer.h> 44 #include <linux/pinctrl/consumer.h> 45 #include <linux/pm_runtime.h> 46 #include <linux/platform_data/hsmmc-omap.h> 47 48 /* OMAP HSMMC Host Controller Registers */ 49 #define OMAP_HSMMC_SYSSTATUS 0x0014 50 #define OMAP_HSMMC_CON 0x002C 51 #define OMAP_HSMMC_SDMASA 0x0100 52 #define OMAP_HSMMC_BLK 0x0104 53 #define OMAP_HSMMC_ARG 0x0108 54 #define OMAP_HSMMC_CMD 0x010C 55 #define OMAP_HSMMC_RSP10 0x0110 56 #define OMAP_HSMMC_RSP32 0x0114 57 #define OMAP_HSMMC_RSP54 0x0118 58 #define OMAP_HSMMC_RSP76 0x011C 59 #define OMAP_HSMMC_DATA 0x0120 60 #define OMAP_HSMMC_PSTATE 0x0124 61 #define OMAP_HSMMC_HCTL 0x0128 62 #define OMAP_HSMMC_SYSCTL 0x012C 63 #define OMAP_HSMMC_STAT 0x0130 64 #define OMAP_HSMMC_IE 0x0134 65 #define OMAP_HSMMC_ISE 0x0138 66 #define OMAP_HSMMC_AC12 0x013C 67 #define OMAP_HSMMC_CAPA 0x0140 68 69 #define VS18 (1 << 26) 70 #define VS30 (1 << 25) 71 #define HSS (1 << 21) 72 #define SDVS18 (0x5 << 9) 73 #define SDVS30 (0x6 << 9) 74 #define SDVS33 (0x7 << 9) 75 #define SDVS_MASK 0x00000E00 76 #define SDVSCLR 0xFFFFF1FF 77 #define SDVSDET 0x00000400 78 #define AUTOIDLE 0x1 79 #define SDBP (1 << 8) 80 #define DTO 0xe 81 #define ICE 0x1 82 #define ICS 0x2 83 #define CEN (1 << 2) 84 #define CLKD_MAX 0x3FF /* max clock divisor: 1023 */ 85 #define CLKD_MASK 0x0000FFC0 86 #define CLKD_SHIFT 6 87 #define DTO_MASK 0x000F0000 88 #define DTO_SHIFT 16 89 #define INIT_STREAM (1 << 1) 90 #define ACEN_ACMD23 (2 << 2) 91 #define DP_SELECT (1 << 21) 92 #define DDIR (1 << 4) 93 #define DMAE 0x1 94 #define MSBS (1 << 5) 95 #define BCE (1 << 1) 96 #define FOUR_BIT (1 << 1) 97 #define HSPE (1 << 2) 98 #define IWE (1 << 24) 99 #define DDR (1 << 19) 100 #define CLKEXTFREE (1 << 16) 101 #define CTPL (1 << 11) 102 #define DW8 (1 << 5) 103 #define OD 0x1 104 #define STAT_CLEAR 0xFFFFFFFF 105 #define INIT_STREAM_CMD 0x00000000 106 #define DUAL_VOLT_OCR_BIT 7 107 #define SRC (1 << 25) 108 #define SRD (1 << 26) 109 #define SOFTRESET (1 << 1) 110 111 /* PSTATE */ 112 #define DLEV_DAT(x) (1 << (20 + (x))) 113 114 /* Interrupt masks for IE and ISE register */ 115 #define CC_EN (1 << 0) 116 #define TC_EN (1 << 1) 117 #define BWR_EN (1 << 4) 118 #define BRR_EN (1 << 5) 119 #define CIRQ_EN (1 << 8) 120 #define ERR_EN (1 << 15) 121 #define CTO_EN (1 << 16) 122 #define CCRC_EN (1 << 17) 123 #define CEB_EN (1 << 18) 124 #define CIE_EN (1 << 19) 125 #define DTO_EN (1 << 20) 126 #define DCRC_EN (1 << 21) 127 #define DEB_EN (1 << 22) 128 #define ACE_EN (1 << 24) 129 #define CERR_EN (1 << 28) 130 #define BADA_EN (1 << 29) 131 132 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\ 133 DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \ 134 BRR_EN | BWR_EN | TC_EN | CC_EN) 135 136 #define CNI (1 << 7) 137 #define ACIE (1 << 4) 138 #define ACEB (1 << 3) 139 #define ACCE (1 << 2) 140 #define ACTO (1 << 1) 141 #define ACNE (1 << 0) 142 143 #define MMC_AUTOSUSPEND_DELAY 100 144 #define MMC_TIMEOUT_MS 20 /* 20 mSec */ 145 #define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */ 146 #define OMAP_MMC_MIN_CLOCK 400000 147 #define OMAP_MMC_MAX_CLOCK 52000000 148 #define DRIVER_NAME "omap_hsmmc" 149 150 #define VDD_1V8 1800000 /* 180000 uV */ 151 #define VDD_3V0 3000000 /* 300000 uV */ 152 #define VDD_165_195 (ffs(MMC_VDD_165_195) - 1) 153 154 /* 155 * One controller can have multiple slots, like on some omap boards using 156 * omap.c controller driver. Luckily this is not currently done on any known 157 * omap_hsmmc.c device. 158 */ 159 #define mmc_pdata(host) host->pdata 160 161 /* 162 * MMC Host controller read/write API's 163 */ 164 #define OMAP_HSMMC_READ(base, reg) \ 165 __raw_readl((base) + OMAP_HSMMC_##reg) 166 167 #define OMAP_HSMMC_WRITE(base, reg, val) \ 168 __raw_writel((val), (base) + OMAP_HSMMC_##reg) 169 170 struct omap_hsmmc_next { 171 unsigned int dma_len; 172 s32 cookie; 173 }; 174 175 struct omap_hsmmc_host { 176 struct device *dev; 177 struct mmc_host *mmc; 178 struct mmc_request *mrq; 179 struct mmc_command *cmd; 180 struct mmc_data *data; 181 struct clk *fclk; 182 struct clk *dbclk; 183 /* 184 * vcc == configured supply 185 * vcc_aux == optional 186 * - MMC1, supply for DAT4..DAT7 187 * - MMC2/MMC2, external level shifter voltage supply, for 188 * chip (SDIO, eMMC, etc) or transceiver (MMC2 only) 189 */ 190 struct regulator *vcc; 191 struct regulator *vcc_aux; 192 struct regulator *pbias; 193 bool pbias_enabled; 194 void __iomem *base; 195 resource_size_t mapbase; 196 spinlock_t irq_lock; /* Prevent races with irq handler */ 197 unsigned int dma_len; 198 unsigned int dma_sg_idx; 199 unsigned char bus_mode; 200 unsigned char power_mode; 201 int suspended; 202 u32 con; 203 u32 hctl; 204 u32 sysctl; 205 u32 capa; 206 int irq; 207 int wake_irq; 208 int use_dma, dma_ch; 209 struct dma_chan *tx_chan; 210 struct dma_chan *rx_chan; 211 int response_busy; 212 int context_loss; 213 int protect_card; 214 int reqs_blocked; 215 int use_reg; 216 int req_in_progress; 217 unsigned long clk_rate; 218 unsigned int flags; 219 #define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */ 220 #define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */ 221 #define HSMMC_WAKE_IRQ_ENABLED (1 << 2) 222 struct omap_hsmmc_next next_data; 223 struct omap_hsmmc_platform_data *pdata; 224 225 /* return MMC cover switch state, can be NULL if not supported. 226 * 227 * possible return values: 228 * 0 - closed 229 * 1 - open 230 */ 231 int (*get_cover_state)(struct device *dev); 232 233 int (*card_detect)(struct device *dev); 234 }; 235 236 struct omap_mmc_of_data { 237 u32 reg_offset; 238 u8 controller_flags; 239 }; 240 241 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host); 242 243 static int omap_hsmmc_card_detect(struct device *dev) 244 { 245 struct omap_hsmmc_host *host = dev_get_drvdata(dev); 246 247 return mmc_gpio_get_cd(host->mmc); 248 } 249 250 static int omap_hsmmc_get_cover_state(struct device *dev) 251 { 252 struct omap_hsmmc_host *host = dev_get_drvdata(dev); 253 254 return mmc_gpio_get_cd(host->mmc); 255 } 256 257 #ifdef CONFIG_REGULATOR 258 259 static int omap_hsmmc_set_power(struct device *dev, int power_on, int vdd) 260 { 261 struct omap_hsmmc_host *host = 262 platform_get_drvdata(to_platform_device(dev)); 263 int ret = 0; 264 265 /* 266 * If we don't see a Vcc regulator, assume it's a fixed 267 * voltage always-on regulator. 268 */ 269 if (!host->vcc) 270 return 0; 271 272 if (mmc_pdata(host)->before_set_reg) 273 mmc_pdata(host)->before_set_reg(dev, power_on, vdd); 274 275 if (host->pbias) { 276 if (host->pbias_enabled == 1) { 277 ret = regulator_disable(host->pbias); 278 if (!ret) 279 host->pbias_enabled = 0; 280 } 281 regulator_set_voltage(host->pbias, VDD_3V0, VDD_3V0); 282 } 283 284 /* 285 * Assume Vcc regulator is used only to power the card ... OMAP 286 * VDDS is used to power the pins, optionally with a transceiver to 287 * support cards using voltages other than VDDS (1.8V nominal). When a 288 * transceiver is used, DAT3..7 are muxed as transceiver control pins. 289 * 290 * In some cases this regulator won't support enable/disable; 291 * e.g. it's a fixed rail for a WLAN chip. 292 * 293 * In other cases vcc_aux switches interface power. Example, for 294 * eMMC cards it represents VccQ. Sometimes transceivers or SDIO 295 * chips/cards need an interface voltage rail too. 296 */ 297 if (power_on) { 298 if (host->vcc) 299 ret = mmc_regulator_set_ocr(host->mmc, host->vcc, vdd); 300 /* Enable interface voltage rail, if needed */ 301 if (ret == 0 && host->vcc_aux) { 302 ret = regulator_enable(host->vcc_aux); 303 if (ret < 0 && host->vcc) 304 ret = mmc_regulator_set_ocr(host->mmc, 305 host->vcc, 0); 306 } 307 } else { 308 /* Shut down the rail */ 309 if (host->vcc_aux) 310 ret = regulator_disable(host->vcc_aux); 311 if (host->vcc) { 312 /* Then proceed to shut down the local regulator */ 313 ret = mmc_regulator_set_ocr(host->mmc, 314 host->vcc, 0); 315 } 316 } 317 318 if (host->pbias) { 319 if (vdd <= VDD_165_195) 320 ret = regulator_set_voltage(host->pbias, VDD_1V8, 321 VDD_1V8); 322 else 323 ret = regulator_set_voltage(host->pbias, VDD_3V0, 324 VDD_3V0); 325 if (ret < 0) 326 goto error_set_power; 327 328 if (host->pbias_enabled == 0) { 329 ret = regulator_enable(host->pbias); 330 if (!ret) 331 host->pbias_enabled = 1; 332 } 333 } 334 335 if (mmc_pdata(host)->after_set_reg) 336 mmc_pdata(host)->after_set_reg(dev, power_on, vdd); 337 338 error_set_power: 339 return ret; 340 } 341 342 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host) 343 { 344 struct regulator *reg; 345 int ocr_value = 0; 346 347 reg = devm_regulator_get(host->dev, "vmmc"); 348 if (IS_ERR(reg)) { 349 dev_err(host->dev, "unable to get vmmc regulator %ld\n", 350 PTR_ERR(reg)); 351 return PTR_ERR(reg); 352 } else { 353 host->vcc = reg; 354 ocr_value = mmc_regulator_get_ocrmask(reg); 355 if (!mmc_pdata(host)->ocr_mask) { 356 mmc_pdata(host)->ocr_mask = ocr_value; 357 } else { 358 if (!(mmc_pdata(host)->ocr_mask & ocr_value)) { 359 dev_err(host->dev, "ocrmask %x is not supported\n", 360 mmc_pdata(host)->ocr_mask); 361 mmc_pdata(host)->ocr_mask = 0; 362 return -EINVAL; 363 } 364 } 365 } 366 mmc_pdata(host)->set_power = omap_hsmmc_set_power; 367 368 /* Allow an aux regulator */ 369 reg = devm_regulator_get_optional(host->dev, "vmmc_aux"); 370 host->vcc_aux = IS_ERR(reg) ? NULL : reg; 371 372 reg = devm_regulator_get_optional(host->dev, "pbias"); 373 host->pbias = IS_ERR(reg) ? NULL : reg; 374 375 /* For eMMC do not power off when not in sleep state */ 376 if (mmc_pdata(host)->no_regulator_off_init) 377 return 0; 378 /* 379 * To disable boot_on regulator, enable regulator 380 * to increase usecount and then disable it. 381 */ 382 if ((host->vcc && regulator_is_enabled(host->vcc) > 0) || 383 (host->vcc_aux && regulator_is_enabled(host->vcc_aux))) { 384 int vdd = ffs(mmc_pdata(host)->ocr_mask) - 1; 385 386 mmc_pdata(host)->set_power(host->dev, 1, vdd); 387 mmc_pdata(host)->set_power(host->dev, 0, 0); 388 } 389 390 return 0; 391 } 392 393 static void omap_hsmmc_reg_put(struct omap_hsmmc_host *host) 394 { 395 mmc_pdata(host)->set_power = NULL; 396 } 397 398 static inline int omap_hsmmc_have_reg(void) 399 { 400 return 1; 401 } 402 403 #else 404 405 static inline int omap_hsmmc_reg_get(struct omap_hsmmc_host *host) 406 { 407 return -EINVAL; 408 } 409 410 static inline void omap_hsmmc_reg_put(struct omap_hsmmc_host *host) 411 { 412 } 413 414 static inline int omap_hsmmc_have_reg(void) 415 { 416 return 0; 417 } 418 419 #endif 420 421 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id); 422 423 static int omap_hsmmc_gpio_init(struct mmc_host *mmc, 424 struct omap_hsmmc_host *host, 425 struct omap_hsmmc_platform_data *pdata) 426 { 427 int ret; 428 429 if (gpio_is_valid(pdata->gpio_cod)) { 430 ret = mmc_gpio_request_cd(mmc, pdata->gpio_cod, 0); 431 if (ret) 432 return ret; 433 434 host->get_cover_state = omap_hsmmc_get_cover_state; 435 mmc_gpio_set_cd_isr(mmc, omap_hsmmc_cover_irq); 436 } else if (gpio_is_valid(pdata->gpio_cd)) { 437 ret = mmc_gpio_request_cd(mmc, pdata->gpio_cd, 0); 438 if (ret) 439 return ret; 440 441 host->card_detect = omap_hsmmc_card_detect; 442 } 443 444 if (gpio_is_valid(pdata->gpio_wp)) { 445 ret = mmc_gpio_request_ro(mmc, pdata->gpio_wp); 446 if (ret) 447 return ret; 448 } 449 450 return 0; 451 } 452 453 /* 454 * Start clock to the card 455 */ 456 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host) 457 { 458 OMAP_HSMMC_WRITE(host->base, SYSCTL, 459 OMAP_HSMMC_READ(host->base, SYSCTL) | CEN); 460 } 461 462 /* 463 * Stop clock to the card 464 */ 465 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host) 466 { 467 OMAP_HSMMC_WRITE(host->base, SYSCTL, 468 OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN); 469 if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0) 470 dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n"); 471 } 472 473 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host, 474 struct mmc_command *cmd) 475 { 476 u32 irq_mask = INT_EN_MASK; 477 unsigned long flags; 478 479 if (host->use_dma) 480 irq_mask &= ~(BRR_EN | BWR_EN); 481 482 /* Disable timeout for erases */ 483 if (cmd->opcode == MMC_ERASE) 484 irq_mask &= ~DTO_EN; 485 486 spin_lock_irqsave(&host->irq_lock, flags); 487 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 488 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask); 489 490 /* latch pending CIRQ, but don't signal MMC core */ 491 if (host->flags & HSMMC_SDIO_IRQ_ENABLED) 492 irq_mask |= CIRQ_EN; 493 OMAP_HSMMC_WRITE(host->base, IE, irq_mask); 494 spin_unlock_irqrestore(&host->irq_lock, flags); 495 } 496 497 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host) 498 { 499 u32 irq_mask = 0; 500 unsigned long flags; 501 502 spin_lock_irqsave(&host->irq_lock, flags); 503 /* no transfer running but need to keep cirq if enabled */ 504 if (host->flags & HSMMC_SDIO_IRQ_ENABLED) 505 irq_mask |= CIRQ_EN; 506 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask); 507 OMAP_HSMMC_WRITE(host->base, IE, irq_mask); 508 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 509 spin_unlock_irqrestore(&host->irq_lock, flags); 510 } 511 512 /* Calculate divisor for the given clock frequency */ 513 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios) 514 { 515 u16 dsor = 0; 516 517 if (ios->clock) { 518 dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock); 519 if (dsor > CLKD_MAX) 520 dsor = CLKD_MAX; 521 } 522 523 return dsor; 524 } 525 526 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host) 527 { 528 struct mmc_ios *ios = &host->mmc->ios; 529 unsigned long regval; 530 unsigned long timeout; 531 unsigned long clkdiv; 532 533 dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock); 534 535 omap_hsmmc_stop_clock(host); 536 537 regval = OMAP_HSMMC_READ(host->base, SYSCTL); 538 regval = regval & ~(CLKD_MASK | DTO_MASK); 539 clkdiv = calc_divisor(host, ios); 540 regval = regval | (clkdiv << 6) | (DTO << 16); 541 OMAP_HSMMC_WRITE(host->base, SYSCTL, regval); 542 OMAP_HSMMC_WRITE(host->base, SYSCTL, 543 OMAP_HSMMC_READ(host->base, SYSCTL) | ICE); 544 545 /* Wait till the ICS bit is set */ 546 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS); 547 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS 548 && time_before(jiffies, timeout)) 549 cpu_relax(); 550 551 /* 552 * Enable High-Speed Support 553 * Pre-Requisites 554 * - Controller should support High-Speed-Enable Bit 555 * - Controller should not be using DDR Mode 556 * - Controller should advertise that it supports High Speed 557 * in capabilities register 558 * - MMC/SD clock coming out of controller > 25MHz 559 */ 560 if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) && 561 (ios->timing != MMC_TIMING_MMC_DDR52) && 562 (ios->timing != MMC_TIMING_UHS_DDR50) && 563 ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) { 564 regval = OMAP_HSMMC_READ(host->base, HCTL); 565 if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000) 566 regval |= HSPE; 567 else 568 regval &= ~HSPE; 569 570 OMAP_HSMMC_WRITE(host->base, HCTL, regval); 571 } 572 573 omap_hsmmc_start_clock(host); 574 } 575 576 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host) 577 { 578 struct mmc_ios *ios = &host->mmc->ios; 579 u32 con; 580 581 con = OMAP_HSMMC_READ(host->base, CON); 582 if (ios->timing == MMC_TIMING_MMC_DDR52 || 583 ios->timing == MMC_TIMING_UHS_DDR50) 584 con |= DDR; /* configure in DDR mode */ 585 else 586 con &= ~DDR; 587 switch (ios->bus_width) { 588 case MMC_BUS_WIDTH_8: 589 OMAP_HSMMC_WRITE(host->base, CON, con | DW8); 590 break; 591 case MMC_BUS_WIDTH_4: 592 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8); 593 OMAP_HSMMC_WRITE(host->base, HCTL, 594 OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT); 595 break; 596 case MMC_BUS_WIDTH_1: 597 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8); 598 OMAP_HSMMC_WRITE(host->base, HCTL, 599 OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT); 600 break; 601 } 602 } 603 604 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host) 605 { 606 struct mmc_ios *ios = &host->mmc->ios; 607 u32 con; 608 609 con = OMAP_HSMMC_READ(host->base, CON); 610 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) 611 OMAP_HSMMC_WRITE(host->base, CON, con | OD); 612 else 613 OMAP_HSMMC_WRITE(host->base, CON, con & ~OD); 614 } 615 616 #ifdef CONFIG_PM 617 618 /* 619 * Restore the MMC host context, if it was lost as result of a 620 * power state change. 621 */ 622 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host) 623 { 624 struct mmc_ios *ios = &host->mmc->ios; 625 u32 hctl, capa; 626 unsigned long timeout; 627 628 if (host->con == OMAP_HSMMC_READ(host->base, CON) && 629 host->hctl == OMAP_HSMMC_READ(host->base, HCTL) && 630 host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) && 631 host->capa == OMAP_HSMMC_READ(host->base, CAPA)) 632 return 0; 633 634 host->context_loss++; 635 636 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) { 637 if (host->power_mode != MMC_POWER_OFF && 638 (1 << ios->vdd) <= MMC_VDD_23_24) 639 hctl = SDVS18; 640 else 641 hctl = SDVS30; 642 capa = VS30 | VS18; 643 } else { 644 hctl = SDVS18; 645 capa = VS18; 646 } 647 648 if (host->mmc->caps & MMC_CAP_SDIO_IRQ) 649 hctl |= IWE; 650 651 OMAP_HSMMC_WRITE(host->base, HCTL, 652 OMAP_HSMMC_READ(host->base, HCTL) | hctl); 653 654 OMAP_HSMMC_WRITE(host->base, CAPA, 655 OMAP_HSMMC_READ(host->base, CAPA) | capa); 656 657 OMAP_HSMMC_WRITE(host->base, HCTL, 658 OMAP_HSMMC_READ(host->base, HCTL) | SDBP); 659 660 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS); 661 while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP 662 && time_before(jiffies, timeout)) 663 ; 664 665 OMAP_HSMMC_WRITE(host->base, ISE, 0); 666 OMAP_HSMMC_WRITE(host->base, IE, 0); 667 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 668 669 /* Do not initialize card-specific things if the power is off */ 670 if (host->power_mode == MMC_POWER_OFF) 671 goto out; 672 673 omap_hsmmc_set_bus_width(host); 674 675 omap_hsmmc_set_clock(host); 676 677 omap_hsmmc_set_bus_mode(host); 678 679 out: 680 dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n", 681 host->context_loss); 682 return 0; 683 } 684 685 /* 686 * Save the MMC host context (store the number of power state changes so far). 687 */ 688 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host) 689 { 690 host->con = OMAP_HSMMC_READ(host->base, CON); 691 host->hctl = OMAP_HSMMC_READ(host->base, HCTL); 692 host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL); 693 host->capa = OMAP_HSMMC_READ(host->base, CAPA); 694 } 695 696 #else 697 698 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host) 699 { 700 return 0; 701 } 702 703 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host) 704 { 705 } 706 707 #endif 708 709 /* 710 * Send init stream sequence to card 711 * before sending IDLE command 712 */ 713 static void send_init_stream(struct omap_hsmmc_host *host) 714 { 715 int reg = 0; 716 unsigned long timeout; 717 718 if (host->protect_card) 719 return; 720 721 disable_irq(host->irq); 722 723 OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK); 724 OMAP_HSMMC_WRITE(host->base, CON, 725 OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM); 726 OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD); 727 728 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS); 729 while ((reg != CC_EN) && time_before(jiffies, timeout)) 730 reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN; 731 732 OMAP_HSMMC_WRITE(host->base, CON, 733 OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM); 734 735 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 736 OMAP_HSMMC_READ(host->base, STAT); 737 738 enable_irq(host->irq); 739 } 740 741 static inline 742 int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host) 743 { 744 int r = 1; 745 746 if (host->get_cover_state) 747 r = host->get_cover_state(host->dev); 748 return r; 749 } 750 751 static ssize_t 752 omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr, 753 char *buf) 754 { 755 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev); 756 struct omap_hsmmc_host *host = mmc_priv(mmc); 757 758 return sprintf(buf, "%s\n", 759 omap_hsmmc_cover_is_closed(host) ? "closed" : "open"); 760 } 761 762 static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL); 763 764 static ssize_t 765 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr, 766 char *buf) 767 { 768 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev); 769 struct omap_hsmmc_host *host = mmc_priv(mmc); 770 771 return sprintf(buf, "%s\n", mmc_pdata(host)->name); 772 } 773 774 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL); 775 776 /* 777 * Configure the response type and send the cmd. 778 */ 779 static void 780 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd, 781 struct mmc_data *data) 782 { 783 int cmdreg = 0, resptype = 0, cmdtype = 0; 784 785 dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n", 786 mmc_hostname(host->mmc), cmd->opcode, cmd->arg); 787 host->cmd = cmd; 788 789 omap_hsmmc_enable_irq(host, cmd); 790 791 host->response_busy = 0; 792 if (cmd->flags & MMC_RSP_PRESENT) { 793 if (cmd->flags & MMC_RSP_136) 794 resptype = 1; 795 else if (cmd->flags & MMC_RSP_BUSY) { 796 resptype = 3; 797 host->response_busy = 1; 798 } else 799 resptype = 2; 800 } 801 802 /* 803 * Unlike OMAP1 controller, the cmdtype does not seem to be based on 804 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need 805 * a val of 0x3, rest 0x0. 806 */ 807 if (cmd == host->mrq->stop) 808 cmdtype = 0x3; 809 810 cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22); 811 812 if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) && 813 host->mrq->sbc) { 814 cmdreg |= ACEN_ACMD23; 815 OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg); 816 } 817 if (data) { 818 cmdreg |= DP_SELECT | MSBS | BCE; 819 if (data->flags & MMC_DATA_READ) 820 cmdreg |= DDIR; 821 else 822 cmdreg &= ~(DDIR); 823 } 824 825 if (host->use_dma) 826 cmdreg |= DMAE; 827 828 host->req_in_progress = 1; 829 830 OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg); 831 OMAP_HSMMC_WRITE(host->base, CMD, cmdreg); 832 } 833 834 static int 835 omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data) 836 { 837 if (data->flags & MMC_DATA_WRITE) 838 return DMA_TO_DEVICE; 839 else 840 return DMA_FROM_DEVICE; 841 } 842 843 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host, 844 struct mmc_data *data) 845 { 846 return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan; 847 } 848 849 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq) 850 { 851 int dma_ch; 852 unsigned long flags; 853 854 spin_lock_irqsave(&host->irq_lock, flags); 855 host->req_in_progress = 0; 856 dma_ch = host->dma_ch; 857 spin_unlock_irqrestore(&host->irq_lock, flags); 858 859 omap_hsmmc_disable_irq(host); 860 /* Do not complete the request if DMA is still in progress */ 861 if (mrq->data && host->use_dma && dma_ch != -1) 862 return; 863 host->mrq = NULL; 864 mmc_request_done(host->mmc, mrq); 865 pm_runtime_mark_last_busy(host->dev); 866 pm_runtime_put_autosuspend(host->dev); 867 } 868 869 /* 870 * Notify the transfer complete to MMC core 871 */ 872 static void 873 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data) 874 { 875 if (!data) { 876 struct mmc_request *mrq = host->mrq; 877 878 /* TC before CC from CMD6 - don't know why, but it happens */ 879 if (host->cmd && host->cmd->opcode == 6 && 880 host->response_busy) { 881 host->response_busy = 0; 882 return; 883 } 884 885 omap_hsmmc_request_done(host, mrq); 886 return; 887 } 888 889 host->data = NULL; 890 891 if (!data->error) 892 data->bytes_xfered += data->blocks * (data->blksz); 893 else 894 data->bytes_xfered = 0; 895 896 if (data->stop && (data->error || !host->mrq->sbc)) 897 omap_hsmmc_start_command(host, data->stop, NULL); 898 else 899 omap_hsmmc_request_done(host, data->mrq); 900 } 901 902 /* 903 * Notify the core about command completion 904 */ 905 static void 906 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd) 907 { 908 if (host->mrq->sbc && (host->cmd == host->mrq->sbc) && 909 !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) { 910 host->cmd = NULL; 911 omap_hsmmc_start_dma_transfer(host); 912 omap_hsmmc_start_command(host, host->mrq->cmd, 913 host->mrq->data); 914 return; 915 } 916 917 host->cmd = NULL; 918 919 if (cmd->flags & MMC_RSP_PRESENT) { 920 if (cmd->flags & MMC_RSP_136) { 921 /* response type 2 */ 922 cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10); 923 cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32); 924 cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54); 925 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76); 926 } else { 927 /* response types 1, 1b, 3, 4, 5, 6 */ 928 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10); 929 } 930 } 931 if ((host->data == NULL && !host->response_busy) || cmd->error) 932 omap_hsmmc_request_done(host, host->mrq); 933 } 934 935 /* 936 * DMA clean up for command errors 937 */ 938 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno) 939 { 940 int dma_ch; 941 unsigned long flags; 942 943 host->data->error = errno; 944 945 spin_lock_irqsave(&host->irq_lock, flags); 946 dma_ch = host->dma_ch; 947 host->dma_ch = -1; 948 spin_unlock_irqrestore(&host->irq_lock, flags); 949 950 if (host->use_dma && dma_ch != -1) { 951 struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data); 952 953 dmaengine_terminate_all(chan); 954 dma_unmap_sg(chan->device->dev, 955 host->data->sg, host->data->sg_len, 956 omap_hsmmc_get_dma_dir(host, host->data)); 957 958 host->data->host_cookie = 0; 959 } 960 host->data = NULL; 961 } 962 963 /* 964 * Readable error output 965 */ 966 #ifdef CONFIG_MMC_DEBUG 967 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status) 968 { 969 /* --- means reserved bit without definition at documentation */ 970 static const char *omap_hsmmc_status_bits[] = { 971 "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" , 972 "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI", 973 "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" , 974 "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---" 975 }; 976 char res[256]; 977 char *buf = res; 978 int len, i; 979 980 len = sprintf(buf, "MMC IRQ 0x%x :", status); 981 buf += len; 982 983 for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++) 984 if (status & (1 << i)) { 985 len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]); 986 buf += len; 987 } 988 989 dev_vdbg(mmc_dev(host->mmc), "%s\n", res); 990 } 991 #else 992 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, 993 u32 status) 994 { 995 } 996 #endif /* CONFIG_MMC_DEBUG */ 997 998 /* 999 * MMC controller internal state machines reset 1000 * 1001 * Used to reset command or data internal state machines, using respectively 1002 * SRC or SRD bit of SYSCTL register 1003 * Can be called from interrupt context 1004 */ 1005 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host, 1006 unsigned long bit) 1007 { 1008 unsigned long i = 0; 1009 unsigned long limit = MMC_TIMEOUT_US; 1010 1011 OMAP_HSMMC_WRITE(host->base, SYSCTL, 1012 OMAP_HSMMC_READ(host->base, SYSCTL) | bit); 1013 1014 /* 1015 * OMAP4 ES2 and greater has an updated reset logic. 1016 * Monitor a 0->1 transition first 1017 */ 1018 if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) { 1019 while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit)) 1020 && (i++ < limit)) 1021 udelay(1); 1022 } 1023 i = 0; 1024 1025 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) && 1026 (i++ < limit)) 1027 udelay(1); 1028 1029 if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit) 1030 dev_err(mmc_dev(host->mmc), 1031 "Timeout waiting on controller reset in %s\n", 1032 __func__); 1033 } 1034 1035 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host, 1036 int err, int end_cmd) 1037 { 1038 if (end_cmd) { 1039 omap_hsmmc_reset_controller_fsm(host, SRC); 1040 if (host->cmd) 1041 host->cmd->error = err; 1042 } 1043 1044 if (host->data) { 1045 omap_hsmmc_reset_controller_fsm(host, SRD); 1046 omap_hsmmc_dma_cleanup(host, err); 1047 } else if (host->mrq && host->mrq->cmd) 1048 host->mrq->cmd->error = err; 1049 } 1050 1051 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status) 1052 { 1053 struct mmc_data *data; 1054 int end_cmd = 0, end_trans = 0; 1055 int error = 0; 1056 1057 data = host->data; 1058 dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status); 1059 1060 if (status & ERR_EN) { 1061 omap_hsmmc_dbg_report_irq(host, status); 1062 1063 if (status & (CTO_EN | CCRC_EN)) 1064 end_cmd = 1; 1065 if (status & (CTO_EN | DTO_EN)) 1066 hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd); 1067 else if (status & (CCRC_EN | DCRC_EN)) 1068 hsmmc_command_incomplete(host, -EILSEQ, end_cmd); 1069 1070 if (status & ACE_EN) { 1071 u32 ac12; 1072 ac12 = OMAP_HSMMC_READ(host->base, AC12); 1073 if (!(ac12 & ACNE) && host->mrq->sbc) { 1074 end_cmd = 1; 1075 if (ac12 & ACTO) 1076 error = -ETIMEDOUT; 1077 else if (ac12 & (ACCE | ACEB | ACIE)) 1078 error = -EILSEQ; 1079 host->mrq->sbc->error = error; 1080 hsmmc_command_incomplete(host, error, end_cmd); 1081 } 1082 dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12); 1083 } 1084 if (host->data || host->response_busy) { 1085 end_trans = !end_cmd; 1086 host->response_busy = 0; 1087 } 1088 } 1089 1090 OMAP_HSMMC_WRITE(host->base, STAT, status); 1091 if (end_cmd || ((status & CC_EN) && host->cmd)) 1092 omap_hsmmc_cmd_done(host, host->cmd); 1093 if ((end_trans || (status & TC_EN)) && host->mrq) 1094 omap_hsmmc_xfer_done(host, data); 1095 } 1096 1097 /* 1098 * MMC controller IRQ handler 1099 */ 1100 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id) 1101 { 1102 struct omap_hsmmc_host *host = dev_id; 1103 int status; 1104 1105 status = OMAP_HSMMC_READ(host->base, STAT); 1106 while (status & (INT_EN_MASK | CIRQ_EN)) { 1107 if (host->req_in_progress) 1108 omap_hsmmc_do_irq(host, status); 1109 1110 if (status & CIRQ_EN) 1111 mmc_signal_sdio_irq(host->mmc); 1112 1113 /* Flush posted write */ 1114 status = OMAP_HSMMC_READ(host->base, STAT); 1115 } 1116 1117 return IRQ_HANDLED; 1118 } 1119 1120 static irqreturn_t omap_hsmmc_wake_irq(int irq, void *dev_id) 1121 { 1122 struct omap_hsmmc_host *host = dev_id; 1123 1124 /* cirq is level triggered, disable to avoid infinite loop */ 1125 spin_lock(&host->irq_lock); 1126 if (host->flags & HSMMC_WAKE_IRQ_ENABLED) { 1127 disable_irq_nosync(host->wake_irq); 1128 host->flags &= ~HSMMC_WAKE_IRQ_ENABLED; 1129 } 1130 spin_unlock(&host->irq_lock); 1131 pm_request_resume(host->dev); /* no use counter */ 1132 1133 return IRQ_HANDLED; 1134 } 1135 1136 static void set_sd_bus_power(struct omap_hsmmc_host *host) 1137 { 1138 unsigned long i; 1139 1140 OMAP_HSMMC_WRITE(host->base, HCTL, 1141 OMAP_HSMMC_READ(host->base, HCTL) | SDBP); 1142 for (i = 0; i < loops_per_jiffy; i++) { 1143 if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP) 1144 break; 1145 cpu_relax(); 1146 } 1147 } 1148 1149 /* 1150 * Switch MMC interface voltage ... only relevant for MMC1. 1151 * 1152 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver. 1153 * The MMC2 transceiver controls are used instead of DAT4..DAT7. 1154 * Some chips, like eMMC ones, use internal transceivers. 1155 */ 1156 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd) 1157 { 1158 u32 reg_val = 0; 1159 int ret; 1160 1161 /* Disable the clocks */ 1162 pm_runtime_put_sync(host->dev); 1163 if (host->dbclk) 1164 clk_disable_unprepare(host->dbclk); 1165 1166 /* Turn the power off */ 1167 ret = mmc_pdata(host)->set_power(host->dev, 0, 0); 1168 1169 /* Turn the power ON with given VDD 1.8 or 3.0v */ 1170 if (!ret) 1171 ret = mmc_pdata(host)->set_power(host->dev, 1, vdd); 1172 pm_runtime_get_sync(host->dev); 1173 if (host->dbclk) 1174 clk_prepare_enable(host->dbclk); 1175 1176 if (ret != 0) 1177 goto err; 1178 1179 OMAP_HSMMC_WRITE(host->base, HCTL, 1180 OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR); 1181 reg_val = OMAP_HSMMC_READ(host->base, HCTL); 1182 1183 /* 1184 * If a MMC dual voltage card is detected, the set_ios fn calls 1185 * this fn with VDD bit set for 1.8V. Upon card removal from the 1186 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF. 1187 * 1188 * Cope with a bit of slop in the range ... per data sheets: 1189 * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max, 1190 * but recommended values are 1.71V to 1.89V 1191 * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max, 1192 * but recommended values are 2.7V to 3.3V 1193 * 1194 * Board setup code shouldn't permit anything very out-of-range. 1195 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the 1196 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V. 1197 */ 1198 if ((1 << vdd) <= MMC_VDD_23_24) 1199 reg_val |= SDVS18; 1200 else 1201 reg_val |= SDVS30; 1202 1203 OMAP_HSMMC_WRITE(host->base, HCTL, reg_val); 1204 set_sd_bus_power(host); 1205 1206 return 0; 1207 err: 1208 dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n"); 1209 return ret; 1210 } 1211 1212 /* Protect the card while the cover is open */ 1213 static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host) 1214 { 1215 if (!host->get_cover_state) 1216 return; 1217 1218 host->reqs_blocked = 0; 1219 if (host->get_cover_state(host->dev)) { 1220 if (host->protect_card) { 1221 dev_info(host->dev, "%s: cover is closed, " 1222 "card is now accessible\n", 1223 mmc_hostname(host->mmc)); 1224 host->protect_card = 0; 1225 } 1226 } else { 1227 if (!host->protect_card) { 1228 dev_info(host->dev, "%s: cover is open, " 1229 "card is now inaccessible\n", 1230 mmc_hostname(host->mmc)); 1231 host->protect_card = 1; 1232 } 1233 } 1234 } 1235 1236 /* 1237 * irq handler when (cell-phone) cover is mounted/removed 1238 */ 1239 static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id) 1240 { 1241 struct omap_hsmmc_host *host = dev_id; 1242 1243 sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch"); 1244 1245 omap_hsmmc_protect_card(host); 1246 mmc_detect_change(host->mmc, (HZ * 200) / 1000); 1247 return IRQ_HANDLED; 1248 } 1249 1250 static void omap_hsmmc_dma_callback(void *param) 1251 { 1252 struct omap_hsmmc_host *host = param; 1253 struct dma_chan *chan; 1254 struct mmc_data *data; 1255 int req_in_progress; 1256 1257 spin_lock_irq(&host->irq_lock); 1258 if (host->dma_ch < 0) { 1259 spin_unlock_irq(&host->irq_lock); 1260 return; 1261 } 1262 1263 data = host->mrq->data; 1264 chan = omap_hsmmc_get_dma_chan(host, data); 1265 if (!data->host_cookie) 1266 dma_unmap_sg(chan->device->dev, 1267 data->sg, data->sg_len, 1268 omap_hsmmc_get_dma_dir(host, data)); 1269 1270 req_in_progress = host->req_in_progress; 1271 host->dma_ch = -1; 1272 spin_unlock_irq(&host->irq_lock); 1273 1274 /* If DMA has finished after TC, complete the request */ 1275 if (!req_in_progress) { 1276 struct mmc_request *mrq = host->mrq; 1277 1278 host->mrq = NULL; 1279 mmc_request_done(host->mmc, mrq); 1280 pm_runtime_mark_last_busy(host->dev); 1281 pm_runtime_put_autosuspend(host->dev); 1282 } 1283 } 1284 1285 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host, 1286 struct mmc_data *data, 1287 struct omap_hsmmc_next *next, 1288 struct dma_chan *chan) 1289 { 1290 int dma_len; 1291 1292 if (!next && data->host_cookie && 1293 data->host_cookie != host->next_data.cookie) { 1294 dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d" 1295 " host->next_data.cookie %d\n", 1296 __func__, data->host_cookie, host->next_data.cookie); 1297 data->host_cookie = 0; 1298 } 1299 1300 /* Check if next job is already prepared */ 1301 if (next || data->host_cookie != host->next_data.cookie) { 1302 dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len, 1303 omap_hsmmc_get_dma_dir(host, data)); 1304 1305 } else { 1306 dma_len = host->next_data.dma_len; 1307 host->next_data.dma_len = 0; 1308 } 1309 1310 1311 if (dma_len == 0) 1312 return -EINVAL; 1313 1314 if (next) { 1315 next->dma_len = dma_len; 1316 data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie; 1317 } else 1318 host->dma_len = dma_len; 1319 1320 return 0; 1321 } 1322 1323 /* 1324 * Routine to configure and start DMA for the MMC card 1325 */ 1326 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host, 1327 struct mmc_request *req) 1328 { 1329 struct dma_slave_config cfg; 1330 struct dma_async_tx_descriptor *tx; 1331 int ret = 0, i; 1332 struct mmc_data *data = req->data; 1333 struct dma_chan *chan; 1334 1335 /* Sanity check: all the SG entries must be aligned by block size. */ 1336 for (i = 0; i < data->sg_len; i++) { 1337 struct scatterlist *sgl; 1338 1339 sgl = data->sg + i; 1340 if (sgl->length % data->blksz) 1341 return -EINVAL; 1342 } 1343 if ((data->blksz % 4) != 0) 1344 /* REVISIT: The MMC buffer increments only when MSB is written. 1345 * Return error for blksz which is non multiple of four. 1346 */ 1347 return -EINVAL; 1348 1349 BUG_ON(host->dma_ch != -1); 1350 1351 chan = omap_hsmmc_get_dma_chan(host, data); 1352 1353 cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA; 1354 cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA; 1355 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1356 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1357 cfg.src_maxburst = data->blksz / 4; 1358 cfg.dst_maxburst = data->blksz / 4; 1359 1360 ret = dmaengine_slave_config(chan, &cfg); 1361 if (ret) 1362 return ret; 1363 1364 ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan); 1365 if (ret) 1366 return ret; 1367 1368 tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len, 1369 data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, 1370 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1371 if (!tx) { 1372 dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n"); 1373 /* FIXME: cleanup */ 1374 return -1; 1375 } 1376 1377 tx->callback = omap_hsmmc_dma_callback; 1378 tx->callback_param = host; 1379 1380 /* Does not fail */ 1381 dmaengine_submit(tx); 1382 1383 host->dma_ch = 1; 1384 1385 return 0; 1386 } 1387 1388 static void set_data_timeout(struct omap_hsmmc_host *host, 1389 unsigned int timeout_ns, 1390 unsigned int timeout_clks) 1391 { 1392 unsigned int timeout, cycle_ns; 1393 uint32_t reg, clkd, dto = 0; 1394 1395 reg = OMAP_HSMMC_READ(host->base, SYSCTL); 1396 clkd = (reg & CLKD_MASK) >> CLKD_SHIFT; 1397 if (clkd == 0) 1398 clkd = 1; 1399 1400 cycle_ns = 1000000000 / (host->clk_rate / clkd); 1401 timeout = timeout_ns / cycle_ns; 1402 timeout += timeout_clks; 1403 if (timeout) { 1404 while ((timeout & 0x80000000) == 0) { 1405 dto += 1; 1406 timeout <<= 1; 1407 } 1408 dto = 31 - dto; 1409 timeout <<= 1; 1410 if (timeout && dto) 1411 dto += 1; 1412 if (dto >= 13) 1413 dto -= 13; 1414 else 1415 dto = 0; 1416 if (dto > 14) 1417 dto = 14; 1418 } 1419 1420 reg &= ~DTO_MASK; 1421 reg |= dto << DTO_SHIFT; 1422 OMAP_HSMMC_WRITE(host->base, SYSCTL, reg); 1423 } 1424 1425 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host) 1426 { 1427 struct mmc_request *req = host->mrq; 1428 struct dma_chan *chan; 1429 1430 if (!req->data) 1431 return; 1432 OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz) 1433 | (req->data->blocks << 16)); 1434 set_data_timeout(host, req->data->timeout_ns, 1435 req->data->timeout_clks); 1436 chan = omap_hsmmc_get_dma_chan(host, req->data); 1437 dma_async_issue_pending(chan); 1438 } 1439 1440 /* 1441 * Configure block length for MMC/SD cards and initiate the transfer. 1442 */ 1443 static int 1444 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req) 1445 { 1446 int ret; 1447 host->data = req->data; 1448 1449 if (req->data == NULL) { 1450 OMAP_HSMMC_WRITE(host->base, BLK, 0); 1451 /* 1452 * Set an arbitrary 100ms data timeout for commands with 1453 * busy signal. 1454 */ 1455 if (req->cmd->flags & MMC_RSP_BUSY) 1456 set_data_timeout(host, 100000000U, 0); 1457 return 0; 1458 } 1459 1460 if (host->use_dma) { 1461 ret = omap_hsmmc_setup_dma_transfer(host, req); 1462 if (ret != 0) { 1463 dev_err(mmc_dev(host->mmc), "MMC start dma failure\n"); 1464 return ret; 1465 } 1466 } 1467 return 0; 1468 } 1469 1470 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq, 1471 int err) 1472 { 1473 struct omap_hsmmc_host *host = mmc_priv(mmc); 1474 struct mmc_data *data = mrq->data; 1475 1476 if (host->use_dma && data->host_cookie) { 1477 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data); 1478 1479 dma_unmap_sg(c->device->dev, data->sg, data->sg_len, 1480 omap_hsmmc_get_dma_dir(host, data)); 1481 data->host_cookie = 0; 1482 } 1483 } 1484 1485 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq, 1486 bool is_first_req) 1487 { 1488 struct omap_hsmmc_host *host = mmc_priv(mmc); 1489 1490 if (mrq->data->host_cookie) { 1491 mrq->data->host_cookie = 0; 1492 return ; 1493 } 1494 1495 if (host->use_dma) { 1496 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data); 1497 1498 if (omap_hsmmc_pre_dma_transfer(host, mrq->data, 1499 &host->next_data, c)) 1500 mrq->data->host_cookie = 0; 1501 } 1502 } 1503 1504 /* 1505 * Request function. for read/write operation 1506 */ 1507 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req) 1508 { 1509 struct omap_hsmmc_host *host = mmc_priv(mmc); 1510 int err; 1511 1512 BUG_ON(host->req_in_progress); 1513 BUG_ON(host->dma_ch != -1); 1514 pm_runtime_get_sync(host->dev); 1515 if (host->protect_card) { 1516 if (host->reqs_blocked < 3) { 1517 /* 1518 * Ensure the controller is left in a consistent 1519 * state by resetting the command and data state 1520 * machines. 1521 */ 1522 omap_hsmmc_reset_controller_fsm(host, SRD); 1523 omap_hsmmc_reset_controller_fsm(host, SRC); 1524 host->reqs_blocked += 1; 1525 } 1526 req->cmd->error = -EBADF; 1527 if (req->data) 1528 req->data->error = -EBADF; 1529 req->cmd->retries = 0; 1530 mmc_request_done(mmc, req); 1531 pm_runtime_mark_last_busy(host->dev); 1532 pm_runtime_put_autosuspend(host->dev); 1533 return; 1534 } else if (host->reqs_blocked) 1535 host->reqs_blocked = 0; 1536 WARN_ON(host->mrq != NULL); 1537 host->mrq = req; 1538 host->clk_rate = clk_get_rate(host->fclk); 1539 err = omap_hsmmc_prepare_data(host, req); 1540 if (err) { 1541 req->cmd->error = err; 1542 if (req->data) 1543 req->data->error = err; 1544 host->mrq = NULL; 1545 mmc_request_done(mmc, req); 1546 pm_runtime_mark_last_busy(host->dev); 1547 pm_runtime_put_autosuspend(host->dev); 1548 return; 1549 } 1550 if (req->sbc && !(host->flags & AUTO_CMD23)) { 1551 omap_hsmmc_start_command(host, req->sbc, NULL); 1552 return; 1553 } 1554 1555 omap_hsmmc_start_dma_transfer(host); 1556 omap_hsmmc_start_command(host, req->cmd, req->data); 1557 } 1558 1559 /* Routine to configure clock values. Exposed API to core */ 1560 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1561 { 1562 struct omap_hsmmc_host *host = mmc_priv(mmc); 1563 int do_send_init_stream = 0; 1564 1565 pm_runtime_get_sync(host->dev); 1566 1567 if (ios->power_mode != host->power_mode) { 1568 switch (ios->power_mode) { 1569 case MMC_POWER_OFF: 1570 mmc_pdata(host)->set_power(host->dev, 0, 0); 1571 break; 1572 case MMC_POWER_UP: 1573 mmc_pdata(host)->set_power(host->dev, 1, ios->vdd); 1574 break; 1575 case MMC_POWER_ON: 1576 do_send_init_stream = 1; 1577 break; 1578 } 1579 host->power_mode = ios->power_mode; 1580 } 1581 1582 /* FIXME: set registers based only on changes to ios */ 1583 1584 omap_hsmmc_set_bus_width(host); 1585 1586 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) { 1587 /* Only MMC1 can interface at 3V without some flavor 1588 * of external transceiver; but they all handle 1.8V. 1589 */ 1590 if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) && 1591 (ios->vdd == DUAL_VOLT_OCR_BIT)) { 1592 /* 1593 * The mmc_select_voltage fn of the core does 1594 * not seem to set the power_mode to 1595 * MMC_POWER_UP upon recalculating the voltage. 1596 * vdd 1.8v. 1597 */ 1598 if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0) 1599 dev_dbg(mmc_dev(host->mmc), 1600 "Switch operation failed\n"); 1601 } 1602 } 1603 1604 omap_hsmmc_set_clock(host); 1605 1606 if (do_send_init_stream) 1607 send_init_stream(host); 1608 1609 omap_hsmmc_set_bus_mode(host); 1610 1611 pm_runtime_put_autosuspend(host->dev); 1612 } 1613 1614 static int omap_hsmmc_get_cd(struct mmc_host *mmc) 1615 { 1616 struct omap_hsmmc_host *host = mmc_priv(mmc); 1617 1618 if (!host->card_detect) 1619 return -ENOSYS; 1620 return host->card_detect(host->dev); 1621 } 1622 1623 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card) 1624 { 1625 struct omap_hsmmc_host *host = mmc_priv(mmc); 1626 1627 if (mmc_pdata(host)->init_card) 1628 mmc_pdata(host)->init_card(card); 1629 } 1630 1631 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable) 1632 { 1633 struct omap_hsmmc_host *host = mmc_priv(mmc); 1634 u32 irq_mask, con; 1635 unsigned long flags; 1636 1637 spin_lock_irqsave(&host->irq_lock, flags); 1638 1639 con = OMAP_HSMMC_READ(host->base, CON); 1640 irq_mask = OMAP_HSMMC_READ(host->base, ISE); 1641 if (enable) { 1642 host->flags |= HSMMC_SDIO_IRQ_ENABLED; 1643 irq_mask |= CIRQ_EN; 1644 con |= CTPL | CLKEXTFREE; 1645 } else { 1646 host->flags &= ~HSMMC_SDIO_IRQ_ENABLED; 1647 irq_mask &= ~CIRQ_EN; 1648 con &= ~(CTPL | CLKEXTFREE); 1649 } 1650 OMAP_HSMMC_WRITE(host->base, CON, con); 1651 OMAP_HSMMC_WRITE(host->base, IE, irq_mask); 1652 1653 /* 1654 * if enable, piggy back detection on current request 1655 * but always disable immediately 1656 */ 1657 if (!host->req_in_progress || !enable) 1658 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask); 1659 1660 /* flush posted write */ 1661 OMAP_HSMMC_READ(host->base, IE); 1662 1663 spin_unlock_irqrestore(&host->irq_lock, flags); 1664 } 1665 1666 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host) 1667 { 1668 struct mmc_host *mmc = host->mmc; 1669 int ret; 1670 1671 /* 1672 * For omaps with wake-up path, wakeirq will be irq from pinctrl and 1673 * for other omaps, wakeirq will be from GPIO (dat line remuxed to 1674 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state 1675 * with functional clock disabled. 1676 */ 1677 if (!host->dev->of_node || !host->wake_irq) 1678 return -ENODEV; 1679 1680 /* Prevent auto-enabling of IRQ */ 1681 irq_set_status_flags(host->wake_irq, IRQ_NOAUTOEN); 1682 ret = devm_request_irq(host->dev, host->wake_irq, omap_hsmmc_wake_irq, 1683 IRQF_TRIGGER_LOW | IRQF_ONESHOT, 1684 mmc_hostname(mmc), host); 1685 if (ret) { 1686 dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n"); 1687 goto err; 1688 } 1689 1690 /* 1691 * Some omaps don't have wake-up path from deeper idle states 1692 * and need to remux SDIO DAT1 to GPIO for wake-up from idle. 1693 */ 1694 if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) { 1695 struct pinctrl *p = devm_pinctrl_get(host->dev); 1696 if (!p) { 1697 ret = -ENODEV; 1698 goto err_free_irq; 1699 } 1700 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) { 1701 dev_info(host->dev, "missing default pinctrl state\n"); 1702 devm_pinctrl_put(p); 1703 ret = -EINVAL; 1704 goto err_free_irq; 1705 } 1706 1707 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) { 1708 dev_info(host->dev, "missing idle pinctrl state\n"); 1709 devm_pinctrl_put(p); 1710 ret = -EINVAL; 1711 goto err_free_irq; 1712 } 1713 devm_pinctrl_put(p); 1714 } 1715 1716 OMAP_HSMMC_WRITE(host->base, HCTL, 1717 OMAP_HSMMC_READ(host->base, HCTL) | IWE); 1718 return 0; 1719 1720 err_free_irq: 1721 devm_free_irq(host->dev, host->wake_irq, host); 1722 err: 1723 dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n"); 1724 host->wake_irq = 0; 1725 return ret; 1726 } 1727 1728 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host) 1729 { 1730 u32 hctl, capa, value; 1731 1732 /* Only MMC1 supports 3.0V */ 1733 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) { 1734 hctl = SDVS30; 1735 capa = VS30 | VS18; 1736 } else { 1737 hctl = SDVS18; 1738 capa = VS18; 1739 } 1740 1741 value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK; 1742 OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl); 1743 1744 value = OMAP_HSMMC_READ(host->base, CAPA); 1745 OMAP_HSMMC_WRITE(host->base, CAPA, value | capa); 1746 1747 /* Set SD bus power bit */ 1748 set_sd_bus_power(host); 1749 } 1750 1751 static int omap_hsmmc_multi_io_quirk(struct mmc_card *card, 1752 unsigned int direction, int blk_size) 1753 { 1754 /* This controller can't do multiblock reads due to hw bugs */ 1755 if (direction == MMC_DATA_READ) 1756 return 1; 1757 1758 return blk_size; 1759 } 1760 1761 static struct mmc_host_ops omap_hsmmc_ops = { 1762 .post_req = omap_hsmmc_post_req, 1763 .pre_req = omap_hsmmc_pre_req, 1764 .request = omap_hsmmc_request, 1765 .set_ios = omap_hsmmc_set_ios, 1766 .get_cd = omap_hsmmc_get_cd, 1767 .get_ro = mmc_gpio_get_ro, 1768 .init_card = omap_hsmmc_init_card, 1769 .enable_sdio_irq = omap_hsmmc_enable_sdio_irq, 1770 }; 1771 1772 #ifdef CONFIG_DEBUG_FS 1773 1774 static int omap_hsmmc_regs_show(struct seq_file *s, void *data) 1775 { 1776 struct mmc_host *mmc = s->private; 1777 struct omap_hsmmc_host *host = mmc_priv(mmc); 1778 1779 seq_printf(s, "mmc%d:\n", mmc->index); 1780 seq_printf(s, "sdio irq mode\t%s\n", 1781 (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling"); 1782 1783 if (mmc->caps & MMC_CAP_SDIO_IRQ) { 1784 seq_printf(s, "sdio irq \t%s\n", 1785 (host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled" 1786 : "disabled"); 1787 } 1788 seq_printf(s, "ctx_loss:\t%d\n", host->context_loss); 1789 1790 pm_runtime_get_sync(host->dev); 1791 seq_puts(s, "\nregs:\n"); 1792 seq_printf(s, "CON:\t\t0x%08x\n", 1793 OMAP_HSMMC_READ(host->base, CON)); 1794 seq_printf(s, "PSTATE:\t\t0x%08x\n", 1795 OMAP_HSMMC_READ(host->base, PSTATE)); 1796 seq_printf(s, "HCTL:\t\t0x%08x\n", 1797 OMAP_HSMMC_READ(host->base, HCTL)); 1798 seq_printf(s, "SYSCTL:\t\t0x%08x\n", 1799 OMAP_HSMMC_READ(host->base, SYSCTL)); 1800 seq_printf(s, "IE:\t\t0x%08x\n", 1801 OMAP_HSMMC_READ(host->base, IE)); 1802 seq_printf(s, "ISE:\t\t0x%08x\n", 1803 OMAP_HSMMC_READ(host->base, ISE)); 1804 seq_printf(s, "CAPA:\t\t0x%08x\n", 1805 OMAP_HSMMC_READ(host->base, CAPA)); 1806 1807 pm_runtime_mark_last_busy(host->dev); 1808 pm_runtime_put_autosuspend(host->dev); 1809 1810 return 0; 1811 } 1812 1813 static int omap_hsmmc_regs_open(struct inode *inode, struct file *file) 1814 { 1815 return single_open(file, omap_hsmmc_regs_show, inode->i_private); 1816 } 1817 1818 static const struct file_operations mmc_regs_fops = { 1819 .open = omap_hsmmc_regs_open, 1820 .read = seq_read, 1821 .llseek = seq_lseek, 1822 .release = single_release, 1823 }; 1824 1825 static void omap_hsmmc_debugfs(struct mmc_host *mmc) 1826 { 1827 if (mmc->debugfs_root) 1828 debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root, 1829 mmc, &mmc_regs_fops); 1830 } 1831 1832 #else 1833 1834 static void omap_hsmmc_debugfs(struct mmc_host *mmc) 1835 { 1836 } 1837 1838 #endif 1839 1840 #ifdef CONFIG_OF 1841 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = { 1842 /* See 35xx errata 2.1.1.128 in SPRZ278F */ 1843 .controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ, 1844 }; 1845 1846 static const struct omap_mmc_of_data omap4_mmc_of_data = { 1847 .reg_offset = 0x100, 1848 }; 1849 static const struct omap_mmc_of_data am33xx_mmc_of_data = { 1850 .reg_offset = 0x100, 1851 .controller_flags = OMAP_HSMMC_SWAKEUP_MISSING, 1852 }; 1853 1854 static const struct of_device_id omap_mmc_of_match[] = { 1855 { 1856 .compatible = "ti,omap2-hsmmc", 1857 }, 1858 { 1859 .compatible = "ti,omap3-pre-es3-hsmmc", 1860 .data = &omap3_pre_es3_mmc_of_data, 1861 }, 1862 { 1863 .compatible = "ti,omap3-hsmmc", 1864 }, 1865 { 1866 .compatible = "ti,omap4-hsmmc", 1867 .data = &omap4_mmc_of_data, 1868 }, 1869 { 1870 .compatible = "ti,am33xx-hsmmc", 1871 .data = &am33xx_mmc_of_data, 1872 }, 1873 {}, 1874 }; 1875 MODULE_DEVICE_TABLE(of, omap_mmc_of_match); 1876 1877 static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev) 1878 { 1879 struct omap_hsmmc_platform_data *pdata; 1880 struct device_node *np = dev->of_node; 1881 1882 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 1883 if (!pdata) 1884 return ERR_PTR(-ENOMEM); /* out of memory */ 1885 1886 if (of_find_property(np, "ti,dual-volt", NULL)) 1887 pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT; 1888 1889 pdata->gpio_cd = -EINVAL; 1890 pdata->gpio_cod = -EINVAL; 1891 pdata->gpio_wp = -EINVAL; 1892 1893 if (of_find_property(np, "ti,non-removable", NULL)) { 1894 pdata->nonremovable = true; 1895 pdata->no_regulator_off_init = true; 1896 } 1897 1898 if (of_find_property(np, "ti,needs-special-reset", NULL)) 1899 pdata->features |= HSMMC_HAS_UPDATED_RESET; 1900 1901 if (of_find_property(np, "ti,needs-special-hs-handling", NULL)) 1902 pdata->features |= HSMMC_HAS_HSPE_SUPPORT; 1903 1904 return pdata; 1905 } 1906 #else 1907 static inline struct omap_hsmmc_platform_data 1908 *of_get_hsmmc_pdata(struct device *dev) 1909 { 1910 return ERR_PTR(-EINVAL); 1911 } 1912 #endif 1913 1914 static int omap_hsmmc_probe(struct platform_device *pdev) 1915 { 1916 struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data; 1917 struct mmc_host *mmc; 1918 struct omap_hsmmc_host *host = NULL; 1919 struct resource *res; 1920 int ret, irq; 1921 const struct of_device_id *match; 1922 dma_cap_mask_t mask; 1923 unsigned tx_req, rx_req; 1924 const struct omap_mmc_of_data *data; 1925 void __iomem *base; 1926 1927 match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev); 1928 if (match) { 1929 pdata = of_get_hsmmc_pdata(&pdev->dev); 1930 1931 if (IS_ERR(pdata)) 1932 return PTR_ERR(pdata); 1933 1934 if (match->data) { 1935 data = match->data; 1936 pdata->reg_offset = data->reg_offset; 1937 pdata->controller_flags |= data->controller_flags; 1938 } 1939 } 1940 1941 if (pdata == NULL) { 1942 dev_err(&pdev->dev, "Platform Data is missing\n"); 1943 return -ENXIO; 1944 } 1945 1946 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1947 irq = platform_get_irq(pdev, 0); 1948 if (res == NULL || irq < 0) 1949 return -ENXIO; 1950 1951 base = devm_ioremap_resource(&pdev->dev, res); 1952 if (IS_ERR(base)) 1953 return PTR_ERR(base); 1954 1955 mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev); 1956 if (!mmc) { 1957 ret = -ENOMEM; 1958 goto err; 1959 } 1960 1961 ret = mmc_of_parse(mmc); 1962 if (ret) 1963 goto err1; 1964 1965 host = mmc_priv(mmc); 1966 host->mmc = mmc; 1967 host->pdata = pdata; 1968 host->dev = &pdev->dev; 1969 host->use_dma = 1; 1970 host->dma_ch = -1; 1971 host->irq = irq; 1972 host->mapbase = res->start + pdata->reg_offset; 1973 host->base = base + pdata->reg_offset; 1974 host->power_mode = MMC_POWER_OFF; 1975 host->next_data.cookie = 1; 1976 host->pbias_enabled = 0; 1977 1978 ret = omap_hsmmc_gpio_init(mmc, host, pdata); 1979 if (ret) 1980 goto err_gpio; 1981 1982 platform_set_drvdata(pdev, host); 1983 1984 if (pdev->dev.of_node) 1985 host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1); 1986 1987 mmc->ops = &omap_hsmmc_ops; 1988 1989 mmc->f_min = OMAP_MMC_MIN_CLOCK; 1990 1991 if (pdata->max_freq > 0) 1992 mmc->f_max = pdata->max_freq; 1993 else if (mmc->f_max == 0) 1994 mmc->f_max = OMAP_MMC_MAX_CLOCK; 1995 1996 spin_lock_init(&host->irq_lock); 1997 1998 host->fclk = devm_clk_get(&pdev->dev, "fck"); 1999 if (IS_ERR(host->fclk)) { 2000 ret = PTR_ERR(host->fclk); 2001 host->fclk = NULL; 2002 goto err1; 2003 } 2004 2005 if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) { 2006 dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n"); 2007 omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk; 2008 } 2009 2010 pm_runtime_enable(host->dev); 2011 pm_runtime_get_sync(host->dev); 2012 pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY); 2013 pm_runtime_use_autosuspend(host->dev); 2014 2015 omap_hsmmc_context_save(host); 2016 2017 host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck"); 2018 /* 2019 * MMC can still work without debounce clock. 2020 */ 2021 if (IS_ERR(host->dbclk)) { 2022 host->dbclk = NULL; 2023 } else if (clk_prepare_enable(host->dbclk) != 0) { 2024 dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n"); 2025 host->dbclk = NULL; 2026 } 2027 2028 /* Since we do only SG emulation, we can have as many segs 2029 * as we want. */ 2030 mmc->max_segs = 1024; 2031 2032 mmc->max_blk_size = 512; /* Block Length at max can be 1024 */ 2033 mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */ 2034 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count; 2035 mmc->max_seg_size = mmc->max_req_size; 2036 2037 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED | 2038 MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE; 2039 2040 mmc->caps |= mmc_pdata(host)->caps; 2041 if (mmc->caps & MMC_CAP_8_BIT_DATA) 2042 mmc->caps |= MMC_CAP_4_BIT_DATA; 2043 2044 if (mmc_pdata(host)->nonremovable) 2045 mmc->caps |= MMC_CAP_NONREMOVABLE; 2046 2047 mmc->pm_caps |= mmc_pdata(host)->pm_caps; 2048 2049 omap_hsmmc_conf_bus_power(host); 2050 2051 if (!pdev->dev.of_node) { 2052 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx"); 2053 if (!res) { 2054 dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n"); 2055 ret = -ENXIO; 2056 goto err_irq; 2057 } 2058 tx_req = res->start; 2059 2060 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx"); 2061 if (!res) { 2062 dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n"); 2063 ret = -ENXIO; 2064 goto err_irq; 2065 } 2066 rx_req = res->start; 2067 } 2068 2069 dma_cap_zero(mask); 2070 dma_cap_set(DMA_SLAVE, mask); 2071 2072 host->rx_chan = 2073 dma_request_slave_channel_compat(mask, omap_dma_filter_fn, 2074 &rx_req, &pdev->dev, "rx"); 2075 2076 if (!host->rx_chan) { 2077 dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel %u\n", rx_req); 2078 ret = -ENXIO; 2079 goto err_irq; 2080 } 2081 2082 host->tx_chan = 2083 dma_request_slave_channel_compat(mask, omap_dma_filter_fn, 2084 &tx_req, &pdev->dev, "tx"); 2085 2086 if (!host->tx_chan) { 2087 dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel %u\n", tx_req); 2088 ret = -ENXIO; 2089 goto err_irq; 2090 } 2091 2092 /* Request IRQ for MMC operations */ 2093 ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0, 2094 mmc_hostname(mmc), host); 2095 if (ret) { 2096 dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n"); 2097 goto err_irq; 2098 } 2099 2100 if (omap_hsmmc_have_reg() && !mmc_pdata(host)->set_power) { 2101 ret = omap_hsmmc_reg_get(host); 2102 if (ret) 2103 goto err_irq; 2104 host->use_reg = 1; 2105 } 2106 2107 mmc->ocr_avail = mmc_pdata(host)->ocr_mask; 2108 2109 omap_hsmmc_disable_irq(host); 2110 2111 /* 2112 * For now, only support SDIO interrupt if we have a separate 2113 * wake-up interrupt configured from device tree. This is because 2114 * the wake-up interrupt is needed for idle state and some 2115 * platforms need special quirks. And we don't want to add new 2116 * legacy mux platform init code callbacks any longer as we 2117 * are moving to DT based booting anyways. 2118 */ 2119 ret = omap_hsmmc_configure_wake_irq(host); 2120 if (!ret) 2121 mmc->caps |= MMC_CAP_SDIO_IRQ; 2122 2123 omap_hsmmc_protect_card(host); 2124 2125 mmc_add_host(mmc); 2126 2127 if (mmc_pdata(host)->name != NULL) { 2128 ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name); 2129 if (ret < 0) 2130 goto err_slot_name; 2131 } 2132 if (host->get_cover_state) { 2133 ret = device_create_file(&mmc->class_dev, 2134 &dev_attr_cover_switch); 2135 if (ret < 0) 2136 goto err_slot_name; 2137 } 2138 2139 omap_hsmmc_debugfs(mmc); 2140 pm_runtime_mark_last_busy(host->dev); 2141 pm_runtime_put_autosuspend(host->dev); 2142 2143 return 0; 2144 2145 err_slot_name: 2146 mmc_remove_host(mmc); 2147 if (host->use_reg) 2148 omap_hsmmc_reg_put(host); 2149 err_irq: 2150 if (host->tx_chan) 2151 dma_release_channel(host->tx_chan); 2152 if (host->rx_chan) 2153 dma_release_channel(host->rx_chan); 2154 pm_runtime_put_sync(host->dev); 2155 pm_runtime_disable(host->dev); 2156 if (host->dbclk) 2157 clk_disable_unprepare(host->dbclk); 2158 err1: 2159 err_gpio: 2160 mmc_free_host(mmc); 2161 err: 2162 return ret; 2163 } 2164 2165 static int omap_hsmmc_remove(struct platform_device *pdev) 2166 { 2167 struct omap_hsmmc_host *host = platform_get_drvdata(pdev); 2168 2169 pm_runtime_get_sync(host->dev); 2170 mmc_remove_host(host->mmc); 2171 if (host->use_reg) 2172 omap_hsmmc_reg_put(host); 2173 2174 if (host->tx_chan) 2175 dma_release_channel(host->tx_chan); 2176 if (host->rx_chan) 2177 dma_release_channel(host->rx_chan); 2178 2179 pm_runtime_put_sync(host->dev); 2180 pm_runtime_disable(host->dev); 2181 if (host->dbclk) 2182 clk_disable_unprepare(host->dbclk); 2183 2184 mmc_free_host(host->mmc); 2185 2186 return 0; 2187 } 2188 2189 #ifdef CONFIG_PM_SLEEP 2190 static int omap_hsmmc_suspend(struct device *dev) 2191 { 2192 struct omap_hsmmc_host *host = dev_get_drvdata(dev); 2193 2194 if (!host) 2195 return 0; 2196 2197 pm_runtime_get_sync(host->dev); 2198 2199 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) { 2200 OMAP_HSMMC_WRITE(host->base, ISE, 0); 2201 OMAP_HSMMC_WRITE(host->base, IE, 0); 2202 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 2203 OMAP_HSMMC_WRITE(host->base, HCTL, 2204 OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP); 2205 } 2206 2207 /* do not wake up due to sdio irq */ 2208 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) && 2209 !(host->mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ)) 2210 disable_irq(host->wake_irq); 2211 2212 if (host->dbclk) 2213 clk_disable_unprepare(host->dbclk); 2214 2215 pm_runtime_put_sync(host->dev); 2216 return 0; 2217 } 2218 2219 /* Routine to resume the MMC device */ 2220 static int omap_hsmmc_resume(struct device *dev) 2221 { 2222 struct omap_hsmmc_host *host = dev_get_drvdata(dev); 2223 2224 if (!host) 2225 return 0; 2226 2227 pm_runtime_get_sync(host->dev); 2228 2229 if (host->dbclk) 2230 clk_prepare_enable(host->dbclk); 2231 2232 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) 2233 omap_hsmmc_conf_bus_power(host); 2234 2235 omap_hsmmc_protect_card(host); 2236 2237 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) && 2238 !(host->mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ)) 2239 enable_irq(host->wake_irq); 2240 2241 pm_runtime_mark_last_busy(host->dev); 2242 pm_runtime_put_autosuspend(host->dev); 2243 return 0; 2244 } 2245 #endif 2246 2247 static int omap_hsmmc_runtime_suspend(struct device *dev) 2248 { 2249 struct omap_hsmmc_host *host; 2250 unsigned long flags; 2251 int ret = 0; 2252 2253 host = platform_get_drvdata(to_platform_device(dev)); 2254 omap_hsmmc_context_save(host); 2255 dev_dbg(dev, "disabled\n"); 2256 2257 spin_lock_irqsave(&host->irq_lock, flags); 2258 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) && 2259 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) { 2260 /* disable sdio irq handling to prevent race */ 2261 OMAP_HSMMC_WRITE(host->base, ISE, 0); 2262 OMAP_HSMMC_WRITE(host->base, IE, 0); 2263 2264 if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) { 2265 /* 2266 * dat1 line low, pending sdio irq 2267 * race condition: possible irq handler running on 2268 * multi-core, abort 2269 */ 2270 dev_dbg(dev, "pending sdio irq, abort suspend\n"); 2271 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 2272 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN); 2273 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN); 2274 pm_runtime_mark_last_busy(dev); 2275 ret = -EBUSY; 2276 goto abort; 2277 } 2278 2279 pinctrl_pm_select_idle_state(dev); 2280 2281 WARN_ON(host->flags & HSMMC_WAKE_IRQ_ENABLED); 2282 enable_irq(host->wake_irq); 2283 host->flags |= HSMMC_WAKE_IRQ_ENABLED; 2284 } else { 2285 pinctrl_pm_select_idle_state(dev); 2286 } 2287 2288 abort: 2289 spin_unlock_irqrestore(&host->irq_lock, flags); 2290 return ret; 2291 } 2292 2293 static int omap_hsmmc_runtime_resume(struct device *dev) 2294 { 2295 struct omap_hsmmc_host *host; 2296 unsigned long flags; 2297 2298 host = platform_get_drvdata(to_platform_device(dev)); 2299 omap_hsmmc_context_restore(host); 2300 dev_dbg(dev, "enabled\n"); 2301 2302 spin_lock_irqsave(&host->irq_lock, flags); 2303 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) && 2304 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) { 2305 /* sdio irq flag can't change while in runtime suspend */ 2306 if (host->flags & HSMMC_WAKE_IRQ_ENABLED) { 2307 disable_irq_nosync(host->wake_irq); 2308 host->flags &= ~HSMMC_WAKE_IRQ_ENABLED; 2309 } 2310 2311 pinctrl_pm_select_default_state(host->dev); 2312 2313 /* irq lost, if pinmux incorrect */ 2314 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); 2315 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN); 2316 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN); 2317 } else { 2318 pinctrl_pm_select_default_state(host->dev); 2319 } 2320 spin_unlock_irqrestore(&host->irq_lock, flags); 2321 return 0; 2322 } 2323 2324 static struct dev_pm_ops omap_hsmmc_dev_pm_ops = { 2325 SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume) 2326 .runtime_suspend = omap_hsmmc_runtime_suspend, 2327 .runtime_resume = omap_hsmmc_runtime_resume, 2328 }; 2329 2330 static struct platform_driver omap_hsmmc_driver = { 2331 .probe = omap_hsmmc_probe, 2332 .remove = omap_hsmmc_remove, 2333 .driver = { 2334 .name = DRIVER_NAME, 2335 .pm = &omap_hsmmc_dev_pm_ops, 2336 .of_match_table = of_match_ptr(omap_mmc_of_match), 2337 }, 2338 }; 2339 2340 module_platform_driver(omap_hsmmc_driver); 2341 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver"); 2342 MODULE_LICENSE("GPL"); 2343 MODULE_ALIAS("platform:" DRIVER_NAME); 2344 MODULE_AUTHOR("Texas Instruments Inc"); 2345